Creative Telescoping for D-Finite Functions

Christoph Koutschan

Johann Radon Institute for Computational and Applied Mathematics (RICAM) Austrian Academy of Sciences

March 5+7, 2024
JNCF, Luminy

ÖAW RICAM

Motivating Examples

Evaluate binomial sums and prove combinatorial identities, such as:

$$
\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{k+n}{k}^{2}=\sum_{k=0}^{n}\binom{n}{k}\binom{k+n}{k} \sum_{j=0}^{k}\binom{k}{j}^{3}
$$

Motivating Examples

Evaluate binomial sums and prove combinatorial identities, such as:

$$
\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{k+n}{k}^{2}=\sum_{k=0}^{n}\binom{n}{k}\binom{k+n}{k} \sum_{j=0}^{k}\binom{k}{j}^{3}
$$

Discover and certify evaluations of hypergeometric functions, e.g.,

$$
{ }_{2} F_{1}\left(2 t, 2 t+\frac{1}{3}, t+\frac{5}{6} ;-\frac{1}{8}\right)=\left(\frac{16}{27}\right)^{t} \frac{\Gamma\left(t+\frac{5}{6}\right) \Gamma\left(\frac{2}{3}\right)}{\Gamma\left(t+\frac{2}{3}\right) \Gamma\left(\frac{5}{6}\right)} .
$$

Motivating Examples

Evaluate binomial sums and prove combinatorial identities, such as:

$$
\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{k+n}{k}^{2}=\sum_{k=0}^{n}\binom{n}{k}\binom{k+n}{k} \sum_{j=0}^{k}\binom{k}{j}^{3}
$$

Discover and certify evaluations of hypergeometric functions, e.g.,

$$
{ }_{2} F_{1}\left(2 t, 2 t+\frac{1}{3}, t+\frac{5}{6} ;-\frac{1}{8}\right)=\left(\frac{16}{27}\right)^{t} \frac{\Gamma\left(t+\frac{5}{6}\right) \Gamma\left(\frac{2}{3}\right)}{\Gamma\left(t+\frac{2}{3}\right) \Gamma\left(\frac{5}{6}\right)} .
$$

Prove special function identities:

$$
\int_{-1}^{1}\left(1-x^{2}\right)^{\nu-\frac{1}{2}} e^{i a x} C_{n}^{(\nu)}(x) \mathrm{d} x=\frac{\pi i^{n} \Gamma(n+2 \nu) J_{n+\nu}(a)}{2^{\nu-1} a^{\nu} n!\Gamma(\nu)}
$$

Motivating Examples

Prove evaluations of infinite families of determinants:

$$
\operatorname{det}_{0 \leqslant i, j<n}\left(2^{i}\binom{i+2 j+1}{2 j+1}-\binom{i-1}{2 j+1}\right)=2 \prod_{i=1}^{n} \frac{2^{i-1}(4 i-2)!}{(n+2 i-1)!}
$$

Motivating Examples

Prove evaluations of infinite families of determinants:

$$
\operatorname{det}_{0 \leqslant i, j<n}\left(2^{i}\binom{i+2 j+1}{2 j+1}-\binom{i-1}{2 j+1}\right)=2 \prod_{i=1}^{n} \frac{2^{i-1}(4 i-2)!}{(n+2 i-1)!}
$$

Compute Feynman integrals, such as

$$
\int_{0}^{1} \int_{0}^{1} \frac{w^{-1-\varepsilon / 2}(1-z)^{\varepsilon / 2} z^{-\varepsilon / 2}}{(z+w-w z)^{1-\varepsilon}}\left(1-w^{n+1}-(1-w)^{n+1}\right) \mathrm{d} w \mathrm{~d} z
$$

(physicists are interested in a recurrence in n for such integrals).

Motivating Examples

Prove evaluations of infinite families of determinants:

$$
\operatorname{det}_{0 \leqslant i, j<n}\left(2^{i}\binom{i+2 j+1}{2 j+1}-\binom{i-1}{2 j+1}\right)=2 \prod_{i=1}^{n} \frac{2^{i-1}(4 i-2)!}{(n+2 i-1)!}
$$

Compute Feynman integrals, such as

$$
\int_{0}^{1} \int_{0}^{1} \frac{w^{-1-\varepsilon / 2}(1-z)^{\varepsilon / 2} z^{-\varepsilon / 2}}{(z+w-w z)^{1-\varepsilon}}\left(1-w^{n+1}-(1-w)^{n+1}\right) \mathrm{d} w \mathrm{~d} z
$$

(physicists are interested in a recurrence in n for such integrals).
Or relativistic Coulomb integrals, also arising in physics:

$$
\begin{gathered}
\int_{0}^{\infty} r^{p+2}\left(F(r)^{2} \pm G(r)^{2}\right) \mathrm{d} r, \quad \text { where } \\
\binom{F(r)}{G(r)}=\frac{a^{2}(2 a \beta r)^{\nu-1}}{\mathrm{e}^{a \beta r}} \sqrt{\frac{\beta^{3} n!}{\gamma \Gamma(n+2 \nu)}}\left(\begin{array}{cc}
\alpha_{1} & \alpha_{2} \\
\beta_{1} & \beta_{2}
\end{array}\right)\binom{L_{n-1}^{(2 \nu)}(2 a \beta r)}{L_{n}^{(2 \nu)}(2 a \beta r)}
\end{gathered}
$$

Selected Applications of Creative Telescoping

- Hypergeometric expressions for generating functions of walks with small steps in the quarter plane (Alin Bostan, Frédéric Chyzak, Mark van Hoeij, Manuel Kauers, Lucien Pech)

Selected Applications of Creative Telescoping

- Hypergeometric expressions for generating functions of walks with small steps in the quarter plane (Alin Bostan, Frédéric Chyzak, Mark van Hoeij, Manuel Kauers, Lucien Pech)
- Uniqueness of the solution to Canham's problem which predicts the shape of biomembranes: show that the reduced volume $\operatorname{Iso}(z)$ of any stereographic projection of the Clifford torus to \mathbb{R}^{3} is bijective (Alin Bostan, Sergey Yurkevich)

Selected Applications of Creative Telescoping

- Hypergeometric expressions for generating functions of walks with small steps in the quarter plane (Alin Bostan, Frédéric Chyzak, Mark van Hoeij, Manuel Kauers, Lucien Pech)
- Uniqueness of the solution to Canham's problem which predicts the shape of biomembranes: show that the reduced volume $\operatorname{Iso}(z)$ of any stereographic projection of the Clifford torus to \mathbb{R}^{3} is bijective (Alin Bostan, Sergey Yurkevich)
- Computing efficiently the n-dimensional volume of a compact semi-algebraic set, i.e., the solution set of multivariate polynomial inequalities, up to a prescribed precision 2^{-p} (Pierre Lairez, Marc Mezzarobba, Mohab Safey El Din)

Selected Applications of Creative Telescoping

- Accurate, reliable and efficient method to compute a certified orbital collision probability between two spherical space objects involved in a short-term encounter under Gaussian-distributed uncertainty (Mioara Joldes, Bruno Salvy, et al.)

Selected Applications of Creative Telescoping

- Accurate, reliable and efficient method to compute a certified orbital collision probability between two spherical space objects involved in a short-term encounter under Gaussian-distributed uncertainty (Mioara Joldes, Bruno Salvy, et al.)
- Study of integrals and diagonals related to some topics in theoretical physics such as the Ising model or the lattice Green's function (Jean-Marie Maillard, Alin Bostan, Youssef Abdelaziz, Salah Boukraa, et al.)

Selected Applications of Creative Telescoping

- Accurate, reliable and efficient method to compute a certified orbital collision probability between two spherical space objects involved in a short-term encounter under Gaussian-distributed uncertainty (Mioara Joldes, Bruno Salvy, et al.)
- Study of integrals and diagonals related to some topics in theoretical physics such as the Ising model or the lattice Green's function (Jean-Marie Maillard, Alin Bostan, Youssef Abdelaziz, Salah Boukraa, et al.)
- Irrationality measures of mathematical constants such as elliptic L-values (Wadim Zudilin), in the spirit of Apéry's proof of the irrationality of $\zeta(3)$.

Hypergeometric Terms

Definition: A term $f(n)$ is called hypergeometric if

$$
\frac{f(n+1)}{f(n)}
$$

is a rational function in n.

Hypergeometric Terms

Definition: A term $f(n)$ is called hypergeometric if

$$
\frac{f(n+1)}{f(n)}
$$

is a rational function in n.
Remark: Generalizes geometric sequences where $\frac{f(n+1)}{f(n)}=$ const.

Hypergeometric Terms

Definition: A term $f(n)$ is called hypergeometric if

$$
\frac{f(n+1)}{f(n)}
$$

is a rational function in n.
Remark: Generalizes geometric sequences where $\frac{f(n+1)}{f(n)}=$ const.

Examples:

$$
\text { - } 3^{a \cdot n+1}
$$

- $(a n+1)$!
- $2^{n(n+1) / 2}$

$$
-\binom{2 n}{n} \frac{(7 n+3)!}{(n+17)!}
$$

Hypergeometric Terms

Definition: A term $f(n)$ is called hypergeometric if

$$
\frac{f(n+1)}{f(n)}
$$

is a rational function in n.
Remark: Generalizes geometric sequences where $\frac{f(n+1)}{f(n)}=$ const.

Examples:

- $3^{a \cdot n+1}$
- $2^{n(n+1) / 2}$

$$
\binom{2 n}{n} \frac{(7 n+3)!}{(n+17)!}
$$

- $(a n+1)$!
- $\frac{(n-\pi)_{n}}{\Gamma\left(2 n+\frac{1}{2}\right)}$

Hypergeometric Terms

Definition: A term $f(n)$ is called hypergeometric if

$$
\frac{f(n+1)}{f(n)}
$$

is a rational function in n.
Remark: Generalizes geometric sequences where $\frac{f(n+1)}{f(n)}=$ const.

Examples:

- $3^{a \cdot n+1}$
- $2^{n(n+1) / 2}$

$$
\binom{2 n}{n} \frac{(7 n+3)!}{(n+17)!}
$$

- $(a n+1)$!
$-\frac{(n-\pi)_{n}}{\Gamma\left(2 n+\frac{1}{2}\right)}$

Hypergeometric Terms

Definition: A term $f(n)$ is called hypergeometric if

$$
\frac{f(n+1)}{f(n)}
$$

is a rational function in n.
Remark: Generalizes geometric sequences where $\frac{f(n+1)}{f(n)}=$ const.

Examples:

- $3^{a \cdot n+1}$
- $2^{n(n+1) / 2}$

$$
\binom{2 n}{n} \frac{(7 n+3)!}{(n+17)!}
$$

- $(a n+1)$!
$-\frac{(n-\pi)_{n}}{\Gamma\left(2 n+\frac{1}{2}\right)}$

Hypergeometric Terms

Definition: A term $f(n)$ is called hypergeometric if

$$
\frac{f(n+1)}{f(n)}
$$

is a rational function in n.
Remark: Generalizes geometric sequences where $\frac{f(n+1)}{f(n)}=$ const.

Examples:

- $3^{a \cdot n+1}$
- $2^{n(n+1) / 2}$

$$
\text { - }\binom{2 n}{n} \frac{(7 n+3)!}{(n+17)!}
$$

- $(a n+1)$!
$-\frac{(n-\pi)_{n}}{\Gamma\left(2 n+\frac{1}{2}\right)}$

Hypergeometric Terms

Definition: A term $f(n)$ is called hypergeometric if

$$
\frac{f(n+1)}{f(n)}
$$

is a rational function in n.
Remark: Generalizes geometric sequences where $\frac{f(n+1)}{f(n)}=$ const.

Examples:

- $3^{a \cdot n+1}$
- $2^{n(n+1) / 2}$

$$
\text { - }\binom{2 n}{n} \frac{(7 n+3)!}{(n+17)!}
$$

- $(a n+1)$!
$-\frac{(n-\pi)_{n}}{\Gamma\left(2 n+\frac{1}{2}\right)}$

Gosper's algorithm

Proc. Natl. Acad. Sci. USA
Vol. 75, No. 1, pp. 40-42, January 1978
Mathematics

Decision procedure for indefinite hypergeometric summation

(algorithm/binomial coefficient identities/closed form/symbolic computation/linear recurrences)
R. William Gosper, Jr.

Xerox Palo Alto Research Center, Palo Alto, California 94304
Communicated by Donald E. Knuth, September 26, 1977

ABSTRACT Given a summand a_{n}, we seek the "indefinite sum" $S(n)$ determined (within an additive constant) by

$$
\begin{equation*}
\sum_{n=1}^{m} a_{n}=S(m)-S(0) \tag{0}
\end{equation*}
$$

or, equivalently, by

$$
\begin{equation*}
a_{n}=S(n)-S(n-1) . \tag{1}
\end{equation*}
$$

An algorithm is exhibited which, given a_{n}, finds those $S(n)$ with the property

$$
\frac{S(n)}{S(n-1)}=\text { a rational function of } n
$$

erate case where a_{n} is identically zero.) Express this ratio as

$$
\begin{equation*}
\frac{a_{n}}{a_{n-1}}=\frac{p_{n}}{p_{n-1}} \frac{q_{n}}{r_{n}} \tag{5}
\end{equation*}
$$

where p_{n}, q_{n}, and r_{n} are polynomials in n subject to the following condition:

$$
\begin{equation*}
\operatorname{gcd}\left(q_{n}, r_{n+j}\right)=1 \tag{6}
\end{equation*}
$$

for all non-negative integers j.
It is always possible to put a rational function in this form, for if $\operatorname{gcd}\left(q_{n}, r_{n+j}\right)=g(n)$, then this common factor can be

Gosper's algorithm

Let $f(n)$ be a hypergeometric term, i.e., $\frac{f(n+1)}{f(n)}=r(n) \in \mathbb{K}(n)$.

Gosper's algorithm

Let $f(n)$ be a hypergeometric term, i.e., $\frac{f(n+1)}{f(n)}=r(n) \in \mathbb{K}(n)$.
Question: Does $f(n)$ have a hypergeometric antidifference $g(n)$:

$$
f(n)=g(n+1)-g(n)
$$

Gosper's algorithm

Let $f(n)$ be a hypergeometric term, i.e., $\frac{f(n+1)}{f(n)}=r(n) \in \mathbb{K}(n)$.
Question: Does $f(n)$ have a hypergeometric antidifference $g(n)$:

$$
f(n)=g(n+1)-g(n)
$$

Motivation: such $g(n)$ yields a closed form for the indefinite sum

$$
\sum_{n=0}^{m} f(n)
$$

Gosper's algorithm

Let $f(n)$ be a hypergeometric term, i.e., $\frac{f(n+1)}{f(n)}=r(n) \in \mathbb{K}(n)$.
Question: Does $f(n)$ have a hypergeometric antidifference $g(n)$:

$$
f(n)=g(n+1)-g(n) .
$$

Motivation: such $g(n)$ yields a closed form for the indefinite sum

$$
\sum_{n=0}^{m} f(n)=\sum_{n=0}^{m}(g(n+1)-g(n))
$$

Gosper's algorithm

Let $f(n)$ be a hypergeometric term, i.e., $\frac{f(n+1)}{f(n)}=r(n) \in \mathbb{K}(n)$.
Question: Does $f(n)$ have a hypergeometric antidifference $g(n)$:

$$
f(n)=g(n+1)-g(n) .
$$

Motivation: such $g(n)$ yields a closed form for the indefinite sum

$$
\sum_{n=0}^{m} f(n)=\sum_{n=0}^{m}(g(n+1)-g(n))=g(m+1)-g(0) .
$$

Gosper's algorithm

Let $f(n)$ be a hypergeometric term, i.e., $\frac{f(n+1)}{f(n)}=r(n) \in \mathbb{K}(n)$.
Question: Does $f(n)$ have a hypergeometric antidifference $g(n)$:

$$
f(n)=g(n+1)-g(n) .
$$

Motivation: such $g(n)$ yields a closed form for the indefinite sum

$$
\sum_{n=0}^{m} f(n)=\sum_{n=0}^{m}(g(n+1)-g(n))=g(m+1)-g(0) .
$$

From $f(n)=g(n+1)-g(n)$ it follows that if such $g(n)$ exists, then it must be a rational function multiple of $f(n)$:

$$
\frac{f(n)}{g(n)}=\underbrace{\frac{g(n+1)}{g(n)}}_{\in \mathbb{K}(n)}-1
$$

Gosper's algorithm

Let $f(n)$ be a hypergeometric term, i.e., $\frac{f(n+1)}{f(n)}=r(n) \in \mathbb{K}(n)$.
Question: Does $f(n)$ have a hypergeometric antidifference $g(n)$:

$$
f(n)=g(n+1)-g(n) .
$$

Motivation: such $g(n)$ yields a closed form for the indefinite sum

$$
\sum_{n=0}^{m} f(n)=\sum_{n=0}^{m}(g(n+1)-g(n))=g(m+1)-g(0) .
$$

From $f(n)=g(n+1)-g(n)$ it follows that if such $g(n)$ exists, then it must be a rational function multiple of $f(n)$:

$$
\frac{f(n)}{g(n)}=\underbrace{\frac{g(n+1)}{g(n)}}_{\in \mathbb{K}(n)}-1 \quad \Longrightarrow g(n)=\underbrace{y(n)}_{\in \mathbb{K}(n)} \cdot f(n) .
$$

Gosper's algorithm

Goal: find $g(n)=y(n) f(n)$ such that $g(n+1)-g(n)=f(n)$

Gosper's algorithm

Goal: find $g(n)=y(n) f(n)$ such that $g(n+1)-g(n)=f(n)$

$$
y(n+1) f(n+1)-y(n) f(n)=f(n)
$$

Gosper's algorithm

Goal: find $g(n)=y(n) f(n)$ such that $g(n+1)-g(n)=f(n)$

$$
\begin{aligned}
& y(n+1) f(n+1)-y(n) f(n)=f(n) \\
\Longrightarrow & r(n) y(n+1)-y(n)=1 \quad \text { with } r(n)=\frac{f(n+1)}{f(n)} \in \mathbb{K}(n) .
\end{aligned}
$$

Gosper's algorithm

Goal: find $g(n)=y(n) f(n)$ such that $g(n+1)-g(n)=f(n)$

$$
\begin{aligned}
& y(n+1) f(n+1)-y(n) f(n)=f(n) \\
\Longrightarrow & r(n) y(n+1)-y(n)=1 \quad \text { with } r(n)=\frac{f(n+1)}{f(n)} \in \mathbb{K}(n) .
\end{aligned}
$$

Instead of hypergeometric $g(n)$, look for a rational solution $y(n)$.

Gosper's algorithm

Goal: find $g(n)=y(n) f(n)$ such that $g(n+1)-g(n)=f(n)$

$$
\begin{aligned}
& y(n+1) f(n+1)-y(n) f(n)=f(n) \\
\Longrightarrow & r(n) y(n+1)-y(n)=1 \quad \text { with } r(n)=\frac{f(n+1)}{f(n)} \in \mathbb{K}(n) .
\end{aligned}
$$

Instead of hypergeometric $g(n)$, look for a rational solution $y(n)$.
Key idea: write the rational function $r(n)$ in Gosper form:

$$
r(n)=\frac{a(n)}{b(n)} \frac{c(n+1)}{c(n)}
$$

for polynomials $a, b, c \in \mathbb{K}[n]$

Gosper's algorithm

Goal: find $g(n)=y(n) f(n)$ such that $g(n+1)-g(n)=f(n)$

$$
\begin{aligned}
& y(n+1) f(n+1)-y(n) f(n)=f(n) \\
\Longrightarrow & r(n) y(n+1)-y(n)=1 \quad \text { with } r(n)=\frac{f(n+1)}{f(n)} \in \mathbb{K}(n) .
\end{aligned}
$$

Instead of hypergeometric $g(n)$, look for a rational solution $y(n)$.
Key idea: write the rational function $r(n)$ in Gosper form:

$$
r(n)=\frac{a(n)}{b(n)} \frac{c(n+1)}{c(n)}
$$

for polynomials $a, b, c \in \mathbb{K}[n]$ satisfying

$$
\begin{aligned}
& \operatorname{gcd}(a(n), c(n))=1, \quad \operatorname{gcd}(c(n+1), b(n))=1, \\
& \operatorname{gcd}(a(n), b(n+i))=1 \quad \text { for all } i \in \mathbb{N} .
\end{aligned}
$$

Gosper's algorithm

Goal: find $g(n)=y(n) f(n)$ such that $g(n+1)-g(n)=f(n)$

$$
\begin{aligned}
& y(n+1) f(n+1)-y(n) f(n)=f(n) \\
\Longrightarrow & r(n) y(n+1)-y(n)=1 \quad \text { with } r(n)=\frac{f(n+1)}{f(n)} \in \mathbb{K}(n) .
\end{aligned}
$$

Instead of hypergeometric $g(n)$, look for a rational solution $y(n)$.
Key idea: write the rational function $r(n)$ in Gosper form:

$$
r(n)=\frac{a(n)}{b(n)} \frac{c(n+1)}{c(n)}
$$

for polynomials $a, b, c \in \mathbb{K}[n]$ satisfying

$$
\begin{aligned}
& \operatorname{gcd}(a(n), c(n))=1, \quad \operatorname{gcd}(c(n+1), b(n))=1, \\
& \operatorname{gcd}(a(n), b(n+i))=1 \quad \text { for all } i \in \mathbb{N} .
\end{aligned}
$$

The equation turns into:

$$
a(n) c(n+1) y(n+1)-b(n) c(n) y(n)=b(n) c(n)
$$

Gosper's algorithm

Recall: difference equation for the unknown rational function $y(n)$:

$$
a(n) c(n+1) y(n+1)-b(n) c(n) y(n)=b(n) c(n)
$$

Gosper's algorithm

Recall: difference equation for the unknown rational function $y(n)$:

$$
a(n) c(n+1) y(n+1)-b(n) c(n) y(n)=b(n) c(n) .
$$

Substitution: look for a nonzero rational solution $y(n)$ of the form

$$
y(n)=\frac{b(n-1) \cdot x(n)}{c(n)}
$$

for some, still unknown, rational function $x(n)$.

Gosper's algorithm

Recall: difference equation for the unknown rational function $y(n)$:

$$
a(n) c(n+1) y(n+1)-b(n) c(n) y(n)=b(n) c(n) .
$$

Substitution: look for a nonzero rational solution $y(n)$ of the form

$$
y(n)=\frac{b(n-1) \cdot x(n)}{c(n)}
$$

for some, still unknown, rational function $x(n)$. We get

$$
a(n) b(n) x(n+1)-b(n) b(n-1) x(n)=b(n) c(n)
$$

Gosper's algorithm

Recall: difference equation for the unknown rational function $y(n)$:

$$
a(n) c(n+1) y(n+1)-b(n) c(n) y(n)=b(n) c(n) .
$$

Substitution: look for a nonzero rational solution $y(n)$ of the form

$$
y(n)=\frac{b(n-1) \cdot x(n)}{c(n)}
$$

for some, still unknown, rational function $x(n)$. We get

$$
\begin{aligned}
& a(n) b(n) x(n+1)-b(n) b(n-1) x(n)=b(n) c(n) \\
\Longrightarrow & a(n) x(n+1)-b(n-1) x(n)=c(n) .
\end{aligned}
$$

Gosper's algorithm

Recall: difference equation for the unknown rational function $y(n)$:

$$
a(n) c(n+1) y(n+1)-b(n) c(n) y(n)=b(n) c(n) .
$$

Substitution: look for a nonzero rational solution $y(n)$ of the form

$$
y(n)=\frac{b(n-1) \cdot x(n)}{c(n)}
$$

for some, still unknown, rational function $x(n)$. We get

$$
\begin{aligned}
& a(n) b(n) x(n+1)-b(n) b(n-1) x(n)=b(n) c(n) \\
\Longrightarrow & a(n) x(n+1)-b(n-1) x(n)=c(n) .
\end{aligned}
$$

This is called Gosper's equation.

The Miracle

Theorem (Gosper): if there exists $x(n) \in \mathbb{K}(n)$ that solves

$$
a(n) x(n+1)-b(n-1) x(n)=c(n) . \quad \text { (Gosper's equation) }
$$

then $x(n)$ is actually a polynomial.

The Miracle

Theorem (Gosper): if there exists $x(n) \in \mathbb{K}(n)$ that solves

$$
a(n) x(n+1)-b(n-1) x(n)=c(n) . \quad(\text { Gosper's equation })
$$

then $x(n)$ is actually a polynomial.
Proof: Assume to the contrary that $x(n)=p(n) / q(n)$.

The Miracle

Theorem (Gosper): if there exists $x(n) \in \mathbb{K}(n)$ that solves

$$
a(n) x(n+1)-b(n-1) x(n)=c(n) . \quad \text { (Gosper's equation) }
$$

then $x(n)$ is actually a polynomial.
Proof: Assume to the contrary that $x(n)=p(n) / q(n)$. Then:

$$
a(n) p(n+1) q(n)-b(n-1) p(n) q(n+1)=c(n) q(n) q(n+1) .
$$

The Miracle

Theorem (Gosper): if there exists $x(n) \in \mathbb{K}(n)$ that solves

$$
a(n) x(n+1)-b(n-1) x(n)=c(n)
$$

(Gosper's equation)
then $x(n)$ is actually a polynomial.
Proof: Assume to the contrary that $x(n)=p(n) / q(n)$. Then:

$$
a(n) p(n+1) q(n)-b(n-1) p(n) q(n+1)=c(n) q(n) q(n+1) .
$$

Let $\ell \in \mathbb{N}$ be the largest integer such that $\operatorname{gcd}(q(n), q(n+\ell)) \neq 1$.

The Miracle

Theorem (Gosper): if there exists $x(n) \in \mathbb{K}(n)$ that solves

$$
a(n) x(n+1)-b(n-1) x(n)=c(n)
$$

(Gosper's equation)
then $x(n)$ is actually a polynomial.
Proof: Assume to the contrary that $x(n)=p(n) / q(n)$. Then:

$$
a(n) p(n+1) q(n)-b(n-1) p(n) q(n+1)=c(n) q(n) q(n+1) .
$$

Let $\ell \in \mathbb{N}$ be the largest integer such that $\operatorname{gcd}(q(n), q(n+\ell)) \neq 1$. Let $u(n)$ be an irreducible, nonconstant factor of this gcd.

The Miracle

Theorem (Gosper): if there exists $x(n) \in \mathbb{K}(n)$ that solves

$$
a(n) x(n+1)-b(n-1) x(n)=c(n)
$$

(Gosper's equation)
then $x(n)$ is actually a polynomial.
Proof: Assume to the contrary that $x(n)=p(n) / q(n)$. Then:

$$
a(n) p(n+1) q(n)-b(n-1) p(n) q(n+1)=c(n) q(n) q(n+1) .
$$

Let $\ell \in \mathbb{N}$ be the largest integer such that $\operatorname{gcd}(q(n), q(n+\ell)) \neq 1$. Let $u(n)$ be an irreducible, nonconstant factor of this gcd. Then:

- $u(n-\ell) \mid q(n)$

The Miracle

Theorem (Gosper): if there exists $x(n) \in \mathbb{K}(n)$ that solves

$$
a(n) x(n+1)-b(n-1) x(n)=c(n)
$$

(Gosper's equation)
then $x(n)$ is actually a polynomial.
Proof: Assume to the contrary that $x(n)=p(n) / q(n)$. Then:

$$
a(n) p(n+1) q(n)-b(n-1) p(n) q(n+1)=c(n) q(n) q(n+1) .
$$

Let $\ell \in \mathbb{N}$ be the largest integer such that $\operatorname{gcd}(q(n), q(n+\ell)) \neq 1$. Let $u(n)$ be an irreducible, nonconstant factor of this gcd. Then:

- $u(n-\ell) \mid b(n-1) p(n) q(n+1)$

The Miracle

Theorem (Gosper): if there exists $x(n) \in \mathbb{K}(n)$ that solves

$$
a(n) x(n+1)-b(n-1) x(n)=c(n)
$$

(Gosper's equation)
then $x(n)$ is actually a polynomial.
Proof: Assume to the contrary that $x(n)=p(n) / q(n)$. Then:

$$
a(n) p(n+1) q(n)-b(n-1) p(n) q(n+1)=c(n) q(n) q(n+1) .
$$

Let $\ell \in \mathbb{N}$ be the largest integer such that $\operatorname{gcd}(q(n), q(n+\ell)) \neq 1$. Let $u(n)$ be an irreducible, nonconstant factor of this gcd. Then:

- $u(n-\ell)|b(n-1) p(n) q(n+1) \Longrightarrow u(n-\ell)| b(n-1)$

The Miracle

Theorem (Gosper): if there exists $x(n) \in \mathbb{K}(n)$ that solves

$$
a(n) x(n+1)-b(n-1) x(n)=c(n)
$$

(Gosper's equation)
then $x(n)$ is actually a polynomial.
Proof: Assume to the contrary that $x(n)=p(n) / q(n)$. Then:

$$
a(n) p(n+1) q(n)-b(n-1) p(n) q(n+1)=c(n) q(n) q(n+1) .
$$

Let $\ell \in \mathbb{N}$ be the largest integer such that $\operatorname{gcd}(q(n), q(n+\ell)) \neq 1$. Let $u(n)$ be an irreducible, nonconstant factor of this gcd. Then:

- $u(n-\ell)|b(n-1) p(n) q(n+1) \Longrightarrow u(n-\ell)| b(n-1)$
- $u(n+1) \mid q(n+1)$

The Miracle

Theorem (Gosper): if there exists $x(n) \in \mathbb{K}(n)$ that solves

$$
a(n) x(n+1)-b(n-1) x(n)=c(n)
$$

(Gosper's equation)
then $x(n)$ is actually a polynomial.
Proof: Assume to the contrary that $x(n)=p(n) / q(n)$. Then:

$$
a(n) p(n+1) q(n)-b(n-1) p(n) q(n+1)=c(n) q(n) q(n+1)
$$

Let $\ell \in \mathbb{N}$ be the largest integer such that $\operatorname{gcd}(q(n), q(n+\ell)) \neq 1$. Let $u(n)$ be an irreducible, nonconstant factor of this gcd. Then:

- $u(n-\ell)|b(n-1) p(n) q(n+1) \Longrightarrow u(n-\ell)| b(n-1)$
- $u(n+1) \mid a(n) p(n+1) q(n)$

The Miracle

Theorem (Gosper): if there exists $x(n) \in \mathbb{K}(n)$ that solves

$$
a(n) x(n+1)-b(n-1) x(n)=c(n)
$$

(Gosper's equation)
then $x(n)$ is actually a polynomial.
Proof: Assume to the contrary that $x(n)=p(n) / q(n)$. Then:

$$
a(n) p(n+1) q(n)-b(n-1) p(n) q(n+1)=c(n) q(n) q(n+1) .
$$

Let $\ell \in \mathbb{N}$ be the largest integer such that $\operatorname{gcd}(q(n), q(n+\ell)) \neq 1$. Let $u(n)$ be an irreducible, nonconstant factor of this gcd. Then:

- $u(n-\ell)|b(n-1) p(n) q(n+1) \Longrightarrow u(n-\ell)| b(n-1)$
- $u(n+1)|a(n) p(n+1) q(n) \quad \Longrightarrow u(n+1)| a(n)$

The Miracle

Theorem (Gosper): if there exists $x(n) \in \mathbb{K}(n)$ that solves

$$
a(n) x(n+1)-b(n-1) x(n)=c(n)
$$

(Gosper's equation)
then $x(n)$ is actually a polynomial.
Proof: Assume to the contrary that $x(n)=p(n) / q(n)$. Then:

$$
a(n) p(n+1) q(n)-b(n-1) p(n) q(n+1)=c(n) q(n) q(n+1) .
$$

Let $\ell \in \mathbb{N}$ be the largest integer such that $\operatorname{gcd}(q(n), q(n+\ell)) \neq 1$. Let $u(n)$ be an irreducible, nonconstant factor of this gcd. Then:

$$
\begin{array}{ll}
\text { - } u(n-\ell) \mid b(n-1) p(n) q(n+1) & \Longrightarrow u(n-\ell) \mid b(n-1) \\
\quad u(n+1) \mid a(n) p(n+1) q(n) & \Longrightarrow u(n+1) \mid a(n)
\end{array}
$$

It follows that $u(n+1) \mid \operatorname{gcd}(a(n), b(n+\ell))$, contradicting the gcd conditions in the Gosper form.

The Miracle

Theorem (Gosper): if there exists $x(n) \in \mathbb{K}(n)$ that solves

$$
a(n) x(n+1)-b(n-1) x(n)=c(n)
$$

(Gosper's equation)
then $x(n)$ is actually a polynomial.
Proof: Assume to the contrary that $x(n)=p(n) / q(n)$. Then:

$$
a(n) p(n+1) q(n)-b(n-1) p(n) q(n+1)=c(n) q(n) q(n+1) .
$$

Let $\ell \in \mathbb{N}$ be the largest integer such that $\operatorname{gcd}(q(n), q(n+\ell)) \neq 1$. Let $u(n)$ be an irreducible, nonconstant factor of this gcd. Then:

$$
\begin{array}{ll}
-u(n-\ell) \mid b(n-1) p(n) q(n+1) & \Longrightarrow u(n-\ell) \mid b(n-1) \\
\text { - } u(n+1) \mid a(n) p(n+1) q(n) & \Longrightarrow u(n+1) \mid a(n)
\end{array}
$$

It follows that $u(n+1) \mid \operatorname{gcd}(a(n), b(n+\ell))$, contradicting the gcd conditions in the Gosper form.

How to find, if it exists, the polynomial solution $x(n)$?

The Miracle

Theorem (Gosper): if there exists $x(n) \in \mathbb{K}(n)$ that solves

$$
a(n) x(n+1)-b(n-1) x(n)=c(n)
$$

(Gosper's equation)
then $x(n)$ is actually a polynomial.
Proof: Assume to the contrary that $x(n)=p(n) / q(n)$. Then:

$$
a(n) p(n+1) q(n)-b(n-1) p(n) q(n+1)=c(n) q(n) q(n+1) .
$$

Let $\ell \in \mathbb{N}$ be the largest integer such that $\operatorname{gcd}(q(n), q(n+\ell)) \neq 1$. Let $u(n)$ be an irreducible, nonconstant factor of this gcd. Then:

$$
\begin{array}{ll}
-u(n-\ell) \mid b(n-1) p(n) q(n+1) & \Longrightarrow u(n-\ell) \mid b(n-1) \\
\text { - } u(n+1) \mid a(n) p(n+1) q(n) & \Longrightarrow u(n+1) \mid a(n)
\end{array}
$$

It follows that $u(n+1) \mid \operatorname{gcd}(a(n), b(n+\ell))$, contradicting the gcd conditions in the Gosper form.

How to find, if it exists, the polynomial solution $x(n)$?

- Degree bounding, ansatz, solving a linear system.

Gosper's algorithm

Examples:

$$
\sum_{k=0}^{n}(4 k+1) \frac{k!}{(2 k+1)!}=2-\frac{n!}{(2 n+1)!}
$$

Gosper's algorithm

Examples:

- $\sum_{k=0}^{n}(4 k+1) \frac{k!}{(2 k+1)!}=2-\frac{n!}{(2 n+1)!}$
- $\sum_{k=0}^{n} k!$ has no closed form.

Gosper's algorithm

Examples:

$>\sum_{k=0}^{n}(4 k+1) \frac{k!}{(2 k+1)!}=2-\frac{n!}{(2 n+1)!}$

- $\sum_{k=0}^{n} k!$ has no closed form.

Conclusion: decides/solves indefinite hypergeometric summation:

$$
f(k)=g(k+1)-g(k)
$$

Gosper's algorithm

Examples:

$>\sum_{k=0}^{n}(4 k+1) \frac{k!}{(2 k+1)!}=2-\frac{n!}{(2 n+1)!}$

- $\sum_{k=0}^{n} k!$ has no closed form.

Conclusion: decides/solves indefinite hypergeometric summation:

$$
f(k)=g(k+1)-g(k) \Longrightarrow \sum_{k=0}^{n} f(k)=g(n+1)-g(0)
$$

Gosper's algorithm

Examples:

- $\sum_{k=0}^{n}(4 k+1) \frac{k!}{(2 k+1)!}=2-\frac{n!}{(2 n+1)!}$
- $\sum_{k=0}^{n} k!$ has no closed form.

Conclusion: decides/solves indefinite hypergeometric summation:

$$
f(k)=g(k+1)-g(k) \Longrightarrow \sum_{k=0}^{n} f(k)=g(n+1)-g(0)
$$

Question: What about definite hypergeometric summation

$$
\sum_{k=0}^{n} f(n, k)=?
$$

Gosper's algorithm

Examples:

- $\sum_{k=0}^{n}(4 k+1) \frac{k!}{(2 k+1)!}=2-\frac{n!}{(2 n+1)!}$
- $\sum_{k=0}^{n} k!$ has no closed form.

Conclusion: decides/solves indefinite hypergeometric summation:

$$
f(k)=g(k+1)-g(k) \Longrightarrow \sum_{k=0}^{n} f(k)=g(n+1)-g(0)
$$

Question: What about definite hypergeometric summation

$$
\sum_{k=0}^{n} f(n, k)=? \quad \text { Such as } \sum_{k=0}^{n}\binom{n}{k}=2^{n}
$$

Bivariate Hypergeometric Terms

Definition: A bivariate term $f(n, k)$ is called hypergeometric (w.r.t. n and k) if

$$
\frac{f(n+1, k)}{f(n, k)} \quad \text { and } \quad \frac{f(n, k+1)}{f(n, k)}
$$

are both rational functions in n and k.

Bivariate Hypergeometric Terms

Definition: A bivariate term $f(n, k)$ is called hypergeometric (w.r.t. n and k) if

$$
\frac{f(n+1, k)}{f(n, k)} \quad \text { and } \quad \frac{f(n, k+1)}{f(n, k)}
$$

are both rational functions in n and k.

Examples:

- $3^{n k+1}$
- $\left(n^{2}+k^{2}\right)$!
- n^{k}
- $\binom{4 n+3 k+7}{2 n+k+1} \frac{\Gamma(n+k-\pi)}{\Gamma\left(2 n-k+\frac{1}{2}\right)}$

Bivariate Hypergeometric Terms

Definition: A bivariate term $f(n, k)$ is called hypergeometric (w.r.t. n and k) if

$$
\frac{f(n+1, k)}{f(n, k)} \quad \text { and } \quad \frac{f(n, k+1)}{f(n, k)}
$$

are both rational functions in n and k.

Examples:

- $3^{n k+1}$
- $\left(n^{2}+k^{2}\right)$!
- n^{k}
- $\binom{4 n+3 k+7}{2 n+k+1} \frac{\Gamma(n+k-\pi)}{\Gamma\left(2 n-k+\frac{1}{2}\right)}$

Bivariate Hypergeometric Terms

Definition: A bivariate term $f(n, k)$ is called hypergeometric (w.r.t. n and k) if

$$
\frac{f(n+1, k)}{f(n, k)} \quad \text { and } \quad \frac{f(n, k+1)}{f(n, k)}
$$

are both rational functions in n and k.

Examples:

- $3^{n k+1}$
- $\left(n^{2}+k^{2}\right)$!
X
- n^{k}
- $\binom{4 n+3 k+7}{2 n+k+1} \frac{\Gamma(n+k-\pi)}{\Gamma\left(2 n-k+\frac{1}{2}\right)}$

Bivariate Hypergeometric Terms

Definition: A bivariate term $f(n, k)$ is called hypergeometric (w.r.t. n and k) if

$$
\frac{f(n+1, k)}{f(n, k)} \quad \text { and } \quad \frac{f(n, k+1)}{f(n, k)}
$$

are both rational functions in n and k.

Examples:

- $3^{n k+1}$
- $\left(n^{2}+k^{2}\right)$!
X
- n^{k}
X
- $\binom{4 n+3 k+7}{2 n+k+1} \frac{\Gamma(n+k-\pi)}{\Gamma\left(2 n-k+\frac{1}{2}\right)}$

Bivariate Hypergeometric Terms

Definition: A bivariate term $f(n, k)$ is called hypergeometric (w.r.t. n and k) if

$$
\frac{f(n+1, k)}{f(n, k)} \quad \text { and } \quad \frac{f(n, k+1)}{f(n, k)}
$$

are both rational functions in n and k.

Examples:

- $3^{n k+1}$
- $\left(n^{2}+k^{2}\right)$!
x
- n^{k}
X
- $\binom{4 n+3 k+7}{2 n+k+1} \frac{\Gamma(n+k-\pi)}{\Gamma\left(2 n-k+\frac{1}{2}\right)}$

Gosper's Missed Opportunity

Conjecture of the form $\sum_{k} f(n, k)=h(n)$ with $\frac{h(n+1)}{h(n)}=\frac{p(n)}{q(n)}$.

Gosper's Missed Opportunity

Conjecture of the form $\sum_{k} f(n, k)=h(n)$ with $\frac{h(n+1)}{h(n)}=\frac{p(n)}{q(n)}$.
(Assume $f(n, k)$ is a hypergeometric term and has finite support, hence the sum can be taken for all $k \in \mathbb{Z}$.)

Gosper's Missed Opportunity

Conjecture of the form $\sum_{k} f(n, k)=h(n)$ with $\frac{h(n+1)}{h(n)}=\frac{p(n)}{q(n)}$.
How to prove it using Gosper's algorithm?

Gosper's Missed Opportunity

Conjecture of the form $\sum_{k} f(n, k)=h(n)$ with $\frac{h(n+1)}{h(n)}=\frac{p(n)}{q(n)}$.
How to prove it using Gosper's algorithm?

$$
q(n) h(n+1)-p(n) h(n)=0
$$

Gosper's Missed Opportunity

Conjecture of the form $\sum_{k} f(n, k)=h(n)$ with $\frac{h(n+1)}{h(n)}=\frac{p(n)}{q(n)}$.
How to prove it using Gosper's algorithm?

$$
q(n) \sum_{k} f(n+1, k)-p(n) \sum_{k} f(n, k)=0
$$

Gosper's Missed Opportunity

Conjecture of the form $\sum_{k} f(n, k)=h(n)$ with $\frac{h(n+1)}{h(n)}=\frac{p(n)}{q(n)}$.
How to prove it using Gosper's algorithm?

$$
\sum_{k}(q(n) f(n+1, k)-p(n) f(n, k))=0
$$

Gosper's Missed Opportunity

Conjecture of the form $\sum_{k} f(n, k)=h(n)$ with $\frac{h(n+1)}{h(n)}=\frac{p(n)}{q(n)}$.
How to prove it using Gosper's algorithm?

$$
\sum_{k}(q(n) f(n+1, k)-p(n) f(n, k))=0
$$

- Apply Gosper's algorithm to the above summand.

Gosper's Missed Opportunity

Conjecture of the form $\sum_{k} f(n, k)=h(n)$ with $\frac{h(n+1)}{h(n)}=\frac{p(n)}{q(n)}$.
How to prove it using Gosper's algorithm?

$$
\sum_{k}(q(n) f(n+1, k)-p(n) f(n, k))=0
$$

- Apply Gosper's algorithm to the above summand.
- (Hopefully) obtain $g(n, k)$ such that

$$
q(n) f(n+1, k)-p(n) f(n, k)=g(n, k+1)-g(n, k) .
$$

Gosper's Missed Opportunity

Conjecture of the form $\sum_{k} f(n, k)=h(n)$ with $\frac{h(n+1)}{h(n)}=\frac{p(n)}{q(n)}$.
How to prove it using Gosper's algorithm?

$$
\sum_{k}(q(n) f(n+1, k)-p(n) f(n, k))=0
$$

- Apply Gosper's algorithm to the above summand.
- (Hopefully) obtain $g(n, k)$ such that

$$
q(n) f(n+1, k)-p(n) f(n, k)=g(n, k+1)-g(n, k) .
$$

- Apply \sum_{k} to the above identity.

Gosper's Missed Opportunity

Conjecture of the form $\sum_{k} f(n, k)=h(n)$ with $\frac{h(n+1)}{h(n)}=\frac{p(n)}{q(n)}$. How to prove it using Gosper's algorithm?

$$
\sum_{k}(q(n) f(n+1, k)-p(n) f(n, k))=0
$$

- Apply Gosper's algorithm to the above summand.
- (Hopefully) obtain $g(n, k)$ such that

$$
q(n) f(n+1, k)-p(n) f(n, k)=g(n, k+1)-g(n, k) .
$$

- Apply \sum_{k} to the above identity.
- Also g has finite support (rational function multiple of f).

Gosper's Missed Opportunity

Conjecture of the form $\sum_{k} f(n, k)=h(n)$ with $\frac{h(n+1)}{h(n)}=\frac{p(n)}{q(n)}$. How to prove it using Gosper's algorithm?

$$
\sum_{k}(q(n) f(n+1, k)-p(n) f(n, k))=0
$$

- Apply Gosper's algorithm to the above summand.
- (Hopefully) obtain $g(n, k)$ such that

$$
q(n) f(n+1, k)-p(n) f(n, k)=g(n, k+1)-g(n, k)
$$

- Apply \sum_{k} to the above identity.
- Also g has finite support (rational function multiple of f).
- Get $q(n) S(n+1)-p(n) S(n)=0$ with $S(n):=\sum_{k} f(n, k)$.

Gosper's Missed Opportunity

Conjecture of the form $\sum_{k} f(n, k)=h(n)$ with $\frac{h(n+1)}{h(n)}=\frac{p(n)}{q(n)}$. How to prove it using Gosper's algorithm?

$$
\sum_{k}(q(n) f(n+1, k)-p(n) f(n, k))=0
$$

- Apply Gosper's algorithm to the above summand.
- (Hopefully) obtain $g(n, k)$ such that

$$
q(n) f(n+1, k)-p(n) f(n, k)=g(n, k+1)-g(n, k) .
$$

- Apply \sum_{k} to the above identity.
- Also g has finite support (rational function multiple of f).
- Get $q(n) S(n+1)-p(n) S(n)=0$ with $S(n):=\sum_{k} f(n, k)$.
- Check that $h(0)=S(0)$. Hence $S(n)=h(n)$ for all n.

Example

$$
S(n):=\sum_{k}\binom{n}{k}=2^{n}
$$

Example

$$
S(n):=\sum_{k}\binom{n}{k}=2^{n}
$$

We have $h(n)=2^{n}$ and hence $h(n+1)-2 h(n)=0$.

Example

$$
S(n):=\sum_{k}\binom{n}{k}=2^{n}
$$

We have $h(n)=2^{n}$ and hence $h(n+1)-2 h(n)=0$.

$$
f(n+1, k)-2 f(n, k)=\binom{n+1}{k}-2 \cdot\binom{n}{k}=\underbrace{\frac{2 k-n-1}{n-k+1}\binom{n}{k}}_{=: \bar{f}(n, k)}
$$

Example

$$
S(n):=\sum_{k}\binom{n}{k}=2^{n}
$$

We have $h(n)=2^{n}$ and hence $h(n+1)-2 h(n)=0$.

$$
f(n+1, k)-2 f(n, k)=\binom{n+1}{k}-2 \cdot\binom{n}{k}=\underbrace{\frac{2 k-n-1}{n-k+1}\binom{n}{k}}_{=: \bar{f}(n, k)}
$$

Gosper's algorithm applied to $\bar{f}(n, k)$ succeeds:

$$
g(n, k)=\frac{k}{k-n-1} \bar{f}(n, k)=-\binom{n}{k-1} .
$$

Example

$$
S(n):=\sum_{k}\binom{n}{k}=2^{n}
$$

We have $h(n)=2^{n}$ and hence $h(n+1)-2 h(n)=0$.

$$
f(n+1, k)-2 f(n, k)=\binom{n+1}{k}-2 \cdot\binom{n}{k}=\underbrace{\frac{2 k-n-1}{n-k+1}\binom{n}{k}}_{=: \bar{f}(n, k)}
$$

Gosper's algorithm applied to $\bar{f}(n, k)$ succeeds:

$$
g(n, k)=\frac{k}{k-n-1} \bar{f}(n, k)=-\binom{n}{k-1} .
$$

The term $g(n, k)$ has finite support, hence $\sum_{k} \bar{f}(n, k)=0$.

Example

$$
S(n):=\sum_{k}\binom{n}{k}=2^{n}
$$

We have $h(n)=2^{n}$ and hence $h(n+1)-2 h(n)=0$.

$$
f(n+1, k)-2 f(n, k)=\binom{n+1}{k}-2 \cdot\binom{n}{k}=\underbrace{\frac{2 k-n-1}{n-k+1}\binom{n}{k}}_{=: \bar{f}(n, k)}
$$

Gosper's algorithm applied to $\bar{f}(n, k)$ succeeds:

$$
g(n, k)=\frac{k}{k-n-1} \bar{f}(n, k)=-\binom{n}{k-1} .
$$

The term $g(n, k)$ has finite support, hence $\sum_{k} \bar{f}(n, k)=0$.
This yields $S(n+1)-2 S(n)=0$ and the original identity follows.

Zeilberger's (Fast) Algorithm

Zeilberger's (Fast) Algorithm

Available online at www.sciencedirect.com

Discrete Mathematics 306 (2006) 1072-1075

DISCRETE MATHEMATICS
www.elsevier.com/locate/disc

Communication

A fast algorithm for proving terminating hypergeometric identities
Doron Zeilberger*
Department of Mathematics, Drexel University, Philadelphia, PA 19104, USA

Zeilberger's (Fast) Algorithm

Available online at www.sciencedirect.com
science (d) DIREGT.

Discrete Mathematics 306 (2006) 1072-1075
DISCRETE MATHEMATICS
www.elsevier.com/locate/disc

Communication
A fast algorithm for proving terminating hypergeometric identities
Doron Zeilberger*
Department of Mathematics, Drexel University, Philadelphia, PA 19I04, USA
J. Symbolic Computation (1991) 11, 195-204

The Method of Creative Telescoping

DORON ZEILBERGER
Department of Mathematics and Computer Science, Temple University, Philadelphia, PA 19122, USA

In memory of John Riordan, master of ars combinatorica
(Received 1 June 1989)

[^0]
Creative Telescoping

Creative telescoping is a method

- to deal with parametrized definite sums and integrals

Creative Telescoping

Creative telescoping is a method

- to deal with parametrized definite sums and integrals
- that yields differential/recurrence equations for them

Creative Telescoping

Creative telescoping is a method

- to deal with parametrized definite sums and integrals
- that yields differential/recurrence equations for them
- that became popular in computer algebra in the past 30 years

Creative Telescoping

Creative telescoping is a method

- to deal with parametrized definite sums and integrals
- that yields differential/recurrence equations for them
- that became popular in computer algebra in the past 30 years

Example:

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}
$$

Creative Telescoping

Creative telescoping is a method

- to deal with parametrized definite sums and integrals
- that yields differential/recurrence equations for them
- that became popular in computer algebra in the past 30 years

Example:

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}
$$

Creative Telescoping

Creative telescoping is a method

- to deal with parametrized definite sums and integrals
- that yields differential/recurrence equations for them
- that became popular in computer algebra in the past 30 years

Example:

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6} \quad \text { Bad: no parameter! }
$$

Creative Telescoping

Creative telescoping is a method

- to deal with parametrized definite sums and integrals
- that yields differential/recurrence equations for them
- that became popular in computer algebra in the past 30 years

Example:

$$
\begin{aligned}
& \sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6} \quad \text { Bad: no parameter! } \\
& \sum_{k=1}^{\infty} \frac{1}{k(k+n)}
\end{aligned}
$$

Creative Telescoping

Creative telescoping is a method

- to deal with parametrized definite sums and integrals
- that yields differential/recurrence equations for them
- that became popular in computer algebra in the past 30 years

Example:

$$
\begin{aligned}
\sum_{k=1}^{\infty} \frac{1}{k^{2}} & =\frac{\pi^{2}}{6} \quad \text { Bad: no parameter! } \\
\sum_{k=1}^{\infty} \frac{1}{k(k+n)} & =\frac{\gamma+\psi(n)}{n}
\end{aligned}
$$

Creative Telescoping

Creative telescoping is a method

- to deal with parametrized definite sums and integrals
- that yields differential/recurrence equations for them
- that became popular in computer algebra in the past 30 years

Example:

$$
\begin{gathered}
\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6} \quad \text { Bad: no parameter! } \\
\underbrace{\sum_{k=1}^{\infty} \frac{1}{k(k+n)}}_{=: F_{n}} \rightsquigarrow(n+2)^{2} F_{n+2}=(n+1)(2 n+3) F_{n+1}-n(n+1) F_{n}
\end{gathered}
$$

Creative Telescoping

Method for doing sums and integrals (aka Feynman's differentiating under the integral sign)

Consider the following summation problem: $F(n):=\sum_{k=a}^{b} f(n, k)$

Creative Telescoping

Method for doing sums and integrals (aka Feynman's differentiating under the integral sign)

Consider the following summation problem: $F(n):=\sum_{k=a}^{b} f(n, k)$
Telescoping: find g such that $f(n, k)=g(n, k+1)-g(n, k)$.

Creative Telescoping

Method for doing sums and integrals (aka Feynman's differentiating under the integral sign)
Consider the following summation problem: $F(n):=\sum_{k=a}^{b} f(n, k)$
Telescoping: find g such that $f(n, k)=g(n, k+1)-g(n, k)$.
Then $F(n)=\sum_{k=a}^{b}(g(n, k+1)-g(n, k))=g(n, b+1)-g(n, a)$.

Creative Telescoping

Method for doing sums and integrals (aka Feynman's differentiating under the integral sign)
Consider the following summation problem: $F(n):=\sum_{k=a}^{b} f(n, k)$
Telescoping: find g such that $f(n, k)=g(n, k+1)-g(n, k)$.
Then $F(n)=\sum_{k=a}^{b}(g(n, k+1)-g(n, k))=g(n, b+1)-g(n, a)$.
Creative Telescoping: find g such that

$$
c_{r}(n) f(n+r, k)+\cdots+c_{0}(n) f(n, k)=g(n, k+1)-g(n, k)
$$

Creative Telescoping

Method for doing sums and integrals (aka Feynman's differentiating under the integral sign)
Consider the following summation problem: $F(n):=\sum_{k=a}^{b} f(n, k)$
Telescoping: find g such that $f(n, k)=g(n, k+1)-g(n, k)$.
Then $F(n)=\sum_{k=a}^{b}(g(n, k+1)-g(n, k))=g(n, b+1)-g(n, a)$.
Creative Telescoping: find g such that

$$
c_{r}(n) f(n+r, k)+\cdots+c_{0}(n) f(n, k)=g(n, k+1)-g(n, k)
$$

Summing from a to b yields a recurrence for $F(n)$:

$$
c_{r}(n) F(n+r)+\cdots+c_{0}(n) F(n)=g(n, b+1)-g(n, a)
$$

Creative Telescoping

Method for doing sums and integrals (aka Feynman's differentiating under the integral sign)

Consider the following integration problem: $F(x):=\int_{a}^{b} f(x, y) \mathrm{d} y$
Telescoping: find g such that $f(x, y)=\frac{\mathrm{d}}{\mathrm{d} y} g(x, y)$.
Then $F(n)=\int_{a}^{b}\left(\frac{\mathrm{~d}}{\mathrm{~d} y} g(x, y)\right) \mathrm{d} y \quad=g(x, b)-g(x, a)$.
Creative Telescoping: find g such that

$$
c_{r}(x) \frac{\mathrm{d}^{r}}{\mathrm{~d} x^{r}} f(x, y)+\cdots+c_{0}(x) f(x, y)=\frac{\mathrm{d}}{\mathrm{~d} y} g(x, y)
$$

Integrating from a to b yields a differential equation for $F(x)$:

$$
c_{r}(x) \frac{\mathrm{d}^{r}}{\mathrm{~d} x^{r}} F(x)+\cdots+c_{0}(x) F(x)=g(x, b)-g(x, a)
$$

Creative Telescoping

From now on let $f(n, k)$ be a bivariate hypergeometric term.

Creative Telescoping

From now on let $f(n, k)$ be a bivariate hypergeometric term.
We aim at computing a creative telescoping relation of the form:

$$
c_{d}(n) f(n+d, k)+\cdots+c_{0}(n) f(n, k)=g(n, k+1)-g(n, k) .
$$

Creative Telescoping

From now on let $f(n, k)$ be a bivariate hypergeometric term.
We aim at computing a creative telescoping relation of the form:

$$
c_{d}(n) f(n+d, k)+\cdots+c_{0}(n) f(n, k)=g(n, k+1)-g(n, k) .
$$

Where should one look for $g(n, k)$?

Creative Telescoping

From now on let $f(n, k)$ be a bivariate hypergeometric term.
We aim at computing a creative telescoping relation of the form:

$$
c_{d}(n) f(n+d, k)+\cdots+c_{0}(n) f(n, k)=g(n, k+1)-g(n, k)
$$

Where should one look for $g(n, k)$?
Note that there are "trivial" solutions like:

$$
g(n, k):=\sum_{i=0}^{k-1}\left(c_{d}(n) f(n+d, i)+\cdots+c_{0}(n) f(n, i)\right) .
$$

Creative Telescoping

From now on let $f(n, k)$ be a bivariate hypergeometric term.
We aim at computing a creative telescoping relation of the form:

$$
c_{d}(n) f(n+d, k)+\cdots+c_{0}(n) f(n, k)=g(n, k+1)-g(n, k)
$$

Where should one look for $g(n, k)$?
Note that there are "trivial" solutions like:

$$
g(n, k):=\sum_{i=0}^{k-1}\left(c_{d}(n) f(n+d, i)+\cdots+c_{0}(n) f(n, i)\right)
$$

A reasonable choice for where to search for $g(n, k)$ is:
hypergeometric terms, i.e., rational function multiples of $f(n, k)$.

Zeilberger's Algorithm

Problem: What if we don't know the evaluation of the sum:

$$
S(n):=\sum_{k} f(n, k)=?
$$

Zeilberger's Algorithm

Problem: What if we don't know the evaluation of the sum:

$$
S(n):=\sum_{k} f(n, k)=?
$$

(we assume natural boundaries, i.e., f has finite support w.r.t. k)

Zeilberger's Algorithm

Problem: What if we don't know the evaluation of the sum:

$$
S(n):=\sum_{k} f(n, k)=?
$$

(we assume natural boundaries, i.e., f has finite support w.r.t. k)
Under certain technical assumptions $(f(n, k)$ is a "proper" term), one can show that a recurrence for $S(n)$ exists.

Zeilberger's Algorithm

Problem: What if we don't know the evaluation of the sum:

$$
S(n):=\sum_{k} f(n, k)=?
$$

(we assume natural boundaries, i.e., f has finite support w.r.t. k)
Under certain technical assumptions $(f(n, k)$ is a "proper" term), one can show that a recurrence for $S(n)$ exists.

But we don't know it, neither its order nor its coefficients.

- Try order $r=0,1,2, \ldots$ until success.

Zeilberger's Algorithm

Problem: What if we don't know the evaluation of the sum:

$$
S(n):=\sum_{k} f(n, k)=?
$$

(we assume natural boundaries, i.e., f has finite support w.r.t. k)
Under certain technical assumptions $(f(n, k)$ is a "proper" term), one can show that a recurrence for $S(n)$ exists.

But we don't know it, neither its order nor its coefficients.

- Try order $r=0,1,2, \ldots$ until success.
- Write recurrence with undetermined coefficients $p_{i} \in \mathbb{K}(n)$:

$$
p_{r}(n) S(n+r)+\cdots+p_{1}(n) S(n+1)+p_{0}(n) S(n)=0 .
$$

Zeilberger's Algorithm

Problem: What if we don't know the evaluation of the sum:

$$
S(n):=\sum_{k} f(n, k)=?
$$

(we assume natural boundaries, i.e., f has finite support w.r.t. k)
Under certain technical assumptions $(f(n, k)$ is a "proper" term), one can show that a recurrence for $S(n)$ exists.

But we don't know it, neither its order nor its coefficients.

- Try order $r=0,1,2, \ldots$ until success.
- Write recurrence with undetermined coefficients $p_{i} \in \mathbb{K}(n)$:

$$
p_{r}(n) S(n+r)+\cdots+p_{1}(n) S(n+1)+p_{0}(n) S(n)=0 .
$$

- Apply a parametrized version of Gosper's algorithm to

$$
p_{r}(n) f(n+r, k)+\cdots+p_{1}(n) f(n+1, k)+p_{0}(n) f(n, k) .
$$

Another Miracle

The parametrized Gosper is applied to the hypergeometric term

$$
p_{r}(n) f(n+r, k)+\cdots+p_{1}(n) f(n+1, k)+p_{0}(n) f(n, k) .
$$

Another Miracle

The parametrized Gosper is applied to the hypergeometric term

$$
p_{r}(n) f(n+r, k)+\cdots+p_{1}(n) f(n+1, k)+p_{0}(n) f(n, k) .
$$

A careful analysis reveals:

- The algorithm works, despite the unknown parameters p_{i}.

Another Miracle

The parametrized Gosper is applied to the hypergeometric term

$$
p_{r}(n) f(n+r, k)+\cdots+p_{1}(n) f(n+1, k)+p_{0}(n) f(n, k) .
$$

A careful analysis reveals:

- The algorithm works, despite the unknown parameters p_{i}.
- The p_{i} appear only in $c(k)$ in Gosper's equation

$$
a(k) \cdot x(k+1)-b(k-1) \cdot x(k)=c(k) .
$$

Another Miracle

The parametrized Gosper is applied to the hypergeometric term

$$
p_{r}(n) f(n+r, k)+\cdots+p_{1}(n) f(n+1, k)+p_{0}(n) f(n, k)
$$

A careful analysis reveals:

- The algorithm works, despite the unknown parameters p_{i}.
- The p_{i} appear only in $c(k)$ in Gosper's equation

$$
a(k) \cdot x(k+1)-b(k-1) \cdot x(k)=c(k) .
$$

- The p_{i} appear linearly, hence the final linear system can be solved simultaneously for the p_{i} and the coefficients of $x(k)$:

$$
x(k)=\sum_{i=0}^{d} x_{i}(n) k^{i} .
$$

Another Miracle

The parametrized Gosper is applied to the hypergeometric term

$$
p_{r}(n) f(n+r, k)+\cdots+p_{1}(n) f(n+1, k)+p_{0}(n) f(n, k)
$$

A careful analysis reveals:

- The algorithm works, despite the unknown parameters p_{i}.
- The p_{i} appear only in $c(k)$ in Gosper's equation

$$
a(k) \cdot x(k+1)-b(k-1) \cdot x(k)=c(k) .
$$

- The p_{i} appear linearly, hence the final linear system can be solved simultaneously for the p_{i} and the coefficients of $x(k)$:

$$
x(k)=\sum_{i=0}^{d} x_{i}(n) k^{i} .
$$

- The algorithm always finds the telescoper of minimal order.

Examples for Zeilberger's Algorithm

$$
\begin{gathered}
\sum_{k=0}^{n}\binom{n}{k}=2^{n} \\
\sum_{k=-n}^{n}(-1)^{k}\binom{2 n}{n+k}^{2}=\frac{(2 n)!}{(n!)^{2}} \\
\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2} \rightsquigarrow \text { second-order recurrence } \\
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\binom{d k}{n}=(-d)^{n} \\
{ }_{2} F_{1}(a, b, c ; z):=\sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k}}{(c)_{k} k!} z^{k} \rightsquigarrow \text { second-order recurrence }
\end{gathered}
$$

The Apagodu-Zeilberger Algorithm

Theorem: Let $f(n, k)=p(n, k) \cdot h(n, k)$ be a proper hg. term such that the polynomial $p(n, k)$ is of maximal degree

The Apagodu-Zeilberger Algorithm

Theorem: Let $f(n, k)=p(n, k) \cdot h(n, k)$ be a proper hg. term such that the polynomial $p(n, k)$ is of maximal degree and

$$
h(n, k)=\frac{\left(\prod_{j=1}^{A}\left(\alpha_{j}\right)_{a_{j}^{\prime} n+a_{j} k}\right)\left(\prod_{j=1}^{B}\left(\beta_{j}\right)_{b_{j}^{\prime} n-b_{j} k}\right)}{\left(\prod_{j=1}^{C}\left(\gamma_{j}\right)_{c_{j}^{\prime} n+c_{j} k}\right)\left(\prod_{j=1}^{D}\left(\delta_{j}\right)_{d_{j}^{\prime} n-d_{j} k}\right)} z^{k}
$$

with $a_{j}, a_{j}^{\prime}, b_{j}, b_{j}^{\prime}, c_{j}, c_{j}^{\prime}, d_{j}, d_{j}^{\prime} \in \mathbb{N}$.

The Apagodu-Zeilberger Algorithm

Theorem: Let $f(n, k)=p(n, k) \cdot h(n, k)$ be a proper hg. term such that the polynomial $p(n, k)$ is of maximal degree and

$$
h(n, k)=\frac{\left(\prod_{j=1}^{A}\left(\alpha_{j}\right)_{a_{j}^{\prime} n+a_{j} k}\right)\left(\prod_{j=1}^{B}\left(\beta_{j}\right)_{b_{j}^{\prime} n-b_{j} k}\right)}{\left(\prod_{j=1}^{C}\left(\gamma_{j}\right)_{c_{j}^{\prime} n+c_{j} k}\right)\left(\prod_{j=1}^{D}\left(\delta_{j}\right)_{d_{j}^{\prime} n-d_{j} k}\right)} z^{k}
$$

with $a_{j}, a_{j}^{\prime}, b_{j}, b_{j}^{\prime}, c_{j}, c_{j}^{\prime}, d_{j}, d_{j}^{\prime} \in \mathbb{N}$. Furthermore, let

$$
r=\max \left(\sum_{j=1}^{A} a_{j}+\sum_{j=1}^{D} d_{j}, \quad \sum_{j=1}^{B} b_{j}+\sum_{j=1}^{C} c_{j}\right) .
$$

The Apagodu-Zeilberger Algorithm

Theorem: Let $f(n, k)=p(n, k) \cdot h(n, k)$ be a proper hg. term such that the polynomial $p(n, k)$ is of maximal degree and

$$
h(n, k)=\frac{\left(\prod_{j=1}^{A}\left(\alpha_{j}\right)_{a_{j}^{\prime} n+a_{j} k}\right)\left(\prod_{j=1}^{B}\left(\beta_{j}\right)_{b_{j}^{\prime} n-b_{j} k}\right)}{\left(\prod_{j=1}^{C}\left(\gamma_{j}\right)_{c_{j}^{\prime} n+c_{j} k}\right)\left(\prod_{j=1}^{D}\left(\delta_{j}\right)_{d_{j}^{\prime} n-d_{j} k}\right)} z^{k}
$$

with $a_{j}, a_{j}^{\prime}, b_{j}, b_{j}^{\prime}, c_{j}, c_{j}^{\prime}, d_{j}, d_{j}^{\prime} \in \mathbb{N}$. Furthermore, let

$$
r=\max \left(\sum_{j=1}^{A} a_{j}+\sum_{j=1}^{D} d_{j}, \quad \sum_{j=1}^{B} b_{j}+\sum_{j=1}^{C} c_{j}\right) .
$$

Then there exist polynomials $p_{0}(n), \ldots, p_{r}(n)$, not all zero, and $q(n, k) \in \mathbb{K}(n, k)$ such that $g(n, k):=q(n, k) f(n, k)$ satisfies

$$
\sum_{i=0}^{r} p_{i}(n) f(n+i, k)=g(n, k+1)-g(n, k)
$$

Univariate D-finite Functions

Definition: A function $f(x)$ is called D-finite ("differentiably finite") if it satisfies a (nontrivial) linear ordinary differential equation with polynomial coefficients:

$$
p_{r}(x) f^{(r)}(x)+\cdots+p_{1}(x) f^{\prime}(x)+p_{0}(x) f(x)=0, \quad p_{i} \in \mathbb{K}[x] .
$$

Univariate D-finite Functions

Definition: A function $f(x)$ is called D-finite ("differentiably finite") if it satisfies a (nontrivial) linear ordinary differential equation with polynomial coefficients:

$$
p_{r}(x) f^{(r)}(x)+\cdots+p_{1}(x) f^{\prime}(x)+p_{0}(x) f(x)=0, \quad p_{i} \in \mathbb{K}[x] .
$$

Examples: const., $x^{n}, \exp (x), \sin (x), \sqrt{x+1}, \ldots$

Univariate D-finite Functions

Definition: A function $f(x)$ is called D-finite ("differentiably finite") if it satisfies a (nontrivial) linear ordinary differential equation with polynomial coefficients:

$$
p_{r}(x) f^{(r)}(x)+\cdots+p_{1}(x) f^{\prime}(x)+p_{0}(x) f(x)=0, \quad p_{i} \in \mathbb{K}[x] .
$$

Examples: const., $x^{n}, \exp (x), \sin (x), \sqrt{x+1}, \ldots$
Features:

Univariate D-finite Functions

Definition: A function $f(x)$ is called D-finite ("differentiably finite") if it satisfies a (nontrivial) linear ordinary differential equation with polynomial coefficients:

$$
p_{r}(x) f^{(r)}(x)+\cdots+p_{1}(x) f^{\prime}(x)+p_{0}(x) f(x)=0, \quad p_{i} \in \mathbb{K}[x] .
$$

Examples: const., $x^{n}, \exp (x), \sin (x), \sqrt{x+1}, \ldots$

Features:

- important and rich class of functions (aka holonomic functions)

Univariate D-finite Functions

Definition: A function $f(x)$ is called D-finite ("differentiably finite") if it satisfies a (nontrivial) linear ordinary differential equation with polynomial coefficients:

$$
p_{r}(x) f^{(r)}(x)+\cdots+p_{1}(x) f^{\prime}(x)+p_{0}(x) f(x)=0, \quad p_{i} \in \mathbb{K}[x] .
$$

Examples: const., $x^{n}, \exp (x), \sin (x), \sqrt{x+1}, \ldots$

Features:

- important and rich class of functions (aka holonomic functions)
- closed under many operations \rightsquigarrow "closure properties"

Univariate D-finite Functions

Definition: A function $f(x)$ is called D-finite ("differentiably finite") if it satisfies a (nontrivial) linear ordinary differential equation with polynomial coefficients:

$$
p_{r}(x) f^{(r)}(x)+\cdots+p_{1}(x) f^{\prime}(x)+p_{0}(x) f(x)=0, \quad p_{i} \in \mathbb{K}[x] .
$$

Examples: const., $x^{n}, \exp (x), \sin (x), \sqrt{x+1}, \ldots$

Features:

- important and rich class of functions (aka holonomic functions)
- closed under many operations \rightsquigarrow "closure properties"
- good data structure in symbolic computation:

Univariate D-finite Functions

Definition: A function $f(x)$ is called D-finite ("differentiably finite") if it satisfies a (nontrivial) linear ordinary differential equation with polynomial coefficients:

$$
p_{r}(x) f^{(r)}(x)+\cdots+p_{1}(x) f^{\prime}(x)+p_{0}(x) f(x)=0, \quad p_{i} \in \mathbb{K}[x] .
$$

Examples: const., $x^{n}, \exp (x), \sin (x), \sqrt{x+1}, \ldots$

Features:

- important and rich class of functions (aka holonomic functions)
- closed under many operations \rightsquigarrow "closure properties"
- good data structure in symbolic computation:
- finitely many initial values \rightsquigarrow finite amount of data

Univariate D-finite Functions

Definition: A function $f(x)$ is called D-finite ("differentiably finite") if it satisfies a (nontrivial) linear ordinary differential equation with polynomial coefficients:

$$
p_{r}(x) f^{(r)}(x)+\cdots+p_{1}(x) f^{\prime}(x)+p_{0}(x) f(x)=0, \quad p_{i} \in \mathbb{K}[x] .
$$

Examples: const., $x^{n}, \exp (x), \sin (x), \sqrt{x+1}, \ldots$

Features:

- important and rich class of functions (aka holonomic functions)
- closed under many operations \rightsquigarrow "closure properties"
- good data structure in symbolic computation:
- finitely many initial values \rightsquigarrow finite amount of data
- operations (closure properties) can be executed algorithmically

Many Functions are D-Finite

ArcCsc, KelvinBei, HypergeometricPFQ, ExpIntegralE, ArcTanh, HankelH2, AngerJ, JacobiP, ChebyshevT, AiryBi, AiryAi, Sinc, CosIntegral, ArcSech, SphericalBesselY, Sin, WhittakerW, SphericalHankelH2, HermiteH, ExpIntegralEi, Beta, AiryBiPrime, SphericalBesselJ, ParabolicCylinderD, Erfc, EllipticK, Cos, Hypergeometric2F1, Erf, KelvinKer, BetaRegularized, HypergeometricPFQRegularized, Log, BesselY, Cosh, ArcSinh, CoshIntegral, ArcTan, ArcCoth, LegendreP, LaguerreL, EllipticE, SinhIntegral, Sinh, SphericalHankelH1, ArcSin, AiryAiPrime, EllipticThetaPrime, Root, AppellF1, FresnelC, LegendreQ, ChebyshevU, GammaRegularized, Erfi, Bessell, HypergeometricU, KelvinKei, Exp, ArcCot, Hypergeometric2F1Regularized, ArcSec, Hypergeometric0F1, EllipticPi, GegenbauerC, ArcCos, WeberE, FresnelS, EllipticF, ArcCosh, HankelH1, Sqrt, BesselK, BesselJ, Hypergeometric1F1Regularized, StruveL, KelvinBer, StruveH, WhittakerM, ArcCsch, Hypergeometric1F1, SinIntegral, ...

Special Functions

- arise in mathematical analysis and in real-world phenomena

Special Functions

- arise in mathematical analysis and in real-world phenomena

Airy function

Special Functions

- arise in mathematical analysis and in real-world phenomena

Airy function

Bessel function

Special Functions

- arise in mathematical analysis and in real-world phenomena

Airy function

Bessel function

Coulomb function

Special Functions

- arise in mathematical analysis and in real-world phenomena
- are solutions to certain differential equations

Airy function

Bessel function

Coulomb function

Special Functions

- arise in mathematical analysis and in real-world phenomena
- are solutions to certain differential equations
- cannot be expressed in terms of the usual elementary functions $(\sqrt{ }, \exp , \log , \sin , \cos , \ldots)$

Airy function

Bessel function

Coulomb function

Closure Properties of D-Finite Functions

Theorem: If $f(x)$ and $g(x)$ are D-finite functions, then also the following functions are D-finite:

Closure Properties of D-Finite Functions

Theorem: If $f(x)$ and $g(x)$ are D-finite functions, then also the following functions are D-finite:
(i) $f(x) \pm g(x)$

Closure Properties of D-Finite Functions

Theorem: If $f(x)$ and $g(x)$ are D-finite functions, then also the following functions are D-finite:
(i) $f(x) \pm g(x)$

Proof idea:

(i) linear algebra, see next slide

Closure Properties of D-Finite Functions

Theorem: If $f(x)$ and $g(x)$ are D-finite functions, then also the following functions are D-finite:
(i) $f(x) \pm g(x)$
(ii) $f(x) \cdot g(x)$

Proof idea:

(i) linear algebra, see next slide

Closure Properties of D-Finite Functions

Theorem: If $f(x)$ and $g(x)$ are D-finite functions, then also the following functions are D-finite:
(i) $f(x) \pm g(x)$
(ii) $f(x) \cdot g(x)$

Proof idea:

(i) linear algebra, see next slide
(ii) also by linear algebra, analogous to (i)

Closure Properties of D-Finite Functions

Theorem: If $f(x)$ and $g(x)$ are D-finite functions, then also the following functions are D-finite:
(i) $f(x) \pm g(x)$
(ii) $f(x) \cdot g(x)$
(iii) $\int f(x) \mathrm{d} x$

Proof idea:

(i) linear algebra, see next slide
(ii) also by linear algebra, analogous to (i)

Closure Properties of D-Finite Functions

Theorem: If $f(x)$ and $g(x)$ are D-finite functions, then also the following functions are D-finite:
(i) $f(x) \pm g(x)$
(ii) $f(x) \cdot g(x)$
(iii) $\int f(x) \mathrm{d} x$

Proof idea:

(i) linear algebra, see next slide
(ii) also by linear algebra, analogous to (i)
(iii) replace $f^{(i)}(x)$ by $f^{(i+1)}(x)$ in the differential equation

Closure Properties of D-Finite Functions

Theorem: If $f(x)$ and $g(x)$ are D-finite functions, then also the following functions are D-finite:
(i) $f(x) \pm g(x)$
(ii) $f(x) \cdot g(x)$
(iii) $\int f(x) \mathrm{d} x$
(iv) $\frac{\mathrm{d}}{\mathrm{d} x} f(x)$

Proof idea:

(i) linear algebra, see next slide
(ii) also by linear algebra, analogous to (i)
(iii) replace $f^{(i)}(x)$ by $f^{(i+1)}(x)$ in the differential equation

Closure Properties of D-Finite Functions

Theorem: If $f(x)$ and $g(x)$ are D-finite functions, then also the following functions are D-finite:
(i) $f(x) \pm g(x)$
(ii) $f(x) \cdot g(x)$
(iii) $\int f(x) \mathrm{d} x$
(iv) $\frac{\mathrm{d}}{\mathrm{d} x} f(x)$
(v) $f(h(x))$, where $h(x)$ is an algebraic function.

Proof idea:

(i) linear algebra, see next slide
(ii) also by linear algebra, analogous to (i)
(iii) replace $f^{(i)}(x)$ by $f^{(i+1)}(x)$ in the differential equation

Closure Properties of D-Finite Functions

Theorem: If $f(x)$ and $g(x)$ are D-finite functions, then also the following functions are D-finite:
(i) $f(x) \pm g(x)$
(ii) $f(x) \cdot g(x)$
(iii) $\int f(x) \mathrm{d} x$
(iv) $\frac{\mathrm{d}}{\mathrm{d} x} f(x)$
(v) $f(h(x))$, where $h(x)$ is an algebraic function.
(vi) In particular, every algebraic function $h(x)$ is D-finite.

Proof idea:

(i) linear algebra, see next slide
(ii) also by linear algebra, analogous to (i)
(iii) replace $f^{(i)}(x)$ by $f^{(i+1)}(x)$ in the differential equation

Proof

Assume f, g are D-finite and satisfy LODEs of order d_{1}, d_{2}, resp.

Proof

Assume f, g are D-finite and satisfy LODEs of order d_{1}, d_{2}, resp. Show: $h(x):=f(x)+g(x)$ is D-finite.

Proof

Assume f, g are D-finite and satisfy LODEs of order d_{1}, d_{2}, resp. Show: $h(x):=f(x)+g(x)$ is D-finite.
Ansatz: want to find $c_{0}, \ldots, c_{d} \in \mathbb{K}[n]$ such that

$$
c_{d}(x) h^{(d)}(x)+\cdots+c_{1} h^{\prime}(x)+c_{0}(x) h(x)=0
$$

Proof

Assume f, g are D-finite and satisfy LODEs of order d_{1}, d_{2}, resp. Show: $h(x):=f(x)+g(x)$ is D-finite.
Ansatz: want to find $c_{0}, \ldots, c_{d} \in \mathbb{K}[n]$ such that

$$
0=c_{d}(x) h^{(d)}(x)+\cdots+c_{1} h^{\prime}(x)+c_{0}(x) h(x)
$$

Proof

Assume f, g are D-finite and satisfy LODEs of order d_{1}, d_{2}, resp. Show: $h(x):=f(x)+g(x)$ is D-finite.
Ansatz: want to find $c_{0}, \ldots, c_{d} \in \mathbb{K}[n]$ such that

$$
\begin{aligned}
0 & =c_{d}(x) h^{(d)}(x)+\cdots+c_{1} h^{\prime}(x)+c_{0}(x) h(x) \\
& =c_{d}(x)\left(f^{(d)}(x)+g^{(d)}(x)\right)+\cdots+c_{0}(x)(f(x)+g(x))
\end{aligned}
$$

Proof

Assume f, g are D-finite and satisfy LODEs of order d_{1}, d_{2}, resp. Show: $h(x):=f(x)+g(x)$ is D-finite.
Ansatz: want to find $c_{0}, \ldots, c_{d} \in \mathbb{K}[n]$ such that

$$
\begin{aligned}
0= & c_{d}(x) h^{(d)}(x)+\cdots+c_{1} h^{\prime}(x)+c_{0}(x) h(x) \\
= & c_{d}(x)\left(f^{(d)}(x)+g^{(d)}(x)\right)+\cdots+c_{0}(x)(f(x)+g(x)) \\
= & c_{d}(x)\left(\square f^{\left(d_{1}-1\right)}(x)+\cdots+\square f^{\prime}(x)+\square f(x)+\right. \\
& \left.\quad \square g^{\left(d_{2}-1\right)}(x)+\cdots+\square g^{\prime}(x)+\square g(x)\right) \\
& +\cdots+c_{0}(x)(f(x)+g(x))
\end{aligned}
$$

Proof

Assume f, g are D-finite and satisfy LODEs of order d_{1}, d_{2}, resp. Show: $h(x):=f(x)+g(x)$ is D-finite.
Ansatz: want to find $c_{0}, \ldots, c_{d} \in \mathbb{K}[n]$ such that

$$
\begin{aligned}
0= & c_{d}(x) h^{(d)}(x)+\cdots+c_{1} h^{\prime}(x)+c_{0}(x) h(x) \\
= & c_{d}(x)\left(f^{(d)}(x)+g^{(d)}(x)\right)+\cdots+c_{0}(x)(f(x)+g(x)) \\
= & c_{d}(x)\left(\square f^{\left(d_{1}-1\right)}(x)+\cdots+\square f^{\prime}(x)+\square f(x)+\right. \\
& \left.\square g^{\left(d_{2}-1\right)}(x)+\cdots+\square g^{\prime}(x)+\square g(x)\right) \\
& +\cdots+c_{0}(x)(f(x)+g(x)) \\
= & \sum_{i=0}^{d_{1}-1} r_{i}\left(c_{0}, \ldots, c_{d}, x\right) f^{(i)}(x)+\sum_{i=0}^{d_{2}-1} s_{i}\left(c_{0}, \ldots, c_{d}, x\right) g^{(i)}(x)
\end{aligned}
$$

Proof

Assume f, g are D-finite and satisfy LODEs of order d_{1}, d_{2}, resp. Show: $h(x):=f(x)+g(x)$ is D-finite.
Ansatz: want to find $c_{0}, \ldots, c_{d} \in \mathbb{K}[n]$ such that

$$
\begin{aligned}
0= & c_{d}(x) h^{(d)}(x)+\cdots+c_{1} h^{\prime}(x)+c_{0}(x) h(x) \\
= & c_{d}(x)\left(f^{(d)}(x)+g^{(d)}(x)\right)+\cdots+c_{0}(x)(f(x)+g(x)) \\
= & c_{d}(x)\left(\square f^{\left(d_{1}-1\right)}(x)+\cdots+\square f^{\prime}(x)+\square f(x)+\right. \\
& \left.\square g^{\left(d_{2}-1\right)}(x)+\cdots+\square g^{\prime}(x)+\square g(x)\right) \\
& +\cdots+c_{0}(x)(f(x)+g(x)) \\
= & \sum_{i=0}^{d_{1}-1} r_{i}\left(c_{0}, \ldots, c_{d}, x\right) f^{(i)}(x)+\sum_{i=0}^{d_{2}-1} s_{i}\left(c_{0}, \ldots, c_{d}, x\right) g^{(i)}(x)
\end{aligned}
$$

All coefficients r_{i}, s_{i} must vanish: this yields $d_{1}+d_{2}$ equations for the unknowns c_{0}, \ldots, c_{d}.

Proof

Assume f, g are D-finite and satisfy LODEs of order d_{1}, d_{2}, resp. Show: $h(x):=f(x)+g(x)$ is D-finite.
Ansatz: want to find $c_{0}, \ldots, c_{d} \in \mathbb{K}[n]$ such that

$$
\begin{aligned}
0= & c_{d}(x) h^{(d)}(x)+\cdots+c_{1} h^{\prime}(x)+c_{0}(x) h(x) \\
= & c_{d}(x)\left(f^{(d)}(x)+g^{(d)}(x)\right)+\cdots+c_{0}(x)(f(x)+g(x)) \\
= & c_{d}(x)\left(\square f^{\left(d_{1}-1\right)}(x)+\cdots+\square f^{\prime}(x)+\square f(x)+\right. \\
& \left.\square g^{\left(d_{2}-1\right)}(x)+\cdots+\square g^{\prime}(x)+\square g(x)\right) \\
& +\cdots+c_{0}(x)(f(x)+g(x)) \\
= & \sum_{i=0}^{d_{1}-1} r_{i}\left(c_{0}, \ldots, c_{d}, x\right) f^{(i)}(x)+\sum_{i=0}^{d_{2}-1} s_{i}\left(c_{0}, \ldots, c_{d}, x\right) g^{(i)}(x)
\end{aligned}
$$

All coefficients r_{i}, s_{i} must vanish: this yields $d_{1}+d_{2}$ equations for the unknowns c_{0}, \ldots, c_{d}. The choice $d:=d_{1}+d_{2}$ ensures a solution.

Quiz: Which functions are D-Finite?

$-\operatorname{erf}\left(\frac{1}{x^{2}+1}\right) \cdot \exp \left(\frac{1}{x^{2}+1}\right)$

- $(\sinh (x))^{2}+(\cosh (x))^{-2}$
$-\frac{\log (\sqrt{1-x})}{\exp (\sqrt{1-x})}$
- $\arctan \left(\mathrm{e}^{x}\right)$
- $\exp (\arctan (x))$

Quiz: Which functions are D-Finite?

$-\operatorname{erf}\left(\frac{1}{x^{2}+1}\right) \cdot \exp \left(\frac{1}{x^{2}+1}\right)$

- $(\sinh (x))^{2}+(\cosh (x))^{-2}$
$-\frac{\log (\sqrt{1-x})}{\exp (\sqrt{1-x})}$
- $\arctan \left(\mathrm{e}^{x}\right)$
- $\exp (\arctan (x))$

Quiz: Which functions are D-Finite?

$-\operatorname{erf}\left(\frac{1}{x^{2}+1}\right) \cdot \exp \left(\frac{1}{x^{2}+1}\right)$

- $(\sinh (x))^{2}+(\cosh (x))^{-2}$
x
$-\frac{\log (\sqrt{1-x})}{\exp (\sqrt{1-x})}$
- $\arctan \left(\mathrm{e}^{x}\right)$
- $\exp (\arctan (x))$

Quiz: Which functions are D-Finite?

$-\operatorname{erf}\left(\frac{1}{x^{2}+1}\right) \cdot \exp \left(\frac{1}{x^{2}+1}\right)$

- $(\sinh (x))^{2}+(\cosh (x))^{-2}$
x
$-\frac{\log (\sqrt{1-x})}{\exp (\sqrt{1-x})}$
- $\arctan \left(\mathrm{e}^{x}\right)$
- $\exp (\arctan (x))$

Quiz: Which functions are D-Finite?

$-\operatorname{erf}\left(\frac{1}{x^{2}+1}\right) \cdot \exp \left(\frac{1}{x^{2}+1}\right)$

- $(\sinh (x))^{2}+(\cosh (x))^{-2}$
x
$-\frac{\log (\sqrt{1-x})}{\exp (\sqrt{1-x})}$
- $\arctan \left(\mathrm{e}^{x}\right)$
x
- $\exp (\arctan (x))$

Quiz: Which functions are D-Finite?

$-\operatorname{erf}\left(\frac{1}{x^{2}+1}\right) \cdot \exp \left(\frac{1}{x^{2}+1}\right)$

- $(\sinh (x))^{2}+(\cosh (x))^{-2}$
x
$-\frac{\log (\sqrt{1-x})}{\exp (\sqrt{1-x})}$
- $\arctan \left(\mathrm{e}^{x}\right)$
x
- $\exp (\arctan (x))$

Quiz: Which functions are D-Finite?

$-\operatorname{erf}\left(\frac{1}{x^{2}+1}\right) \cdot \exp \left(\frac{1}{x^{2}+1}\right)$

- $(\sinh (x))^{2}+(\cosh (x))^{-2}$
$-\frac{\log (\sqrt{1-x})}{\exp (\sqrt{1-x})}$
- $\arctan \left(\mathrm{e}^{x}\right)$
x
- $\exp (\arctan (x))$
\longrightarrow Software demo

Operator Notation

Let D_{x} denote the differentiation w.r.t. x, i.e.,

$$
D_{x}(f(x))=f^{\prime}(x)
$$

Operator Notation

Let D_{x} denote the differentiation w.r.t. x, i.e.,

$$
D_{x}(f(x))=f^{\prime}(x), \quad D_{x}^{2}(f(x))=f^{\prime \prime}(x), \text { etc. }
$$

Operator Notation

Let D_{x} denote the differentiation w.r.t. x, i.e.,

$$
D_{x}^{0}(f(x))=f(x), \quad D_{x}(f(x))=f^{\prime}(x), \quad D_{x}^{2}(f(x))=f^{\prime \prime}(x), \text { etc. }
$$

Operator Notation

Let D_{x} denote the differentiation w.r.t. x, i.e., $D_{x}^{0}(f(x))=f(x), \quad D_{x}(f(x))=f^{\prime}(x), \quad D_{x}^{2}(f(x))=f^{\prime \prime}(x)$, etc.
Let $K(x)\left\langle D_{x}\right\rangle$ denote the polynomial ring in D_{x} with coeffs in $\mathbb{K}(x)$.

Operator Notation

Let D_{x} denote the differentiation w.r.t. x, i.e.,

$$
D_{x}^{0}(f(x))=f(x), \quad D_{x}(f(x))=f^{\prime}(x), \quad D_{x}^{2}(f(x))=f^{\prime \prime}(x), \text { etc. }
$$

Let $K(x)\left\langle D_{x}\right\rangle$ denote the polynomial ring in D_{x} with coeffs in $\mathbb{K}(x)$.
It is not commutative:

$$
D_{x} \cdot x=x \cdot D_{x}+1 \quad \text { (Leibniz rule) } .
$$

Operator Notation

Let D_{x} denote the differentiation w.r.t. x, i.e.,

$$
D_{x}^{0}(f(x))=f(x), \quad D_{x}(f(x))=f^{\prime}(x), \quad D_{x}^{2}(f(x))=f^{\prime \prime}(x), \text { etc. }
$$

Let $K(x)\left\langle D_{x}\right\rangle$ denote the polynomial ring in D_{x} with coeffs in $\mathbb{K}(x)$.
It is not commutative:

$$
D_{x} \cdot x=x \cdot D_{x}+1 \quad(\text { Leibniz rule })
$$

More general:

$$
D_{x} \cdot r(x)=r(x) \cdot D_{x}+r^{\prime}(x) \quad \text { for any } r \in \mathbb{K}(x)
$$

Operator Notation

Let D_{x} denote the differentiation w.r.t. x, i.e.,

$$
D_{x}^{0}(f(x))=f(x), \quad D_{x}(f(x))=f^{\prime}(x), \quad D_{x}^{2}(f(x))=f^{\prime \prime}(x), \text { etc. }
$$

Let $K(x)\left\langle D_{x}\right\rangle$ denote the polynomial ring in D_{x} with coeffs in $\mathbb{K}(x)$. It is not commutative:

$$
D_{x} \cdot x=x \cdot D_{x}+1 \quad \text { (Leibniz rule) } .
$$

More general:

$$
D_{x} \cdot r(x)=r(x) \cdot D_{x}+r^{\prime}(x) \quad \text { for any } r \in \mathbb{K}(x)
$$

Example: The Legendre differential equation

$$
\left(x^{2}-1\right) P_{n}^{\prime \prime}(x)+2 x P_{n}^{\prime}(x)-n(n+1) P_{n}(x)=0
$$

Operator Notation

Let D_{x} denote the differentiation w.r.t. x, i.e.,

$$
D_{x}^{0}(f(x))=f(x), \quad D_{x}(f(x))=f^{\prime}(x), \quad D_{x}^{2}(f(x))=f^{\prime \prime}(x), \text { etc. }
$$

Let $K(x)\left\langle D_{x}\right\rangle$ denote the polynomial ring in D_{x} with coeffs in $\mathbb{K}(x)$. It is not commutative:

$$
D_{x} \cdot x=x \cdot D_{x}+1 \quad \text { (Leibniz rule) }
$$

More general:

$$
D_{x} \cdot r(x)=r(x) \cdot D_{x}+r^{\prime}(x) \quad \text { for any } r \in \mathbb{K}(x)
$$

Example: The Legendre differential equation

$$
\left(x^{2}-1\right) P_{n}^{\prime \prime}(x)+2 x P_{n}^{\prime}(x)-n(n+1) P_{n}(x)=0
$$

translates to the operator

$$
\left(x^{2}-1\right) D_{x}^{2}+2 x D_{x}-n(n+1)
$$

D-Finite Functions and Operators

Hence, D-finiteness can be stated as follows:

$$
f(x) \text { is D-finite } \Longleftrightarrow \exists L \in K(x)\left\langle D_{x}\right\rangle \backslash\{0\}: L(f(x))=0 .
$$

D-Finite Functions and Operators

Hence, D-finiteness can be stated as follows:

$$
f(x) \text { is D-finite } \Longleftrightarrow \exists L \in K(x)\left\langle D_{x}\right\rangle \backslash\{0\}: L(f(x))=0 .
$$

Let $L_{1}, L_{2} \in K(x)\left\langle D_{x}\right\rangle$ annihilate f and g, respectively, i.e.,

$$
L_{1}(f)=0 \quad \text { and } \quad L_{2}(g)=0
$$

D-Finite Functions and Operators

Hence, D-finiteness can be stated as follows:

$$
f(x) \text { is D-finite } \Longleftrightarrow \exists L \in K(x)\left\langle D_{x}\right\rangle \backslash\{0\}: L(f(x))=0 .
$$

Let $L_{1}, L_{2} \in K(x)\left\langle D_{x}\right\rangle$ annihilate f and g, respectively, i.e.,

$$
L_{1}(f)=0 \quad \text { and } \quad L_{2}(g)=0
$$

Then:

- $L_{1} \cdot D_{x}$ annihilates $\int f(x) \mathrm{d} x$.

D-Finite Functions and Operators

Hence, D-finiteness can be stated as follows:

$$
f(x) \text { is D-finite } \Longleftrightarrow \exists L \in K(x)\left\langle D_{x}\right\rangle \backslash\{0\}: L(f(x))=0 .
$$

Let $L_{1}, L_{2} \in K(x)\left\langle D_{x}\right\rangle$ annihilate f and g, respectively, i.e.,

$$
L_{1}(f)=0 \quad \text { and } \quad L_{2}(g)=0
$$

Then:

- $L_{1} \cdot D_{x}$ annihilates $\int f(x) \mathrm{d} x$.
- $L:=\operatorname{lclm}\left(L_{1}, L_{2}\right)$ annihilates $f+g$.

D-Finite Functions and Operators

Hence, D-finiteness can be stated as follows:

$$
f(x) \text { is D-finite } \Longleftrightarrow \exists L \in K(x)\left\langle D_{x}\right\rangle \backslash\{0\}: L(f(x))=0 .
$$

Let $L_{1}, L_{2} \in K(x)\left\langle D_{x}\right\rangle$ annihilate f and g, respectively, i.e.,

$$
L_{1}(f)=0 \quad \text { and } \quad L_{2}(g)=0
$$

Then:

- $L_{1} \cdot D_{x}$ annihilates $\int f(x) \mathrm{d} x$.
- $L:=\operatorname{lc} \operatorname{lm}\left(L_{1}, L_{2}\right)$ annihilates $f+g$.
(Actually, L annihilates $c_{1} \cdot f+c_{2} \cdot g$ for any constants c_{1}, c_{2}.)

D-Finite Functions and Operators

Hence, D-finiteness can be stated as follows:

$$
f(x) \text { is D-finite } \Longleftrightarrow \exists L \in K(x)\left\langle D_{x}\right\rangle \backslash\{0\}: L(f(x))=0 .
$$

Let $L_{1}, L_{2} \in K(x)\left\langle D_{x}\right\rangle$ annihilate f and g, respectively, i.e.,

$$
L_{1}(f)=0 \quad \text { and } \quad L_{2}(g)=0
$$

Then:

- $L_{1} \cdot D_{x}$ annihilates $\int f(x) \mathrm{d} x$.
- $L:=\operatorname{lclm}\left(L_{1}, L_{2}\right)$ annihilates $f+g$.
(Actually, L annihilates $c_{1} \cdot f+c_{2} \cdot g$ for any constants c_{1}, c_{2}.) Proof: $L=M_{1} L_{1}=M_{2} L_{2}$ for certain $M_{1}, M_{2} \in K(x)\left\langle D_{x}\right\rangle$.

D-Finite Functions and Operators

Hence, D-finiteness can be stated as follows:

$$
f(x) \text { is D-finite } \Longleftrightarrow \exists L \in K(x)\left\langle D_{x}\right\rangle \backslash\{0\}: L(f(x))=0 .
$$

Let $L_{1}, L_{2} \in K(x)\left\langle D_{x}\right\rangle$ annihilate f and g, respectively, i.e.,

$$
L_{1}(f)=0 \quad \text { and } \quad L_{2}(g)=0
$$

Then:

- $L_{1} \cdot D_{x}$ annihilates $\int f(x) \mathrm{d} x$.
- $L:=\operatorname{lclm}\left(L_{1}, L_{2}\right)$ annihilates $f+g$.
(Actually, L annihilates $c_{1} \cdot f+c_{2} \cdot g$ for any constants c_{1}, c_{2}.) Proof: $L=M_{1} L_{1}=M_{2} L_{2}$ for certain $M_{1}, M_{2} \in K(x)\left\langle D_{x}\right\rangle$.
- If f satisfies $L(f)=h$ for some D-finite h, then f is D-finite.

D-Finite Functions and Operators

Hence, D-finiteness can be stated as follows:

$$
f(x) \text { is D-finite } \Longleftrightarrow \exists L \in K(x)\left\langle D_{x}\right\rangle \backslash\{0\}: L(f(x))=0 .
$$

Let $L_{1}, L_{2} \in K(x)\left\langle D_{x}\right\rangle$ annihilate f and g, respectively, i.e.,

$$
L_{1}(f)=0 \quad \text { and } \quad L_{2}(g)=0
$$

Then:

- $L_{1} \cdot D_{x}$ annihilates $\int f(x) \mathrm{d} x$.
- $L:=\operatorname{lclm}\left(L_{1}, L_{2}\right)$ annihilates $f+g$.
(Actually, L annihilates $c_{1} \cdot f+c_{2} \cdot g$ for any constants c_{1}, c_{2}.) Proof: $L=M_{1} L_{1}=M_{2} L_{2}$ for certain $M_{1}, M_{2} \in K(x)\left\langle D_{x}\right\rangle$.
- If f satisfies $L(f)=h$ for some D-finite h, then f is D-finite. Proof: Assume $M(h)=0$. Then $(M L)(f)=M(L(f))=0$.

Univariate P-recursive Sequences

Definition: A sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is called P -recursive if it satisfies a (nontrivial) linear ordinary recurrence equation with polynomial coefficients:

$$
p_{r}(n) a_{n+r}+\cdots+p_{1}(n) a_{n+1}+p_{0}(n) a_{n}=0, \quad p_{i} \in \mathbb{K}[n]
$$

Univariate P-recursive Sequences

Definition: A sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is called P -recursive if it satisfies a (nontrivial) linear ordinary recurrence equation with polynomial coefficients:

$$
p_{r}(n) a_{n+r}+\cdots+p_{1}(n) a_{n+1}+p_{0}(n) a_{n}=0, \quad p_{i} \in \mathbb{K}[n] .
$$

Examples: const., n^{7}, Fibonacci, $n!,\binom{2 n}{n}, H_{n}, \ldots$

Univariate P-recursive Sequences

Definition: A sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is called P -recursive if it satisfies a (nontrivial) linear ordinary recurrence equation with polynomial coefficients:

$$
p_{r}(n) a_{n+r}+\cdots+p_{1}(n) a_{n+1}+p_{0}(n) a_{n}=0, \quad p_{i} \in \mathbb{K}[n]
$$

Examples: const., n^{7}, Fibonacci, $n!,\binom{2 n}{n}, H_{n}, \ldots$
Features:

Univariate P-recursive Sequences

Definition: A sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is called P -recursive if it satisfies a (nontrivial) linear ordinary recurrence equation with polynomial coefficients:

$$
p_{r}(n) a_{n+r}+\cdots+p_{1}(n) a_{n+1}+p_{0}(n) a_{n}=0, \quad p_{i} \in \mathbb{K}[n]
$$

Examples: const., n^{7}, Fibonacci, $n!,\binom{2 n}{n}, H_{n}, \ldots$

Features:

- important and rich class of sequences (aka "P-finite", "D-finite", or "holonomic" sequences)

Univariate P-recursive Sequences

Definition: A sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is called P-recursive if it satisfies a (nontrivial) linear ordinary recurrence equation with polynomial coefficients:

$$
p_{r}(n) a_{n+r}+\cdots+p_{1}(n) a_{n+1}+p_{0}(n) a_{n}=0, \quad p_{i} \in \mathbb{K}[n] .
$$

Examples: const., n^{7}, Fibonacci, $n!,\binom{2 n}{n}, H_{n}, \ldots$

Features:

- important and rich class of sequences (aka "P-finite", "D-finite", or "holonomic" sequences)
- closed under many operations \rightsquigarrow "closure properties"

Univariate P-recursive Sequences

Definition: A sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is called P-recursive if it satisfies a (nontrivial) linear ordinary recurrence equation with polynomial coefficients:

$$
p_{r}(n) a_{n+r}+\cdots+p_{1}(n) a_{n+1}+p_{0}(n) a_{n}=0, \quad p_{i} \in \mathbb{K}[n] .
$$

Examples: const., n^{7}, Fibonacci, $n!,\binom{2 n}{n}, H_{n}, \ldots$

Features:

- important and rich class of sequences (aka "P-finite", "D-finite", or "holonomic" sequences)
- closed under many operations \rightsquigarrow "closure properties"
- good data structure in symbolic computation:

Univariate P-recursive Sequences

Definition: A sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is called P-recursive if it satisfies a (nontrivial) linear ordinary recurrence equation with polynomial coefficients:

$$
p_{r}(n) a_{n+r}+\cdots+p_{1}(n) a_{n+1}+p_{0}(n) a_{n}=0, \quad p_{i} \in \mathbb{K}[n]
$$

Examples: const., n^{7}, Fibonacci, $n!,\binom{2 n}{n}, H_{n}, \ldots$

Features:

- important and rich class of sequences (aka "P-finite", "D-finite", or "holonomic" sequences)
- closed under many operations \rightsquigarrow "closure properties"
- good data structure in symbolic computation:
- finitely many initial values \rightsquigarrow finite amount of data

Univariate P-recursive Sequences

Definition: A sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is called P -recursive if it satisfies a (nontrivial) linear ordinary recurrence equation with polynomial coefficients:

$$
p_{r}(n) a_{n+r}+\cdots+p_{1}(n) a_{n+1}+p_{0}(n) a_{n}=0, \quad p_{i} \in \mathbb{K}[n] .
$$

Examples: const., n^{7}, Fibonacci, $n!,\binom{2 n}{n}, H_{n}, \ldots$

Features:

- important and rich class of sequences (aka "P-finite", "D-finite", or "holonomic" sequences)
- closed under many operations \rightsquigarrow "closure properties"
- good data structure in symbolic computation:
- finitely many initial values \rightsquigarrow finite amount of data
- operations (closure properties) can be executed algorithmically

Many Sequences are P-Recursive

Multinomial, KelvinBei, HypergeometricPFQ, HarmonicNumber, HankelH2, CatalanNumber, AngerJ, JacobiP, ChebyshevT, SphericalBesselY, WhittakerW, Gamma, Subfactorial, BesselJ, Pochhammer, SphericalHankelH2, Fibonacci, HermiteH, Beta, SphericalBesselJ, Tribonacci, StruveL, ParabolicCylinderD, Hypergeometric2F1, BesseIK, BetaRegularized, KelvinKer, PolyGamma, HypergeometricPFQRegularized, SchröderNumber, SphericalHankelH1, LegendreP, LaguerreL, DelannoyNumber, BetaRegularized, AppellF1, LegendreQ, Binomial, ChebyshevU, GammaRegularized, Bessell, HypergeometricU, KelvinKei, Factorial, Hypergeometric2F1Regularized, GegenbauerC, KelvinBer, WeberE, HankelH1, Hypergeometric1F1Regularized, StruveH, WhittakerM, Hypergeometric0F1, Factorial2, Hypergeometric1F1, LucasL, MotzkinNumber, BesselY, ...

Closure Properties of P-Recursive Sequences

Theorem (Closure Properties): If a_{n} and b_{n} are two P-recursive sequences, then also the following expressions are P -recursive:

Closure Properties of P-Recursive Sequences

Theorem (Closure Properties): If a_{n} and b_{n} are two P-recursive sequences, then also the following expressions are P -recursive:
(i) $a_{n} \pm b_{n}$

Closure Properties of P-Recursive Sequences

Theorem (Closure Properties): If a_{n} and b_{n} are two P-recursive sequences, then also the following expressions are P -recursive:
(i) $a_{n} \pm b_{n}$

Proof idea:

(i) linear algebra, analogous to D-finite

Closure Properties of P-Recursive Sequences

Theorem (Closure Properties): If a_{n} and b_{n} are two P-recursive sequences, then also the following expressions are P -recursive:
(i) $a_{n} \pm b_{n}$
(ii) $a_{n} \cdot b_{n}$

Proof idea:

(i) linear algebra, analogous to D-finite

Closure Properties of P-Recursive Sequences

Theorem (Closure Properties): If a_{n} and b_{n} are two P-recursive sequences, then also the following expressions are P -recursive:
(i) $a_{n} \pm b_{n}$
(ii) $a_{n} \cdot b_{n}$

Proof idea:

(i) linear algebra, analogous to D-finite
(ii) also by linear algebra, analogous to (i)

Closure Properties of P-Recursive Sequences

Theorem (Closure Properties): If a_{n} and b_{n} are two P-recursive sequences, then also the following expressions are P -recursive:
(i) $a_{n} \pm b_{n}$
(ii) $a_{n} \cdot b_{n}$
(iii) $\sum_{n} a_{n}$ (indefinite sum, i.e., s_{n} s.t. $s_{n+1}-s_{n}=a_{n}$)

Proof idea:

(i) linear algebra, analogous to D-finite
(ii) also by linear algebra, analogous to (i)

Closure Properties of P-Recursive Sequences

Theorem (Closure Properties): If a_{n} and b_{n} are two P-recursive sequences, then also the following expressions are P -recursive:
(i) $a_{n} \pm b_{n}$
(ii) $a_{n} \cdot b_{n}$
(iii) $\sum_{n} a_{n}$ (indefinite sum, i.e., s_{n} s.t. $s_{n+1}-s_{n}=a_{n}$)

Proof idea:

(i) linear algebra, analogous to D-finite
(ii) also by linear algebra, analogous to (i)
(iii) replace a_{n} by $a_{n+1}-a_{n}$ in the recurrence

Closure Properties of P-Recursive Sequences

Theorem (Closure Properties): If a_{n} and b_{n} are two P-recursive sequences, then also the following expressions are P -recursive:
(i) $a_{n} \pm b_{n}$
(ii) $a_{n} \cdot b_{n}$
(iii) $\sum_{n} a_{n}$ (indefinite sum, i.e., s_{n} s.t. $s_{n+1}-s_{n}=a_{n}$)
(iv) $a_{c n+d}$, where $c, d \in \mathbb{Z}$.

Proof idea:

(i) linear algebra, analogous to D-finite
(ii) also by linear algebra, analogous to (i)
(iii) replace a_{n} by $a_{n+1}-a_{n}$ in the recurrence

Operator Notation

Let S_{n} denote the forward shift operator w.r.t. n, i.e.,

$$
S_{n}\left(a_{n}\right)=a_{n+1}
$$

Operator Notation

Let S_{n} denote the forward shift operator w.r.t. n, i.e.,

$$
S_{n}\left(a_{n}\right)=a_{n+1}, \quad S_{n}^{2}\left(a_{n}\right)=a_{n+2}, \quad \text { etc. }
$$

Operator Notation

Let S_{n} denote the forward shift operator w.r.t. n, i.e.,

$$
S_{n}^{0}\left(a_{n}\right)=a_{n}, \quad S_{n}\left(a_{n}\right)=a_{n+1}, \quad S_{n}^{2}\left(a_{n}\right)=a_{n+2}, \quad \text { etc. }
$$

Operator Notation

Let S_{n} denote the forward shift operator w.r.t. n, i.e.,

$$
S_{n}^{0}\left(a_{n}\right)=a_{n}, \quad S_{n}\left(a_{n}\right)=a_{n+1}, \quad S_{n}^{2}\left(a_{n}\right)=a_{n+2}, \quad \text { etc. }
$$

Let $K(n)\left\langle S_{n}\right\rangle$ denote the polynomial ring in S_{n} with coeffs in $\mathbb{K}(n)$.

Operator Notation

Let S_{n} denote the forward shift operator w.r.t. n, i.e.,

$$
S_{n}^{0}\left(a_{n}\right)=a_{n}, \quad S_{n}\left(a_{n}\right)=a_{n+1}, \quad S_{n}^{2}\left(a_{n}\right)=a_{n+2}, \quad \text { etc. }
$$

Let $K(n)\left\langle S_{n}\right\rangle$ denote the polynomial ring in S_{n} with coeffs in $\mathbb{K}(n)$. It is not commutative:

$$
S_{n} \cdot n=(n+1) \cdot S_{n} .
$$

Operator Notation

Let S_{n} denote the forward shift operator w.r.t. n, i.e.,

$$
S_{n}^{0}\left(a_{n}\right)=a_{n}, \quad S_{n}\left(a_{n}\right)=a_{n+1}, \quad S_{n}^{2}\left(a_{n}\right)=a_{n+2}, \quad \text { etc. }
$$

Let $K(n)\left\langle S_{n}\right\rangle$ denote the polynomial ring in S_{n} with coeffs in $\mathbb{K}(n)$. It is not commutative:

$$
S_{n} \cdot n=(n+1) \cdot S_{n} .
$$

More general:

$$
S_{n} \cdot r(n)=r(n+1) \cdot S_{n} \quad \text { for any } r \in \mathbb{K}(n)
$$

Operator Notation

Let S_{n} denote the forward shift operator w.r.t. n, i.e.,

$$
S_{n}^{0}\left(a_{n}\right)=a_{n}, \quad S_{n}\left(a_{n}\right)=a_{n+1}, \quad S_{n}^{2}\left(a_{n}\right)=a_{n+2}, \quad \text { etc. }
$$

Let $K(n)\left\langle S_{n}\right\rangle$ denote the polynomial ring in S_{n} with coeffs in $\mathbb{K}(n)$. It is not commutative:

$$
S_{n} \cdot n=(n+1) \cdot S_{n} .
$$

More general:

$$
S_{n} \cdot r(n)=r(n+1) \cdot S_{n} \quad \text { for any } r \in \mathbb{K}(n)
$$

Example: The three-term recurrence for Legendre polynomials

$$
n P_{n}(x)=(2 n-1) x P_{n-1}(x)-(n-1) P_{n-2}(x)
$$

Operator Notation

Let S_{n} denote the forward shift operator w.r.t. n, i.e.,

$$
S_{n}^{0}\left(a_{n}\right)=a_{n}, \quad S_{n}\left(a_{n}\right)=a_{n+1}, \quad S_{n}^{2}\left(a_{n}\right)=a_{n+2}, \quad \text { etc. }
$$

Let $K(n)\left\langle S_{n}\right\rangle$ denote the polynomial ring in S_{n} with coeffs in $\mathbb{K}(n)$. It is not commutative:

$$
S_{n} \cdot n=(n+1) \cdot S_{n} .
$$

More general:

$$
S_{n} \cdot r(n)=r(n+1) \cdot S_{n} \quad \text { for any } r \in \mathbb{K}(n)
$$

Example: The three-term recurrence for Legendre polynomials

$$
n P_{n}(x)=(2 n-1) x P_{n-1}(x)-(n-1) P_{n-2}(x)
$$

translates to the operator

$$
(n+2) S_{n}^{2}-(2 n+3) x S_{n}+(n+1)
$$

P-Recursive Sequences and Operators

Hence, P-recursiveness can be stated as follows:

$$
a_{n} \text { is P-recursive } \Longleftrightarrow \exists L \in K(n)\left\langle S_{n}\right\rangle \backslash\{0\}: L\left(a_{n}\right)=0 .
$$

P-Recursive Sequences and Operators

Hence, P-recursiveness can be stated as follows:

$$
a_{n} \text { is P-recursive } \Longleftrightarrow \exists L \in K(n)\left\langle S_{n}\right\rangle \backslash\{0\}: L\left(a_{n}\right)=0 .
$$

Let $L_{1}, L_{2} \in K(n)\left\langle S_{n}\right\rangle$ annihilate a_{n} and b_{n}, respectively, i.e.,

$$
L_{1}\left(a_{n}\right)=0 \quad \text { and } \quad L_{2}\left(b_{n}\right)=0
$$

P-Recursive Sequences and Operators

Hence, P-recursiveness can be stated as follows:

$$
a_{n} \text { is P-recursive } \Longleftrightarrow \exists L \in K(n)\left\langle S_{n}\right\rangle \backslash\{0\}: L\left(a_{n}\right)=0 .
$$

Let $L_{1}, L_{2} \in K(n)\left\langle S_{n}\right\rangle$ annihilate a_{n} and b_{n}, respectively, i.e.,

$$
L_{1}\left(a_{n}\right)=0 \quad \text { and } \quad L_{2}\left(b_{n}\right)=0
$$

Then:

- $L_{1} \cdot\left(S_{n}-1\right)$ annihilates $\sum_{n} a_{n}$.

P-Recursive Sequences and Operators

Hence, P-recursiveness can be stated as follows:

$$
a_{n} \text { is P-recursive } \Longleftrightarrow \exists L \in K(n)\left\langle S_{n}\right\rangle \backslash\{0\}: L\left(a_{n}\right)=0 .
$$

Let $L_{1}, L_{2} \in K(n)\left\langle S_{n}\right\rangle$ annihilate a_{n} and b_{n}, respectively, i.e.,

$$
L_{1}\left(a_{n}\right)=0 \quad \text { and } \quad L_{2}\left(b_{n}\right)=0
$$

Then:

- $L_{1} \cdot\left(S_{n}-1\right)$ annihilates $\sum_{n} a_{n}$.
- $L:=\operatorname{lclm}\left(L_{1}, L_{2}\right)$ annihilates $a_{n}+b_{n}$.

P-Recursive Sequences and Operators

Hence, P-recursiveness can be stated as follows:

$$
a_{n} \text { is P-recursive } \Longleftrightarrow \exists L \in K(n)\left\langle S_{n}\right\rangle \backslash\{0\}: L\left(a_{n}\right)=0 .
$$

Let $L_{1}, L_{2} \in K(n)\left\langle S_{n}\right\rangle$ annihilate a_{n} and b_{n}, respectively, i.e.,

$$
L_{1}\left(a_{n}\right)=0 \quad \text { and } \quad L_{2}\left(b_{n}\right)=0
$$

Then:

- $L_{1} \cdot\left(S_{n}-1\right)$ annihilates $\sum_{n} a_{n}$.
- $L:=\operatorname{lclm}\left(L_{1}, L_{2}\right)$ annihilates $a_{n}+b_{n}$.
(Actually, L annihilates $c_{1} \cdot a_{n}+c_{2} \cdot b_{n}$ for any constants c_{1}, c_{2}.)

P-Recursive Sequences and Operators

Hence, P-recursiveness can be stated as follows:

$$
a_{n} \text { is P-recursive } \Longleftrightarrow \exists L \in K(n)\left\langle S_{n}\right\rangle \backslash\{0\}: L\left(a_{n}\right)=0 .
$$

Let $L_{1}, L_{2} \in K(n)\left\langle S_{n}\right\rangle$ annihilate a_{n} and b_{n}, respectively, i.e.,

$$
L_{1}\left(a_{n}\right)=0 \quad \text { and } \quad L_{2}\left(b_{n}\right)=0
$$

Then:

- $L_{1} \cdot\left(S_{n}-1\right)$ annihilates $\sum_{n} a_{n}$.
- $L:=\operatorname{lclm}\left(L_{1}, L_{2}\right)$ annihilates $a_{n}+b_{n}$.
(Actually, L annihilates $c_{1} \cdot a_{n}+c_{2} \cdot b_{n}$ for any constants c_{1}, c_{2}.) Proof: $L=M_{1} L_{1}=M_{2} L_{2}$ for certain $M_{1}, M_{2} \in K(n)\left\langle S_{n}\right\rangle$.

P-Recursive Sequences and Operators

Hence, P-recursiveness can be stated as follows:

$$
a_{n} \text { is P-recursive } \Longleftrightarrow \exists L \in K(n)\left\langle S_{n}\right\rangle \backslash\{0\}: L\left(a_{n}\right)=0 .
$$

Let $L_{1}, L_{2} \in K(n)\left\langle S_{n}\right\rangle$ annihilate a_{n} and b_{n}, respectively, i.e.,

$$
L_{1}\left(a_{n}\right)=0 \quad \text { and } \quad L_{2}\left(b_{n}\right)=0
$$

Then:

- $L_{1} \cdot\left(S_{n}-1\right)$ annihilates $\sum_{n} a_{n}$.
- $L:=\operatorname{lclm}\left(L_{1}, L_{2}\right)$ annihilates $a_{n}+b_{n}$.
(Actually, L annihilates $c_{1} \cdot a_{n}+c_{2} \cdot b_{n}$ for any constants c_{1}, c_{2}.) Proof: $L=M_{1} L_{1}=M_{2} L_{2}$ for certain $M_{1}, M_{2} \in K(n)\left\langle S_{n}\right\rangle$.
- If a_{n} satisfies $L\left(a_{n}\right)=h_{n}$ for some P-rec h_{n}, then a_{n} is P-rec.

P-Recursive Sequences and Operators

Hence, P-recursiveness can be stated as follows:

$$
a_{n} \text { is P-recursive } \Longleftrightarrow \exists L \in K(n)\left\langle S_{n}\right\rangle \backslash\{0\}: L\left(a_{n}\right)=0 .
$$

Let $L_{1}, L_{2} \in K(n)\left\langle S_{n}\right\rangle$ annihilate a_{n} and b_{n}, respectively, i.e.,

$$
L_{1}\left(a_{n}\right)=0 \quad \text { and } \quad L_{2}\left(b_{n}\right)=0
$$

Then:

- $L_{1} \cdot\left(S_{n}-1\right)$ annihilates $\sum_{n} a_{n}$.
- $L:=\operatorname{lclm}\left(L_{1}, L_{2}\right)$ annihilates $a_{n}+b_{n}$.
(Actually, L annihilates $c_{1} \cdot a_{n}+c_{2} \cdot b_{n}$ for any constants c_{1}, c_{2}.) Proof: $L=M_{1} L_{1}=M_{2} L_{2}$ for certain $M_{1}, M_{2} \in K(n)\left\langle S_{n}\right\rangle$.
- If a_{n} satisfies $L\left(a_{n}\right)=h_{n}$ for some P-rec h_{n}, then a_{n} is P-rec. Proof: Assume $M\left(h_{n}\right)=0$. Then $(M L)\left(a_{n}\right)=M\left(L\left(a_{n}\right)\right)=0$.

D-Finite and P-Recursive

Theorem: A sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is P-recursive iff its generating function $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ is D-finite.

D-Finite and P-Recursive

Theorem: A sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is P-recursive iff its generating function $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ is D-finite.
Proof: Calculate the derivatives of f :

$$
f^{\prime}(x)=\sum_{n=1}^{\infty} n a_{n} x^{n-1}
$$

D-Finite and P-Recursive

Theorem: A sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is P-recursive iff its generating function $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ is D-finite.
Proof: Calculate the derivatives of f :

$$
f^{(i)}(x)=\sum_{n=i}^{\infty}(n-i+1)_{i} a_{n} x^{n-i}
$$

D-Finite and P-Recursive

Theorem: A sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is P-recursive iff its generating function $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ is D-finite.
Proof: Calculate the derivatives of f :

$$
f^{(i)}(x)=\sum_{n=i}^{\infty}(n-i+1)_{i} a_{n} x^{n-i}=\sum_{n=0}^{\infty}(n+1)_{i} a_{n+i} x^{n}
$$

D-Finite and P-Recursive

Theorem: A sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is P-recursive iff its generating function $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ is D-finite.
Proof: Calculate the derivatives of f :

$$
f^{(i)}(x)=\sum_{n=i}^{\infty}(n-i+1)_{i} a_{n} x^{n-i}=\sum_{n=0}^{\infty}(n+1)_{i} a_{n+i} x^{n}
$$

Assume f satisfies the LODE $\sum_{i=0}^{r} \sum_{j=0}^{d} p_{i, j} x^{n=0} f^{(i)}(x)=0$.

D-Finite and P-Recursive

Theorem: A sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is P-recursive iff its generating function $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ is D-finite.
Proof: Calculate the derivatives of f :

$$
f^{(i)}(x)=\sum_{n=i}^{\infty}(n-i+1)_{i} a_{n} x^{n-i}=\sum_{n=0}^{\infty}(n+1)_{i} a_{n+i} x^{n}
$$

Assume f satisfies the LODE $\sum_{i=0}^{r} \sum_{j=0}^{d} p_{i, j} x^{j=0} f^{(i)}(x)=0$. Then:

$$
\sum_{i=0}^{r} \sum_{j=0}^{d} \sum_{n=0}^{\infty} p_{i, j}(n+1)_{i} a_{n+i} x^{n+j}=0
$$

D-Finite and P-Recursive

Theorem: A sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is P-recursive iff its generating function $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ is D-finite.
Proof: Calculate the derivatives of f :

$$
f^{(i)}(x)=\sum_{n=i}^{\infty}(n-i+1)_{i} a_{n} x^{n-i}=\sum_{n=0}^{\infty}(n+1)_{i} a_{n+i} x^{n}
$$

Assume f satisfies the LODE $\sum_{i=0}^{r} \sum_{j=0}^{d} p_{i, j} x^{j=0} f^{(i)}(x)=0$. Then:

$$
\begin{aligned}
& \sum_{i=0}^{r} \sum_{j=0}^{d} \sum_{n=0}^{\infty} p_{i, j}(n+1)_{i} a_{n+i} x^{n+j}=0 \\
& \sum_{i=0}^{r} \sum_{j=0}^{d} \sum_{n=j}^{\infty} p_{i, j}(n-j+1)_{i} a_{n-j+i} x^{n}=0
\end{aligned}
$$

D-Finite and P-Recursive

Theorem: A sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is P-recursive iff its generating function $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ is D-finite.
Proof: Calculate the derivatives of f :

$$
f^{(i)}(x)=\sum_{n=i}^{\infty}(n-i+1)_{i} a_{n} x^{n-i}=\sum_{n=0}^{\infty}(n+1)_{i} a_{n+i} x^{n}
$$

Assume f satisfies the LODE $\sum_{i=0}^{r} \sum_{j=0}^{d} p_{i, j} x^{j=0} f^{(i)}(x)=0$. Then:

$$
\begin{aligned}
& \sum_{i=0}^{r} \sum_{j=0}^{d} \sum_{n=0}^{\infty} p_{i, j}(n+1)_{i} a_{n+i} x^{n+j}=0 \\
& \sum_{i=0}^{r} \sum_{j=0}^{d} \sum_{n=j}^{\infty} p_{i, j}(n-j+1)_{i} a_{n-j+i} x^{n}=0 \\
& \sum_{i=0}^{r} \sum_{j=0}^{d} p_{i, j}(n-j+1)_{i} a_{n-j+i}=0 \text { for all } n \geqslant d
\end{aligned}
$$

q-Case

Consider q-difference equations involving the q-shift operation

$$
x \mapsto q x, \quad \text { resp. } q^{n} \mapsto q^{n+1},
$$

q-Case

Consider q-difference equations involving the q-shift operation

$$
x \mapsto q x, \quad \text { resp. } q^{n} \mapsto q^{n+1},
$$

or q-differential equations using the q-differentiation

$$
\left(\frac{\mathrm{d}}{\mathrm{~d} x}\right)_{q} f(x):=\frac{f(q x)-f(x)}{(q-1) x} .
$$

q-Case

Consider q-difference equations involving the q-shift operation

$$
x \mapsto q x, \quad \text { resp. } q^{n} \mapsto q^{n+1},
$$

or q-differential equations using the q-differentiation

$$
\left(\frac{\mathrm{d}}{\mathrm{~d} x}\right)_{q} f(x):=\frac{f(q x)-f(x)}{(q-1) x}
$$

Examples:

- $(a ; q)_{n}:=\prod_{i=0}^{n-1}\left(1-a q^{i}\right)$, the q-Pochhammer symbol

q-Case

Consider q-difference equations involving the q-shift operation

$$
x \mapsto q x, \quad \text { resp. } q^{n} \mapsto q^{n+1},
$$

or q-differential equations using the q-differentiation

$$
\left(\frac{\mathrm{d}}{\mathrm{~d} x}\right)_{q} f(x):=\frac{f(q x)-f(x)}{(q-1) x} .
$$

Examples:

- $(a ; q)_{n}:=\prod_{i=0}\left(1-a q^{i}\right)$, the q-Pochhammer symbol
- the q-binomial coefficient $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}:=\frac{(q ; q)_{n}}{(q ; q)_{k}(q ; q)_{n-k}}$

q-Case

Consider q-difference equations involving the q-shift operation

$$
x \mapsto q x, \quad \text { resp. } q^{n} \mapsto q^{n+1},
$$

or q-differential equations using the q-differentiation

$$
\left(\frac{\mathrm{d}}{\mathrm{~d} x}\right)_{q} f(x):=\frac{f(q x)-f(x)}{(q-1) x} .
$$

Examples:

- $(a ; q)_{n}:=\prod_{i=0}\left(1-a q^{i}\right)$, the q-Pochhammer symbol
- the q-binomial coefficient $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}:=\frac{(q ; q)_{n}}{(q ; q)_{k}(q ; q)_{n-k}}$
- q-trigonometric functions: $\sin _{q}(x), \operatorname{Sin}_{q}(x), \cos _{q}(x), \operatorname{Cos}_{q}(x)$

q-Case

Consider q-difference equations involving the q-shift operation

$$
x \mapsto q x, \quad \text { resp. } q^{n} \mapsto q^{n+1},
$$

or q-differential equations using the q-differentiation

$$
\left(\frac{\mathrm{d}}{\mathrm{~d} x}\right)_{q} f(x):=\frac{f(q x)-f(x)}{(q-1) x} .
$$

Examples:

$$
n-1
$$

- $(a ; q)_{n}:=\prod_{i=0}\left(1-a q^{i}\right)$, the q-Pochhammer symbol
- the q-binomial coefficient $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}:=\frac{(q ; q)_{n}}{(q ; q)_{k}(q ; q)_{n-k}}$
- q-trigonometric functions: $\sin _{q}(x), \operatorname{Sin}_{q}(x), \cos _{q}(x), \operatorname{Cos}_{q}(x)$
- q-special functions: q-Bessel functions, q-Legendre polynomials, q-Gegenbauer polynomials, etc.

Multivariate D-Finite Functions

Generalize the notions D-finite / P-recursive to several variables (from now on, everything will just be called "D-finite"):

Multivariate D-Finite Functions

Generalize the notions D-finite / P-recursive to several variables (from now on, everything will just be called "D-finite"):

- Continuous case: multivariate functions $f\left(x_{1}, \ldots, x_{s}\right)$ where the x_{i} are continuous variables; must satisfy a ("maximally overdetermined") system of LPDEs with polynomial coeffs.

Multivariate D-Finite Functions

Generalize the notions D-finite / P-recursive to several variables (from now on, everything will just be called "D-finite"):

- Continuous case: multivariate functions $f\left(x_{1}, \ldots, x_{s}\right)$ where the x_{i} are continuous variables; must satisfy a ("maximally overdetermined") system of LPDEs with polynomial coeffs.
- Discrete case: multidimensional sequences $\left(a_{n_{1}, \ldots, n_{r}}\right)_{n_{1}, \ldots, n_{r} \in \mathbb{N}}$ where the n_{i} are discrete variables; must satisfy "enough" multivariate linear recurrences with polynomial coefficients.

Multivariate D-Finite Functions

Generalize the notions D-finite / P-recursive to several variables (from now on, everything will just be called "D-finite"):

- Continuous case: multivariate functions $f\left(x_{1}, \ldots, x_{s}\right)$ where the x_{i} are continuous variables; must satisfy a ("maximally overdetermined") system of LPDEs with polynomial coeffs.
- Discrete case: multidimensional sequences $\left(a_{n_{1}, \ldots, n_{r}}\right)_{n_{1}, \ldots, n_{r} \in \mathbb{N}}$ where the n_{i} are discrete variables; must satisfy "enough" multivariate linear recurrences with polynomial coefficients.
- q-Case: multivariate expressions satisfying q-difference equations or q-differential equations.

Multivariate D-Finite Functions

Generalize the notions D-finite / P-recursive to several variables (from now on, everything will just be called "D-finite"):

- Continuous case: multivariate functions $f\left(x_{1}, \ldots, x_{s}\right)$ where the x_{i} are continuous variables; must satisfy a ("maximally overdetermined") system of LPDEs with polynomial coeffs.
- Discrete case: multidimensional sequences $\left(a_{n_{1}, \ldots, n_{r}}\right)_{n_{1}, \ldots, n_{r} \in \mathbb{N}}$ where the n_{i} are discrete variables; must satisfy "enough" multivariate linear recurrences with polynomial coefficients.
- q-Case: multivariate expressions satisfying q-difference equations or q-differential equations.
- Mixed cases: functions in several continuous and discrete variables $f_{n_{1}, \ldots, n_{r}}\left(x_{1}, \ldots, x_{s}\right)$.

Multivariate D-Finite Functions

Generalize the notions D-finite / P-recursive to several variables (from now on, everything will just be called "D-finite"):

- Continuous case: multivariate functions $f\left(x_{1}, \ldots, x_{s}\right)$ where the x_{i} are continuous variables; must satisfy a ("maximally overdetermined") system of LPDEs with polynomial coeffs.
- Discrete case: multidimensional sequences $\left(a_{n_{1}, \ldots, n_{r}}\right)_{n_{1}, \ldots, n_{r} \in \mathbb{N}}$ where the n_{i} are discrete variables; must satisfy "enough" multivariate linear recurrences with polynomial coefficients.
- q-Case: multivariate expressions satisfying q-difference equations or q-differential equations.
- Mixed cases: functions in several continuous and discrete variables $f_{n_{1}, \ldots, n_{r}}\left(x_{1}, \ldots, x_{s}\right)$.

Examples: Bessel functions, orthogonal polynomials such as the Legendre polynomials $P_{n}(x)$, etc.

Multivariate D-Finite Functions

Let $f_{n_{1}, \ldots, n_{r}}\left(x_{1}, \ldots, x_{s}\right)$ be a function in the continuous variables x_{1}, \ldots, x_{s} and in the discrete variables n_{1}, \ldots, n_{r}.

Multivariate D-Finite Functions

Let $f_{n_{1}, \ldots, n_{r}}\left(x_{1}, \ldots, x_{s}\right)$ be a function in the continuous variables x_{1}, \ldots, x_{s} and in the discrete variables n_{1}, \ldots, n_{r}.

Definition: f is called D-finite if there is a finite set of basis functions of the form

$$
\frac{\mathrm{d}^{i_{1}}}{\mathrm{~d} x_{1}^{i_{1}}} \ldots \frac{\mathrm{~d}^{i_{s}}}{\mathrm{~d} x_{s}^{i_{s}}} f_{n_{1}+j_{1}, \ldots, n_{r}+j_{r}}\left(x_{1}, \ldots, x_{s}\right)
$$

with $i_{1}, \ldots, i_{s}, j_{1}, \ldots, j_{r} \in \mathbb{N}$ such that any shifted partial derivative of f (of the above form) can be expressed as a $\mathbb{K}\left(x_{1}, \ldots, x_{s}, n_{1}, \ldots, n_{r}\right)$-linear combination of the basis functions.

Multivariate D-Finite Functions

Let $f_{n_{1}, \ldots, n_{r}}\left(x_{1}, \ldots, x_{s}\right)$ be a function in the continuous variables x_{1}, \ldots, x_{s} and in the discrete variables n_{1}, \ldots, n_{r}.

Definition: f is called D-finite if there is a finite set of basis functions of the form

$$
\frac{\mathrm{d}^{i_{1}}}{\mathrm{~d} x_{1}^{i_{1}}} \ldots \frac{\mathrm{~d}^{i_{s}}}{\mathrm{~d} x_{s}^{i_{s}}} f_{n_{1}+j_{1}, \ldots, n_{r}+j_{r}}\left(x_{1}, \ldots, x_{s}\right)
$$

with $i_{1}, \ldots, i_{s}, j_{1}, \ldots, j_{r} \in \mathbb{N}$ such that any shifted partial derivative of f (of the above form) can be expressed as a $\mathbb{K}\left(x_{1}, \ldots, x_{s}, n_{1}, \ldots, n_{r}\right)$-linear combination of the basis functions.

Again, finitely many initial conditions suffice to specify / fix f.

Operator Notation

Differential equations/recurrences are translated to skew polynomials.
Noncommutative multiplication:

$$
D_{x} \cdot x=x \cdot D_{x}+1, \quad S_{n} \cdot n=n \cdot S_{n}+S_{n}
$$

Operator Notation

Differential equations/recurrences are translated to skew polynomials.
Noncommutative multiplication:

$$
D_{x} \cdot x=x \cdot D_{x}+1, \quad S_{n} \cdot n=n \cdot S_{n}+S_{n}
$$

and more generally:

$$
D_{x} \cdot r(x)=r(x) \cdot D_{x}+r^{\prime}(x), \quad S_{n} \cdot r(n)=r(n+1) \cdot S_{n} .
$$

Operator Notation

Differential equations/recurrences are translated to skew polynomials.
Noncommutative multiplication:

$$
D_{x} \cdot x=x \cdot D_{x}+1, \quad S_{n} \cdot n=n \cdot S_{n}+S_{n},
$$

and more generally:

$$
D_{x} \cdot r(x)=r(x) \cdot D_{x}+r^{\prime}(x), \quad S_{n} \cdot r(n)=r(n+1) \cdot S_{n} .
$$

Notation: arbitrary operator ∂_{v} : any of the above

Operator Notation

Differential equations/recurrences are translated to skew polynomials.
Noncommutative multiplication:

$$
D_{x} \cdot x=x \cdot D_{x}+1, \quad S_{n} \cdot n=n \cdot S_{n}+S_{n}
$$

and more generally:

$$
D_{x} \cdot r(x)=r(x) \cdot D_{x}+r^{\prime}(x), \quad S_{n} \cdot r(n)=r(n+1) \cdot S_{n} .
$$

Notation: arbitrary operator ∂_{v} : any of the above
General Ore operator:

$$
\partial_{v} \cdot a=\sigma(a) \cdot \partial_{v}+\delta(a)
$$

where σ is an automorphism and δ is a σ-derivation, i.e.,

$$
\delta(a b)=\sigma(a) \delta(b)+\delta(a) b
$$

Operator Algebra

Definition: Such operators form an Ore algebra

$$
\mathbb{O}=\mathbb{K}(x, y, \ldots)\left\langle\partial_{x}, \partial_{y}, \ldots\right\rangle,
$$

i.e., multivariate polynomials in the ∂ 's with coefficients being rational functions in x, y, \ldots, where \mathbb{K} is a field $(\operatorname{char}(\mathbb{K})=0)$.

Operator Algebra

Definition: Such operators form an Ore algebra

$$
\mathbb{O}=\mathbb{K}(x, y, \ldots)\left\langle\partial_{x}, \partial_{y}, \ldots\right\rangle,
$$

i.e., multivariate polynomials in the ∂ 's with coefficients being rational functions in x, y, \ldots, where \mathbb{K} is a field $(\operatorname{char}(\mathbb{K})=0)$.

In fact, the above notation is a shortcut for

$$
\mathbb{K}(x, y, \ldots)\left[\partial_{x} ; \sigma_{x}, \delta_{x}\right]\left[\partial_{y} ; \sigma_{y}, \delta_{y}\right] \cdots
$$

Operator Algebra

Definition: Such operators form an Ore algebra

$$
\mathbb{O}=\mathbb{K}(x, y, \ldots)\left\langle\partial_{x}, \partial_{y}, \ldots\right\rangle,
$$

i.e., multivariate polynomials in the ∂ 's with coefficients being rational functions in x, y, \ldots, where \mathbb{K} is a field $(\operatorname{char}(\mathbb{K})=0)$.

In fact, the above notation is a shortcut for

$$
\mathbb{K}(x, y, \ldots)\left[\partial_{x} ; \sigma_{x}, \delta_{x}\right]\left[\partial_{y} ; \sigma_{y}, \delta_{y}\right] \cdots
$$

Example: The operators that we encountered with the Legendre polynomials live in the Ore algebra

$$
\mathbb{K}(x, n)\left\langle D_{x}, S_{n}\right\rangle=\mathbb{K}(x, n)\left[D_{x} ; 1, \frac{\mathrm{~d}}{\mathrm{~d} x}\right]\left[S_{n} ; \sigma_{n}, 0\right]
$$

Operator Algebra

Definition: Such operators form an Ore algebra

$$
\mathbb{O}=\mathbb{K}(x, y, \ldots)\left\langle\partial_{x}, \partial_{y}, \ldots\right\rangle,
$$

i.e., multivariate polynomials in the ∂ 's with coefficients being rational functions in x, y, \ldots, where \mathbb{K} is a field $(\operatorname{char}(\mathbb{K})=0)$.

In fact, the above notation is a shortcut for

$$
\mathbb{K}(x, y, \ldots)\left[\partial_{x} ; \sigma_{x}, \delta_{x}\right]\left[\partial_{y} ; \sigma_{y}, \delta_{y}\right] \cdots
$$

Example: The operators that we encountered with the Legendre polynomials live in the Ore algebra

$$
\mathbb{K}(x, n)\left\langle D_{x}, S_{n}\right\rangle=\mathbb{K}(x, n)\left[D_{x} ; 1, \frac{\mathrm{~d}}{\mathrm{~d} x}\right]\left[S_{n} ; \sigma_{n}, 0\right]
$$

Definition: We define the annihilator of a function f to be the set

$$
\operatorname{Ann}_{\mathbb{O}} f:=\{P \in \mathbb{O} \mid P \cdot f=0\}
$$

(it is a left ideal in the ring \mathbb{D}).

(Left) Gröbner Bases

Ann $_{\mathscr{O}} f$ is a left ideal in $\mathbb{O} \rightsquigarrow$ Use (left) Gröbner bases!

(Left) Gröbner Bases

$\mathrm{Ann}_{\mathbb{O}} f$ is a left ideal in $\mathbb{D} \rightsquigarrow$ Use (left) Gröbner bases!
Example: The Legendre polynomials $P_{n}(x)$ satisfy

$$
\begin{aligned}
& \left(x^{2}-1\right) P_{n}^{\prime \prime}(x)+2 x P_{n}^{\prime}(x)-n(n+1) P_{n}(x)=0, \\
& n P_{n}(x)=(2 n-1) x P_{n-1}(x)-(n-1) P_{n-2}(x)
\end{aligned}
$$

(Left) Gröbner Bases

Ann $_{\mathscr{O}} f$ is a left ideal in $\mathbb{O} \rightsquigarrow$ Use (left) Gröbner bases!
Example: The Legendre polynomials $P_{n}(x)$ satisfy

$$
\begin{aligned}
& \left(x^{2}-1\right) P_{n}^{\prime \prime}(x)+2 x P_{n}^{\prime}(x)-n(n+1) P_{n}(x)=0, \\
& n P_{n}(x)=(2 n-1) x P_{n-1}(x)-(n-1) P_{n-2}(x)
\end{aligned}
$$

The corresponding operators in $\mathbb{O}=\mathbb{K}(x, n)\left\langle D_{x}, S_{n}\right\rangle$,
$\left(x^{2}-1\right) D_{x}^{2}+2 x D_{x}-n(n+1), \quad(n+2) S_{n}^{2}-(2 n+3) x S_{n}+(n+1)$,
generate $\mathrm{Ann}_{\mathscr{O}}\left(P_{n}(x)\right)$

(Left) Gröbner Bases

$\mathrm{Ann}_{\mathbb{O}} f$ is a left ideal in $\mathbb{O} \rightsquigarrow$ Use (left) Gröbner bases!
Example: The Legendre polynomials $P_{n}(x)$ satisfy

$$
\begin{aligned}
& \left(x^{2}-1\right) P_{n}^{\prime \prime}(x)+2 x P_{n}^{\prime}(x)-n(n+1) P_{n}(x)=0, \\
& n P_{n}(x)=(2 n-1) x P_{n-1}(x)-(n-1) P_{n-2}(x)
\end{aligned}
$$

The corresponding operators in $\mathbb{O}=\mathbb{K}(x, n)\left\langle D_{x}, S_{n}\right\rangle$,
$\left(x^{2}-1\right) D_{x}^{2}+2 x D_{x}-n(n+1), \quad(n+2) S_{n}^{2}-(2 n+3) x S_{n}+(n+1)$,
generate $\mathrm{Ann}_{\mathscr{O}}\left(P_{n}(x)\right)$, but do not form a (left) Gröbner basis (note that in this setting the product criterion does not hold)!

(Left) Gröbner Bases

$\mathrm{Ann}_{\mathbb{O}} f$ is a left ideal in $\mathbb{O} \rightsquigarrow$ Use (left) Gröbner bases!
Example: The Legendre polynomials $P_{n}(x)$ satisfy

$$
\begin{aligned}
& \left(x^{2}-1\right) P_{n}^{\prime \prime}(x)+2 x P_{n}^{\prime}(x)-n(n+1) P_{n}(x)=0, \\
& n P_{n}(x)=(2 n-1) x P_{n-1}(x)-(n-1) P_{n-2}(x)
\end{aligned}
$$

The corresponding operators in $\mathbb{O}=\mathbb{K}(x, n)\left\langle D_{x}, S_{n}\right\rangle$,
$\left(x^{2}-1\right) D_{x}^{2}+2 x D_{x}-n(n+1), \quad(n+2) S_{n}^{2}-(2 n+3) x S_{n}+(n+1)$,
generate $\mathrm{Ann}_{\mathscr{O}}\left(P_{n}(x)\right)$, but do not form a (left) Gröbner basis (note that in this setting the product criterion does not hold)! Here is a Gröbner basis: \longrightarrow Software demo

(Left) Gröbner Bases

$\mathrm{Ann}_{\mathbb{O}} f$ is a left ideal in $\mathbb{O} \rightsquigarrow$ Use (left) Gröbner bases!
Example: The Legendre polynomials $P_{n}(x)$ satisfy

$$
\begin{aligned}
& \left(x^{2}-1\right) P_{n}^{\prime \prime}(x)+2 x P_{n}^{\prime}(x)-n(n+1) P_{n}(x)=0, \\
& n P_{n}(x)=(2 n-1) x P_{n-1}(x)-(n-1) P_{n-2}(x)
\end{aligned}
$$

The corresponding operators in $\mathbb{O}=\mathbb{K}(x, n)\left\langle D_{x}, S_{n}\right\rangle$,
$\left(x^{2}-1\right) D_{x}^{2}+2 x D_{x}-n(n+1), \quad(n+2) S_{n}^{2}-(2 n+3) x S_{n}+(n+1)$,
generate $\mathrm{Ann}_{\mathscr{O}}\left(P_{n}(x)\right)$, but do not form a (left) Gröbner basis (note that in this setting the product criterion does not hold)! Here is a Gröbner basis:
$(n+1) S_{n}+\left(1-x^{2}\right) D_{x}-(n+1) x, \quad\left(x^{2}-1\right) D_{x}^{2}+2 x D_{x}-n(n+1)$.

Multivariate D-Finite Functions

Let $\mathbb{O}=\mathbb{K}(x, y, \ldots)\left\langle\partial_{x}, \partial_{y}, \ldots\right\rangle$ be an Ore algebra.

Multivariate D-Finite Functions

Let $\mathbb{O}=\mathbb{K}(x, y, \ldots)\left\langle\partial_{x}, \partial_{y}, \ldots\right\rangle$ be an Ore algebra.
Definition: A function $f(x, y, \ldots)$ is \mathbf{D}-finite w.r.t. © if "all its shifts and derivatives"

$$
\mathbb{O} \cdot f=\{P \cdot f \mid P \in \mathbb{O}\}
$$

form a finite-dimensional $\mathbb{K}(x, y, \ldots)$-vector space

Multivariate D-Finite Functions

Let $\mathbb{O}=\mathbb{K}(x, y, \ldots)\left\langle\partial_{x}, \partial_{y}, \ldots\right\rangle$ be an Ore algebra.
Definition: A function $f(x, y, \ldots)$ is \mathbf{D}-finite w.r.t. © if "all its shifts and derivatives"

$$
\mathbb{O} \cdot f=\{P \cdot f \mid P \in \mathbb{O}\}
$$

form a finite-dimensional $\mathbb{K}(x, y, \ldots)$-vector space:

$$
\operatorname{dim}_{\mathbb{K}(x, y, \ldots)}\left(\mathbb{O} / \operatorname{Ann}_{\mathbb{O}}(f)\right)<\infty
$$

Multivariate D-Finite Functions

Let $\mathbb{O}=\mathbb{K}(x, y, \ldots)\left\langle\partial_{x}, \partial_{y}, \ldots\right\rangle$ be an Ore algebra.
Definition: A function $f(x, y, \ldots)$ is \mathbf{D}-finite w.r.t. © if "all its shifts and derivatives"

$$
\mathbb{O} \cdot f=\{P \cdot f \mid P \in \mathbb{O}\}
$$

form a finite-dimensional $\mathbb{K}(x, y, \ldots)$-vector space:

$$
\operatorname{dim}_{\mathbb{K}(x, y, \ldots)}\left(\mathbb{O} / \operatorname{Ann}_{\mathbb{O}}(f)\right)<\infty
$$

In other words, if $\mathrm{Ann}_{\mathscr{O}}(f)$ is a zero-dimensional (left) ideal.

Multivariate D-Finite Functions

Let $\mathbb{O}=\mathbb{K}(x, y, \ldots)\left\langle\partial_{x}, \partial_{y}, \ldots\right\rangle$ be an Ore algebra.
Definition: A function $f(x, y, \ldots)$ is \mathbf{D}-finite w.r.t. © if "all its shifts and derivatives"

$$
\mathbb{O} \cdot f=\{P \cdot f \mid P \in \mathbb{O}\}
$$

form a finite-dimensional $\mathbb{K}(x, y, \ldots)$-vector space:

$$
\operatorname{dim}_{\mathbb{K}(x, y, \ldots)}\left(\mathbb{O} / \operatorname{Ann}_{\mathbb{O}}(f)\right)<\infty
$$

In other words, if $\mathrm{Ann}_{\mathscr{O}}(f)$ is a zero-dimensional (left) ideal.

"monomials under the staircase" $(\operatorname{dim}=5)$ $=$ "holonomic rank"

Example: Ebisu's 2F1 Evaluations

For $\boldsymbol{\alpha}=(a, b, c)$ and a shift vector $\boldsymbol{\beta} \in \mathbb{Z}^{3}$ compute a relation

$$
{ }_{2} F_{1}(\boldsymbol{\alpha}+\boldsymbol{\beta} ; z)=R_{\boldsymbol{\beta}}(\boldsymbol{\alpha}, z) \cdot{ }_{2} F_{1}(\boldsymbol{\alpha} ; z)+Q_{\boldsymbol{\beta}}(\boldsymbol{\alpha}, z) \cdot{ }_{2} F_{1}^{\prime}(\boldsymbol{\alpha} ; z)
$$

with rational functions $R_{\boldsymbol{\beta}}, Q_{\boldsymbol{\beta}} \in \mathbb{K}(a, b, c, z)$.

Example: Ebisu's 2F1 Evaluations

For $\boldsymbol{\alpha}=(a, b, c)$ and a shift vector $\boldsymbol{\beta} \in \mathbb{Z}^{3}$ compute a relation

$$
{ }_{2} F_{1}(\boldsymbol{\alpha}+\boldsymbol{\beta} ; z)=R_{\boldsymbol{\beta}}(\boldsymbol{\alpha}, z) \cdot{ }_{2} F_{1}(\boldsymbol{\alpha} ; z)+Q_{\boldsymbol{\beta}}(\boldsymbol{\alpha}, z) \cdot{ }_{2} F_{1}^{\prime}(\boldsymbol{\alpha} ; z)
$$

with rational functions $R_{\boldsymbol{\beta}}, Q_{\boldsymbol{\beta}} \in \mathbb{K}(a, b, c, z)$.
Trick: Choose (a, b, c, z) such that $Q_{\boldsymbol{\beta}}(\boldsymbol{\alpha}+\boldsymbol{\beta} t, z)$ vanishes.

Example: Ebisu's 2F1 Evaluations

For $\boldsymbol{\alpha}=(a, b, c)$ and a shift vector $\boldsymbol{\beta} \in \mathbb{Z}^{3}$ compute a relation

$$
{ }_{2} F_{1}(\boldsymbol{\alpha}+\boldsymbol{\beta} ; z)=R_{\boldsymbol{\beta}}(\boldsymbol{\alpha}, z) \cdot{ }_{2} F_{1}(\boldsymbol{\alpha} ; z)+Q_{\boldsymbol{\beta}}(\boldsymbol{\alpha}, z) \cdot{ }_{2} F_{1}^{\prime}(\boldsymbol{\alpha} ; z)
$$

with rational functions $R_{\boldsymbol{\beta}}, Q_{\boldsymbol{\beta}} \in \mathbb{K}(a, b, c, z)$.
Trick: Choose (a, b, c, z) such that $Q_{\boldsymbol{\beta}}(\boldsymbol{\alpha}+\boldsymbol{\beta} t, z)$ vanishes.
Then the above relation reduces to a first-order recurrence for $f(t)={ }_{2} F_{1}(\boldsymbol{\alpha}+\boldsymbol{\beta} t ; z)$.

Example: Ebisu's 2F1 Evaluations

For $\boldsymbol{\alpha}=(a, b, c)$ and a shift vector $\boldsymbol{\beta} \in \mathbb{Z}^{3}$ compute a relation

$$
{ }_{2} F_{1}(\boldsymbol{\alpha}+\boldsymbol{\beta} ; z)=R_{\boldsymbol{\beta}}(\boldsymbol{\alpha}, z) \cdot{ }_{2} F_{1}(\boldsymbol{\alpha} ; z)+Q_{\boldsymbol{\beta}}(\boldsymbol{\alpha}, z) \cdot{ }_{2} F_{1}^{\prime}(\boldsymbol{\alpha} ; z)
$$

with rational functions $R_{\boldsymbol{\beta}}, Q_{\boldsymbol{\beta}} \in \mathbb{K}(a, b, c, z)$.
Trick: Choose (a, b, c, z) such that $Q_{\boldsymbol{\beta}}(\boldsymbol{\alpha}+\boldsymbol{\beta} t, z)$ vanishes.
Then the above relation reduces to a first-order recurrence for $f(t)={ }_{2} F_{1}(\boldsymbol{\alpha}+\boldsymbol{\beta} t ; z)$.

Example: using $\boldsymbol{\beta}=(2,2,1)$ discover (and prove!) the identity

$$
{ }_{2} F_{1}\left(2 t, 2 t+\frac{1}{3}, t+\frac{5}{6} ;-\frac{1}{8}\right)=\left(\frac{16}{27}\right)^{t} \frac{\Gamma\left(t+\frac{5}{6}\right) \Gamma\left(\frac{2}{3}\right)}{\Gamma\left(t+\frac{2}{3}\right) \Gamma\left(\frac{5}{6}\right)} .
$$

Example: Ebisu's 2F1 Evaluations

For $\boldsymbol{\alpha}=(a, b, c)$ and a shift vector $\boldsymbol{\beta} \in \mathbb{Z}^{3}$ compute a relation

$$
{ }_{2} F_{1}(\boldsymbol{\alpha}+\boldsymbol{\beta} ; z)=R_{\boldsymbol{\beta}}(\boldsymbol{\alpha}, z) \cdot{ }_{2} F_{1}(\boldsymbol{\alpha} ; z)+Q_{\boldsymbol{\beta}}(\boldsymbol{\alpha}, z) \cdot{ }_{2} F_{1}^{\prime}(\boldsymbol{\alpha} ; z)
$$

with rational functions $R_{\boldsymbol{\beta}}, Q_{\boldsymbol{\beta}} \in \mathbb{K}(a, b, c, z)$.
Trick: Choose (a, b, c, z) such that $Q_{\boldsymbol{\beta}}(\boldsymbol{\alpha}+\boldsymbol{\beta} t, z)$ vanishes.
Then the above relation reduces to a first-order recurrence for $f(t)={ }_{2} F_{1}(\boldsymbol{\alpha}+\boldsymbol{\beta} t ; z)$.

Example: using $\boldsymbol{\beta}=(2,2,1)$ discover (and prove!) the identity

$$
{ }_{2} F_{1}\left(2 t, 2 t+\frac{1}{3}, t+\frac{5}{6} ;-\frac{1}{8}\right)=\left(\frac{16}{27}\right)^{t} \frac{\Gamma\left(t+\frac{5}{6}\right) \Gamma\left(\frac{2}{3}\right)}{\Gamma\left(t+\frac{2}{3}\right) \Gamma\left(\frac{5}{6}\right)} .
$$

Ebisu compiled a list of hundreds of such special ${ }_{2} F_{1}$ evaluations.

Closure Properties

General D-finite functions are closed under many operations:
(i) addition,

$$
\text { e.g., } x^{n}+P_{n}(x)
$$

Closure Properties

General D-finite functions are closed under many operations:
(i) addition,
e.g., $x^{n}+P_{n}(x)$
(ii) multiplication,

$$
\text { e.g., } P_{n}(x) P_{n+1}(x)
$$

Closure Properties

General D-finite functions are closed under many operations:
(i) addition,
e.g., $x^{n}+P_{n}(x)$
(ii) multiplication,
(iii) certain substitutions,
e.g., $P_{n}(x) P_{n+1}(x)$
e.g., $P_{2 n+3}\left(\sqrt{x^{2}+1}\right)$

Closure Properties

General D-finite functions are closed under many operations:
(i) addition,
(ii) multiplication,
(iii) certain substitutions,
(iv) operator application,
e.g., $x^{n}+P_{n}(x)$
e.g., $P_{n}(x) P_{n+1}(x)$
e.g., $P_{2 n+3}\left(\sqrt{x^{2}+1}\right)$
e.g., $P_{n+2}^{\prime}(x)$

Closure Properties

General D-finite functions are closed under many operations:
(i) addition,
(ii) multiplication,
(iii) certain substitutions,
(iv) operator application,
(v) definite summation,
e.g., $x^{n}+P_{n}(x)$
e.g., $P_{n}(x) P_{n+1}(x)$
e.g., $P_{2 n+3}\left(\sqrt{x^{2}+1}\right)$
e.g., $P_{n+2}^{\prime}(x)$
e.g., $\sum_{n=0}^{\infty} P_{n}(x) t^{n}$

Closure Properties

General D-finite functions are closed under many operations:
(i) addition,
(ii) multiplication,
(iii) certain substitutions,
(iv) operator application,
(v) definite summation,
(vi) definite integration,
e.g., $x^{n}+P_{n}(x)$
e.g., $P_{n}(x) P_{n+1}(x)$
e.g., $P_{2 n+3}\left(\sqrt{x^{2}+1}\right)$
e.g., $P_{n+2}^{\prime}(x)$
e.g., $\sum_{n=0}^{\infty} P_{n}(x) t^{n}$
e.g., $\int_{0}^{1} P_{n}(x) \mathrm{d} x$

Closure Properties

General D-finite functions are closed under many operations:
(i) addition,
(ii) multiplication,
(iii) certain substitutions,
(iv) operator application,
(v) definite summation,
(vi) definite integration,
e.g., $x^{n}+P_{n}(x)$
e.g., $P_{n}(x) P_{n+1}(x)$
e.g., $P_{2 n+3}\left(\sqrt{x^{2}+1}\right)$
e.g., $P_{n+2}^{\prime}(x)$
e.g., $\sum_{n=0}^{\infty} P_{n}(x) t^{n}$
e.g., $\int_{0}^{1} P_{n}(x) \mathrm{d} x$

Assume the input functions have holonomic rank r_{1}, r_{2}, resp. Then the output has rank at most

Closure Properties

General D-finite functions are closed under many operations:
(i) addition,
(ii) multiplication,
(iii) certain substitutions,
(iv) operator application,
(v) definite summation,
(vi) definite integration,
e.g., $x^{n}+P_{n}(x)$
e.g., $P_{n}(x) P_{n+1}(x)$
e.g., $P_{2 n+3}\left(\sqrt{x^{2}+1}\right)$
e.g., $P_{n+2}^{\prime}(x)$
e.g., $\sum_{n=0}^{\infty} P_{n}(x) t^{n}$
e.g., $\int_{0}^{1} P_{n}(x) \mathrm{d} x$

Assume the input functions have holonomic rank r_{1}, r_{2}, resp.
Then the output has rank at most
(i) $r_{1}+r_{2}$

Closure Properties

General D-finite functions are closed under many operations:
(i) addition,
(ii) multiplication,
(iii) certain substitutions,
(iv) operator application,
(v) definite summation,
(vi) definite integration,
e.g., $x^{n}+P_{n}(x)$
e.g., $P_{n}(x) P_{n+1}(x)$
e.g., $P_{2 n+3}\left(\sqrt{x^{2}+1}\right)$
e.g., $P_{n+2}^{\prime}(x)$
e.g., $\sum_{n=0}^{\infty} P_{n}(x) t^{n}$
e.g., $\int_{0}^{1} P_{n}(x) \mathrm{d} x$

Assume the input functions have holonomic rank r_{1}, r_{2}, resp.
Then the output has rank at most
(i) $r_{1}+r_{2}$
(ii) $r_{1} \cdot r_{2}$

Closure Properties

General D-finite functions are closed under many operations:
(i) addition,
(ii) multiplication,
(iii) certain substitutions,
(iv) operator application,
(v) definite summation,
(vi) definite integration,
e.g., $x^{n}+P_{n}(x)$
e.g., $P_{n}(x) P_{n+1}(x)$
e.g., $P_{2 n+3}\left(\sqrt{x^{2}+1}\right)$
e.g., $P_{n+2}^{\prime}(x)$
e.g., $\sum_{n=0}^{\infty} P_{n}(x) t^{n}$
e.g., $\int_{0}^{1} P_{n}(x) \mathrm{d} x$

Assume the input functions have holonomic rank r_{1}, r_{2}, resp.
Then the output has rank at most
(i) $r_{1}+r_{2}$
(ii) $r_{1} \cdot r_{2}$
(iii) $r_{1} \cdot d$ (where d is the degree of the algebraic function)

Closure Properties

General D-finite functions are closed under many operations:
(i) addition,
(ii) multiplication,
(iii) certain substitutions,
(iv) operator application,
(v) definite summation,
(vi) definite integration,
e.g., $x^{n}+P_{n}(x)$
e.g., $P_{n}(x) P_{n+1}(x)$
e.g., $P_{2 n+3}\left(\sqrt{x^{2}+1}\right)$
e.g., $P_{n+2}^{\prime}(x)$
e.g., $\sum_{n=0}^{\infty} P_{n}(x) t^{n}$
e.g., $\int_{0}^{1} P_{n}(x) \mathrm{d} x$

Assume the input functions have holonomic rank r_{1}, r_{2}, resp.
Then the output has rank at most
(i) $r_{1}+r_{2}$
(ii) $r_{1} \cdot r_{2}$
(iii) $r_{1} \cdot d$ (where d is the degree of the algebraic function)
(iv) r_{1}

Example: Relativistic Coulomb Integrals

Consider the radial wave functions F and G of the form

$$
\binom{F(r)}{G(r)}=E(r)\left(\begin{array}{cc}
\alpha_{1} & \alpha_{2} \\
\beta_{1} & \beta_{2}
\end{array}\right)\binom{L_{n-1}^{(2 \nu)}(2 a \beta r)}{L_{n}^{(2 \nu)}(2 a \beta r)}
$$

where $\begin{aligned} E(r) & =a^{2} \beta^{3 / 2} \sqrt{\frac{n!}{\gamma \Gamma(n+2 \nu)}}(2 a \beta r)^{\nu-1} e^{-a \beta r} \\ \alpha_{1,2} & = \pm \sqrt{1+\varepsilon}((\kappa-\nu) \sqrt{1+\varepsilon} \pm \mu \sqrt{1-\varepsilon}), \\ \beta_{1,2} & =\sqrt{1-\varepsilon}((\kappa-\nu) \sqrt{1+\varepsilon} \pm \mu \sqrt{1-\varepsilon}) .\end{aligned}$
The symbols $a, n, \beta, \varepsilon, \kappa, \mu$, and ν denote physical constants.

Example: Relativistic Coulomb Integrals

Consider the radial wave functions F and G of the form

$$
\binom{F(r)}{G(r)}=E(r)\left(\begin{array}{cc}
\alpha_{1} & \alpha_{2} \\
\beta_{1} & \beta_{2}
\end{array}\right)\binom{L_{n-1}^{(2 \nu)}(2 a \beta r)}{L_{n}^{(2 \nu)}(2 a \beta r)}
$$

$$
\text { where } \begin{aligned}
E(r) & =a^{2} \beta^{3 / 2} \sqrt{\frac{n!}{\gamma \Gamma(n+2 \nu)}}(2 a \beta r)^{\nu-1} e^{-a \beta r} \\
\alpha_{1,2} & = \pm \sqrt{1+\varepsilon}((\kappa-\nu) \sqrt{1+\varepsilon} \pm \mu \sqrt{1-\varepsilon}) \\
\beta_{1,2} & =\sqrt{1-\varepsilon}((\kappa-\nu) \sqrt{1+\varepsilon} \pm \mu \sqrt{1-\varepsilon}) .
\end{aligned}
$$

The symbols $a, n, \beta, \varepsilon, \kappa, \mu$, and ν denote physical constants.
Relativistic Coulomb integrals of the radial wave functions:

$$
\int_{0}^{\infty} r^{p+2}\left(F(r)^{2} \pm G(r)^{2}\right) \mathrm{d} r, \quad \int_{0}^{\infty} r^{p+2}(F(r) G(r)) \mathrm{d} r
$$

Example: Relativistic Coulomb Integrals

Consider the radial wave functions F and G of the form

$$
\binom{F(r)}{G(r)}=E(r)\left(\begin{array}{ll}
\alpha_{1} & \alpha_{2} \\
\beta_{1} & \beta_{2}
\end{array}\right)\binom{L_{n-1}^{(2 \nu)}(2 a \beta r)}{L_{n}^{(2 \nu)}(2 a \beta r)}
$$

$$
\text { where } \begin{aligned}
E(r) & =a^{2} \beta^{3 / 2} \sqrt{\frac{n!}{\gamma \Gamma(n+2 \nu)}}(2 a \beta r)^{\nu-1} e^{-a \beta r} \\
\alpha_{1,2} & = \pm \sqrt{1+\varepsilon}((\kappa-\nu) \sqrt{1+\varepsilon} \pm \mu \sqrt{1-\varepsilon}) \\
\beta_{1,2} & =\sqrt{1-\varepsilon}((\kappa-\nu) \sqrt{1+\varepsilon} \pm \mu \sqrt{1-\varepsilon}) .
\end{aligned}
$$

The symbols $a, n, \beta, \varepsilon, \kappa, \mu$, and ν denote physical constants.
Relativistic Coulomb integrals of the radial wave functions:

$$
\int_{0}^{\infty} r^{p+2}\left(F(r)^{2} \pm G(r)^{2}\right) \mathrm{d} r, \quad \int_{0}^{\infty} r^{p+2}(F(r) G(r)) \mathrm{d} r .
$$

Task: Compute recurrences w.r.t. p for these integrals.

Find Certain Operators in Annihilator Ideals

Application: In simulations of the propagation of electromagnetic waves the following basis functions (2D case) are defined:
$\varphi_{i, j}(x, y):=(1-x)^{i} P_{j}^{(2 i+1,0)}(2 x-1) P_{i}\left(\frac{2 y}{1-x}-1\right)$
employing Legendre and Jacobi polynomials.

Find Certain Operators in Annihilator Ideals

Application: In simulations of the propagation of electromagnetic waves the following basis functions (2D case) are defined:
$\varphi_{i, j}(x, y):=(1-x)^{i} P_{j}^{(2 i+1,0)}(2 x-1) P_{i}\left(\frac{2 y}{1-x}-1\right)$
employing Legendre and Jacobi polynomials.

Task: Represent the partial derivatives of $\varphi_{i, j}(x, y)$ in the basis (i.e., as linear combinations of shifts of the $\varphi_{i, j}(x, y)$ itself).

Find Certain Operators in Annihilator Ideals

Application: In simulations of the propagation of electromagnetic waves the following basis functions (2D case) are defined:
$\varphi_{i, j}(x, y):=(1-x)^{i} P_{j}^{(2 i+1,0)}(2 x-1) P_{i}\left(\frac{2 y}{1-x}-1\right)$
employing Legendre and Jacobi polynomials.

Task: Represent the partial derivatives of $\varphi_{i, j}(x, y)$ in the basis (i.e., as linear combinations of shifts of the $\varphi_{i, j}(x, y)$ itself).

Ansatz: One needs a relation of the form

$$
\sum_{(k, l) \in A} a_{k, l}(i, j) \frac{\mathrm{d}}{\mathrm{~d} x} \varphi_{i+k, j+l}(x, y)=\sum_{(m, n) \in B} b_{m, n}(i, j) \varphi_{i+m, j+n}(x, y)
$$

that is free of x and y (and similarly for $\frac{\mathrm{d}}{\mathrm{d} y}$).

Holonomic Functions

Definition: Let $f\left(x_{1}, \ldots, x_{s}\right)$ depend only on continuous variables. Consider the Weyl algebra

$$
\mathbb{W}=\mathbb{K}\left[x_{1}, \ldots, x_{s}\right]\left\langle D_{x_{1}}, \ldots, D_{x_{s}}\right\rangle
$$

Then f is holonomic if the left ideal $\mathrm{Ann}_{\mathbb{W}}(f)$ has dimension s (which, by Bernstein's inequality, is the minimum possible).

Holonomic Functions

Definition: Let $f\left(x_{1}, \ldots, x_{s}\right)$ depend only on continuous variables. Consider the Weyl algebra

$$
\mathbb{W}=\mathbb{K}\left[x_{1}, \ldots, x_{s}\right]\left\langle D_{x_{1}}, \ldots, D_{x_{s}}\right\rangle
$$

Then f is holonomic if the left ideal $\mathrm{Ann}_{\mathbb{W}}(f)$ has dimension s (which, by Bernstein's inequality, is the minimum possible).

Differently stated: f is holonomic if for any $(s-1)$-subset

$$
E \subset\left\{x_{1}, \ldots, x_{s}, D_{x_{1}}, \ldots, D_{x_{s}}\right\}, \quad|E|=s-1
$$

there exists a nonzero element in $\mathrm{Ann}_{\mathbb{W}}(f)$ that is free of all generators in E.

Holonomic Functions

Definition: Let $f\left(x_{1}, \ldots, x_{s}\right)$ depend only on continuous variables. Consider the Weyl algebra

$$
\mathbb{W}=\mathbb{K}\left[x_{1}, \ldots, x_{s}\right]\left\langle D_{x_{1}}, \ldots, D_{x_{s}}\right\rangle .
$$

Then f is holonomic if the left ideal $\mathrm{Ann}_{\mathbb{W}}(f)$ has dimension s (which, by Bernstein's inequality, is the minimum possible).

Differently stated: f is holonomic if for any $(s-1)$-subset

$$
E \subset\left\{x_{1}, \ldots, x_{s}, D_{x_{1}}, \ldots, D_{x_{s}}\right\}, \quad|E|=s-1
$$

there exists a nonzero element in $\mathrm{Ann}_{\mathbb{W}}(f)$ that is free of all generators in E.

Sequences: $a_{n_{1}, \ldots, n_{s}}$ is holonomic if its generating function

$$
A\left(x_{1}, \ldots, x_{s}\right):=\sum_{n_{1}=0}^{\infty} \cdots \sum_{n_{s}=0}^{\infty} a_{n_{1}, \ldots, n_{s}} x_{1}^{n_{1}} \cdots x_{s}^{n_{s}}
$$

is holonomic in the above sense.

D-Finite and Holonomic Functions

Theorem: The function $f\left(x_{1}, \ldots, x_{s}\right)$ is holonomic if and only if it is D-finite.

D-Finite and Holonomic Functions

Theorem: The function $f\left(x_{1}, \ldots, x_{s}\right)$ is holonomic if and only if it is D-finite.
\longrightarrow This equivalence holds only in the continuous case!

D-Finite and Holonomic Functions

Theorem: The function $f\left(x_{1}, \ldots, x_{s}\right)$ is holonomic if and only if it is D-finite.
\longrightarrow This equivalence holds only in the continuous case!
Example: The sequence $\frac{1}{n^{2}+k^{2}}$ is D-finite but not holonomic.

D-Finite and Holonomic Functions

Theorem: The function $f\left(x_{1}, \ldots, x_{s}\right)$ is holonomic if and only if it is D-finite.
\longrightarrow This equivalence holds only in the continuous case!
Example: The sequence $\frac{1}{n^{2}+k^{2}}$ is D-finite but not holonomic.
Application: Combine the two notions:

- Use D-finiteness for computations.
- Use holonomy for justifications (existence, termination).

Principia Holonomica

1. Functions and sequences are represented by their annihilating left ideals (and initial values).

Principia Holonomica

1. Functions and sequences are represented by their annihilating left ideals (and initial values).
2. An annihilating ideal is given by its Gröbner basis (i.e., a finite set of generators that allows us to decide ideal membership and equality of ideals).

Principia Holonomica

1. Functions and sequences are represented by their annihilating left ideals (and initial values).
2. An annihilating ideal is given by its Gröbner basis (i.e., a finite set of generators that allows us to decide ideal membership and equality of ideals).
3. Integrals and sums are treated by the method of creative telescoping.

Principia Holonomica

1. Functions and sequences are represented by their annihilating left ideals (and initial values).
2. An annihilating ideal is given by its Gröbner basis (i.e., a finite set of generators that allows us to decide ideal membership and equality of ideals).
3. Integrals and sums are treated by the method of creative telescoping.
4. The output is always given as an annihilating ideal, not as a closed form.

The Holonomic Systems Approach

A holonomic systems approach to special functions identities *

Doron ZEILBERGER

Department of Mathematics, Temple University, Philadelphia, PA 19122, USA

Received 14 November 1989

Abstract: We observe that many special functions are solutions of so-called holonomic systems. Bernstein's deep theory of holonomic systems is then invoked to show that any identity involving sums and integrals of products of these special functions can be verified in a finite number of steps. This is partially substantiated by an algorithm that proves terminating hypergeometric series identities, and that is given both in English and in MAPLE.

- seminal paper by Doron Zeilberger in 1990

The Holonomic Systems Approach

A holonomic systems approach to special functions identities *

Doron ZEILBERGER
Department of Mathematics, Temple University, Philadelphia, PA 19122, USA
Received 14 November 1989

Abstract: We observe that many special functions are solutions of so-called holonomic systems. Bernstein's deep theory of holonomic systems is then invoked to show that any identity involving sums and integrals of products of these special functions can be verified in a finite number of steps. This is partially substantiated by an algorithm that proves terminating hypergeometric series identities, and that is given both in English and in MAPLE.

- seminal paper by Doron Zeilberger in 1990
- the proposed algorithm is based on elimination

The Holonomic Systems Approach

A holonomic systems approach to special functions identities *

Doron ZEILBERGER
Department of Mathematics, Temple University, Philadelphia, PA 19122, USA
Received 14 November 1989

Abstract: We observe that many special functions are solutions of so-called holonomic systems. Bernstein's deep theory of holonomic systems is then invoked to show that any identity involving sums and integrals of products of these special functions can be verified in a finite number of steps. This is partially substantiated by an algorithm that proves terminating hypergeometric series identities, and that is given both in English and in MAPLE.

- seminal paper by Doron Zeilberger in 1990
- the proposed algorithm is based on elimination
- therefore it is called the "slow algorithm"

Creative Telescoping for D-finite Sequences
 Let $f(n, k)$ be D-finite, given by $\operatorname{Ann}_{\mathbb{O}}(f), \mathbb{O}=\mathbb{K}(n, k)\left\langle S_{n}, S_{k}\right\rangle$.

Creative Telescoping for D-finite Sequences

Let $f(n, k)$ be D-finite, given by $\operatorname{Ann}_{\mathbb{O}}(f), \mathbb{D}=\mathbb{K}(n, k)\left\langle S_{n}, S_{k}\right\rangle$.
We aim at computing a creative telescoping relation of the form:

$$
\begin{aligned}
p_{r}(n) f(n+r, k)+\cdots+p_{0}(n) f(n, k) & =g(n, k+1)-g(n, k) \\
& =\left(S_{k}-1\right) \cdot g(n, k)
\end{aligned}
$$

Creative Telescoping for D-finite Sequences

Let $f(n, k)$ be D-finite, given by $\operatorname{Ann}_{\mathbb{O}}(f), \mathbb{D}=\mathbb{K}(n, k)\left\langle S_{n}, S_{k}\right\rangle$.
We aim at computing a creative telescoping relation of the form:

$$
\begin{aligned}
p_{r}(n) f(n+r, k)+\cdots+p_{0}(n) f(n, k) & =g(n, k+1)-g(n, k) \\
& =\left(S_{k}-1\right) \cdot g(n, k)
\end{aligned}
$$

Where should we look for $g(n, k)$?

Creative Telescoping for D-finite Sequences

Let $f(n, k)$ be D-finite, given by $\operatorname{Ann}_{\mathbb{O}}(f), \mathbb{O}=\mathbb{K}(n, k)\left\langle S_{n}, S_{k}\right\rangle$.
We aim at computing a creative telescoping relation of the form:

$$
\begin{aligned}
p_{r}(n) f(n+r, k)+\cdots+p_{0}(n) f(n, k) & =g(n, k+1)-g(n, k) \\
& =\left(S_{k}-1\right) \cdot g(n, k) .
\end{aligned}
$$

Where should we look for $g(n, k)$?
Note that there are "trivial" solutions like:

$$
g(n, k):=\sum_{i=0}^{k-1}\left(p_{r}(n) f(n+r, i)+\cdots+p_{0}(n) f(n, i)\right)
$$

Creative Telescoping for D-finite Sequences

Let $f(n, k)$ be D-finite, given by $\operatorname{Ann}_{\mathbb{O}}(f), \mathbb{D}=\mathbb{K}(n, k)\left\langle S_{n}, S_{k}\right\rangle$.
We aim at computing a creative telescoping relation of the form:

$$
\begin{aligned}
p_{r}(n) f(n+r, k)+\cdots+p_{0}(n) f(n, k) & =g(n, k+1)-g(n, k) \\
& =\left(S_{k}-1\right) \cdot g(n, k)
\end{aligned}
$$

Where should we look for $g(n, k)$?
Note that there are "trivial" solutions like:

$$
g(n, k):=\sum_{i=0}^{k-1}\left(p_{r}(n) f(n+r, i)+\cdots+p_{0}(n) f(n, i)\right)
$$

A reasonable choice for where to search for g is $\mathbb{O} \cdot f$.

Creative Telescoping for D-finite Sequences

Let $f(n, k)$ be D-finite, given by $\operatorname{Ann}_{\mathbb{O}}(f), \mathbb{O}=\mathbb{K}(n, k)\left\langle S_{n}, S_{k}\right\rangle$.
We aim at computing a creative telescoping relation of the form:

$$
\begin{aligned}
p_{r}(n) f(n+r, k)+\cdots+p_{0}(n) f(n, k) & =g(n, k+1)-g(n, k) \\
& =\left(S_{k}-1\right) \cdot g(n, k) .
\end{aligned}
$$

Where should we look for $g(n, k)$?
Note that there are "trivial" solutions like:

$$
g(n, k):=\sum_{i=0}^{k-1}\left(p_{r}(n) f(n+r, i)+\cdots+p_{0}(n) f(n, i)\right)
$$

A reasonable choice for where to search for g is $\mathbb{O} \cdot f$.
Task: find $P\left(n, S_{n}\right)=p_{r}(n) S_{n}^{r}+\cdots+p_{0}(n)$ and $Q \in \mathbb{O}$ such that

$$
\left(P-\left(S_{k}-1\right) Q\right) \cdot f=0
$$

Creative Telescoping for D-finite Sequences

Let $f(n, k)$ be D-finite, given by $\operatorname{Ann}_{\mathbb{O}}(f), \mathbb{O}=\mathbb{K}(n, k)\left\langle S_{n}, S_{k}\right\rangle$.
We aim at computing a creative telescoping relation of the form:

$$
\begin{aligned}
p_{r}(n) f(n+r, k)+\cdots+p_{0}(n) f(n, k) & =g(n, k+1)-g(n, k) \\
& =\left(S_{k}-1\right) \cdot g(n, k) .
\end{aligned}
$$

Where should we look for $g(n, k)$?
Note that there are "trivial" solutions like:

$$
g(n, k):=\sum_{i=0}^{k-1}\left(p_{r}(n) f(n+r, i)+\cdots+p_{0}(n) f(n, i)\right)
$$

A reasonable choice for where to search for g is $\mathbb{O} \cdot f$.
Task: find $P\left(n, S_{n}\right)=p_{r}(n) S_{n}^{r}+\cdots+p_{0}(n)$ and $Q \in \mathbb{O}$ such that

$$
\left(P-\left(S_{k}-1\right) Q\right) \cdot f=0 \quad \Longleftrightarrow \quad P-\left(S_{k}-1\right) Q \in \operatorname{Ann}_{\mathscr{O}}(f)
$$

Creative Telescoping for D-finite Functions

Let $f(x, y)$ be D-finite, given by $\operatorname{Ann}_{\mathscr{O}}(f), \mathbb{O}=\mathbb{K}(x, y)\left\langle D_{x}, D_{y}\right\rangle$.

Creative Telescoping for D-finite Functions

Let $f(x, y)$ be D-finite, given by $\operatorname{Ann}_{\mathscr{O}}(f), \mathbb{O}=\mathbb{K}(x, y)\left\langle D_{x}, D_{y}\right\rangle$.
We aim at computing a creative telescoping relation of the form:

$$
p_{r}(x) \frac{\mathrm{d}^{r}}{\mathrm{~d} x^{r}} f(x, y)+\cdots+p_{0}(x) f(x, y)=\frac{\mathrm{d}}{\mathrm{~d} y} g(x, y)
$$

Creative Telescoping for D-finite Functions

Let $f(x, y)$ be D-finite, given by $\operatorname{Ann}_{\mathbb{O}}(f), \mathbb{O}=\mathbb{K}(x, y)\left\langle D_{x}, D_{y}\right\rangle$.
We aim at computing a creative telescoping relation of the form:

$$
p_{r}(x) \frac{\mathrm{d}^{r}}{\mathrm{~d} x^{r}} f(x, y)+\cdots+p_{0}(x) f(x, y)=\frac{\mathrm{d}}{\mathrm{~d} y} g(x, y)
$$

A reasonable choice for where to search for g is $\mathbb{D} \cdot f$.

Creative Telescoping for D-finite Functions

Let $f(x, y)$ be D-finite, given by $\operatorname{Ann}_{\mathscr{O}}(f), \mathbb{O}=\mathbb{K}(x, y)\left\langle D_{x}, D_{y}\right\rangle$.
We aim at computing a creative telescoping relation of the form:

$$
p_{r}(x) \frac{\mathrm{d}^{r}}{\mathrm{~d} x^{r}} f(x, y)+\cdots+p_{0}(x) f(x, y)=\frac{\mathrm{d}}{\mathrm{~d} y} g(x, y)
$$

A reasonable choice for where to search for g is $\mathbb{D} \cdot f$.
Task: find $P\left(x, D_{x}\right)=p_{r}(x) D_{x}^{r}+\cdots+p_{0}(x)$ and $Q \in \mathbb{O}$ such that

$$
\left(P-D_{y} Q\right) \cdot f=0
$$

Creative Telescoping for D-finite Functions

Let $f(x, y)$ be D-finite, given by $\operatorname{Ann}_{\mathscr{O}}(f), \mathbb{O}=\mathbb{K}(x, y)\left\langle D_{x}, D_{y}\right\rangle$.
We aim at computing a creative telescoping relation of the form:

$$
p_{r}(x) \frac{\mathrm{d}^{r}}{\mathrm{~d} x^{r}} f(x, y)+\cdots+p_{0}(x) f(x, y)=\frac{\mathrm{d}}{\mathrm{~d} y} g(x, y)
$$

A reasonable choice for where to search for g is $\mathbb{D} \cdot f$.
Task: find $P\left(x, D_{x}\right)=p_{r}(x) D_{x}^{r}+\cdots+p_{0}(x)$ and $Q \in \mathbb{O}$ such that

$$
\left(P-D_{y} Q\right) \cdot f=0 \quad \Longleftrightarrow \quad P-D_{y} Q \in \operatorname{Ann}_{\mathscr{O}}(f)
$$

Example for Creative Telescoping

Consider the integral $F(x):=\int_{0}^{\infty} \underbrace{\frac{y^{\nu+1}}{y^{2}+1} J_{\nu}(x y)}_{=: f(x, y)} \mathrm{d} y$.

Example for Creative Telescoping

Consider the integral $F(x):=\int_{0}^{\infty} \underbrace{\frac{y^{\nu+1}}{y^{2}+1} J_{\nu}(x y)}_{=: f(x, y)} \mathrm{d} y$.
The function f is D-finite with holonomic rank 2 (Basis: $f, \frac{\mathrm{~d}}{\mathrm{~d} x} f$)

Example for Creative Telescoping

Consider the integral $F(x):=\int_{0}^{\infty} \underbrace{\frac{y^{\nu+1}}{y^{2}+1} J_{\nu}(x y)}_{=: f(x, y)} \mathrm{d} y$.
The function f is D -finite with holonomic rank 2 (Basis: $f, \frac{\mathrm{~d}}{\mathrm{~d} x} f$):
$\left\{\left(y^{3}+y\right) D_{y}-x\left(y^{2}+1\right) D_{x}-\nu y^{2}-\nu+y^{2}-1, x^{2} D_{x}^{2}+x D_{x}+x^{2} y^{2}-\nu^{2}\right\}$

Example for Creative Telescoping

Consider the integral $F(x):=\int_{0}^{\infty} \underbrace{\frac{y^{\nu+1}}{y^{2}+1} J_{\nu}(x y)}_{=: f(x, y)} \mathrm{d} y$.
The function f is D-finite with holonomic rank 2 (Basis: $f, \frac{\mathrm{~d}}{\mathrm{~d} x} f$):
$\left\{\left(y^{3}+y\right) D_{y}-x\left(y^{2}+1\right) D_{x}-\nu y^{2}-\nu+y^{2}-1, x^{2} D_{x}^{2}+x D_{x}+x^{2} y^{2}-\nu^{2}\right\}$
Creative telescoping delivers:

$$
\begin{aligned}
& P=x^{2} D_{x}^{2}+x D_{x}-x^{2}-\nu^{2} \\
& Q=\frac{x\left(y^{2}+1\right)}{y} D_{x}-\frac{\nu y^{2}+\nu}{y}
\end{aligned}
$$

Example for Creative Telescoping

Consider the integral $F(x):=\int_{0}^{\infty} \underbrace{\frac{y^{\nu+1}}{y^{2}+1} J_{\nu}(x y)}_{=: f(x, y)} \mathrm{d} y$.
The function f is D -finite with holonomic rank 2 (Basis: $f, \frac{\mathrm{~d}}{\mathrm{~d} x} f$):
$\left\{\left(y^{3}+y\right) D_{y}-x\left(y^{2}+1\right) D_{x}-\nu y^{2}-\nu+y^{2}-1, x^{2} D_{x}^{2}+x D_{x}+x^{2} y^{2}-\nu^{2}\right\}$
Creative telescoping delivers:

$$
\begin{aligned}
P & =x^{2} D_{x}^{2}+x D_{x}-x^{2}-\nu^{2} \\
Q & =\frac{x\left(y^{2}+1\right)}{y} D_{x}-\frac{\nu y^{2}+\nu}{y} \\
g(x, y)=Q \cdot f & =y^{\nu}\left(x y J_{\nu}^{\prime}(x y)-\nu J_{\nu}(x y)\right)
\end{aligned}
$$

Example for Creative Telescoping

Consider the integral $F(x):=\int_{0}^{\infty} \underbrace{\frac{y^{\nu+1}}{y^{2}+1} J_{\nu}(x y)}_{=: f(x, y)} \mathrm{d} y$.
The function f is D-finite with holonomic rank 2 (Basis: $f, \frac{\mathrm{~d}}{\mathrm{~d} x} f$):
$\left\{\left(y^{3}+y\right) D_{y}-x\left(y^{2}+1\right) D_{x}-\nu y^{2}-\nu+y^{2}-1, x^{2} D_{x}^{2}+x D_{x}+x^{2} y^{2}-\nu^{2}\right\}$
Creative telescoping delivers:

$$
\begin{aligned}
P & =x^{2} D_{x}^{2}+x D_{x}-x^{2}-\nu^{2} \\
Q & =\frac{x\left(y^{2}+1\right)}{y} D_{x}-\frac{\nu y^{2}+\nu}{y} \\
g(x, y)=Q \cdot f & =y^{\nu}\left(x y J_{\nu}^{\prime}(x y)-\nu J_{\nu}(x y)\right)
\end{aligned}
$$

Integrating $\left(P-D_{y} Q\right) \cdot f=0$, i.e., $P \cdot f=\frac{\mathrm{d}}{\mathrm{d} y} g(x, y)$, yields

$$
x^{2} F^{\prime \prime}(x)+x F^{\prime}(x)-\left(x^{2}+\nu^{2}\right) F(x)=\left.g(x, y)\right|_{y=0} ^{y=\infty}=0
$$

Example for Creative Telescoping

Consider the integral $F(x):=\int_{0}^{\infty} \underbrace{\frac{y^{\nu+1}}{y^{2}+1} J_{\nu}(x y)}_{=: f(x, y)} \mathrm{d} y$.
The function f is D-finite with holonomic rank 2 (Basis: $f, \frac{\mathrm{~d}}{\mathrm{~d} x} f$):
$\left\{\left(y^{3}+y\right) D_{y}-x\left(y^{2}+1\right) D_{x}-\nu y^{2}-\nu+y^{2}-1, x^{2} D_{x}^{2}+x D_{x}+x^{2} y^{2}-\nu^{2}\right\}$
Creative telescoping delivers:

$$
\begin{aligned}
P & =x^{2} D_{x}^{2}+x D_{x}-x^{2}-\nu^{2} \\
Q & =\frac{x\left(y^{2}+1\right)}{y} D_{x}-\frac{\nu y^{2}+\nu}{y} \\
g(x, y)=Q \cdot f & =y^{\nu}\left(x y J_{\nu}^{\prime}(x y)-\nu J_{\nu}(x y)\right)
\end{aligned}
$$

Integrating $\left(P-D_{y} Q\right) \cdot f=0$, i.e., $P \cdot f=\frac{\mathrm{d}}{\mathrm{d} y} g(x, y)$, yields

$$
x^{2} F^{\prime \prime}(x)+x F^{\prime}(x)-\left(x^{2}+\nu^{2}\right) F(x)=\left.g(x, y)\right|_{y=0} ^{y=\infty}=0
$$

Indeed, we have $F(x)=K_{\nu}(x)$.

Computing CT Relations

Idea: Make an ansatz for the telescoper P and the certificate Q.

Computing CT Relations

Idea: Make an ansatz for the telescoper P and the certificate Q.
Telescoper: Fix an integer r and set

$$
P=\sum_{i=0}^{r} p_{i}(x) D_{x}^{i} \quad \text { with unknown coefficients } p_{i} \in \mathbb{K}(x)
$$

Computing CT Relations

Idea: Make an ansatz for the telescoper P and the certificate Q.
Telescoper: Fix an integer r and set

$$
P=\sum_{i=0}^{r} p_{i}(x) D_{x}^{i} \quad \text { with unknown coefficients } p_{i} \in \mathbb{K}(x)
$$

Certificate:

Let \mathfrak{U} denote the set of monomials under the stairs of a Gröbner basis for $\operatorname{Ann}_{\mathscr{O}}(f)$, or any other vector space basis of $\mathbb{O} / \operatorname{Ann}_{\mathscr{O}}(f)$.

Computing CT Relations

Idea: Make an ansatz for the telescoper P and the certificate Q.
Telescoper: Fix an integer r and set

$$
P=\sum_{i=0}^{r} p_{i}(x) D_{x}^{i} \quad \text { with unknown coefficients } p_{i} \in \mathbb{K}(x)
$$

Certificate:

Let \mathfrak{U} denote the set of monomials under the stairs of a Gröbner basis for $\operatorname{Ann}_{\mathscr{O}}(f)$, or any other vector space basis of $\mathbb{O} / \operatorname{Ann}_{\mathscr{O}}(f)$.

Computing CT Relations

Idea: Make an ansatz for the telescoper P and the certificate Q.
Telescoper: Fix an integer r and set

$$
P=\sum_{i=0}^{r} p_{i}(x) D_{x}^{i} \quad \text { with unknown coefficients } p_{i} \in \mathbb{K}(x)
$$

Certificate:

Let \mathfrak{U} denote the set of monomials under the stairs of a Gröbner basis for $\operatorname{Ann}_{\mathscr{O}}(f)$, or any other vector space basis of $\mathbb{O} / \operatorname{Ann}_{\mathscr{O}}(f)$.

Since $Q \in \mathbb{O} / \operatorname{Ann}_{\mathscr{O}}(f)$, we can set

$$
Q=\sum_{u \in \mathfrak{U}} q_{u}(x, y) u \quad \text { with unknowns } q_{u} \in \mathbb{K}(x, y) .
$$

Chyzak's Algorithm

Putting things together:

$$
P-D_{y} Q=\sum_{i=0}^{r} p_{i}(x) D_{x}^{i}-D_{y} \sum_{u \in \mathfrak{U}} q_{u}(x, y) u
$$

Chyzak's Algorithm

Putting things together:

$$
\begin{aligned}
P-D_{y} Q & =\sum_{i=0}^{r} p_{i}(x) D_{x}^{i}-D_{y} \sum_{u \in \mathfrak{U}} q_{u}(x, y) u \\
& =\sum_{i=0}^{r} p_{i}(x) D_{x}^{i}-\sum_{u \in \mathfrak{U}}\left(q_{u}(x, y) D_{y}+\frac{\mathrm{d}}{\mathrm{~d} y} q_{u}(x, y)\right) u
\end{aligned}
$$

Chyzak's Algorithm

Putting things together:

$$
\begin{aligned}
P-D_{y} Q & =\sum_{i=0}^{r} p_{i}(x) D_{x}^{i}-D_{y} \sum_{u \in \mathfrak{U}} q_{u}(x, y) u \\
& =\sum_{i=0}^{r} p_{i}(x) D_{x}^{i}-\sum_{u \in \mathfrak{U}}\left(q_{u}(x, y) D_{y}+\frac{\mathrm{d}}{\mathrm{~d} y} q_{u}(x, y)\right) u
\end{aligned}
$$

Since we want $P-D_{y} Q \in \operatorname{Ann}_{\mathscr{O}}(f)$ we reduce the above expression with a Gröbner basis of $\operatorname{Ann}_{\mathscr{D}}(f)$ and equate the $\left(D_{x}, D_{y}\right)$-coefficients to zero.

Chyzak's Algorithm

Putting things together:

$$
\begin{aligned}
P-D_{y} Q & =\sum_{i=0}^{r} p_{i}(x) D_{x}^{i}-D_{y} \sum_{u \in \mathfrak{U}} q_{u}(x, y) u \\
& =\sum_{i=0}^{r} p_{i}(x) D_{x}^{i}-\sum_{u \in \mathfrak{U}}\left(q_{u}(x, y) D_{y}+\frac{\mathrm{d}}{\mathrm{~d} y} q_{u}(x, y)\right) u
\end{aligned}
$$

Since we want $P-D_{y} Q \in \operatorname{Ann}_{\mathscr{O}}(f)$ we reduce the above expression with a Gröbner basis of $\operatorname{Ann}_{\mathscr{D}}(f)$ and equate the $\left(D_{x}, D_{y}\right)$-coefficients to zero.

This yields a coupled first-order linear system of differential equations for the q_{u} 's with parameters $p_{0}, \ldots, p_{r} \in \mathbb{K}(x)$.

Chyzak's Algorithm

Putting things together:

$$
\begin{aligned}
P-D_{y} Q & =\sum_{i=0}^{r} p_{i}(x) D_{x}^{i}-D_{y} \sum_{u \in \mathfrak{U}} q_{u}(x, y) u \\
& =\sum_{i=0}^{r} p_{i}(x) D_{x}^{i}-\sum_{u \in \mathfrak{U}}\left(q_{u}(x, y) D_{y}+\frac{\mathrm{d}}{\mathrm{~d} y} q_{u}(x, y)\right) u
\end{aligned}
$$

Since we want $P-D_{y} Q \in \operatorname{Ann}_{\mathscr{O}}(f)$ we reduce the above expression with a Gröbner basis of $\operatorname{Ann}_{\mathscr{D}}(f)$ and equate the $\left(D_{x}, D_{y}\right)$-coefficients to zero.

This yields a coupled first-order linear system of differential equations for the q_{u} 's with parameters $p_{0}, \ldots, p_{r} \in \mathbb{K}(x)$.
\longrightarrow There are algorithms to find rational solutions of such systems.

Chyzak's Algorithm

Putting things together:

$$
\begin{aligned}
P-D_{y} Q & =\sum_{i=0}^{r} p_{i}(x) D_{x}^{i}-D_{y} \sum_{u \in \mathfrak{U}} q_{u}(x, y) u \\
& =\sum_{i=0}^{r} p_{i}(x) D_{x}^{i}-\sum_{u \in \mathfrak{U}}\left(q_{u}(x, y) D_{y}+\frac{\mathrm{d}}{\mathrm{~d} y} q_{u}(x, y)\right) u
\end{aligned}
$$

Since we want $P-D_{y} Q \in \operatorname{Ann}_{\mathscr{O}}(f)$ we reduce the above expression with a Gröbner basis of $\operatorname{Ann}_{\mathscr{D}}(f)$ and equate the $\left(D_{x}, D_{y}\right)$-coefficients to zero.

This yields a coupled first-order linear system of differential equations for the q_{u} 's with parameters $p_{0}, \ldots, p_{r} \in \mathbb{K}(x)$.
\longrightarrow There are algorithms to find rational solutions of such systems.
Finally: loop over the (a priori) unknown order r of the telescoper. \longrightarrow This is Chyzak's algorithm (analogously in other Ore algebras).

Creative Telescoping in Full Generality

In general, a creative telescoping operator has the form

$$
P\left(\boldsymbol{x}, \boldsymbol{\partial}_{\boldsymbol{x}}\right)+\Delta_{1} Q_{1}\left(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{\partial}_{\boldsymbol{x}}, \boldsymbol{\partial}_{\boldsymbol{y}}\right)+\cdots+\Delta_{m} Q_{m}\left(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{\partial}_{\boldsymbol{x}}, \boldsymbol{\partial}_{\boldsymbol{y}}\right)
$$

where $\Delta_{i}=S_{y_{i}}-1$ or $\Delta_{i}=D_{y_{i}}$ (depending on the problem).

Creative Telescoping in Full Generality

In general, a creative telescoping operator has the form

$$
P\left(\boldsymbol{x}, \boldsymbol{\partial}_{\boldsymbol{x}}\right)+\Delta_{1} Q_{1}\left(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{\partial}_{\boldsymbol{x}}, \boldsymbol{\partial}_{\boldsymbol{y}}\right)+\cdots+\Delta_{m} Q_{m}\left(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{\partial}_{\boldsymbol{x}}, \boldsymbol{\partial}_{\boldsymbol{y}}\right)
$$

where $\Delta_{i}=S_{y_{i}}-1$ or $\Delta_{i}=D_{y_{i}}$ (depending on the problem).

- Corresponds to an m-fold summation/integration problem.

Creative Telescoping in Full Generality

In general, a creative telescoping operator has the form

$$
P\left(\boldsymbol{x}, \boldsymbol{\partial}_{\boldsymbol{x}}\right)+\Delta_{1} Q_{1}\left(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{\partial}_{\boldsymbol{x}}, \boldsymbol{\partial}_{\boldsymbol{y}}\right)+\cdots+\Delta_{m} Q_{m}\left(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{\partial}_{\boldsymbol{x}}, \boldsymbol{\partial}_{\boldsymbol{y}}\right)
$$

where $\Delta_{i}=S_{y_{i}}-1$ or $\Delta_{i}=D_{y_{i}}$ (depending on the problem).

- Corresponds to an m-fold summation/integration problem.
- $\boldsymbol{y}=y_{1}, \ldots, y_{m}$ are the summation/integration variables.

Creative Telescoping in Full Generality

In general, a creative telescoping operator has the form

$$
P\left(\boldsymbol{x}, \boldsymbol{\partial}_{\boldsymbol{x}}\right)+\Delta_{1} Q_{1}\left(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{\partial}_{\boldsymbol{x}}, \boldsymbol{\partial}_{\boldsymbol{y}}\right)+\cdots+\Delta_{m} Q_{m}\left(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{\partial}_{\boldsymbol{x}}, \boldsymbol{\partial}_{\boldsymbol{y}}\right)
$$

where $\Delta_{i}=S_{y_{i}}-1$ or $\Delta_{i}=D_{y_{i}}$ (depending on the problem).

- Corresponds to an m-fold summation/integration problem.
- $\boldsymbol{y}=y_{1}, \ldots, y_{m}$ are the summation/integration variables.
- $\boldsymbol{x}=x_{1}, \ldots, x_{l}$ are the surviving parameters.

Creative Telescoping in Full Generality

In general, a creative telescoping operator has the form

$$
P\left(\boldsymbol{x}, \boldsymbol{\partial}_{\boldsymbol{x}}\right)+\Delta_{1} Q_{1}\left(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{\partial}_{\boldsymbol{x}}, \boldsymbol{\partial}_{\boldsymbol{y}}\right)+\cdots+\Delta_{m} Q_{m}\left(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{\partial}_{\boldsymbol{x}}, \boldsymbol{\partial}_{\boldsymbol{y}}\right)
$$

where $\Delta_{i}=S_{y_{i}}-1$ or $\Delta_{i}=D_{y_{i}}$ (depending on the problem).

- Corresponds to an m-fold summation/integration problem.
- $\boldsymbol{y}=y_{1}, \ldots, y_{m}$ are the summation/integration variables.
- $\boldsymbol{x}=x_{1}, \ldots, x_{l}$ are the surviving parameters.
- $P\left(\boldsymbol{x}, \boldsymbol{\partial}_{\boldsymbol{x}}\right)$ is called the telescoper.

Creative Telescoping in Full Generality

In general, a creative telescoping operator has the form

$$
P\left(\boldsymbol{x}, \boldsymbol{\partial}_{\boldsymbol{x}}\right)+\Delta_{1} Q_{1}\left(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{\partial}_{\boldsymbol{x}}, \boldsymbol{\partial}_{\boldsymbol{y}}\right)+\cdots+\Delta_{m} Q_{m}\left(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{\partial}_{\boldsymbol{x}}, \boldsymbol{\partial}_{\boldsymbol{y}}\right)
$$

where $\Delta_{i}=S_{y_{i}}-1$ or $\Delta_{i}=D_{y_{i}}$ (depending on the problem).

- Corresponds to an m-fold summation/integration problem.
- $\boldsymbol{y}=y_{1}, \ldots, y_{m}$ are the summation/integration variables.
- $\boldsymbol{x}=x_{1}, \ldots, x_{l}$ are the surviving parameters.
- $P\left(\boldsymbol{x}, \boldsymbol{\partial}_{\boldsymbol{x}}\right)$ is called the telescoper.
- The $Q_{i}\left(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{\partial}_{\boldsymbol{x}}, \boldsymbol{\partial}_{\boldsymbol{y}}\right)$ are called the certificates.

Creative Telescoping in Full Generality

In general, a creative telescoping operator has the form

$$
P\left(\boldsymbol{x}, \boldsymbol{\partial}_{\boldsymbol{x}}\right)+\Delta_{1} Q_{1}\left(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{\partial}_{\boldsymbol{x}}, \boldsymbol{\partial}_{\boldsymbol{y}}\right)+\cdots+\Delta_{m} Q_{m}\left(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{\partial}_{\boldsymbol{x}}, \boldsymbol{\partial}_{\boldsymbol{y}}\right)
$$

where $\Delta_{i}=S_{y_{i}}-1$ or $\Delta_{i}=D_{y_{i}}$ (depending on the problem).

- Corresponds to an m-fold summation/integration problem.
- $\boldsymbol{y}=y_{1}, \ldots, y_{m}$ are the summation/integration variables.
- $\boldsymbol{x}=x_{1}, \ldots, x_{l}$ are the surviving parameters.
- $P\left(\boldsymbol{x}, \boldsymbol{\partial}_{\boldsymbol{x}}\right)$ is called the telescoper.
- The $Q_{i}\left(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{\partial}_{\boldsymbol{x}}, \boldsymbol{\partial}_{\boldsymbol{y}}\right)$ are called the certificates.
- The certificates certify the correctness of the telescoper.

Ansatz with Specific Denominators

For finding CT operators, we proposed an ansatz of the form

$$
\sum_{\boldsymbol{\alpha}} p_{\boldsymbol{\alpha}}(\boldsymbol{x}) \boldsymbol{\partial}_{\boldsymbol{x}}^{\boldsymbol{\alpha}}+\sum_{i=1}^{m} \Delta_{i} \sum_{u \in \mathfrak{U}} \frac{\sum_{\boldsymbol{\beta}} q_{i, j, \boldsymbol{\beta}}(\boldsymbol{x}) \boldsymbol{y}^{\boldsymbol{\beta}}}{d_{i, j}(\boldsymbol{x}, \boldsymbol{y})} u
$$

with unknowns $p_{\boldsymbol{\alpha}}$ and $q_{i, j, \boldsymbol{\beta}}$, and with specific denominators $d_{i, j}$.

Ansatz with Specific Denominators

For finding CT operators, we proposed an ansatz of the form

$$
\sum_{\boldsymbol{\alpha}} p_{\boldsymbol{\alpha}}(\boldsymbol{x}) \boldsymbol{\partial}_{\boldsymbol{x}}^{\boldsymbol{\alpha}}+\sum_{i=1}^{m} \Delta_{i} \sum_{u \in \mathfrak{U}} \frac{\sum_{\boldsymbol{\beta}} q_{i, j, \boldsymbol{\beta}}(\boldsymbol{x}) \boldsymbol{y}^{\boldsymbol{\beta}}}{d_{i, j}(\boldsymbol{x}, \boldsymbol{y})} u
$$

with unknowns $p_{\boldsymbol{\alpha}}$ and $q_{i, j, \boldsymbol{\beta}}$, and with specific denominators $d_{i, j}$.

- input: a left Gröbner basis G of $\operatorname{Ann}_{\mathbb{O}}(f)$

Ansatz with Specific Denominators

For finding CT operators, we proposed an ansatz of the form

$$
\sum_{\boldsymbol{\alpha}} p_{\boldsymbol{\alpha}}(\boldsymbol{x}) \boldsymbol{\partial}_{\boldsymbol{x}}^{\boldsymbol{\alpha}}+\sum_{i=1}^{m} \Delta_{i} \sum_{u \in \mathfrak{U}} \frac{\sum_{\boldsymbol{\beta}} q_{i, j, \boldsymbol{\beta}}(\boldsymbol{x}) \boldsymbol{y}^{\boldsymbol{\beta}}}{d_{i, j}(\boldsymbol{x}, \boldsymbol{y})} u
$$

with unknowns $p_{\boldsymbol{\alpha}}$ and $q_{i, j, \boldsymbol{\beta}}$, and with specific denominators $d_{i, j}$.

- input: a left Gröbner basis G of $\operatorname{Ann}_{\mathbb{O}}(f)$
- denote by \mathfrak{U} the (finitely many) monomials under its stairs

Ansatz with Specific Denominators

For finding CT operators, we proposed an ansatz of the form

$$
\sum_{\boldsymbol{\alpha}} p_{\boldsymbol{\alpha}}(\boldsymbol{x}) \boldsymbol{\partial}_{\boldsymbol{x}}^{\boldsymbol{\alpha}}+\sum_{i=1}^{m} \Delta_{i} \sum_{u \in \mathfrak{U}} \frac{\sum_{\boldsymbol{\beta}} q_{i, j, \boldsymbol{\beta}}(\boldsymbol{x}) \boldsymbol{y}^{\boldsymbol{\beta}}}{d_{i, j}(\boldsymbol{x}, \boldsymbol{y})} u
$$

with unknowns $p_{\boldsymbol{\alpha}}$ and $q_{i, j, \boldsymbol{\beta}}$, and with specific denominators $d_{i, j}$.

- input: a left Gröbner basis G of $\operatorname{Ann}_{\mathbb{O}}(f)$
- denote by \mathfrak{U} the (finitely many) monomials under its stairs
- reduce the ansatz with G and equate coefficients to zero

Ansatz with Specific Denominators

For finding CT operators, we proposed an ansatz of the form

$$
\sum_{\boldsymbol{\alpha}} p_{\boldsymbol{\alpha}}(\boldsymbol{x}) \boldsymbol{\partial}_{\boldsymbol{x}}^{\boldsymbol{\alpha}}+\sum_{i=1}^{m} \Delta_{i} \sum_{u \in \mathfrak{U}} \frac{\sum_{\boldsymbol{\beta}} q_{i, j, \boldsymbol{\beta}}(\boldsymbol{x}) \boldsymbol{y}^{\boldsymbol{\beta}}}{d_{i, j}(\boldsymbol{x}, \boldsymbol{y})} u
$$

with unknowns $p_{\boldsymbol{\alpha}}$ and $q_{i, j, \boldsymbol{\beta}}$, and with specific denominators $d_{i, j}$.

- input: a left Gröbner basis G of $\operatorname{Ann}_{\mathbb{O}}(f)$
- denote by \mathfrak{U} the (finitely many) monomials under its stairs
- reduce the ansatz with G and equate coefficients to zero
- new: coefficient comparison w.r.t. \boldsymbol{y}

Ansatz with Specific Denominators

For finding CT operators, we proposed an ansatz of the form

$$
\sum_{\boldsymbol{\alpha}} p_{\boldsymbol{\alpha}}(\boldsymbol{x}) \boldsymbol{\partial}_{\boldsymbol{x}}^{\boldsymbol{\alpha}}+\sum_{i=1}^{m} \Delta_{i} \sum_{u \in \mathfrak{U}} \frac{\sum_{\boldsymbol{\beta}} q_{i, j, \boldsymbol{\beta}}(\boldsymbol{x}) \boldsymbol{y}^{\boldsymbol{\beta}}}{d_{i, j}(\boldsymbol{x}, \boldsymbol{y})} u
$$

with unknowns $p_{\boldsymbol{\alpha}}$ and $q_{i, j, \boldsymbol{\beta}}$, and with specific denominators $d_{i, j}$.

- input: a left Gröbner basis G of $\operatorname{Ann}_{\mathbb{O}}(f)$
- denote by \mathfrak{U} the (finitely many) monomials under its stairs
- reduce the ansatz with G and equate coefficients to zero
- new: coefficient comparison w.r.t. \boldsymbol{y}
- this leads to a linear system of equations over $\mathbb{K}(\boldsymbol{x})$

Ansatz with Specific Denominators

For finding CT operators, we proposed an ansatz of the form

$$
\sum_{\boldsymbol{\alpha}} p_{\boldsymbol{\alpha}}(\boldsymbol{x}) \boldsymbol{\partial}_{\boldsymbol{x}}^{\boldsymbol{\alpha}}+\sum_{i=1}^{m} \Delta_{i} \sum_{u \in \mathfrak{U}} \frac{\sum_{\boldsymbol{\beta}} q_{i, j, \boldsymbol{\beta}}(\boldsymbol{x}) \boldsymbol{y}^{\boldsymbol{\beta}}}{d_{i, j}(\boldsymbol{x}, \boldsymbol{y})} u
$$

with unknowns $p_{\boldsymbol{\alpha}}$ and $q_{i, j, \boldsymbol{\beta}}$, and with specific denominators $d_{i, j}$.

- input: a left Gröbner basis G of $\operatorname{Ann}_{\mathbb{O}}(f)$
- denote by \mathfrak{U} the (finitely many) monomials under its stairs
- reduce the ansatz with G and equate coefficients to zero
- new: coefficient comparison w.r.t. \boldsymbol{y}
- this leads to a linear system of equations over $\mathbb{K}(\boldsymbol{x})$
- the denominators $d_{i, j}$ can be roughly predicted from the leading coefficients of the Gröbner basis G

Ansatz with Specific Denominators

For finding CT operators, we proposed an ansatz of the form

$$
\sum_{\boldsymbol{\alpha}} p_{\boldsymbol{\alpha}}(\boldsymbol{x}) \boldsymbol{\partial}_{\boldsymbol{x}}^{\boldsymbol{\alpha}}+\sum_{i=1}^{m} \Delta_{i} \sum_{u \in \mathfrak{U}} \frac{\sum_{\boldsymbol{\beta}} q_{i, j, \boldsymbol{\beta}}(\boldsymbol{x}) \boldsymbol{y}^{\boldsymbol{\beta}}}{d_{i, j}(\boldsymbol{x}, \boldsymbol{y})} u
$$

with unknowns $p_{\boldsymbol{\alpha}}$ and $q_{i, j, \boldsymbol{\beta}}$, and with specific denominators $d_{i, j}$.

- input: a left Gröbner basis G of $\operatorname{Ann}_{\mathbb{O}}(f)$
- denote by \mathfrak{U} the (finitely many) monomials under its stairs
- reduce the ansatz with G and equate coefficients to zero
- new: coefficient comparison w.r.t. \boldsymbol{y}
- this leads to a linear system of equations over $\mathbb{K}(\boldsymbol{x})$
- the denominators $d_{i, j}$ can be roughly predicted from the leading coefficients of the Gröbner basis G
- implemented in HolonomicFunctions (Mathematica)

Application: Special Function Identities

Journal of Computational and Applied Mathematics 32 (1990) 321-368 North-Holland

A holonomic systems approach to special functions identities *

Doron ZEILBERGER

Department of Mathematics, Temple University, Philadelphia, PA 19122, USA
Received 14 November 1989
Abstract: We observe that many special functions are solutions of so-called holonomic systems. Bernstein's deep theory of holonomic systems is then invoked to show that any identity involving sums and integrals of products of these special functions can be verified in a finite number of steps. This is partially substantiated by an algorithm that proves

Table of Integrals by Gradshteyn and Ryzhik

Table of Integrals by Gradshteyn and Ryzhik

Table of Integrals by Gradshteyn and Ryzhik

Table of Integrals by Gradshteyn and Ryzhik

Table of Integrals by Gradshteyn and Ryzhik

1.

$$
\begin{aligned}
& \text { 1. } \begin{array}{r}
\int_{0}^{1}(1-x)^{\mu-1} x^{\nu-1} C_{2 n}^{\lambda}\left(\gamma x^{1 / 2}\right) d x=(-1)^{n} \frac{\Gamma(\lambda+n) \Gamma(\mu) \Gamma(\nu)}{n!\Gamma(\lambda) \Gamma(\mu+\nu)}{ }_{3} F_{2}\left(-n, n+\lambda, \nu ; \frac{1}{2}, \mu+\nu ; \gamma^{2}\right) \\
{[\operatorname{Re} \mu>0, \quad \operatorname{Re} \nu>0] \quad \text { ET II 191(41)a }} \\
2 . \quad \int_{0}^{1}(1-x)^{\mu-1} x^{\nu-1} C_{2 n+1}^{\lambda}\left(\gamma x^{1 / 2}\right) d x=\frac{(-1)^{n} 2 \gamma \Gamma(\mu) \Gamma(\lambda+n+1) \Gamma\left(\nu+\frac{1}{2}\right)}{n!\Gamma(\lambda) \Gamma\left(\mu+\nu+\frac{1}{2}\right)} \\
\\
\times{ }_{3} F_{2}\left(-n, n+\lambda+1, \nu+\frac{1}{2} ; \frac{3}{2}, \mu+\nu+\frac{1}{2} ; \gamma^{2}\right) \\
{\left[\operatorname{Re} \mu>0, \quad \operatorname{Re} \nu>-\frac{1}{2}\right] \quad \text { ET II 191(42) }}
\end{array}
\end{aligned}
$$

7.32 Combinations of Gegenbauer polynomials $C_{n}^{\nu}(x)$ and elementary functions

 7.321$$
\begin{array}{r}
\int_{-1}^{1}\left(1-x^{2}\right)^{\nu-\frac{1}{2}} e^{i a x} C_{n}^{\nu}(x) d x=\frac{\pi 2^{1-\nu} i^{n} \Gamma(2 \nu+n)}{n!\Gamma(\nu)} a^{-\nu} J_{\nu+n}(a) \\
{\left[\operatorname{Re} \nu>-\frac{1}{2}\right]}
\end{array}
$$

ET II 281(7), MO 99a
7.322

$$
\int_{0}^{2 a}[x(2 a-x)]^{\nu-\frac{1}{2}} C_{n}^{\nu}\left(\frac{x}{a}-1\right) e^{-b x} d x=(-1)^{n} \frac{\pi \Gamma(2 \nu+n)}{n!\Gamma(\nu)}\left(\frac{a}{2 b}\right)^{\nu} e^{-a b} I_{\nu+n}(a b)
$$

$$
\left[\operatorname{Re} \nu>-\frac{1}{2}\right]
$$

ET I 171(9)
7.323
1.
$\int_{0}^{\pi} C_{n}^{\nu}(\cos \varphi)(\sin \varphi)^{2 \nu} d \varphi=0$

$$
[n=1,2,3, \ldots]
$$

Table of Integrals by Gradshteyn and Ryzhik

$$
\int_{-1}^{1}\left(1-x^{2}\right)^{\nu-\frac{1}{2}} e^{i a x} C_{n}^{\nu}(x) d x=\frac{\pi 2^{1-\nu} i^{n} \Gamma(2 \nu+n)}{n!\Gamma(\nu)} a^{-\nu} J_{\nu+n}(a)
$$

Table of Integrals by Gradshteyn and Ryzhik

Gegenbauer
polynomials $C_{n}^{(\alpha)}(x)$

$$
\int_{-1}^{1}\left(1-x^{2}\right)^{\nu-\frac{1}{2}} e^{i a x} C_{n}^{\nu}(x) d x=\frac{\pi 2^{1-\nu} i^{n} \Gamma(2 \nu+n)}{n!\Gamma(\nu)} a^{-\nu} J_{\nu+n}(a)
$$

Table of Integrals by Gradshteyn and Ryzhik

Gegenbauer
polynomials $C_{n}^{(\alpha)}(x)$

Gamma
function $\Gamma(x)$

Table of Integrals by Gradshteyn and Ryzhik

Gegenbauer polynomials $C_{n}^{(\alpha)}(x)$

Gamma
function $\Gamma(x)$

Bessel function $J_{\nu}(x)$

Table of Integrals by Gradshteyn and Ryzhik

Gegenbauer
polynomials $C_{n}^{(\alpha)}(x)$
Gamma
function $\Gamma(x)$
Bessel function $J_{\nu}(x)$

Let's prove this identity with creative telescoping. . .

```
    Von Doron Zeilberger (3)
    An Mich <christoph.koutschan@ricam.oeaw.ac.at> (3)
Kopie (CC) Alberto Maspero <amaspero@sissa.it> @, Mark van Hoeij <hoeij@m,
    Betreff Challenge to your Holonomic package
```

Dear Christoph,
Hope all is well.
I recently wrote a paper
front:
https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/bcmv.html pdf:
http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimPDF/bcmvV2.pdf
where I claimed that your amazing package can routinely prove
that the unique solution of the sequence defined in procedure $\operatorname{DxH}(\mathrm{p}, \mathrm{x})$ is the same as the unique sequence defined in $\operatorname{DxR}(\mathrm{p}, \mathrm{x})$ and similarly for $\mathrm{CxH}(\mathrm{p}, \mathrm{x})$ and $\mathrm{CxR}(\mathrm{p}, \mathrm{x})$
https://sites.math.rutgers.edu/~zeilberg/tokhniot/BCMV.txt
(i) Was I right?
(ii) If it is not too much trouble, can you actually do it.

In version 1 it was not so important, since I did not claim a fully rigorous proof to conj. (4) in the paper, but now that Mark van Hoeij was able to solve the recurrence that would imply a rigorous proof, just to appease the god of rigorous mathematics, can you do it?

Best wishes

Doron

A Problem from Doron Zeilberger

Let $D_{p}(x)$ be defined as follows:

$$
D_{1}(x)=\frac{12(1-x)}{x^{3}-x}\left(\frac{1}{6}\left(x-x^{3}\right)-\frac{28 x^{2}}{9}+\frac{1}{5}\left(x^{2}-1\right)-\frac{13 x}{9}+\frac{101}{15}\right)
$$

A Problem from Doron Zeilberger

Let $D_{p}(x)$ be defined as follows:

$$
\begin{aligned}
& D_{1}(x)=\frac{12(1-x)}{x^{3}-x}\left(\frac{1}{6}\left(x-x^{3}\right)-\frac{28 x^{2}}{9}+\frac{1}{5}\left(x^{2}-1\right)-\frac{13 x}{9}+\frac{101}{15}\right) \\
& D_{p}(x)=R_{1}(p, x)+\sum_{i=1}^{p-1} R_{2}(i, p, x)+\sum_{i=1}^{p-1} R_{3}(i, p, x) D_{i}(x)
\end{aligned}
$$

A Problem from Doron Zeilberger

Let $D_{p}(x)$ be defined as follows:

$$
\begin{aligned}
& D_{1}(x)=\frac{12(1-x)}{x^{3}-x}\left(\frac{1}{6}\left(x-x^{3}\right)-\frac{28 x^{2}}{9}+\frac{1}{5}\left(x^{2}-1\right)-\frac{13 x}{9}+\frac{101}{15}\right) \\
& D_{p}(x)=R_{1}(p, x)+\sum_{i=1}^{p-1} R_{2}(i, p, x)+\sum_{i=1}^{p-1} R_{3}(i, p, x) D_{i}(x) \\
& R_{1}(p, x)= \frac{12 p^{2}(p-x)}{x^{3}-x-p^{3}+p}\left(\frac{\left(x^{3}-x\right)(p+x)}{5\left(p^{2}+p x+x^{2}-1\right)}+\frac{274 p^{2}}{45}-\frac{x^{3}-x}{6 p}-\frac{13 p x}{9}\right. \\
&\left.-\frac{28 x^{2}}{9}+\frac{29}{45}\right)
\end{aligned}
$$

A Problem from Doron Zeilberger

Let $D_{p}(x)$ be defined as follows:

$$
\begin{aligned}
& D_{1}(x)= \frac{12(1-x)}{x^{3}-x}\left(\frac{1}{6}\left(x-x^{3}\right)-\frac{28 x^{2}}{9}+\frac{1}{5}\left(x^{2}-1\right)-\frac{13 x}{9}+\frac{101}{15}\right) \\
& D_{p}(x)= R_{1}(p, x)+\sum_{i=1}^{p-1} R_{2}(i, p, x)+\sum_{i=1}^{p-1} R_{3}(i, p, x) D_{i}(x) \\
& R_{1}(p, x)= \frac{12 p^{2}(p-x)}{x^{3}-x-p^{3}+p}\left(\frac{\left(x^{3}-x\right)(p+x)}{5\left(p^{2}+p x+x^{2}-1\right)}+\frac{274 p^{2}}{45}-\frac{x^{3}-x}{6 p}-\frac{13 p x}{9}\right. \\
&\left.\quad-\frac{28 x^{2}}{9}+\frac{29}{45}\right) \\
& R_{2}(i, p, x)=\frac{144 i^{2} p(p-i)(i-x)(p-x)}{(x-1) x(x+1)(x-i)\left(x^{3}-x-p^{3}+p\right)}\left(-\frac{13 x(p-i)}{9}-\frac{13 i p}{9}\right. \\
&\left.\quad+\frac{\left(x^{3}-x\right)(p+x)}{5\left(p^{2}+p x+x^{2}-1\right)}+\frac{38 p^{2}}{15}+\frac{5\left(x^{3}-x\right)}{18 p}+\frac{49}{45}\right)
\end{aligned}
$$

A Problem from Doron Zeilberger

Let $D_{p}(x)$ be defined as follows:

$$
\begin{aligned}
& D_{1}(x)= \frac{12(1-x)}{x^{3}-x}\left(\frac{1}{6}\left(x-x^{3}\right)-\frac{28 x^{2}}{9}+\frac{1}{5}\left(x^{2}-1\right)-\frac{13 x}{9}+\frac{101}{15}\right) \\
& D_{p}(x)= R_{1}(p, x)+\sum_{i=1}^{p-1} R_{2}(i, p, x)+\sum_{i=1}^{p-1} R_{3}(i, p, x) D_{i}(x) \\
& R_{1}(p, x)= \frac{12 p^{2}(p-x)}{x^{3}-x-p^{3}+p}\left(\frac{\left(x^{3}-x\right)(p+x)}{5\left(p^{2}+p x+x^{2}-1\right)}+\frac{274 p^{2}}{45}-\frac{x^{3}-x}{6 p}-\frac{13 p x}{9}\right. \\
&\left.\quad-\frac{28 x^{2}}{9}+\frac{29}{45}\right) \\
& R_{2}(i, p, x)= \frac{144 i^{2} p(p-i)(i-x)(p-x)}{(x-1) x(x+1)(x-i)\left(x^{3}-x-p^{3}+p\right)}\left(-\frac{13 x(p-i)}{9}-\frac{13 i p}{9}\right. \\
&\left.\quad+\frac{\left(x^{3}-x\right)(p+x)}{5\left(p^{2}+p x+x^{2}-1\right)}+\frac{38 p^{2}}{15}+\frac{5\left(x^{3}-x\right)}{18 p}+\frac{49}{45}\right) \\
& R_{3}(i, p, x)= \frac{12 p(p-i)(p-x)}{(x-i)\left(x^{3}-x-p^{3}+p\right)}
\end{aligned}
$$

A Problem from Doron Zeilberger

Let $D_{p}(x)$ be defined as follows:

$$
\begin{aligned}
& D_{1}(x)= \frac{12(1-x)}{x^{3}-x}\left(\frac{1}{6}\left(x-x^{3}\right)-\frac{28 x^{2}}{9}+\frac{1}{5}\left(x^{2}-1\right)-\frac{13 x}{9}+\frac{101}{15}\right) \\
& D_{p}(x)= R_{1}(p, x)+\sum_{i=1}^{p-1} R_{2}(i, p, x)+\sum_{i=1}^{p-1} R_{3}(i, p, x) D_{i}(x) \\
& R_{1}(p, x)= \frac{12 p^{2}(p-x)}{x^{3}-x-p^{3}+p}\left(\frac{\left(x^{3}-x\right)(p+x)}{5\left(p^{2}+p x+x^{2}-1\right)}+\frac{274 p^{2}}{45}-\frac{x^{3}-x}{6 p}-\frac{13 p x}{9}\right. \\
&\left.\quad-\frac{28 x^{2}}{9}+\frac{29}{45}\right) \\
& R_{2}(i, p, x)= \frac{144 i^{2} p(p-i)(i-x)(p-x)}{(x-1) x(x+1)(x-i)\left(x^{3}-x-p^{3}+p\right)}\left(-\frac{13 x(p-i)}{9}-\frac{13 i p}{9}\right. \\
&\left.\quad+\frac{\left(x^{3}-x\right)(p+x)}{5\left(p^{2}+p x+x^{2}-1\right)}+\frac{38 p^{2}}{15}+\frac{5\left(x^{3}-x\right)}{18 p}+\frac{49}{45}\right) \\
& R_{3}(i, p, x)= \frac{12 p(p-i)(p-x)}{(x-i)\left(x^{3}-x-p^{3}+p\right)}
\end{aligned}
$$

Task: Show that $D_{p}(x)$ satisfies the second-order recurrence:

A Problem from Doron Zeilberger

Task: Show that $D_{p}(x)$ satisfies the second-order recurrence:
$(p+1)(p+2)(p-x+1)\left(p^{2}+x p+x^{2}-1\right)\left(100 p^{9}-26 x p^{8}+1350 p^{8}-312 x p^{7}+\right.$ $7800 p^{7}-251 x^{3} p^{6}-1309 x p^{6}+25200 p^{6}+52 x^{4} p^{5}-2259 x^{3} p^{5}-52 x^{2} p^{5}-1953 x p^{5}+$ $49800 p^{5}+390 x^{4} p^{4}-8231 x^{3} p^{4}-390 x^{2} p^{4}+1601 x p^{4}+61650 p^{4}+202 x^{6} p^{3}+$
$740 x^{4} p^{3}-15501 x^{3} p^{3}-942 x^{2} p^{3}+9417 x p^{3}+46700 p^{3}-26 x^{7} p^{2}+909 x^{6} p^{2}+52 x^{5} p^{2}-$ $180 x^{4} p^{2}-15916 x^{3} p^{2}-729 x^{2} p^{2}+12874 x p^{2}+19800 p^{2}-78 x^{7} p+1313 x^{6} p+156 x^{5} p-$ $1482 x^{4} p-8490 x^{3} p+169 x^{2} p+7788 x p+3600 p+3 x^{9}-61 x^{7}+606 x^{6}+113 x^{5}-$ $\left.900 x^{4}-1855 x^{3}+294 x^{2}+1800 x\right) D_{p}(x)-2 p(p+2)\left(100 p^{12}-26 x p^{11}+1200 p^{11}-\right.$ $286 x p^{10}+5900 p^{10}-351 x^{3} p^{9}-897 x p^{9}+15000 p^{9}+78 x^{4} p^{8}-3159 x^{3} p^{8}-78 x^{2} p^{8}+$ $507 x p^{8}+19500 p^{8}+624 x^{4} p^{7}-11730 x^{3} p^{7}-624 x^{2} p^{7}+9312 x p^{7}+7200 p^{7}+453 x^{6} p^{6}+$ $1122 x^{4} p^{6}-23142 x^{3} p^{6}-1575 x^{2} p^{6}+23688 x p^{6}-13900 p^{6}-78 x^{7} p^{5}+2718 x^{6} p^{5}+$ $156 x^{5} p^{5}-2004 x^{4} p^{5}-26037 x^{3} p^{5}-714 x^{2} p^{5}+29027 x p^{5}-21000 p^{5}-390 x^{7} p^{4}+$ $6642 x^{6} p^{4}+780 x^{5} p^{4}-10086 x^{4} p^{4}-16701 x^{3} p^{4}+3444 x^{2} p^{4}+18703 x p^{4}-11600 p^{4}-$ $199 x^{9} p^{3}-183 x^{7} p^{3}+8448 x^{6} p^{3}+963 x^{5} p^{3}-15336 x^{4} p^{3}-5741 x^{3} p^{3}+6888 x^{2} p^{3}+$ $5784 x p^{3}-2400 p^{3}+26 x^{10} p^{2}-597 x^{9} p^{2}-78 x^{8} p^{2}+1011 x^{7} p^{2}+5655 x^{6} p^{2}-$ $231 x^{5} p^{2}-10868 x^{4} p^{2}-771 x^{3} p^{2}+5265 x^{2} p^{2}+588 x p^{2}+52 x^{10} p-380 x^{9} p-156 x^{8} p+$ $828 x^{7} p+1662 x^{6} p-516 x^{5} p-3064 x^{4} p+68 x^{3} p+1506 x^{2} p-3 x^{12}+12 x^{10}+18 x^{9}-$ $\left.18 x^{8}-54 x^{7}+12 x^{6}+54 x^{5}-3 x^{4}-18 x^{3}\right) D_{p+1}(x)+p(p+1)(p-x+1)\left(p^{2}+x p+\right.$ $\left.4 p+x^{2}+2 x+3\right)\left(100 p^{9}-26 x p^{8}+450 p^{8}-104 x p^{7}+600 p^{7}-251 x^{3} p^{6}+147 x p^{6}+\right.$ $52 x^{4} p^{5}-753 x^{3} p^{5}-52 x^{2} p^{5}+805 x p^{5}-600 p^{5}+130 x^{4} p^{4}-701 x^{3} p^{4}-130 x^{2} p^{4}+$ $831 x p^{4}-450 p^{4}+202 x^{6} p^{3}-300 x^{4} p^{3}-147 x^{3} p^{3}+98 x^{2} p^{3}+199 x p^{3}-100 p^{3}-$ $26 x^{7} p^{2}+303 x^{6} p^{2}+52 x^{5} p^{2}-580 x^{4} p^{2}+26 x^{3} p^{2}+277 x^{2} p^{2}-52 x p^{2}-26 x^{7} p+$ $\left.101 x^{6} p+52 x^{5} p-202 x^{4} p-26 x^{3} p+101 x^{2} p+3 x^{9}-9 x^{7}+9 x^{5}-3 x^{3}\right) D_{p+2}(x)=0$

Hermite Reduction

Let $f \in \mathbb{K}(x)$.

Goal: $f=g^{\prime}+h / b^{*}$ where b^{*} is squarefree and $\operatorname{deg}(h)<\operatorname{deg}\left(b^{*}\right)$.

Hermite Reduction

Let $f \in \mathbb{K}(x)$. Write its squarefree partial fraction decomposition:

$$
f=\frac{a}{b}=a_{0}+\frac{a_{1}}{b_{1}}+\frac{a_{2}}{b_{2}^{2}}+\cdots+\frac{a_{m}}{b_{m}^{m}} \quad \text { with } b=b_{1} b_{2}^{2} \cdots b_{m}^{m}
$$

Goal: $f=g^{\prime}+h / b^{*}$ where b^{*} is squarefree and $\operatorname{deg}(h)<\operatorname{deg}\left(b^{*}\right)$.

Hermite Reduction

Let $f \in \mathbb{K}(x)$. Write its squarefree partial fraction decomposition:

$$
f=\frac{a}{b}=a_{0}+\frac{a_{1}}{b_{1}}+\frac{a_{2}}{b_{2}^{2}}+\cdots+\frac{a_{m}}{b_{m}^{m}} \quad \text { with } b=b_{1} b_{2}^{2} \cdots b_{m}^{m}
$$

Now let $a, b \in \mathbb{K}[x]$ with b squarefree and $\operatorname{deg}(a)<\operatorname{deg}\left(b^{m}\right)$.
$\frac{a}{b^{m}}$

Goal: $f=g^{\prime}+h / b^{*}$ where b^{*} is squarefree and $\operatorname{deg}(h)<\operatorname{deg}\left(b^{*}\right)$.

Hermite Reduction

Let $f \in \mathbb{K}(x)$. Write its squarefree partial fraction decomposition:

$$
f=\frac{a}{b}=a_{0}+\frac{a_{1}}{b_{1}}+\frac{a_{2}}{b_{2}^{2}}+\cdots+\frac{a_{m}}{b_{m}^{m}} \quad \text { with } b=b_{1} b_{2}^{2} \cdots b_{m}^{m}
$$

Now let $a, b \in \mathbb{K}[x]$ with b squarefree and $\operatorname{deg}(a)<\operatorname{deg}\left(b^{m}\right)$.

$$
\frac{a}{b^{m}}=\frac{u}{b^{m-1}}+\frac{v b^{\prime}}{b^{m}}
$$

$\left(\mathrm{EEA}: u b+v b^{\prime}=a\right)$

Goal: $f=g^{\prime}+h / b^{*}$ where b^{*} is squarefree and $\operatorname{deg}(h)<\operatorname{deg}\left(b^{*}\right)$.

Hermite Reduction

Let $f \in \mathbb{K}(x)$. Write its squarefree partial fraction decomposition:

$$
f=\frac{a}{b}=a_{0}+\frac{a_{1}}{b_{1}}+\frac{a_{2}}{b_{2}^{2}}+\cdots+\frac{a_{m}}{b_{m}^{m}} \quad \text { with } b=b_{1} b_{2}^{2} \cdots b_{m}^{m}
$$

Now let $a, b \in \mathbb{K}[x]$ with b squarefree and $\operatorname{deg}(a)<\operatorname{deg}\left(b^{m}\right)$.

$$
\begin{aligned}
\frac{a}{b^{m}} & =\frac{u}{b^{m-1}}+\frac{v b^{\prime}}{b^{m}} \\
& =\frac{u}{b^{m-1}}+\left(\frac{(1-m)^{-1} v}{b^{m-1}}\right)^{\prime}-\frac{(1-m)^{-1} v^{\prime}}{b^{m-1}}
\end{aligned}
$$

$$
\left(\mathrm{EEA}: u b+v b^{\prime}=a\right)
$$

Goal: $f=g^{\prime}+h / b^{*}$ where b^{*} is squarefree and $\operatorname{deg}(h)<\operatorname{deg}\left(b^{*}\right)$.

Hermite Reduction

Let $f \in \mathbb{K}(x)$. Write its squarefree partial fraction decomposition:

$$
f=\frac{a}{b}=a_{0}+\frac{a_{1}}{b_{1}}+\frac{a_{2}}{b_{2}^{2}}+\cdots+\frac{a_{m}}{b_{m}^{m}} \quad \text { with } b=b_{1} b_{2}^{2} \cdots b_{m}^{m}
$$

Now let $a, b \in \mathbb{K}[x]$ with b squarefree and $\operatorname{deg}(a)<\operatorname{deg}\left(b^{m}\right)$.

$$
\begin{aligned}
\frac{a}{b^{m}} & =\frac{u}{b^{m-1}}+\frac{v b^{\prime}}{b^{m}} \\
= & \quad \frac{u}{b^{m-1}}+\left(\frac{(1-m)^{-1} v}{b^{m-1}}\right)^{\prime}-\frac{(1-m)^{-1} v^{\prime}}{b^{m-1}} \\
& \quad\left(\text { IBP: }\left(\frac{v}{b^{m-1}}\right)^{\prime}=\frac{v^{\prime}}{b^{m-1}}+(1-m) \frac{v b^{\prime}}{b^{m}}\right)
\end{aligned}
$$

Goal: $f=g^{\prime}+h / b^{*}$ where b^{*} is squarefree and $\operatorname{deg}(h)<\operatorname{deg}\left(b^{*}\right)$.

Hermite Reduction

Let $f \in \mathbb{K}(x)$. Write its squarefree partial fraction decomposition:

$$
f=\frac{a}{b}=a_{0}+\frac{a_{1}}{b_{1}}+\frac{a_{2}}{b_{2}^{2}}+\cdots+\frac{a_{m}}{b_{m}^{m}} \quad \text { with } b=b_{1} b_{2}^{2} \cdots b_{m}^{m}
$$

Now let $a, b \in \mathbb{K}[x]$ with b squarefree and $\operatorname{deg}(a)<\operatorname{deg}\left(b^{m}\right)$.

$$
\begin{aligned}
\frac{a}{b^{m}} & =\frac{u}{b^{m-1}}+\frac{v b^{\prime}}{b^{m}} \quad \quad \quad\left(\text { EEA: } u b+v b^{\prime}=a\right) \\
& =\frac{u}{b^{m-1}}+\left(\frac{(1-m)^{-1} v}{b^{m-1}}\right)^{\prime}-\frac{(1-m)^{-1} v^{\prime}}{b^{m-1}} \\
& =\left(\frac{(1-m)^{-1} v}{b^{m-1}}\right)^{\prime}+\frac{u-(1-m)^{-1} v^{\prime}}{b^{m-1}}
\end{aligned}
$$

Goal: $f=g^{\prime}+h / b^{*}$ where b^{*} is squarefree and $\operatorname{deg}(h)<\operatorname{deg}\left(b^{*}\right)$.

Hermite Reduction

Let $f \in \mathbb{K}(x)$. Write its squarefree partial fraction decomposition:

$$
f=\frac{a}{b}=a_{0}+\frac{a_{1}}{b_{1}}+\frac{a_{2}}{b_{2}^{2}}+\cdots+\frac{a_{m}}{b_{m}^{m}} \quad \text { with } b=b_{1} b_{2}^{2} \cdots b_{m}^{m}
$$

Now let $a, b \in \mathbb{K}[x]$ with b squarefree and $\operatorname{deg}(a)<\operatorname{deg}\left(b^{m}\right)$.

$$
\begin{aligned}
\frac{a}{b^{m}} & =\frac{u}{b^{m-1}}+\frac{v b^{\prime}}{b^{m}} \quad \quad \quad\left(\mathrm{EEA}: u b+v b^{\prime}=a\right) \\
& =\frac{u}{b^{m-1}}+\left(\frac{(1-m)^{-1} v}{b^{m-1}}\right)^{\prime}-\frac{(1-m)^{-1} v^{\prime}}{b^{m-1}} \\
& =\left(\frac{(1-m)^{-1} v}{b^{m-1}}\right)^{\prime}+\frac{u-(1-m)^{-1} v^{\prime}}{b^{m-1}} \\
& =\cdots=\left(\frac{p}{b^{m-1}}\right)^{\prime}+\frac{q}{b} \quad \text { with } p, q \in \mathbb{K}[x], \operatorname{deg}(q)<\operatorname{deg}(b)
\end{aligned}
$$

Goal: $f=g^{\prime}+h / b^{*}$ where b^{*} is squarefree and $\operatorname{deg}(h)<\operatorname{deg}\left(b^{*}\right)$.

Hermite Reduction

Let $f \in \mathbb{K}(x)$. Write its squarefree partial fraction decomposition:

$$
f=\frac{a}{b}=a_{0}+\frac{a_{1}}{b_{1}}+\frac{a_{2}}{b_{2}^{2}}+\cdots+\frac{a_{m}}{b_{m}^{m}} \quad \text { with } b=b_{1} b_{2}^{2} \cdots b_{m}^{m}
$$

Now let $a, b \in \mathbb{K}[x]$ with b squarefree and $\operatorname{deg}(a)<\operatorname{deg}\left(b^{m}\right)$.

$$
\begin{aligned}
\frac{a}{b^{m}} & =\frac{u}{b^{m-1}}+\frac{v b^{\prime}}{b^{m}} \quad \quad \quad\left(\mathrm{EEA}: u b+v b^{\prime}=a\right) \\
& =\frac{u}{b^{m-1}}+\left(\frac{(1-m)^{-1} v}{b^{m-1}}\right)^{\prime}-\frac{(1-m)^{-1} v^{\prime}}{b^{m-1}} \\
& =\left(\frac{(1-m)^{-1} v}{b^{m-1}}\right)^{\prime}+\frac{u-(1-m)^{-1} v^{\prime}}{b^{m-1}} \\
& =\cdots=\left(\frac{p}{b^{m-1}}\right)^{\prime}+\frac{q}{b} \quad \text { with } p, q \in \mathbb{K}[x], \operatorname{deg}(q)<\operatorname{deg}(b)
\end{aligned}
$$

Goal: $f=g^{\prime}+h / b^{*}$ where $b^{*}=b_{1} b_{2} \cdots b_{m}$ and $\operatorname{deg}(h)<\operatorname{deg}\left(b^{*}\right)$.

Reduction-Based Telescoping

- Typically, the certificate Q is much larger than the telescoper.
- Often Q is not needed (natural boundaries / closed contour).

Reduction-Based Telescoping

- Typically, the certificate Q is much larger than the telescoper.
- Often Q is not needed (natural boundaries / closed contour).

Differential case: define a reduction procedure $\rho: \mathcal{F} \rightarrow \mathcal{F}$ s.t.

Reduction-Based Telescoping

- Typically, the certificate Q is much larger than the telescoper.
- Often Q is not needed (natural boundaries / closed contour).

Differential case: define a reduction procedure $\rho: \mathcal{F} \rightarrow \mathcal{F}$ s.t.

- for each $f \in \mathcal{F}$ there is $g \in \mathcal{F}$ such that $f-\rho(f)=g^{\prime}$,

Reduction-Based Telescoping

- Typically, the certificate Q is much larger than the telescoper.
- Often Q is not needed (natural boundaries / closed contour).

Differential case: define a reduction procedure $\rho: \mathcal{F} \rightarrow \mathcal{F}$ s.t.

- for each $f \in \mathcal{F}$ there is $g \in \mathcal{F}$ such that $f-\rho(f)=g^{\prime}$,
- $\rho(f)=0$ if and only if f is integrable.

Reduction-Based Telescoping

- Typically, the certificate Q is much larger than the telescoper.
- Often Q is not needed (natural boundaries / closed contour).

Differential case: define a reduction procedure $\rho: \mathcal{F} \rightarrow \mathcal{F}$ s.t.

- for each $f \in \mathcal{F}$ there is $g \in \mathcal{F}$ such that $f-\rho(f)=g^{\prime}$,
- $\rho(f)=0$ if and only if f is integrable.

Example: Hermite reduction for (univariate) rational functions.

Reduction-Based Telescoping

- Typically, the certificate Q is much larger than the telescoper.
- Often Q is not needed (natural boundaries / closed contour).

Differential case: define a reduction procedure $\rho: \mathcal{F} \rightarrow \mathcal{F}$ s.t.

- for each $f \in \mathcal{F}$ there is $g \in \mathcal{F}$ such that $f-\rho(f)=g^{\prime}$,
- $\rho(f)=0$ if and only if f is integrable.

Example: Hermite reduction for (univariate) rational functions.
To compute a telescoper for $\int_{a}^{b} f(x, y) \mathrm{d} y$, apply this reduction ρ to the successive derivatives of the integrand f :

$$
\begin{aligned}
& f=g_{0}^{\prime}+\rho(f)=g_{0}^{\prime}+h_{0}, \\
& \frac{\mathrm{~d}}{\mathrm{~d} x} f=g_{1}^{\prime}+\rho\left(\frac{\mathrm{d}}{\mathrm{~d} x} f\right)=g_{1}^{\prime}+h_{1}, \\
& \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}} f=g_{2}^{\prime}+\rho\left(\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} f\right)=g_{2}^{\prime}+h_{2}, \ldots
\end{aligned}
$$

Reduction-Based Telescoping

- Typically, the certificate Q is much larger than the telescoper.
- Often Q is not needed (natural boundaries / closed contour).

Differential case: define a reduction procedure $\rho: \mathcal{F} \rightarrow \mathcal{F}$ s.t.

- for each $f \in \mathcal{F}$ there is $g \in \mathcal{F}$ such that $f-\rho(f)=g^{\prime}$,
- $\rho(f)=0$ if and only if f is integrable.

Example: Hermite reduction for (univariate) rational functions.
To compute a telescoper for $\int_{a}^{b} f(x, y) \mathrm{d} y$, apply this reduction ρ to the successive derivatives of the integrand f :

$$
\begin{aligned}
& f=g_{0}^{\prime}+\rho(f)=g_{0}^{\prime}+h_{0}, \\
& \frac{\mathrm{~d}}{\mathrm{~d} x} f=g_{1}^{\prime}+\rho\left(\frac{\mathrm{d}}{\mathrm{~d} x} f\right)=g_{1}^{\prime}+h_{1}, \\
& \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}} f=g_{2}^{\prime}+\rho\left(\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} f\right)=g_{2}^{\prime}+h_{2}, \ldots
\end{aligned}
$$

If the h_{i} live in a finite-dimensional $\mathbb{K}(x)$-vector space, then there exists a nontrivial linear combination $p_{0} h_{0}+\cdots+p_{r} h_{r}=0$.

Reduction-Based Telescoping

- Typically, the certificate Q is much larger than the telescoper.
- Often Q is not needed (natural boundaries / closed contour).

Differential case: define a reduction procedure $\rho: \mathcal{F} \rightarrow \mathcal{F}$ s.t.

- for each $f \in \mathcal{F}$ there is $g \in \mathcal{F}$ such that $f-\rho(f)=g^{\prime}$,
- $\rho(f)=0$ if and only if f is integrable.

Example: Hermite reduction for (univariate) rational functions.
To compute a telescoper for $\int_{a}^{b} f(x, y) \mathrm{d} y$, apply this reduction ρ to the successive derivatives of the integrand f :

$$
\begin{aligned}
& f=g_{0}^{\prime}+\rho(f) \\
&=g_{0}^{\prime}+h_{0}, \\
& \frac{\mathrm{~d}}{\mathrm{~d} x} f=g_{1}^{\prime}+\rho\left(\frac{\mathrm{d}}{\mathrm{~d} x} f\right) \\
&=g_{1}^{\prime}+h_{1}, \\
& \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}} f=g_{2}^{\prime}+\rho\left(\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} f\right)
\end{aligned}=g_{2}^{\prime}+h_{2}, \ldots .
$$

If the h_{i} live in a finite-dimensional $\mathbb{K}(x)$-vector space, then there exists a nontrivial linear combination $p_{0} h_{0}+\cdots+p_{r} h_{r}=0$.
\longrightarrow Hence, the desired telescoper is $p_{0}+p_{1} D_{x}+\cdots+p_{r} D_{x}^{r}$.

Reduction-Based Creative Telescoping

- Bostan, Chen, Chyzak, Li (2010): integrating rat. functions

Reduction-Based Creative Telescoping

- Bostan, Chen, Chyzak, Li (2010): integrating rat. functions
- Chen, Singer (2012): $(q-)$ summation of rational functions

Reduction-Based Creative Telescoping

- Bostan, Chen, Chyzak, Li (2010): integrating rat. functions
- Chen, Singer (2012): (q-) summation of rational functions
- Bostan, Lairez, Salvy $(2013,2015)$: multiv. rational functions

Reduction-Based Creative Telescoping

- Bostan, Chen, Chyzak, Li (2010): integrating rat. functions
- Chen, Singer (2012): (q-) summation of rational functions
- Bostan, Lairez, Salvy (2013, 2015): multiv. rational functions
- Bostan, Chen, Chyzak, Li, Xin (2013): hyperexp. functions

Reduction-Based Creative Telescoping

- Bostan, Chen, Chyzak, Li (2010): integrating rat. functions
- Chen, Singer (2012): (q-) summation of rational functions
- Bostan, Lairez, Salvy $(2013,2015)$: multiv. rational functions
- Bostan, Chen, Chyzak, Li, Xin (2013): hyperexp. functions
- Chen, Huang, Kauers, Li $(2015,2016)$: hypergeometric terms

Reduction-Based Creative Telescoping

- Bostan, Chen, Chyzak, Li (2010): integrating rat. functions
- Chen, Singer (2012): (q-) summation of rational functions
- Bostan, Lairez, Salvy $(2013,2015)$: multiv. rational functions
- Bostan, Chen, Chyzak, Li, Xin (2013): hyperexp. functions
- Chen, Huang, Kauers, Li $(2015,2016)$: hypergeometric terms
- Bostan, Dumont, Salvy (2016): hypergeom.-hyperexp. terms

Reduction-Based Creative Telescoping

- Bostan, Chen, Chyzak, Li (2010): integrating rat. functions
- Chen, Singer (2012): (q-) summation of rational functions
- Bostan, Lairez, Salvy $(2013,2015):$ multiv. rational functions
- Bostan, Chen, Chyzak, Li, Xin (2013): hyperexp. functions
- Chen, Huang, Kauers, Li (2015, 2016): hypergeometric terms
- Bostan, Dumont, Salvy (2016): hypergeom.-hyperexp. terms
- Chen, Kauers, K. (2016): integration of algebraic functions

Reduction-Based Creative Telescoping

- Bostan, Chen, Chyzak, Li (2010): integrating rat. functions
- Chen, Singer (2012): (q-) summation of rational functions
- Bostan, Lairez, Salvy $(2013,2015):$ multiv. rational functions
- Bostan, Chen, Chyzak, Li, Xin (2013): hyperexp. functions
- Chen, Huang, Kauers, Li $(2015,2016)$: hypergeometric terms
- Bostan, Dumont, Salvy (2016): hypergeom.-hyperexp. terms
- Chen, Kauers, K. (2016): integration of algebraic functions
- Chen, Hoeij, Kauers, K. (2018): fuchsian D-finite functions

Reduction-Based Creative Telescoping

- Bostan, Chen, Chyzak, Li (2010): integrating rat. functions
- Chen, Singer (2012): (q-) summation of rational functions
- Bostan, Lairez, Salvy $(2013,2015):$ multiv. rational functions
- Bostan, Chen, Chyzak, Li, Xin (2013): hyperexp. functions
- Chen, Huang, Kauers, Li (2015, 2016): hypergeometric terms
- Bostan, Dumont, Salvy (2016): hypergeom.-hyperexp. terms
- Chen, Kauers, K. (2016): integration of algebraic functions
- Chen, Hoeij, Kauers, K. (2018): fuchsian D-finite functions
- van der Hoeven (2017, 2021): integration of D-finite functions

Reduction-Based Creative Telescoping

- Bostan, Chen, Chyzak, Li (2010): integrating rat. functions
- Chen, Singer (2012): (q-) summation of rational functions
- Bostan, Lairez, Salvy $(2013,2015):$ multiv. rational functions
- Bostan, Chen, Chyzak, Li, Xin (2013): hyperexp. functions
- Chen, Huang, Kauers, Li $(2015,2016)$: hypergeometric terms
- Bostan, Dumont, Salvy (2016): hypergeom.-hyperexp. terms
- Chen, Kauers, K. (2016): integration of algebraic functions
- Chen, Hoeij, Kauers, K. (2018): fuchsian D-finite functions
- van der Hoeven (2017, 2021): integration of D-finite functions
- Bostan, Chyzak, Lairez, Salvy (2018): D-finite functions

Reduction-Based Creative Telescoping

- Bostan, Chen, Chyzak, Li (2010): integrating rat. functions
- Chen, Singer (2012): (q-) summation of rational functions
- Bostan, Lairez, Salvy $(2013,2015):$ multiv. rational functions
- Bostan, Chen, Chyzak, Li, Xin (2013): hyperexp. functions
- Chen, Huang, Kauers, Li $(2015,2016)$: hypergeometric terms
- Bostan, Dumont, Salvy (2016): hypergeom.-hyperexp. terms
- Chen, Kauers, K. (2016): integration of algebraic functions
- Chen, Hoeij, Kauers, K. (2018): fuchsian D-finite functions
- van der Hoeven (2017, 2021): integration of D-finite functions
- Bostan, Chyzak, Lairez, Salvy (2018): D-finite functions
- Chen, Du, Kauers, Wang (2023): P-recursive sequences

Reduction-Based Creative Telescoping

- Bostan, Chen, Chyzak, Li (2010): integrating rat. functions
- Chen, Singer (2012): (q-) summation of rational functions
- Bostan, Lairez, Salvy $(2013,2015):$ multiv. rational functions
- Bostan, Chen, Chyzak, Li, Xin (2013): hyperexp. functions
- Chen, Huang, Kauers, Li $(2015,2016)$: hypergeometric terms
- Bostan, Dumont, Salvy (2016): hypergeom.-hyperexp. terms
- Chen, Kauers, K. (2016): integration of algebraic functions
- Chen, Hoeij, Kauers, K. (2018): fuchsian D-finite functions
- van der Hoeven (2017, 2021): integration of D-finite functions
- Bostan, Chyzak, Lairez, Salvy (2018): D-finite functions
- Chen, Du, Kauers, Wang (2023): P-recursive sequences
- Brochet, Salvy (2023): summation of D-finite functions

Reduction-Based Creative Telescoping

- Bostan, Chen, Chyzak, Li (2010): integrating rat. functions
- Chen, Singer (2012): (q-) summation of rational functions
- Bostan, Lairez, Salvy $(2013,2015):$ multiv. rational functions
- Bostan, Chen, Chyzak, Li, Xin (2013): hyperexp. functions
- Chen, Huang, Kauers, Li $(2015,2016)$: hypergeometric terms
- Bostan, Dumont, Salvy (2016): hypergeom.-hyperexp. terms
- Chen, Kauers, K. (2016): integration of algebraic functions
- Chen, Hoeij, Kauers, K. (2018): fuchsian D-finite functions
- van der Hoeven (2017, 2021): integration of D-finite functions
- Bostan, Chyzak, Lairez, Salvy (2018): D-finite functions
- Chen, Du, Kauers, Wang (2023): P-recursive sequences
- Brochet, Salvy (2023): summation of D-finite functions
- Brochet (today!): multiple integrals

[^0]: An algorithm for definite hypergeometric summation is given. It is based, in a non-obvious way, on Gosper's algorithm for definite hypergeometric summation, and its theoretical justification relies on Bernstein's theory of holonomic systems.

