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Motivating Examples
Evaluate binomial sums and prove combinatorial identities, such as:
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Discover and certify evaluations of hypergeometric functions, e.g.,
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Prove special function identities:∫ 1
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2 eiaxC(ν)

n (x) dx =
πinΓ(n+ 2ν)Jn+ν(a)

2ν−1aνn! Γ(ν)
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Motivating Examples
Prove evaluations of infinite families of determinants:
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Compute Feynman integrals, such as∫ 1

0

∫ 1

0

w−1−ε/2(1− z)ε/2z−ε/2

(z + w − wz)1−ε
(
1− wn+1 − (1− w)n+1

)
dw dz

(physicists are interested in a recurrence in n for such integrals).

Or relativistic Coulomb integrals, also arising in physics:∫ ∞
0
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(
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)
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Selected Applications of Creative Telescoping

I Hypergeometric expressions for generating functions of walks
with small steps in the quarter plane (Alin Bostan, Frédéric
Chyzak, Mark van Hoeij, Manuel Kauers, Lucien Pech)

I Uniqueness of the solution to Canham’s problem which
predicts the shape of biomembranes: show that the reduced
volume Iso(z) of any stereographic projection of the Clifford
torus to R3 is bijective (Alin Bostan, Sergey Yurkevich)

I Computing efficiently the n-dimensional volume of a compact
semi-algebraic set, i.e., the solution set of multivariate
polynomial inequalities, up to a prescribed precision 2−p

(Pierre Lairez, Marc Mezzarobba, Mohab Safey El Din)
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Selected Applications of Creative Telescoping

I Accurate, reliable and efficient method to compute a certified
orbital collision probability between two spherical space objects
involved in a short-term encounter under Gaussian-distributed
uncertainty (Mioara Joldes, Bruno Salvy, et al.)

I Study of integrals and diagonals related to some topics in
theoretical physics such as the Ising model or the lattice
Green’s function (Jean-Marie Maillard, Alin Bostan, Youssef
Abdelaziz, Salah Boukraa, et al.)

I Irrationality measures of mathematical constants such as
elliptic L-values (Wadim Zudilin), in the spirit of Apéry’s
proof of the irrationality of ζ(3).
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Hypergeometric Terms

Definition: A term f(n) is called hypergeometric if

f(n+ 1)

f(n)

is a rational function in n.

Remark: Generalizes geometric sequences where f(n+1)
f(n) = const.

Examples:

I 3a·n+1

3

I (an+ 1)!

7

I 2n(n+1)/2

7

I
(n− π)n

Γ
(
2n+ 1

2

)

3

I

(
2n

n

)
(7n+ 3)!

(n+ 17)!

3
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Gosper’s algorithm
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Gosper’s algorithm

Let f(n) be a hypergeometric term, i.e.,
f(n+ 1)

f(n)
= r(n) ∈ K(n).

Question: Does f(n) have a hypergeometric antidifference g(n):

f(n) = g(n+ 1)− g(n).

Motivation: such g(n) yields a closed form for the indefinite sum

m∑
n=0

f(n)

=

m∑
n=0

(
g(n+ 1)− g(n)

)
= g(m+ 1)− g(0).

From f(n) = g(n+ 1)− g(n) it follows that if such g(n) exists,
then it must be a rational function multiple of f(n):

f(n)

g(n)
=
g(n+ 1)

g(n)︸ ︷︷ ︸
∈K(n)

−1

=⇒ g(n) = y(n)︸︷︷︸
∈K(n)

· f(n).
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Gosper’s algorithm
Goal: find g(n) = y(n)f(n) such that g(n+ 1)− g(n) = f(n)

y(n+ 1)f(n+ 1)− y(n)f(n) = f(n)

=⇒ r(n)y(n+ 1)− y(n) = 1 with r(n) =
f(n+ 1)

f(n)
∈ K(n).

Instead of hypergeometric g(n), look for a rational solution y(n).

Key idea: write the rational function r(n) in Gosper form:

r(n) =
a(n)

b(n)

c(n+ 1)

c(n)

for polynomials a, b, c ∈ K[n] satisfying

gcd
(
a(n), c(n)

)
= 1, gcd

(
c(n+ 1), b(n)

)
= 1,

gcd
(
a(n), b(n+ i)

)
= 1 for all i ∈ N.

The equation turns into:

a(n)c(n+ 1)y(n+ 1)− b(n)c(n)y(n) = b(n)c(n).
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Gosper’s algorithm

Recall: difference equation for the unknown rational function y(n):

a(n)c(n+ 1)y(n+ 1)− b(n)c(n)y(n) = b(n)c(n).

Substitution: look for a nonzero rational solution y(n) of the form

y(n) =
b(n− 1) · x(n)

c(n)

for some, still unknown, rational function x(n). We get

a(n)b(n)x(n+ 1)− b(n)b(n− 1)x(n) = b(n)c(n)

=⇒ a(n)x(n+ 1)− b(n− 1)x(n) = c(n).

This is called Gosper’s equation.
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The Miracle
Theorem (Gosper): if there exists x(n) ∈ K(n) that solves

a(n)x(n+ 1)− b(n− 1)x(n) = c(n). (Gosper’s equation)

then x(n) is actually a polynomial.

Proof: Assume to the contrary that x(n) = p(n)/q(n). Then:

a(n)p(n+ 1)q(n) − b(n− 1)p(n)q(n+ 1) = c(n)q(n)q(n+ 1).

Let ` ∈ N be the largest integer such that gcd
(
q(n), q(n+ `)

)
6= 1.

Let u(n) be an irreducible, nonconstant factor of this gcd. Then:

I

I

It follows that u(n+ 1) | gcd
(
a(n), b(n+ `)

)
, contradicting the

gcd conditions in the Gosper form.

How to find, if it exists, the polynomial solution x(n)?
I Degree bounding, ansatz, solving a linear system.
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Gosper’s algorithm
Examples:

I

n∑
k=0

(4k + 1)
k!

(2k + 1)!
= 2− n!

(2n+ 1)!

I

n∑
k=0

k! has no closed form.

Conclusion: decides/solves indefinite hypergeometric summation:

f(k) = g(k + 1)− g(k) =⇒
n∑
k=0

f(k) = g(n+ 1)− g(0).

Question: What about definite hypergeometric summation

n∑
k=0

f(n, k) = ? Such as
n∑
k=0

(
n

k

)
= 2n.
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Bivariate Hypergeometric Terms
Definition: A bivariate term f(n, k) is called hypergeometric
(w.r.t. n and k) if

f(n+ 1, k)

f(n, k)
and

f(n, k + 1)

f(n, k)

are both rational functions in n and k.

Examples:

I 3nk+1

7

I
(
n2 + k2

)
!

7

I nk

7

I

(
4n+ 3k + 7

2n+ k + 1

)
Γ(n+ k − π)

Γ
(
2n− k + 1

2

)

3
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Gosper’s Missed Opportunity

(Assume f(n, k) is a hypergeometric term and has finite support,
hence the sum can be taken for all k ∈ Z.)

Conjecture of the form
∑
k

f(n, k) = h(n) with
h(n+ 1)

h(n)
=
p(n)

q(n)
.

How to prove it using Gosper’s algorithm?

I Apply Gosper’s algorithm to the above summand.

I (Hopefully) obtain g(n, k) such that

q(n)f(n+ 1, k)− p(n)f(n, k) = g(n, k + 1)− g(n, k).

I Apply
∑

k to the above identity.

I Also g has finite support (rational function multiple of f).

I Get q(n)S(n+ 1)− p(n)S(n) = 0 with S(n) :=
∑

k f(n, k).

I Check that h(0) = S(0). Hence S(n) = h(n) for all n.
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Example

S(n) :=
∑
k

(
n

k

)
= 2n

We have h(n) = 2n and hence h(n+ 1)− 2h(n) = 0.

f(n+ 1, k)− 2f(n, k) =

(
n+ 1

k

)
− 2 ·

(
n

k

)
=

2k − n− 1

n− k + 1

(
n

k

)
︸ ︷︷ ︸

=: f̄(n, k)

Gosper’s algorithm applied to f̄(n, k) succeeds:

g(n, k) =
k

k − n− 1
f̄(n, k) = −

(
n

k − 1

)
.

The term g(n, k) has finite support, hence
∑

k f̄(n, k) = 0.

This yields S(n+ 1)− 2S(n) = 0 and the original identity follows.
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Zeilberger’s (Fast) Algorithm
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Creative Telescoping

Creative telescoping is a method

I to deal with parametrized definite sums and integrals

I that yields differential/recurrence equations for them

I that became popular in computer algebra in the past 30 years

Example:

∞∑
k=1

1

k2
=
π2

6
Bad: no parameter!

︸ ︷︷ ︸
=:Fn

∞∑
k=1

1

k(k + n)
=
γ + ψ(n)

n
 (n+ 2)2Fn+2 = (n+ 1)(2n+ 3)Fn+1 − n(n+ 1)Fn
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Creative Telescoping

Method for doing sums and integrals
(aka Feynman’s differentiating under the integral sign)

Consider the following summation

integration

problem: F (n) :=

b∑
k=a

f(n, k)

F (x) :=

∫ b

a
f(x, y) dy

Telescoping: find g such that f(n, k) = g(n, k + 1)− g(n, k).f(x, y) = d
dyg(x, y).

Then F (n) =

∫ b

a

(
d
dyg(x, y)

)
dy

b∑
k=a

(
g(n, k + 1)− g(n, k)

)
= g(n, b+ 1)− g(n, a).g(x, b)− g(x, a).

Creative Telescoping: find g such that

cr(x) dr

dxr f(x, y) + · · ·+ c0(x)f(x, y)cr(n)f(n+ r, k) + · · ·+ c0(n)f(n, k) = g(n, k + 1)− g(n, k).d
dyg(x, y).

Summing from a to b yields a recurrence for F (n):Integrating from a to b yields a differential equation for F (x):

cr(x) dr

dxrF (x) + · · ·+ c0(x)F (x)cr(n)F (n+ r) + · · ·+ c0(n)F (n) = g(n, b+ 1)− g(n, a).g(x, b)− g(x, a)
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Creative Telescoping
From now on let f(n, k) be a bivariate hypergeometric term.

We aim at computing a creative telescoping relation of the form:

cd(n)f(n+ d, k) + · · ·+ c0(n)f(n, k) = g(n, k + 1)− g(n, k).

Where should one look for g(n, k)?

Note that there are “trivial” solutions like:

g(n, k) :=
k−1∑
i=0

(
cd(n)f(n+ d, i) + · · ·+ c0(n)f(n, i)

)
.

A reasonable choice for where to search for g(n, k) is:

hypergeometric terms,
i.e., rational function multiples of f(n, k).
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Zeilberger’s Algorithm
Problem: What if we don’t know the evaluation of the sum:

S(n) :=
∑
k

f(n, k) = ?

(we assume natural boundaries, i.e., f has finite support w.r.t. k)

Under certain technical assumptions (f(n, k) is a “proper” term),
one can show that a recurrence for S(n) exists.

But we don’t know it, neither its order nor its coefficients.

I Try order r = 0, 1, 2, . . . until success.

I Write recurrence with undetermined coefficients pi ∈ K(n):

pr(n)S(n+ r) + · · ·+ p1(n)S(n+ 1) + p0(n)S(n) = 0.

I Apply a parametrized version of Gosper’s algorithm to

pr(n)f(n+ r, k) + · · ·+ p1(n)f(n+ 1, k) + p0(n)f(n, k).
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Another Miracle
The parametrized Gosper is applied to the hypergeometric term

pr(n)f(n+ r, k) + · · ·+ p1(n)f(n+ 1, k) + p0(n)f(n, k).

A careful analysis reveals:

I The algorithm works, despite the unknown parameters pi.

I The pi appear only in c(k) in Gosper’s equation

a(k) · x(k + 1)− b(k − 1) · x(k) = c(k).

I The pi appear linearly, hence the final linear system can be
solved simultaneously for the pi and the coefficients of x(k):

x(k) =

d∑
i=0

xi(n)ki.

I The algorithm always finds the telescoper of minimal order.
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Examples for Zeilberger’s Algorithm

n∑
k=0

(
n

k

)
= 2n

n∑
k=−n

(−1)k
(

2n

n+ k

)2
=

(2n)!

(n!)2

n∑
k=0

(
n

k

)2(n+ k

k

)2
 second-order recurrence

n∑
k=0

(−1)k
(
n

k

)(
dk

n

)
= (−d)n

2F1(a, b, c; z) :=

∞∑
k=0

(a)k (b)k
(c)k k!

zk  second-order recurrence
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The Apagodu-Zeilberger Algorithm
Theorem: Let f(n, k) = p(n, k) · h(n, k) be a proper hg. term
such that the polynomial p(n, k) is of maximal degree

and

h(n, k) =

(
A∏
j=1

(
αj
)
a′jn+ajk

)(
B∏
j=1

(
βj
)
b′jn−bjk

)
(

C∏
j=1

(
γj
)
c′jn+cjk

)(
D∏
j=1

(
δj
)
d′jn−djk

) zk
with aj , a

′
j , bj , b

′
j , cj , c

′
j , dj , d

′
j ∈ N. Furthermore, let

r = max

(
A∑
j=1

aj +
D∑
j=1

dj ,
B∑
j=1

bj +
C∑
j=1

cj

)
.

Then there exist polynomials p0(n), . . . , pr(n), not all zero,
and q(n, k) ∈ K(n, k) such that g(n, k) := q(n, k)f(n, k) satisfies

r∑
i=0

pi(n)f(n+ i, k) = g(n, k + 1)− g(n, k).
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bj +
C∑
j=1

cj

)
.

Then there exist polynomials p0(n), . . . , pr(n), not all zero,
and q(n, k) ∈ K(n, k) such that g(n, k) := q(n, k)f(n, k) satisfies

r∑
i=0

pi(n)f(n+ i, k) = g(n, k + 1)− g(n, k).
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Univariate D-finite Functions

Definition: A function f(x) is called D-finite (“differentiably
finite”) if it satisfies a (nontrivial) linear ordinary differential
equation with polynomial coefficients:

pr(x)f (r)(x) + · · ·+ p1(x)f ′(x) + p0(x)f(x) = 0, pi ∈ K[x].

Examples: const., xn, exp(x), sin(x),
√
x+ 1, . . .

Features:

I important and rich class of functions (aka holonomic functions)

I closed under many operations  “closure properties”

I good data structure in symbolic computation:

I finitely many initial values  finite amount of data

I operations (closure properties) can be executed algorithmically
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Many Functions are D-Finite
ArcCsc, KelvinBei, HypergeometricPFQ, ExpIntegralE, ArcTanh,
HankelH2, AngerJ, JacobiP, ChebyshevT, AiryBi, AiryAi, Sinc,
CosIntegral, ArcSech, SphericalBesselY, Sin, WhittakerW,
SphericalHankelH2, HermiteH, ExpIntegralEi, Beta, AiryBiPrime,
SphericalBesselJ, ParabolicCylinderD, Erfc, EllipticK, Cos,
Hypergeometric2F1, Erf, KelvinKer, BetaRegularized,
HypergeometricPFQRegularized, Log, BesselY, Cosh, ArcSinh,
CoshIntegral, ArcTan, ArcCoth, LegendreP, LaguerreL, EllipticE,
SinhIntegral, Sinh, SphericalHankelH1, ArcSin, AiryAiPrime,
EllipticThetaPrime, Root, AppellF1, FresnelC, LegendreQ,
ChebyshevU, GammaRegularized, Erfi, BesselI, HypergeometricU,
KelvinKei, Exp, ArcCot, Hypergeometric2F1Regularized, ArcSec,
Hypergeometric0F1, EllipticPi, GegenbauerC, ArcCos, WeberE,
FresnelS, EllipticF, ArcCosh, HankelH1, Sqrt, BesselK, BesselJ,
Hypergeometric1F1Regularized, StruveL, KelvinBer, StruveH,
WhittakerM, ArcCsch, Hypergeometric1F1, SinIntegral, . . .
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Special Functions

I arise in mathematical analysis and in real-world phenomena

I are solutions to certain differential equations

I cannot be expressed in terms of the usual elementary functions
(
√

, exp, log, sin, cos, . . . )

Airy function Bessel function Coulomb function
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Closure Properties of D-Finite Functions
Theorem: If f(x) and g(x) are D-finite functions, then also the
following functions are D-finite:

(i) f(x)± g(x)

(ii) f(x) · g(x)

(iii)
∫
f(x) dx

(iv) d
dxf(x)

(v) f(h(x)), where h(x) is an algebraic function.

(vi) In particular, every algebraic function h(x) is D-finite.

Proof idea:

(i) linear algebra, see next slide

(ii) also by linear algebra, analogous to (i)

(iii) replace f (i)(x) by f (i+1)(x) in the differential equation
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Proof
Assume f, g are D-finite and satisfy LODEs of order d1, d2, resp.

Show: h(x) := f(x) + g(x) is D-finite.

Ansatz: want to find c0, . . . , cd ∈ K[n] such that

0 =

cd(x)h(d)(x) + · · ·+ c1h
′(x) + c0(x)h(x)

= 0

= cd(x)
(
f (d)(x) + g(d)(x)

)
+ · · ·+ c0(x)

(
f(x) + g(x)

)
= cd(x)

(
� f (d1−1)(x) + · · ·+� f ′(x) +� f(x) +

� g(d2−1)(x) + · · ·+� g′(x) +� g(x)
)

+ · · ·+ c0(x)
(
f(x) + g(x)

)
=

d1−1∑
i=0

ri(c0, . . . , cd, x)f (i)(x) +

d2−1∑
i=0

si(c0, . . . , cd, x)g(i)(x)

All coefficients ri, si must vanish: this yields d1 + d2 equations for
the unknowns c0, . . . , cd. The choice d := d1 + d2 ensures a solution.
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the unknowns c0, . . . , cd. The choice d := d1 + d2 ensures a solution.
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Quiz: Which functions are D-Finite?

I erf

(
1

x2 + 1

)
· exp

(
1

x2 + 1

)

3

I
(
sinh(x)

)2
+
(
cosh(x)

)−2

7

I
log
(√

1− x
)

exp
(√

1− x
)

3

I arctan
(
ex
)

7

I exp
(
arctan(x)

)

3

−→ Software demo
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Operator Notation
Let Dx denote the differentiation w.r.t. x, i.e.,

D0
x

(
f(x)

)
= f(x),

Dx
(
f(x)

)
= f ′(x)

, D2
x

(
f(x)

)
= f ′′(x), etc.

Let K(x)〈Dx〉 denote the polynomial ring in Dx with coeffs in K(x).
It is not commutative:

Dx · x = x ·Dx + 1 (Leibniz rule).

More general:

Dx · r(x) = r(x) ·Dx + r′(x) for any r ∈ K(x).

Example: The Legendre differential equation

(x2 − 1)P ′′n (x) + 2xP ′n(x)− n(n+ 1)Pn(x) = 0

translates to the operator

(x2 − 1)D2
x + 2xDx − n(n+ 1).
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D-Finite Functions and Operators
Hence, D-finiteness can be stated as follows:

f(x) is D-finite ⇐⇒ ∃ L ∈ K(x)〈Dx〉 \ {0} : L
(
f(x)

)
= 0.

Let L1, L2 ∈ K(x)〈Dx〉 annihilate f and g, respectively, i.e.,

L1(f) = 0 and L2(g) = 0.

Then:

I L1 ·Dx annihilates
∫
f(x) dx.

I L := lclm(L1, L2) annihilates f + g.

(Actually, L annihilates c1 · f + c2 · g for any constants c1, c2.)
Proof: L = M1L1 = M2L2 for certain M1,M2 ∈ K(x)〈Dx〉.

I If f satisfies L(f) = h for some D-finite h, then f is D-finite.

Proof: Assume M(h) = 0. Then (ML)(f) = M(L(f)) = 0.
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Univariate P-recursive Sequences

Definition: A sequence (an)n∈N is called P-recursive if it satisfies
a (nontrivial) linear ordinary recurrence equation with polynomial
coefficients:

pr(n)an+r + · · · + p1(n)an+1 + p0(n)an = 0, pi ∈ K[n].

Examples: const., n7, Fibonacci, n!,
(
2n
n

)
, Hn, . . .

Features:

I important and rich class of sequences
(aka “P-finite”, “D-finite”, or “holonomic” sequences)

I closed under many operations  “closure properties”

I good data structure in symbolic computation:

I finitely many initial values  finite amount of data

I operations (closure properties) can be executed algorithmically
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Many Sequences are P-Recursive

Multinomial, KelvinBei, HypergeometricPFQ, HarmonicNumber,
HankelH2, CatalanNumber, AngerJ, JacobiP, ChebyshevT,
SphericalBesselY, WhittakerW, Gamma, Subfactorial, BesselJ,
Pochhammer, SphericalHankelH2, Fibonacci, HermiteH, Beta,
SphericalBesselJ, Tribonacci, StruveL, ParabolicCylinderD,
Hypergeometric2F1, BesselK, BetaRegularized, KelvinKer,
PolyGamma, HypergeometricPFQRegularized, SchröderNumber,
SphericalHankelH1, LegendreP, LaguerreL, DelannoyNumber,
BetaRegularized, AppellF1, LegendreQ, Binomial, ChebyshevU,
GammaRegularized, BesselI, HypergeometricU, KelvinKei,
Factorial, Hypergeometric2F1Regularized, GegenbauerC,
KelvinBer, WeberE, HankelH1, Hypergeometric1F1Regularized,
StruveH, WhittakerM, Hypergeometric0F1, Factorial2,
Hypergeometric1F1, LucasL, MotzkinNumber, BesselY, . . .
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Closure Properties of P-Recursive Sequences

Theorem (Closure Properties): If an and bn are two P-recursive
sequences, then also the following expressions are P-recursive:

(i) an ± bn

(ii) an · bn

(iii)
∑

n an (indefinite sum, i.e., sn s.t. sn+1 − sn = an)

(iv) acn+d, where c, d ∈ Z.

Proof idea:

(i) linear algebra, analogous to D-finite

(ii) also by linear algebra, analogous to (i)

(iii) replace an by an+1 − an in the recurrence
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Operator Notation
Let Sn denote the forward shift operator w.r.t. n, i.e.,

S0
n

(
an
)

= an,

Sn
(
an
)

= an+1

, S2
n

(
an
)

= an+2, etc.

Let K(n)〈Sn〉 denote the polynomial ring in Sn with coeffs in K(n).
It is not commutative:

Sn · n = (n+ 1) · Sn.

More general:

Sn · r(n) = r(n+ 1) · Sn for any r ∈ K(n).

Example: The three-term recurrence for Legendre polynomials

nPn(x) = (2n− 1)xPn−1(x)− (n− 1)Pn−2(x)

translates to the operator

(n+ 2)S2
n − (2n+ 3)xSn + (n+ 1).
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P-Recursive Sequences and Operators
Hence, P-recursiveness can be stated as follows:

an is P-recursive ⇐⇒ ∃ L ∈ K(n)〈Sn〉 \ {0} : L(an) = 0.

Let L1, L2 ∈ K(n)〈Sn〉 annihilate an and bn, respectively, i.e.,

L1(an) = 0 and L2(bn) = 0.

Then:

I L1 · (Sn − 1) annihilates
∑

n an.

I L := lclm(L1, L2) annihilates an + bn.

(Actually, L annihilates c1 · an + c2 · bn for any constants c1, c2.)
Proof: L = M1L1 = M2L2 for certain M1,M2 ∈ K(n)〈Sn〉.

I If an satisfies L(an) = hn for some P-rec hn, then an is P-rec.

Proof: Assume M(hn) = 0. Then (ML)(an) = M(L(an)) = 0.
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D-Finite and P-Recursive
Theorem: A sequence (an)n∈N is P-recursive iff its generating
function f(x) =

∑∞
n=0 anx

n is D-finite.

Proof: Calculate the derivatives of f :

=

∞∑
n=0

(n+ 1)i an+ix
n.

Assume f satisfies the LODE
r∑
i=0

d∑
j=0

pi,jx
jf (i)(x) = 0. Then:

r∑
i=0

d∑
j=0

∞∑
n=0

pi,j(n+ 1)i an+ix
n+j = 0

r∑
i=0

d∑
j=0

∞∑
n=j

pi,j(n− j + 1)i an−j+ix
n = 0

r∑
i=0

d∑
j=0

pi,j(n− j + 1)i an−j+i = 0 for all n > d.
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q-Case
Consider q-difference equations involving the q-shift operation

x 7→ qx, resp. qn 7→ qn+1,

or q-differential equations using the q-differentiation( d

dx

)
q
f(x) :=

f(qx)− f(x)

(q − 1)x
.

Examples:

I (a; q)n :=

n−1∏
i=0

(1− aqi), the q-Pochhammer symbol

I the q-binomial coefficient

[
n

k

]
q

:=
(q; q)n

(q; q)k (q; q)n−k

I q-trigonometric functions: sinq(x), Sinq(x), cosq(x), Cosq(x)
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Multivariate D-Finite Functions

Generalize the notions D-finite / P-recursive to several variables
(from now on, everything will just be called “D-finite”):

I Continuous case: multivariate functions f(x1, . . . , xs) where
the xi are continuous variables; must satisfy a (“maximally
overdetermined”) system of LPDEs with polynomial coeffs.

I Discrete case: multidimensional sequences (an1,...,nr)n1,...,nr∈N
where the ni are discrete variables; must satisfy “enough”
multivariate linear recurrences with polynomial coefficients.

I q-Case: multivariate expressions satisfying q-difference
equations or q-differential equations.

I Mixed cases: functions in several continuous and discrete
variables fn1,...,nr(x1, . . . , xs).

Examples: Bessel functions, orthogonal polynomials such as the
Legendre polynomials Pn(x), etc.
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Multivariate D-Finite Functions

Let fn1,...,nr(x1, . . . , xs) be a function in the continuous variables
x1, . . . , xs and in the discrete variables n1, . . . , nr.

Definition: f is called D-finite if there is a finite set of basis
functions of the form

di1

dxi11
. . .

dis

dxiss
fn1+j1,...,nr+jr(x1, . . . , xs)

with i1, . . . , is, j1, . . . , jr ∈ N such that any shifted partial
derivative of f (of the above form) can be expressed as a
K(x1, . . . , xs, n1, . . . , nr)-linear combination of the basis functions.

Again, finitely many initial conditions suffice to specify / fix f .
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Operator Notation
Differential equations/recurrences are translated to skew polynomials.

Noncommutative multiplication:

Dx · x = x ·Dx + 1, Sn · n = n · Sn + Sn,

and more generally:

Dx · r(x) = r(x) ·Dx + r′(x), Sn · r(n) = r(n+ 1) · Sn.

Notation: arbitrary operator ∂v: any of the above

General Ore operator:

∂v · a = σ(a) · ∂v + δ(a)

where σ is an automorphism and δ is a σ-derivation, i.e.,

δ(ab) = σ(a)δ(b) + δ(a)b.
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Operator Algebra
Definition: Such operators form an Ore algebra

O = K(x, y, . . . )〈∂x, ∂y, . . . 〉,

i.e., multivariate polynomials in the ∂’s with coefficients being
rational functions in x, y, . . . , where K is a field (char(K) = 0).

In fact, the above notation is a shortcut for

K(x, y, . . . )[∂x;σx, δx][∂y;σy, δy] · · ·

Example: The operators that we encountered with the Legendre
polynomials live in the Ore algebra

K(x, n)〈Dx, Sn〉 = K(x, n)[Dx; 1, d
dx ][Sn;σn, 0].

Definition: We define the annihilator of a function f to be the set

AnnO f :=
{
P ∈ O

∣∣ P · f = 0
}

(it is a left ideal in the ring O).
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(Left) Gröbner Bases
AnnO f is a left ideal in O  Use (left) Gröbner bases!

Example: The Legendre polynomials Pn(x) satisfy

(x2 − 1)P ′′n (x) + 2xP ′n(x)− n(n+ 1)Pn(x) = 0,

nPn(x) = (2n− 1)xPn−1(x)− (n− 1)Pn−2(x).

The corresponding operators in O = K(x, n)〈Dx, Sn〉,

(x2−1)D2
x +2xDx−n(n+1), (n+2)S2

n− (2n+3)xSn+(n+1),

generate AnnO
(
Pn(x)

)
, but do not form a (left) Gröbner basis

(note that in this setting the product criterion does not hold)!

Here is a Gröbner basis:

−→ Software demo

(n+1)Sn+(1−x2)Dx− (n+1)x, (x2−1)D2
x +2xDx−n(n+1).
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Multivariate D-Finite Functions
Let O = K(x, y, . . . )〈∂x, ∂y, . . . 〉 be an Ore algebra.

Definition: A function f(x, y, . . . ) is D-finite w.r.t. O if
“all its shifts and derivatives”

O · f = {P · f | P ∈ O}

form a finite-dimensional K(x, y, . . . )-vector space:

dimK(x,y,... )

(
O/AnnO(f)

)
<∞.

In other words, if AnnO(f) is a zero-dimensional (left) ideal.

“monomials under the
staircase” (dim = 5)
= “holonomic rank”
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Example: Ebisu’s 2F1 Evaluations
For α = (a, b, c) and a shift vector β ∈ Z3 compute a relation

2F1(α+ β; z) = Rβ(α, z) · 2F1(α; z) +Qβ(α, z) · 2F ′1(α; z)

with rational functions Rβ, Qβ ∈ K(a, b, c, z).

Trick: Choose (a, b, c, z) such that Qβ(α+ βt, z) vanishes.

Then the above relation reduces to a first-order recurrence for
f(t) = 2F1(α+ βt; z).

Example: using β = (2, 2, 1) discover (and prove!) the identity

2F1

(
2t, 2t+

1

3
, t+

5

6
;−1

8

)
=

(
16

27

)t Γ
(
t+ 5

6

)
Γ
(
2
3

)
Γ
(
t+ 2

3

)
Γ
(
5
6

) .
Ebisu compiled a list of hundreds of such special 2F1 evaluations.
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Closure Properties
General D-finite functions are closed under many operations:

(i) addition, e.g., xn + Pn(x)

(ii) multiplication, e.g., Pn(x)Pn+1(x)

(iii) certain substitutions, e.g., P2n+3

(√
x2 + 1

)
(iv) operator application, e.g., P ′n+2(x)

(v) definite summation, e.g.,
∑∞

n=0 Pn(x)tn

(vi) definite integration, e.g.,
∫ 1
0 Pn(x) dx

Assume the input functions have holonomic rank r1, r2, resp.
Then the output has rank at most

(i) r1 + r2

(ii) r1 · r2
(iii) r1 · d (where d is the degree of the algebraic function)

(iv) r1
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Example: Relativistic Coulomb Integrals
Consider the radial wave functions F and G of the form(

F (r)

G(r)

)
= E(r)

(
α1 α2

β1 β2

)(
L
(2ν)
n−1(2aβr)

L
(2ν)
n (2aβr)

)

where E(r) = a2β3/2

√
n!

γ Γ(n+ 2ν)
(2aβr)ν−1e−aβr

α1,2 = ±
√

1 + ε
(
(κ− ν)

√
1 + ε± µ

√
1− ε

)
,

β1,2 =
√

1− ε
(
(κ− ν)

√
1 + ε± µ

√
1− ε

)
.

The symbols a, n, β, ε, κ, µ, and ν denote physical constants.

Relativistic Coulomb integrals of the radial wave functions:∫ ∞
0

rp+2
(
F (r)2 ±G(r)2

)
dr,

∫ ∞
0

rp+2
(
F (r)G(r)

)
dr.

Task: Compute recurrences w.r.t. p for these integrals.
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Find Certain Operators in Annihilator Ideals
Application: In simulations of the propagation
of electromagnetic waves the following basis
functions (2D case) are defined:

ϕi,j(x, y) := (1−x)iP
(2i+1,0)
j (2x−1)Pi

( 2y
1−x−1

)
employing Legendre and Jacobi polynomials.

Task: Represent the partial derivatives of ϕi,j(x, y) in the basis
(i.e., as linear combinations of shifts of the ϕi,j(x, y) itself).

Ansatz: One needs a relation of the form∑
(k,l)∈A

ak,l(i, j)
d
dxϕi+k,j+l(x, y) =

∑
(m,n)∈B

bm,n(i, j)ϕi+m,j+n(x, y)

that is free of x and y (and similarly for d
dy ).
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Holonomic Functions
Definition: Let f(x1, . . . , xs) depend only on continuous variables.
Consider the Weyl algebra

W = K[x1, . . . , xs]〈Dx1 , . . . , Dxs〉.
Then f is holonomic if the left ideal AnnW(f) has dimension s
(which, by Bernstein’s inequality, is the minimum possible).

Differently stated: f is holonomic if for any (s− 1)-subset

E ⊂
{
x1, . . . , xs, Dx1 , . . . , Dxs

}
, |E| = s− 1,

there exists a nonzero element in AnnW(f) that is free of all
generators in E.

Sequences: an1,...,ns is holonomic if its generating function

A(x1, . . . , xs) :=

∞∑
n1=0

· · ·
∞∑

ns=0

an1,...,nsx
n1
1 · · ·x

ns
s

is holonomic in the above sense.
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D-Finite and Holonomic Functions

Theorem: The function f(x1, . . . , xs) is holonomic if and only if
it is D-finite.

−→ This equivalence holds only in the continuous case!

Example: The sequence
1

n2 + k2
is D-finite but not holonomic.

Application: Combine the two notions:

I Use D-finiteness for computations.

I Use holonomy for justifications (existence, termination).
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Principia Holonomica

1. Functions and sequences are represented by their
annihilating left ideals (and initial values).

2. An annihilating ideal is given by its Gröbner basis
(i.e., a finite set of generators that allows us to
decide ideal membership and equality of ideals).

3. Integrals and sums are treated by the method of
creative telescoping.

4. The output is always given as an annihilating ideal,
not as a closed form.
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The Holonomic Systems Approach

I seminal paper by Doron Zeilberger in 1990

I the proposed algorithm is based on elimination

I therefore it is called the “slow algorithm”
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Creative Telescoping for D-finite Sequences
Let f(n, k) be D-finite, given by AnnO(f), O = K(n, k)〈Sn, Sk〉.

We aim at computing a creative telescoping relation of the form:

pr(n)f(n+ r, k) + · · ·+ p0(n)f(n, k) = g(n, k + 1)− g(n, k)

= (Sk − 1) · g(n, k).

Where should we look for g(n, k)?

Note that there are “trivial” solutions like:

g(n, k) :=

k−1∑
i=0

(
pr(n)f(n+ r, i) + · · ·+ p0(n)f(n, i)

)
.

A reasonable choice for where to search for g is O · f .

Task: find P (n, Sn) = pr(n)Srn + · · ·+ p0(n) and Q ∈ O such that(
P − (Sk − 1)Q

)
· f = 0

⇐⇒ P − (Sk − 1)Q ∈ AnnO(f).
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Creative Telescoping for D-finite Functions

Let f(x, y) be D-finite, given by AnnO(f), O = K(x, y)〈Dx, Dy〉.

We aim at computing a creative telescoping relation of the form:

pr(x) dr

dxr f(x, y) + · · ·+ p0(x)f(x, y) = d
dyg(x, y)
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Example for Creative Telescoping

Consider the integral F (x) :=

∫ ∞
0

yν+1

y2 + 1
Jν(xy)︸ ︷︷ ︸

=:f(x,y)

dy.

The function f is D-finite with holonomic rank 2 (Basis: f , d
dxf):

{(y3+y)Dy−x(y2+1)Dx−νy2−ν+y2−1, x2D2
x+xDx+x2y2−ν2}

Creative telescoping delivers:

P = x2D2
x + xDx − x2 − ν2

Q =
x
(
y2 + 1

)
y

Dx −
νy2 + ν

y

g(x, y) = Q · f = yν
(
xyJ ′ν(xy)− νJν(xy)

)

Integrating (P −DyQ) · f = 0, i.e., P · f = d
dyg(x, y), yields

x2F ′′(x) + xF ′(x)− (x2 + ν2)F (x) = g(x, y)
∣∣∣y=∞
y=0

= 0.

Indeed, we have F (x) = Kν(x).
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Computing CT Relations
Idea: Make an ansatz for the telescoper P and the certificate Q.

Telescoper: Fix an integer r and set

P =
r∑
i=0

pi(x)Di
x with unknown coefficients pi ∈ K(x).

Certificate:
Let U denote the set of monomials under the stairs of a Gröbner
basis for AnnO(f), or any other vector space basis of O/AnnO(f).

Since Q ∈ O/AnnO(f), we can set

Q =
∑
u∈U

qu(x, y)u with unknowns qu ∈ K(x, y).
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Chyzak’s Algorithm
Putting things together:

P −DyQ =

r∑
i=0

pi(x)Di
x −Dy

∑
u∈U

qu(x, y)u

=
r∑
i=0

pi(x)Di
x −

∑
u∈U

(
qu(x, y)Dy + d

dy qu(x, y)
)
u

Since we want P −DyQ ∈ AnnO(f) we reduce the above
expression with a Gröbner basis of AnnO(f) and equate the
(Dx, Dy)-coefficients to zero.

This yields a coupled first-order linear system of differential
equations for the qu’s with parameters p0, . . . , pr ∈ K(x).
−→ There are algorithms to find rational solutions of such systems.

Finally: loop over the (a priori) unknown order r of the telescoper.
−→ This is Chyzak’s algorithm (analogously in other Ore algebras).
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expression with a Gröbner basis of AnnO(f) and equate the
(Dx, Dy)-coefficients to zero.

This yields a coupled first-order linear system of differential
equations for the qu’s with parameters p0, . . . , pr ∈ K(x).
−→ There are algorithms to find rational solutions of such systems.

Finally: loop over the (a priori) unknown order r of the telescoper.
−→ This is Chyzak’s algorithm (analogously in other Ore algebras).

56 / 66



Chyzak’s Algorithm
Putting things together:

P −DyQ =

r∑
i=0

pi(x)Di
x −Dy

∑
u∈U

qu(x, y)u

=

r∑
i=0

pi(x)Di
x −

∑
u∈U

(
qu(x, y)Dy + d

dy qu(x, y)
)
u

Since we want P −DyQ ∈ AnnO(f) we reduce the above
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Creative Telescoping in Full Generality

In general, a creative telescoping operator has the form

P (x,∂x) + ∆1Q1(x,y,∂x,∂y) + · · ·+ ∆mQm(x,y,∂x,∂y)

where ∆i = Syi − 1 or ∆i = Dyi (depending on the problem).

I Corresponds to an m-fold summation/integration problem.

I y = y1, . . . , ym are the summation/integration variables.

I x = x1, . . . , xl are the surviving parameters.

I P (x,∂x) is called the telescoper.

I The Qi(x,y,∂x,∂y) are called the certificates.

I The certificates certify the correctness of the telescoper.
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Ansatz with Specific Denominators
For finding CT operators, we proposed an ansatz of the form

∑
α

pα(x)∂αx +

m∑
i=1

∆i

∑
u∈U

∑
β qi,j,β(x)yβ

di,j(x,y)
u

with unknowns pα and qi,j,β, and with specific denominators di,j .

I input: a left Gröbner basis G of AnnO(f)

I denote by U the (finitely many) monomials under its stairs

I reduce the ansatz with G and equate coefficients to zero

I new: coefficient comparison w.r.t. y

I this leads to a linear system of equations over K(x)

I the denominators di,j can be roughly predicted from the
leading coefficients of the Gröbner basis G

I implemented in HolonomicFunctions (Mathematica)
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Application: Special Function Identities
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Table of Integrals by Gradshteyn and Ryzhik
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Table of Integrals by Gradshteyn and Ryzhik

Gegenbauer

polynomials C
(α)
n (x)

Gamma
function Γ(x)

Bessel
function Jν(x)

Let’s prove this identity with creative telescoping. . .
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E-Mail by Doron Zeilberger
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A Problem from Doron Zeilberger
Let Dp(x) be defined as follows:

D1(x) = 12(1−x)
x3−x

(
1
6(x− x3)− 28x2

9 + 1
5(x2 − 1)− 13x

9 + 101
15

)

Dp(x) = R1(p, x) +

p−1∑
i=1

R2(i, p, x) +

p−1∑
i=1

R3(i, p, x)Di(x)

R1(p, x) = 12p2(p−x)
x3−x−p3+p

(
(x3−x)(p+x)

5(p2+px+x2−1) + 274p2

45 −
x3−x
6p −

13px
9

− 28x2

9 + 29
45

)
R2(i, p, x) = 144i2p(p−i)(i−x)(p−x)

(x−1)x(x+1)(x−i)(x3−x−p3+p)

(
−13x(p−i)

9 − 13ip
9

+ (x3−x)(p+x)
5(p2+px+x2−1) + 38p2

15 + 5(x3−x)
18p + 49

45

)
R3(i, p, x) = 12p(p−i)(p−x)

(x−i)(x3−x−p3+p)

Task: Show that Dp(x) satisfies the second-order recurrence:
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A Problem from Doron Zeilberger

Task: Show that Dp(x) satisfies the second-order recurrence:
(p+ 1)(p+ 2)(p− x+ 1)(p2 + xp+ x2 − 1)(100p9 − 26xp8 + 1350p8 − 312xp7 +
7800p7 − 251x3p6 − 1309xp6 +25200p6 +52x4p5 − 2259x3p5 − 52x2p5 − 1953xp5 +
49800p5 + 390x4p4 − 8231x3p4 − 390x2p4 + 1601xp4 + 61650p4 + 202x6p3 +
740x4p3−15501x3p3−942x2p3+9417xp3+46700p3−26x7p2+909x6p2+52x5p2−
180x4p2−15916x3p2−729x2p2+12874xp2+19800p2−78x7p+1313x6p+156x5p−
1482x4p− 8490x3p+ 169x2p+ 7788xp+ 3600p+ 3x9 − 61x7 + 606x6 + 113x5 −
900x4 − 1855x3 + 294x2 + 1800x)Dp(x)− 2p(p+ 2)(100p12 − 26xp11 + 1200p11 −
286xp10 +5900p10 − 351x3p9 − 897xp9 +15000p9 +78x4p8 − 3159x3p8 − 78x2p8 +
507xp8+19500p8+624x4p7−11730x3p7−624x2p7+9312xp7+7200p7+453x6p6+
1122x4p6 − 23142x3p6 − 1575x2p6 + 23688xp6 − 13900p6 − 78x7p5 + 2718x6p5 +
156x5p5 − 2004x4p5 − 26037x3p5 − 714x2p5 + 29027xp5 − 21000p5 − 390x7p4 +
6642x6p4 +780x5p4 − 10086x4p4 − 16701x3p4 +3444x2p4 +18703xp4 − 11600p4 −
199x9p3 − 183x7p3 + 8448x6p3 + 963x5p3 − 15336x4p3 − 5741x3p3 + 6888x2p3 +
5784xp3 − 2400p3 + 26x10p2 − 597x9p2 − 78x8p2 + 1011x7p2 + 5655x6p2 −
231x5p2−10868x4p2−771x3p2+5265x2p2+588xp2+52x10p−380x9p−156x8p+
828x7p+ 1662x6p− 516x5p− 3064x4p+ 68x3p+ 1506x2p− 3x12 + 12x10 + 18x9 −
18x8 − 54x7 + 12x6 + 54x5 − 3x4 − 18x3)Dp+1(x) + p(p+ 1)(p− x+ 1)(p2 + xp+
4p+ x2 + 2x+ 3)(100p9 − 26xp8 + 450p8 − 104xp7 + 600p7 − 251x3p6 + 147xp6 +
52x4p5 − 753x3p5 − 52x2p5 + 805xp5 − 600p5 + 130x4p4 − 701x3p4 − 130x2p4 +
831xp4 − 450p4 + 202x6p3 − 300x4p3 − 147x3p3 + 98x2p3 + 199xp3 − 100p3 −
26x7p2 + 303x6p2 + 52x5p2 − 580x4p2 + 26x3p2 + 277x2p2 − 52xp2 − 26x7p+
101x6p+ 52x5p− 202x4p− 26x3p+ 101x2p+ 3x9 − 9x7 + 9x5 − 3x3)Dp+2(x) = 0
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Hermite Reduction
Let f ∈ K(x).

Write its squarefree partial fraction decomposition:

f =
a

b
= a0 +

a1
b1

+
a2
b22

+ · · ·+ am
bmm

with b = b1b
2
2 · · · bmm.

Now let a, b ∈ K[x] with b squarefree and deg(a) < deg(bm).

a

bm
=

u

bm−1
+
vb′

bm
(EEA: ub+ vb′ = a)

=
u

bm−1
+

(
(1−m)−1v

bm−1

)′
− (1−m)−1v′

bm−1

(IBP:
(

v
bm−1

)′
= v′

bm−1 + (1−m)vb
′

bm )

=

(
(1−m)−1v

bm−1

)′
+
u− (1−m)−1v′

bm−1

= · · · =
( p

bm−1

)′
+
q

b
with p, q ∈ K[x], deg(q) < deg(b)

Goal: f = g′ + h/b∗ where b∗ is squarefree and deg(h) < deg(b∗).
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Reduction-Based Telescoping
I Typically, the certificate Q is much larger than the telescoper.
I Often Q is not needed (natural boundaries / closed contour).

Differential case: define a reduction procedure ρ : F → F s.t.
I for each f ∈ F there is g ∈ F such that f − ρ(f) = g′,
I ρ(f) = 0 if and only if f is integrable.

Example: Hermite reduction for (univariate) rational functions.

To compute a telescoper for
∫ b
a f(x, y) dy, apply this reduction ρ

to the successive derivatives of the integrand f :

f = g′0 + ρ
(
f
)

= g′0 + h0,
d
dxf = g′1 + ρ

(
d
dxf
)

= g′1 + h1,

d2

dx2
f = g′2 + ρ

(
d2

dx2
f
)

= g′2 + h2, . . .

If the hi live in a finite-dimensional K(x)-vector space, then there
exists a nontrivial linear combination p0h0 + · · ·+ prhr = 0.

−→ Hence, the desired telescoper is p0 + p1Dx + · · ·+ prD
r
x .
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Reduction-Based Creative Telescoping

I Bostan, Chen, Chyzak, Li (2010): integrating rat. functions

I Chen, Singer (2012): (q-) summation of rational functions

I Bostan, Lairez, Salvy (2013, 2015): multiv. rational functions

I Bostan, Chen, Chyzak, Li, Xin (2013): hyperexp. functions

I Chen, Huang, Kauers, Li (2015, 2016): hypergeometric terms

I Bostan, Dumont, Salvy (2016): hypergeom.-hyperexp. terms

I Chen, Kauers, K. (2016): integration of algebraic functions

I Chen, Hoeij, Kauers, K. (2018): fuchsian D-finite functions

I van der Hoeven (2017, 2021): integration of D-finite functions

I Bostan, Chyzak, Lairez, Salvy (2018): D-finite functions

I Chen, Du, Kauers, Wang (2023): P-recursive sequences

I Brochet, Salvy (2023): summation of D-finite functions

I Brochet (today!): multiple integrals
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