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Evaluate binomial sums and prove combinatorial identities, such as:
TR 0050
k=0 k k k=0 k k =0 J

Discover and certify evaluations of hypergeometric functions, e.g.,

1 5 1\ [(16\'T(t+2)r(3)
2F1 <2t,2t+3,t+6,—8> == (27> m

Prove special function identities:

1 1 "T(n + 2v)Jpqv(a)
_ 22\V"3 iaz (V) _m n+v
/_1 (1—a%)" 2 CY (z)da > Tarni T (v)
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Motivating Examples

Prove evaluations of infinite families of determinants:
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Prove evaluations of infinite families of determinants:
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Compute Feynman integrals, such as
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(physicists are interested in a recurrence in n for such integrals).
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Compute Feynman integrals, such as

/ / w71 = ) (1 —w" —(1— )”H) dwdz

(z4+w—wz)t—*

(physicists are interested in a recurrence in n for such integrals).

Or relativistic Coulomb integrals, also arising in physics:

/ rpt2 (F(r)2 + G(T‘)Q) dr, where
0

F(r)\  a2(2a8r)"~! Bl [on o\ (L (2apr)
Gr)) e yTn+2v) \ B 8 ) \ L2 (2a8r)
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Selected Applications of Creative Telescoping

» Hypergeometric expressions for generating functions of walks
with small steps in the quarter plane (Alin Bostan, Frédéric
Chyzak, Mark van Hoeij, Manuel Kauers, Lucien Pech)
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» Uniqueness of the solution to Canham's problem which
predicts the shape of biomembranes: show that the reduced
volume Iso(z) of any stereographic projection of the Clifford
torus to R? is bijective (Alin Bostan, Sergey Yurkevich)

» Computing efficiently the n-dimensional volume of a compact
semi-algebraic set, i.e., the solution set of multivariate
polynomial inequalities, up to a prescribed precision 277
(Pierre Lairez, Marc Mezzarobba, Mohab Safey El Din)
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» Accurate, reliable and efficient method to compute a certified
orbital collision probability between two spherical space objects
involved in a short-term encounter under Gaussian-distributed
uncertainty (Mioara Joldes, Bruno Salvy, et al.)

» Study of integrals and diagonals related to some topics in
theoretical physics such as the Ising model or the lattice
Green's function (Jean-Marie Maillard, Alin Bostan, Youssef
Abdelaziz, Salah Boukraa, et al.)

> lrrationality measures of mathematical constants such as
elliptic L-values (Wadim Zudilin), in the spirit of Apéry's
proof of the irrationality of ((3).
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Hypergeometric Terms

Definition: A term f(n) is called hypergeometric if

fln+1)
f(n)

is a rational function in n.
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Gosper's algorithm

Proc. Natl. Acad. Sci. USA
Vol. 75, No. 1, pp. 40-42, January 1978
Mathematics

Decision procedure for indefinite hypergeometric summation

loarithm /hi

Vol

ial coefficient identities/closed form/:
R. WILLIAM GOSPER, JR.
Xerox Palo Alto Research Center, Palo Alto, California 94304

Communicated by Donald E. Knuth, September 26, 1977

ABSTRACT Given a summand a,,, we seek the “indefinite
sum” $(n) d d (within an additi ) by
$ 2, = S(m) - 50) (0
n=1
or, equivalently, by
a5 = $§(n) — S(n —1). 1

An algorithm is exhibited which, given ay, finds those S(n) with
the property
S(n)
S(n —1)

= a rational function of n. (2]

/linear

erate case where a, is identically zero.) Express this ratio as
‘;‘_" =Pn G X (5]
n—1 Pn—1 Tn
where py, g, and r,, are polynomials in n subject to the fol-
lowing condition:
ged(@n, Tnyg) =1, (6]

for all non-negative integers j.
It is always possible to put a rational function in this form,
for if ged(gn, ra+5) = g(n), then this common factor can be
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Gosper's algorithm
f(n+1)

) =r(n) € K(n).

Let f(n) be a hypergeometric term, i.e.,
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Question: Does f(n) have a hypergeometric antidifference g(n):
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Motivation: such g(n) yields a closed form for the indefinite sum

Let f(n) be a hypergeometric term, i.e.,

D fm) =) (9(n+1)—g(n)) = g(m+1) — g(0).
n=0 n=0

From f(n) =g(n+ 1) — g(n) it follows that if such g(n) exists,
then it must be a rational function multiple of f(n):
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g(n) g(n)
N——
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Question: Does f(n) have a hypergeometric antidifference g(n):

f(n) =g(n+1) —g(n).

Motivation: such g(n) yields a closed form for the indefinite sum

Let f(n) be a hypergeometric term, i.e.,

D fm) =) (9(n+1)—g(n)) = g(m+1) — g(0).
n=0 n=0

From f(n) =g(n+ 1) — g(n) it follows that if such g(n) exists,
then it must be a rational function multiple of f(n):

f(n) _ g(n+1) 1 = g(n) = y(n) - f(n).

g(n) g(n) ~—~—
€K (n) €K(n)

=r(n) € K(n).
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Gosper's algorithm
Goal: find g(n) = y(n)f(n) such that g(n+ 1) — g(n) = f(n)
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Key idea: write the rational function r(n) in Gosper form:
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Goal: find g(n) = y(n)f(n) such that g(n+ 1) — g(n) = f(n)

y(n+1)f(n+1) —y(n)f(n) = f(n)

fn)

Instead of hypergeometric g(n), look for a rational solution y(n).

€ K(n).

Key idea: write the rational function r(n) in Gosper form:

_a(n)c(n+1)
(M) = S e

for polynomials a, b, ¢ € K[n] satisfying
gcd(a(n),c(n)) =1, gcd(c(n + 1),b(n)) =1,
ged(a(n),b(n+1i)) =1 forall i € N.

The equation turns into:

a(n)e(n +1)y(n +1) = b(n)c(n)y(n) = b(n)c(n). 8/ 66



Gosper's algorithm

Recall: difference equation for the unknown rational function y(n):

a(n)c(n + 1y(n+ 1) — b(n)c(n)y(n) = b(n)c(n).
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for some, still unknown, rational function z(n).
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Gosper's algorithm
Recall: difference equation for the unknown rational function y(n):
a(n)e(n +1)y(n +1) = b(n)e(n)y(n) = b(n)e(n).
Substitution: look for a nonzero rational solution y(n) of the form

b(n—1)-z(n)

y(n) = )

for some, still unknown, rational function z(n). We get
a(n)b(n)x(n+ 1) — b(n)b(n — 1)z(n) = b(n)ec(n)
= a(n)z(n+1) —b(n — 1)x(n) = c(n).

This is called Gosper’s equation.
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The Miracle

Theorem (Gosper): if there exists z(n) € K(n) that solves
a(n)x(n+1) —b(n — 1)z(n) = c¢(n). (Gosper's equation)

then z(n) is actually a polynomial.
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The Miracle
Theorem (Gosper): if there exists z(n) € K(n) that solves

a(n)x(n+1) —b(n — 1)z(n) = c¢(n). (Gosper's equation)
then z(n) is actually a polynomial.

Proof: Assume to the contrary that z(n) = p(n)/q(n). Then:
a(n)p(n +1)q(n) — b(n —1)p(n)q(n + 1) = c(n)q(n)q(n + 1).
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> u(n—0) [bn— Dp(n)g(n+1) = u(n—0) | b(n—1)

> u(n+1) [a(n)p(n+1)q(n) = u(n+1) | a(n)
It follows that u(n + 1) | ged(a(n), b(n + £)), contradicting the
gcd conditions in the Gosper form. O
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Theorem (Gosper): if there exists z(n) € K(n) that solves
a(n)x(n+1) —b(n — 1)z(n) = c¢(n). (Gosper's equation)
then z(n) is actually a polynomial.

Proof: Assume to the contrary that z(n) = p(n)/q(n). Then:
a(n)p(n +1)q(n) — b(n —1)p(n)q(n + 1) = c(n)q(n)q(n + 1).

Let £ € N be the largest integer such that ged(gq(n), g(n+¢)) # 1.
Let u(n) be an irreducible, nonconstant factor of this gcd. Then:
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It follows that u(n + 1) | ged(a(n), b(n + £)), contradicting the
gcd conditions in the Gosper form. O

How to find, if it exists, the polynomial solution x(n)?
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v

Apply Gosper's algorithm to the above summand.
(Hopefully) obtain g(n, k) such that

v

q(n)f(n+1,k) —p(n)f(n,k) = g(n, k+1) = g(n, k).

Apply >, to the above identity.

v

v

Also g has finite support (rational function multiple of f).
Get g(n)S(n+ 1) —p(n)S(n) = 0 with S(n) := >, f(n, k).
Check that h(0) = S(0). Hence S(n) = h(n) for all n.

v

v
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Example
S(n) := Ek: (’;) — 2"

We have h(n) = 2" and hence h(n + 1) — 2h(n) = 0.

s -2 = (1) 2 (1) = 2 ()

=: f(n, k)

Gosper's algorithm applied to f(n, k) succeeds:

g(n, k) = ﬁf(n, k) = —<k . 1)-

The term g(n, k) has finite support, hence ), f(n, k) = 0.
This yields S(n + 1) — 25(n) = 0 and the original identity follows.
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An i for definite i
way, on Gosper’s algorithm for definite
Jjustification relies on Bernstein's theory of holonomic systems.

is given. It is based, in a non-obvious
i i and its
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Telescoping: find g such that f(n,k) = g(n,k+ 1) — g(n, k).
b

Then F(n) = Z (9(n,k+1) — g(n,k)) = g(n,b+1) — g(n, a).
k=a

Creative Telescoping: find g such that
) f(n+rk)+ - +co(n)f(n, k) =g(n,k+1) —g(n, k).
Summing from a to b yields a recurrence for F'(n):
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Creative Telescoping

Method for doing sums and integrals
(aka Feynman's differentiating under the integral sign)

Consider the following integration problem: F'(x / flz,y)dy

Telescoping: find g such that f(z,y) = d%g(a:,y).
b
Then F(n) = [ (foen)ds = gla.b) - gla.0)
Creative Telescoping: find g such that
cr (@) e f @, y) + -+ co(@) fla,y) = $9(x,y).
Integrating from a to b yields a differential equation for F'(x):

cr(2) g F (@) + -+ co(@) Fz) = g(x,b) — g(x,a)
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From now on let f(n,k) be a bivariate hypergeometric term.

We aim at computing a creative telescoping relation of the form:
Cd(n)f(n + da k) +oe Co(n)f(’fl, k:) = g(n, k + 1) - g(na k)
Where should one look for g(n, k)?

Note that there are “trivial” solutions like:

k—1

9n,k) = Y (calm)f(n+doi) + -+ + co(m) f(n, ).

i=0
A reasonable choice for where to search for g(n, k) is:

hypergeometric terms,
i.e., rational function multiples of f(n, k).
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Under certain technical assumptions (f(n, k) is a “proper” term),
one can show that a recurrence for S(n) exists.

But we don’t know it, neither its order nor its coefficients.
» Try order r =0,1,2,... until success.

» Write recurrence with undetermined coefficients p; € IK(n):
pr(n)S(n+7r)+ -+ p1(n)Sn+1) + po(n)S(n) = 0.
> Apply a parametrized version of Gosper's algorithm to

pr(n)f(n +, k) +- +p1(n)f(n +1, k) —|—p0(n)f(n, k)
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Another Miracle

The parametrized Gosper is applied to the hypergeometric term

pr(n)f(n +r, k) T+ +p1(n)f(n +1, k) —i—po(n)f(n, k)

A careful analysis reveals:
» The algorithm works, despite the unknown parameters p;.

» The p; appear only in ¢(k) in Gosper's equation
a(k) -x(k+1) —blk —1)-z(k) = c(k).

» The p; appear linearly, hence the final linear system can be
solved simultaneously for the p; and the coefficients of x(k):

d
2(k) = mi(n)k'.
i=0

» The algorithm always finds the telescoper of minimal order.
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Examples for Zeilberger's Algorithm

2 (1)

k=0
kﬁ_jﬂ(—m (anJ _ EZL))?!
1:0 <Z>2 <n —]: k>2 ~~ second-order recurrence
ki:o(_l)k (Z) (d:> = (=d)"

21 / 66



The Apagodu-Zeilberger Algorithm
Theorem: Let f(n,k) = p(n,k) - h(n,k) be a proper hg. term
such that the polynomial p(n, k) is of maximal degree
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Theorem: Let f(n,k) = p(n,k) - h(n,k) be a proper hg. term

such that the polynomial p(n, k) is of maximal degree and

Mo k) — (jﬁl(aj)a;.n—i-ajk) ( I1 (5;) n—b; k) .

(10 ecn) (Fg )

J
with a;, a’;, b;, b, ¢j, ¢, dj, d; € N.
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(ﬁ(a])an+ak><n(5]) - bk) .

j=1

< I1(v), n+cjk> ( ﬁ (5j)d9”_djk>

Jj=1 Jj=1

h(n,k) =

with a],a b],b],c]7 dj,d; € N. Furthermore, let
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The Apagodu-Zeilberger Algorithm
Theorem: Let f(n,k) = p(n,k) - h(n,k) be a proper hg. term
such that the polynomial p(n, k) is of maximal degree and

(1)) (I Blgnns)

J=1

< ﬁ (’Yj)c;.n+Cjk> ( ﬁ (5j)d9”‘djk>

J=1 J=1

h(n,k) =

with a],aj,b],b],c]7 dj,d; € N. Furthermore, let

rzmax(Zaj—FZdj ) ij+ch )
j=1 j=1 j=1 j=1

Then there exist polynomials py(n), ..., pr(n), not all zero,
and ¢(n, k) € K(n, k) such that g(n, k) := q(n, k) f(n, k) satisfies

sz(n)f(n—i_lak) = g(n7k + 1) - g(n7k)
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Univariate D-finite Functions
Definition: A function f(x) is called D-finite (“differentiably

finite") if it satisfies a (nontrivial) linear ordinary differential
equation with polynomial coefficients:

pr(@)f (@) + -+ pr() f(2) + pol@) f@) =0, pi € Klz].
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Univariate D-finite Functions

Definition: A function f(x) is called D-finite (“differentiably
finite") if it satisfies a (nontrivial) linear ordinary differential
equation with polynomial coefficients:

pr(@)f (@) + -+ pr() f(2) + pol@) f@) =0, pi € Klz].
Examples: const., 2", exp(z), sin(x), vz + 1, ...

Features:
» important and rich class of functions (aka holonomic functions)
» closed under many operations ~~ “closure properties”

» good data structure in symbolic computation:

v

finitely many initial values ~~ finite amount of data

v

operations (closure properties) can be executed algorithmically
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Many Functions are D-Finite

ArcCsc, KelvinBei, HypergeometricPFQ, ExplntegralE, ArcTanh,
HankelH2, AngerJ, JacobiP, ChebyshevT, AiryBi, AiryAi, Sinc,
Coslntegral, ArcSech, SphericalBesselY, Sin, WhittakerW,
SphericalHankelH2, HermiteH, ExplntegralEi, Beta, AiryBiPrime,
SphericalBesselJ, ParabolicCylinderD, Erfc, EllipticK, Cos,
Hypergeometric2F1, Erf, KelvinKer, BetaRegularized,
HypergeometricPFQRegularized, Log, BesselY, Cosh, ArcSinh,
Coshlntegral, ArcTan, ArcCoth, LegendreP, Laguerrel, EllipticE,
Sinhlntegral, Sinh, SphericalHankelH1, ArcSin, AiryAiPrime,
EllipticThetaPrime, Root, AppellF1, FresnelC, LegendreQ,

ChebyshevU, GammaRegularized, Erfi, Bessell, HypergeometricU,

KelvinKei, Exp, ArcCot, Hypergeometric2F1Regularized, ArcSec,
HypergeometricOF1, EllipticPi, GegenbauerC, ArcCos, WeberE,
FresnelS, EllipticF, ArcCosh, HankelH1, Sqrt, BesselK, BesselJ,
HypergeometriclF1Regularized, Struvel, KelvinBer, StruveH,
WhittakerM, ArcCsch, HypergeometriclF1, Sinintegral, ...
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Special Functions

> arise in mathematical analysis and in real-world phenomena
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> arise in mathematical analysis and in real-world phenomena

» are solutions to certain differential equations

Airy function Bessel function Coulomb function

25 / 66



Special Functions

> arise in mathematical analysis and in real-world phenomena

» are solutions to certain differential equations

» cannot be expressed in terms of the usual elementary functions
(v, exp, log, sin, cos, ...)

Airy function Bessel function Coulomb function
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Closure Properties of D-Finite Functions

Theorem: If f(z) and g(x) are D-finite functions, then also the
following functions are D-finite:
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Closure Properties of D-Finite Functions

Theorem: If f(z) and g(x) are D-finite functions, then also the
following functions are D-finite:

(i) f(z) +g(z)

(vi

Proof idea:
(i) linear algebra, see next slide
(i) also by linear algebra, analogous to (i)

(iii) replace f@(x) by f0*+1D(x) in the differential equation % /66



Proof
Assume f, g are D-finite and satisfy LODEs of order d1, da, resp.
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Proof
Assume f, g are D-finite and satisfy LODEs of order d1, da, resp.

Show: h(z) := f(z) + g(z) is D-finite.
Ansatz: want to find co,...,cq € K[n] such that
0= cq(2)hD(x) + - + e1h (@) + co(z)h(x)
= ca(@) (fV(2) + gD (@) + - + o) (f () + g(2))
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Assume f, g are D-finite and satisfy LODEs of order d1, da, resp.

Show: h(z) := f(z) + g(z) is D-finite.
Ansatz: want to find co,...,cq € K[n] such that

O:Cd(x)h(d)(:c)—i- —|—clh’(9c)—|—co( Yh(z)
= ca(z) (f D (a (az)) +o 4 oo(z)(f(2) + g(2))
= x(Df(dl +O0f () +0f(x)+
Og®~ 1)( ) -+ 0¢'(z) + Og(e))

+ 4 co(aj) (f(SU) + g(q;))
di— i

- ri(co, - ,Cchm)f(i)(w) + Z si(cos - - - 7Cd7x)g(i)($)

1=0 1=0

—
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Proof
Assume f, g are D-finite and satisfy LODEs of order d1, da, resp.
Show: h(z) := f(z) + g(z) is D-finite.
Ansatz: want to find co,...,cq € K[n] such that

0= cd(x)h(d)(:c) SEREE + e () + co(z)h(z)
= cq() (fD(x (az)) +o 4 oo(z)(f(2) + g(2))
= x(mﬂdll +O0f () +0f(x)+
Og®~ 1)(ac) -+ 0¢'(z) + Og(e))
+-~+00(w)(f(x)+g(x))

d1— do—1

- T'i(C(), v+ Cds m)f(l) (J}) + Z Si(CO7 -5 Cd, x)g(l) (-’IJ)

1=0 1=0

—

All coefficients r;, s; must vanish: this yields d; + ds equations for
the unknowns cg, . .., cq4.
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Proof
Assume f, g are D-finite and satisfy LODEs of order d1, da, resp.
Show: h(z) := f(z) + g(z) is D-finite.
Ansatz: want to find co,...,cq € K[n] such that

0= cd(x)h(d)(:c) SEREE + e () + co(z)h(z)
= ca(z) (f D (a (az)) +o 4 oo(z)(f(2) + g(2))
= x(mﬂdll +O0f () +0f(x)+
Og®~ 1)(ac) -+ 0¢'(z) + Og(e))
+-~+00(w)(f(x)+g(x))

d1— do—1

= 7'1‘(007 -y Cdy x)f(l) (J}) + Z Si(CO, ey Cd, x)g(l) (,’I;)

1=0 1=0

—

All coefficients r;, s; must vanish: this yields d; + ds equations for
the unknowns cg, ..., cq. The choice d := di + d2 ensures a solution.
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Quiz: Which functions are D-Finite?

1 1
f<x2+1> 'exp(xzﬂ>

(sinh(a:))2 + (cosh(ar:))_2

log(\/l — x)
exp(\/l - x)

arctan (e” )

exp (arctan(z))
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Quiz: Which functions are D-Finite?

1 1 ‘/
f<g:2+1> 'exp(mzﬂ>

(sinh(a:))2 + (cosh(av))_2 X

log(\/l — x)
exp(\/l - a:)

v
arctan (e” ) X
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Quiz: Which functions are D-Finite?

1 1
> erf<x2+1> . eXp(M> /

> (sinh(a:))2 + (cosh(ac))_2 X

log(\/l — x)
exp(\/l - x)

v
» arctan (e”) X
v

v

exp (arctan(z))
— Software demo
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Operator Notation

Let D, denote the differentiation w.r.t. z, i.e.,

Dy(f () = f'(2)
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Operator Notation

Let D, denote the differentiation w.r.t. z, i.e.,

DY(f(x)) = f(z), Du(f(x)) =f(x), D(f(z))=f"(x), etc.

Let K(x)(D,) denote the polynomial ring in D, with coeffs in K(z).
It is not commutative:

D,-z=xz-D,+1 (Leibniz rule).
More general:

D, -r(x) =r(x) - Dy +1'(x) for any r € K(z).

Example: The Legendre differential equation
(2% — 1)P!(x) + 22P.(x) —n(n + 1)P,(z) = 0
translates to the operator

(2% —1)D2 + 22D, — n(n + 1).
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D-Finite Functions and Operators

Hence, D-finiteness can be stated as follows:

f(x) is D-finite <= 3 L € K(z)(D,) \ {0}: L(f(z)) = 0.
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D-Finite Functions and Operators

Hence, D-finiteness can be stated as follows:
f(z) is D-finite < 3 L€ K(z)(Dy)\{0}: L(f(z)) = 0.
Let Ly, Ly € K(x)(D,) annihilate f and g, respectively, i.e.,
Li(f)=0 and Ls(g) =0.

Then:
» Ly - D, annihilates [ f(z)dz.

» L :=lclm(Ly, Lo) annihilates f + g.
(Actually, L annihilates ¢; - f + ¢2 - g for any constants c1, ¢2.)
Proof: L = MLy = MyLy for certain My, My € K(x)(D,).
» |If f satisfies L(f) = h for some D-finite h, then f is D-finite.
Proof: Assume M (h) =0. Then (ML)(f) = M(L(f)) =0.
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Univariate P-recursive Sequences

Definition: A sequence (ay)nen is called P-recursive if it satisfies
a (nontrivial) linear ordinary recurrence equation with polynomial
coefficients:

pr(n)antr + -+ + pr(n)ant1 + po(n)a, = 0, p; € K[n].

31/ 66



Univariate P-recursive Sequences

Definition: A sequence (ay)nen is called P-recursive if it satisfies
a (nontrivial) linear ordinary recurrence equation with polynomial
coefficients:
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Univariate P-recursive Sequences

Definition: A sequence (ay)nen is called P-recursive if it satisfies
a (nontrivial) linear ordinary recurrence equation with polynomial
coefficients:

pr(n)anJrr + o+ pl(n)an+1 + pO(n)an =0, p e ]K[n]
. 7 . . 2
Examples: const., n’, Fibonacci, n!, (7?) H,, ...

Features:

» important and rich class of sequences
(aka "P-finite”, “D-finite", or “holonomic” sequences)

v

closed under many operations ~~ “closure properties”

v

good data structure in symbolic computation:

v

finitely many initial values ~> finite amount of data

v

operations (closure properties) can be executed algorithmically
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Many Sequences are P-Recursive

Multinomial, KelvinBei, HypergeometricPFQ, HarmonicNumber,
HankelH2, CatalanNumber, AngerJ, JacobiP, ChebyshevT,
SphericalBesselY, WhittakerW, Gamma, Subfactorial, BesselJ,
Pochhammer, SphericalHankelH2, Fibonacci, HermiteH, Beta,
SphericalBesselJ, Tribonacci, Struvel, ParabolicCylinderD,
Hypergeometric2F1, BesselK, BetaRegularized, KelvinKer,
PolyGamma, HypergeometricPFQRegularized, SchroderNumber,
SphericalHankelH1, LegendreP, Laguerrel, DelannoyNumber,
BetaRegularized, AppellF1, LegendreQ, Binomial, ChebyshevU,
GammaRegularized, Bessell, HypergeometricU, KelvinKei,
Factorial, Hypergeometric2F1Regularized, GegenbauerC,
KelvinBer, WeberE, HankelH1, HypergeometriclF1Regularized,
StruveH, WhittakerM, HypergeometricOF1, Factorial2,
HypergeometriclF1, LucasL, MotzkinNumber, BesselY, ...
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Closure Properties of P-Recursive Sequences

Theorem (Closure Properties): If a,, and b,, are two P-recursive
sequences, then also the following expressions are P-recursive:
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Closure Properties of P-Recursive Sequences

Theorem (Closure Properties): If a,, and b,, are two P-recursive
sequences, then also the following expressions are P-recursive:

(i) an = b,

(i) a

(iii) >, an (indefinite sum, i.e., sy, s.t. Spy1 — sp = ap)
)

(iv) aentq, where ¢, d € 7.

Proof idea:
(i) linear algebra, analogous to D-finite
(i) also by linear algebra, analogous to (i)

(iii) replace ay by ap+1 — ay, in the recurrence
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Operator Notation

Let S, denote the forward shift operator w.r.t. n, i.e.,

Sn (an) = Gn+1
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Operator Notation

Let S, denote the forward shift operator w.r.t. n, i.e.,
S,g(an) = an, Sn(an) = Qn+1, Sg(an) = ant+2, etc.

Let K(n)(S,) denote the polynomial ring in S, with coeffs in KK(n).
It is not commutative:

Spon=(n+1)-5,.
More general:
Spor(n)=r(n+1)-85, for any r € K(n).
Example: The three-term recurrence for Legendre polynomials
nP,(x) = (2n — )zP,—1(x) — (n — 1) P—2(x)
translates to the operator

(n+2)S2 — (2n + 3)xS, + (n + 1).

34 /66



P-Recursive Sequences and Operators
Hence, P-recursiveness can be stated as follows:

ap is P-recursive <= 3 L € K(n)(S,) \ {0}: L(a,) = 0.
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P-Recursive Sequences and Operators
Hence, P-recursiveness can be stated as follows:

ap is P-recursive <= 3 L € K(n)(S,) \ {0}: L(a,) = 0.
Let L1, Ly € K(n)(S,) annihilate a,, and by, respectively, i.e.,
Li(an) =0 and La(b,) =0.
Then:
» Ly (S, —1) annihilates ) ap.

» L :=lclm(Ly, Lo) annihilates a,, + by,.
(Actually, L annihilates ¢; - a,, + ¢2 - by, for any constants ¢y, ¢2.)
Proof: L = MLy = MLy for certain My, My € K(n)(S,).

» If a,, satisfies L(a,,) = h, for some P-rec h,, then a, is P-rec.

Proof: Assume M (hy,) = 0. Then (M L)(a,) = M(L(ay)) = 0.
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D-Finite and P-Recursive

Theorem: A sequence (a,)nen is P-recursive iff its generating
function f(z) = > 77 ana™ is D-finite.
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f(z) = inanxn_l
n=1
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D-Finite and P-Recursive

Theorem: A sequence (a,)nen is P-recursive iff its generating
function f(z) = > 77 ana™ is D-finite.

Proof: Calculate the derivatives of f:

0 o)
FO(x) = Z(n —i41)aa" T = Z(n +1); appiz™.
n=i rd n=0
Assume f satisfies the LODE ZZpZ 27 fO(2) = 0. Then:
1=0 5=0
S st s =0
1=0 j=0 n=0
r d oo
Z Z Zpi,j(” —j+Diap—jriz" =0
i=0 j=0n=j
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D-Finite and P-Recursive

Theorem: A sequence (a,)nen is P-recursive iff its generating
function f(z) = > 77 ana™ is D-finite.

Proof: Calculate the derivatives of f:

o o
FO2) = (n—i+1iana™" =D (n+1);ana"
n=t r d n=0
Assume f satisfies the LODE ZZpZ 27 fO(2) = 0. Then:
1=0 5=0
S st s =0
1=0 j=0 n=0
r d oo
DD 2 pis(n—j+ Dianjpia" =0
i=0 j=0 n=j
r d
Zzpi,j(” —Jj+1)ian—j1i =0 foralln > d.
i=0 j=0
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g-Case

Consider ¢-difference equations involving the g-shift operation

T — gz, resp.q" — q"“,

37/ 66



g-Case

Consider ¢-difference equations involving the g-shift operation
x> qr, resp. ¢"— ¢"T
or g-differential equations using the ¢-differentiation

() - K

37/ 66



g-Case

Consider ¢-difference equations involving the g-shift operation
x> qr, resp. ¢"— ¢"T
or g-differential equations using the ¢-differentiation

(Y oy 09I
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d _ [flax) = f(2)
(@)q fla) = (¢g— Dz
Examples: n—1
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i=0
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g-Case

Consider ¢-difference equations involving the g-shift operation
x> qr, resp. ¢"— ¢"T
or g-differential equations using the ¢-differentiation

( d )qf(‘r) _ flar) — f(@)

dzx (¢g— Dz
Examples: , ;
> (a;q)n = H(l — aqi), the g-Pochhammer symbol
i=0

(@ Dn

n
» the g-binomial coefficient [ } =
kl,  (¢Dk (6 Dn—k

> g-trigonometric functions: sing(z), Sing(x), cosq(x), Cosy(z)

» g-special functions: g-Bessel functions, g-Legendre polynomials,

q-Gegenbauer polynomials, etc. -



Multivariate D-Finite Functions

Generalize the notions D-finite / P-recursive to several variables
(from now on, everything will just be called “D-finite”):
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Multivariate D-Finite Functions

Generalize the notions D-finite / P-recursive to several variables
(from now on, everything will just be called “D-finite”):

» Continuous case: multivariate functions f(z1,...,xs) where
the x; are continuous variables; must satisfy a (“maximally
overdetermined” ) system of LPDEs with polynomial coeffs.

» Discrete case: multidimensional sequences (an,,...n, )ni,....n.eN
where the n; are discrete variables; must satisfy “enough”
multivariate linear recurrences with polynomial coefficients.

» -Case: multivariate expressions satisfying g-difference
equations or g-differential equations.

» Mixed cases: functions in several continuous and discrete
variables fp, ., (21,...,25).

Examples: Bessel functions, orthogonal polynomials such as the
Legendre polynomials P, (x), etc.
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Multivariate D-Finite Functions

Let fu,,..n.(z1,...,25) be a function in the continuous variables
ZT1i,...,Zs and in the discrete variables nq,...,n,.

39/ 66



Multivariate D-Finite Functions

Let fu,,..n.(z1,...,25) be a function in the continuous variables
ZT1i,...,Zs and in the discrete variables nq,...,n,.

Definition: f is called D-finite if there is a finite set of basis
functions of the form

dn i

— oo Jni+j1,...ne+j (1‘1,...,1‘3)
da?! dz’ e

with é1,...,%s,J1,-..,Jr € N such that any shifted partial
derivative of f (of the above form) can be expressed as a
K(x1,...,25,m1,...,n,)-linear combination of the basis functions.
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Multivariate D-Finite Functions

Let fu,,..n.(z1,...,25) be a function in the continuous variables
ZT1i,...,Zs and in the discrete variables nq,...,n,.

Definition: f is called D-finite if there is a finite set of basis
functions of the form
dh d’s
dxill U dat

nl+j1r~~:”’r+jr (.1‘1, e 7$3)
with é1,...,%s,J1,-..,Jr € N such that any shifted partial

derivative of f (of the above form) can be expressed as a
K(x1,...,25,m1,...,n,)-linear combination of the basis functions.

Again, finitely many initial conditions suffice to specify / fix f.
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Operator Notation

Differential equations/recurrences are translated to skew polynomials.

Noncommutative multiplication:

D,-x=x-D,+1, Spon=mn-5S, + Sy,
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Operator Notation

Differential equations/recurrences are translated to skew polynomials.

Noncommutative multiplication:
D,-x=x-D,+1, Spn=n-5,+ S,
and more generally:

D, -r(z) =r(x) - Dy +7'(x), Sper(n)=r(n+1)-5,.

Notation: arbitrary operator 0,: any of the above

General Ore operator:
Oy-a=oc(a)-0y+d(a)

where o is an automorphism and ¢ is a o-derivation, i.e.,
d(ab) = o(a)o(b) + d(a)bd.
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Operator Algebra

Definition: Such operators form an Ore algebra
O =K(z,y,...)(0z,0y,...),

i.e., multivariate polynomials in the 0's with coefficients being
rational functions in z,y, ..., where K is a field (char(K) = 0).
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Operator Algebra

Definition: Such operators form an Ore algebra
O =K(z,y,...)(0z,0y,...),

i.e., multivariate polynomials in the 0's with coefficients being
rational functions in z,y, ..., where K is a field (char(K) = 0).

In fact, the above notation is a shortcut for
K(x,y,...)[0; 0z,02][0y; 0y, 0y] - - -

Example: The operators that we encountered with the Legendre
polynomials live in the Ore algebra

K(z,n)(Dy, S,) = K(z,n)[Dy; 1, %][Sn; on,0].
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Operator Algebra

Definition: Such operators form an Ore algebra
O =K(z,y,...)(0z,0y,...),

i.e., multivariate polynomials in the 0's with coefficients being
rational functions in z,y, ..., where K is a field (char(K) = 0).

In fact, the above notation is a shortcut for
K(x,y,...)[0; 0z,02][0y; 0y, 0y] - - -

Example: The operators that we encountered with the Legendre
polynomials live in the Ore algebra

K(z,n)(Dy, S,) = K(z,n)[Dy; 1, %][Sn; on,0].
Definition: We define the annihilator of a function f to be the set
Ann@f::{PE(D‘P-f:O}

(it is a left ideal in the ring O).
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(Left) Grobner Bases

Anng f is a left ideal in ©  ~~ Use (left) Grobner bases!
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(Left) Grobner Bases

Anng f is a left ideal in ©  ~~» Use (left) Grobner bases!

Example: The Legendre polynomials P, (x) satisfy

(* = 1)P)/(x) + 2z F;,(z) — n(n+ 1) Pa(z) = 0,
nPp(x) = (2n — 1)zPy—1(z) — (n — 1)Py_a(x).
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The corresponding operators in © = K(x,n)(D,, S,),
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generate Anng (P (z))
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Here is a Grobner basis: — Software demo
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(Left) Grobner Bases

Anng f is a left ideal in ©  ~~ Use (left) Grobner bases!

Example: The Legendre polynomials P, (x) satisfy

(% — 1)P!(x) 4 22 P! (x) — n(n + 1)P,(z) = 0,
nP,(z) = (2n — D)aP,_1(z) — (n — 1) Py_a(x).

The corresponding operators in © = K(x,n)(D,, S,),

(> —1)D2+22D, —n(n+1), (n+2)S%2—(2n+3)xS,+(n+1),

generate Anng (Pn(m)) but do not form a (left) Grébner basis
(note that in this setting the product criterion does not hold)!

Here is a Grobner basis:

(n+1)S,+(1—2?)D, — (n+ 1)z, (2*—1)DZ422D, —n(n+1).
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Multivariate D-Finite Functions
Let O = K(z,y,...)(0z,0y,...) be an Ore algebra.
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Multivariate D-Finite Functions
Let O = K(z,y,...)(0z,0y,...) be an Ore algebra.

Definition: A function f(z,y,...) is D-finite w.r.t. O if
“all its shifts and derivatives”

O f={P f|PcO)}

form a finite-dimensional K(z,y, ... )-vector space
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Multivariate D-Finite Functions
Let O = K(z,y,...)(0z,0y,...) be an Ore algebra.

Definition: A function f(x,y,...) is D-finite w.r.t. O if
“all its shifts and derivatives”

O-f={P-f|PeO}
form a finite-dimensional K(z,y, ... )-vector space:
dimg gy, ) (O/ Annp(f)) < oo.

In other words, if Annp(f) is a zero-dimensional (left) ideal.

“monomials under the
staircase” (dim = 5)
= “holonomic rank”
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Example: Ebisu’'s 2F1 Evaluations

For a = (a, b, c) and a shift vector 3 € Z3 compute a relation
2F1(a + ﬂ; Z) = Rﬁ(a, Z) : gFl(a; Z) + Qg(a,z) : QF{(a; Z)

with rational functions Rg, Qg € K(a, b, ¢, 2).
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Trick: Choose (a,b, ¢, z) such that Qg(a + Bt, z) vanishes.
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Example: Ebisu’'s 2F1 Evaluations

For a = (a, b, c) and a shift vector 3 € Z3 compute a relation
oFi(a+ B;2) = Rg(a, 2) - o F1 (s 2) + Qp(ax, 2) - o F (; 2)

with rational functions Rg, Qg € K(a, b, ¢, 2).

Trick: Choose (a,b, ¢, z) such that Qg(a + Bt, z) vanishes.

Then the above relation reduces to a first-order recurrence for
f(t) =21 (o + Bt; 2).
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For a = (a, b, c) and a shift vector 3 € Z3 compute a relation
oFi(a+ B;2) = Rg(a, 2) - o F1 (s 2) + Qp(ax, 2) - o F (; 2)

with rational functions Rg, Qg € K(a, b, ¢, 2).

Trick: Choose (a,b, ¢, z) such that Qg(a + Bt, z) vanishes.

Then the above relation reduces to a first-order recurrence for
f(t) =21 (o + Bt; 2).

Example: using 3 = (2,2, 1) discover (and prove!) the identity

1.5 1 16\ T(t+2)T(3)
rloropr L2 LY _ (L6 10+5)1(5)
2 1( hattgtty 8> (27) T(t+2)1(2)
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Example: Ebisu’'s 2F1 Evaluations

For a = (a, b, c) and a shift vector 3 € Z3 compute a relation
oFi(a+ B;2) = Rg(a, 2) - o F1 (s 2) + Qp(ax, 2) - o F (; 2)

with rational functions Rg, Qg € K(a, b, ¢, 2).

Trick: Choose (a,b, ¢, z) such that Qg(a + Bt, z) vanishes.

Then the above relation reduces to a first-order recurrence for
f(t) =21 (o + Bt; 2).

Example: using 3 = (2,2, 1) discover (and prove!) the identity

1.5 1 16\ T(t+2)T(3)
rloropr L2 LY _ (L6 10+5)1(5)
2 1( hattgtty 8> (27) T(t+2)1(2)

Ebisu compiled a list of hundreds of such special 9 F; evaluations.
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Closure Properties
General D-finite functions are closed under many operations:
(i) addition, e.g., 2"+ Py(x)
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Closure Properties

General D-finite functions are closed under many operations:

(i) addition,

(ii) multiplication,

(iii) certain substitutions,

(iv) operator application,
)

(v) definite summation,

e.g., =" + Py(x)

e.g. Po()Poi1(x)
e.g., Ponig(Vz2 +1)
eg. B o)

e.g., YoproPolx)t"
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Closure Properties

General D-finite functions are closed under many operations:

(i) addition,
(ii
(iii

) multiplication,
)

(iv) operator application,
)
)

certain substitutions,

(v) definite summation,

(vi

definite integration,

e.g., =" + Py(x)

eg. Pa(r) P (2)
e.g., Ponig(Vz2 +1)
eg. B o)

e.g., YoproPolx)t"
eg., fol P,(z)dx
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Assume the input functions have holonomic rank 71,73, resp.
Then the output has rank at most
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Assume the input functions have holonomic rank 71,73, resp.
Then the output has rank at most
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Closure Properties

General D-finite functions are closed under many operations:

(i) addition, eg., =" + Py(x)

(ii) multiplication, e.g., Po(x)Ppii(x)
(iii) certain substitutions, e.g. P2n+3( 2 + 1)
(iv) operator application, e.g., P, o(x)

(v) definite summation, e.g., YoproPolx)t"
(vi) definite integration, e.g., fol P,(z)dz

Assume the input functions have holonomic rank 71,73, resp.
Then the output has rank at most

(i) r1 4+ 1o

(ii) T1-T9
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Closure Properties

General D-finite functions are closed under many operations:

(i) addition, eg., =" + Py(x)

(ii) multiplication, e.g., Po(x)Ppii(x)
(iii) certain substitutions, e.g. P2n+3( 2 + 1)
(iv) operator application, e.g., P, o(x)

(v) definite summation, e.g., YoproPolx)t"
(vi) definite integration, e.g., fol P,(z)dz

Assume the input functions have holonomic rank 71,73, resp.

Then the output has rank at most
(i) ri+ro
(ii) 71 - 7o
(iii) 71 - d (where d is the degree of the algebraic function)
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Closure Properties

General D-finite functions are closed under many operations:

(i) addition, eg., =" + Py(x)

(ii) multiplication, e.g., Po(x)Ppii(x)
(iii) certain substitutions, e.g. P2n+3( 2 + 1)
(iv) operator application, e.g., P, o(x)

(v) definite summation, e.g., YoproPolx)t"
(vi) definite integration, e.g., fol P,(z)dz

Assume the input functions have holonomic rank 71,73, resp.

Then the output has rank at most
(i) ri+ro
(ii) 71 - 7o
(iii) 71 - d (where d is the degree of the algebraic function)
)

(iv)
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Example: Relativistic Coulomb Integrals
Consider the radial wave functions F' and G of the form

(Fm) s <a1 a2> (Lff_”%@aﬂr))

G(r) 1 B2 L,(fy) (2apr)
n!

yT'(n+2v)

a1 :im«m—y)\/l—l—aiu\/l—a),
Bio=vV1—c((k—v)V1+etp/l—e¢).

where E(r) = a?%/? (2a8r)Y~te=abr

The symbols a, n, B, €, K, i, and v denote physical constants.
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Example: Relativistic Coulomb Integrals
Consider the radial wave functions F' and G of the form

<F<r>> s <a1 om) (Lff_”%@aﬂr))

G(r) B B2 L,(fy) (2apr)
n!

yT'(n+2v)

a1 :im«m—y)\/l—l—aiu\/l—a),
Bio=vV1—c((k—v)V1+etp/l—e¢).

where E(r) = a?%/? (2a8r)" " te~Pr

The symbols a, n, B, €, K, i, and v denote physical constants.

Relativistic Coulomb integrals of the radial wave functions:

/oo rp+2 (F(r)2 + G(T’)Q) dr, /oo rp+2 (F(r)G(T‘)) dr.
0 0
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Example: Relativistic Coulomb Integrals
Consider the radial wave functions F' and G of the form

<F<r>> s <a1 om) (Lff_”%@aﬂr))

G(r) B B2 L,(fy) (2apr)
n!

yT'(n+2v)

a1 :im«m—y)\/l—l—aiu\/l—a),
Bio=vV1—c((k—v)V1+etp/l—e¢).

where E(r) = a?%/? (2a8r)" " te~Pr

The symbols a, n, B, €, K, i, and v denote physical constants.

Relativistic Coulomb integrals of the radial wave functions:

/oo rp+2 (F(r)2 + G(T’)Q) dr, /oo rp+2 (F(r)G(T‘)) dr.
0 0

Task: Compute recurrences w.r.t. p for these integrals.
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Find Certain Operators in Annihilator Ideals

Application: In simulations of the propagation
of electromagnetic waves the following basis
functions (2D case) are defined:

pigla.y) = (L) P 2o 1) Py (24 -1)

employing Legendre and Jacobi polynomials.
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Application: In simulations of the propagation
of electromagnetic waves the following basis
functions (2D case) are defined:

pig(ay) = (=) BP0 e Py (25 -1)

employing Legendre and Jacobi polynomials.

Task: Represent the partial derivatives of ¢; j(x,y) in the basis
(i.e., as linear combinations of shifts of the ¢; j(x,y) itself).
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Find Certain Operators in Annihilator Ideals

of electromagnetic waves the following basis

Application: In simulations of the propagation 7 \)/”
functions (2D case) are defined: =
|

ij(2,y) = (1_x)in(2i+LO)(21'—1)Pi(12—_yx_1)
employing Legendre and Jacobi polynomials. ;=

Task: Represent the partial derivatives of ¢; j(x,y) in the basis
(i.e., as linear combinations of shifts of the ¢; j(x,y) itself).

Ansatz: One needs a relation of the form

> (i) ik (@y) = D bmnliy ) @imjin (@, y)
(kheA (m,n)eB

that is free of 2 and y (and similarly for diy).

47 / 66



Holonomic Functions

Definition: Let f(z1,...,xs) depend only on continuous variables.

Consider the Weyl algebra
W = Klz1,...,25/(Dyy, - - -, Dz,).

Then f is holonomic if the left ideal Annyy (f) has dimension s
(which, by Bernstein's inequality, is the minimum possible).
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Definition: Let f(z1,...,xs) depend only on continuous variables.

Consider the Weyl algebra
W = Klz1,...,25/(Dyy, - - -, Dz,).
Then f is holonomic if the left ideal Annyy (f) has dimension s
(which, by Bernstein's inequality, is the minimum possible).
Differently stated: f is holonomic if for any (s — 1)-subset
Ec{zi,...,55,Dp,..., Dy}, |El=s-1,

there exists a nonzero element in Annyy (f) that is free of all
generators in F.
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Holonomic Functions

Definition: Let f(z1,...,xs) depend only on continuous variables.

Consider the Weyl algebra
W = Klz1,...,25/(Dyy, - - -, Dz,).
Then f is holonomic if the left ideal Annyy (f) has dimension s
(which, by Bernstein's inequality, is the minimum possible).
Differently stated: f is holonomic if for any (s — 1)-subset
Ec{zi,...,55,Dp,..., Dy}, |El=s-1,
there exists a nonzero element in Annyy (f) that is free of all

generators in F.

Sequences: ay, .. n, is holonomic if its generating function

s

oo oo
— ni n
A(a;l,...,azs) = E E Qny,...;ns L1 ...mss

n1=0 ns=0

is holonomic in the above sense.
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D-Finite and Holonomic Functions

Theorem: The function f(z1,...,xs) is holonomic if and only if
it is D-finite.
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Theorem: The function f(z1,...,xs) is holonomic if and only if
it is D-finite.

— This equivalence holds only in the continuous case!
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D-Finite and Holonomic Functions
Theorem: The function f(z1,...,xs) is holonomic if and only if
it is D-finite.
— This equivalence holds only in the continuous case!

Example: The sequence is D-finite but not holonomic.
n

1
2+k2
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D-Finite and Holonomic Functions

Theorem: The function f(z1,...,xs) is holonomic if and only if
it is D-finite.

— This equivalence holds only in the continuous case!

Example: The sequence is D-finite but not holonomic.
n

1
2 + k?
Application: Combine the two notions:

» Use D-finiteness for computations.

» Use holonomy for justifications (existence, termination).
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Principia Holonomica

1. Functions and sequences are represented by their
annihilating left ideals (and initial values).
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3. Integrals and sums are treated by the method of
creative telescoping.
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Principia Holonomica

. Functions and sequences are represented by their
annihilating left ideals (and initial values).

. An annihilating ideal is given by its Grobner basis
(i.e., a finite set of generators that allows us to
decide ideal membership and equality of ideals).

. Integrals and sums are treated by the method of
creative telescoping.

. The output is always given as an annihilating ideal,
not as a closed form.
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The Holonomic Systems Approach

Journal of C¢ i and Applied ics 32 (1990) 321-368 321
North-Holland

A holonomic systems approach to special
functions identities *

Doron ZEILBERGER
Department of Mathematics, Temple University, Philadelphia, PA 19122, USA

Received 14 November 1989
Abstract: We observe that many special functions are solutions of so-called holonomic systems. Bernstein’s deep theory
of holonomic systems is then invoked to show that any identity involving sums and integrals of products of these

special functions can be verified in a finite number of steps. This is partially substantiated by an algorithm that proves
terminating hypergeometric scrics identities, and that is given both in English and in MAPLE.

> seminal paper by Doron Zeilberger in 1990

.

=) GE)=C)

WHO YOU GONNA CaLLy
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The Holonomic Systems Approach

Journal of C¢ i and Applied ics 32 (1990) 321-368 321
North-Holland

A holonomic systems approach to special
functions identities *

Doron ZEILBERGER
Department of Mathematics, Temple University, Philadelphia, PA 19122, USA

Received 14 November 1989
Abstract: We observe that many special functions are solutions of so-called holonomic systems. Bernstein’s deep theory
of holonomic systems is then invoked to show that any identity involving sums and integrals of products of these

special functions can be verified in a finite number of steps. This is partially substantiated by an algorithm that proves
terminating hypergeometric scrics identities, and that is given both in English and in MAPLE.

> seminal paper by Doron Zeilberger in 1990

y

u

> the proposed algorithm is based on elimination
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The Holonomic Systems Approach

Journal of C¢ i and Applied ics 32 (1990) 321-368 321
North-Holland

A holonomic systems approach to special i
functions identities *

Doron ZEILBERGER
Department of Mathematics, Temple University, Philadelphia, PA 19122, USA )

Received 14 November 1989 =

Abstract: We observe that many special functions are solutions of so-called holonomic systems. Bernstein’s deep theory G )= (),.),
of holonomic systems is then invoked to show that any identity involving sums and integrals of products of these ) L7360

special functions can be verified in a finite number of steps. This is partially substantiated by an algorithm that proves WHO YOU GONNA CaLL7

terminating hypergeometric series identities, and that is given both in English and in MAPLE. d 4 " . i
> seminal paper by Doron Zeilberger in 1990

> the proposed algorithm is based on elimination

> therefore it is called the “slow algorithm”
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Creative Telescoping for D-finite Sequences
Let f(n, k) be D-finite, given by Anng(f), O = K(n, k){(S,, Sk)-
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We aim at computing a creative telescoping relation of the form:

pr(n)f(n+rk)+ - +po(n)fin k) =gn,k+1)—g(n,k)
= (Sk - 1) : g(”? k)
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Creative Telescoping for D-finite Sequences
Let f(n, k) be D-finite, given by Anng(f), O = K(n, k){(S,, Sk)-
We aim at computing a creative telescoping relation of the form:
= (9% —1)-g(n, k).
Where should we look for g(n, k)?
Note that there are “trivial” solutions like:
k—1

g(n, k) = Z (pr(n)f(n + Tai) +o +p0(n)f(nai))'

1=0
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Creative Telescoping for D-finite Sequences
Let f(n, k) be D-finite, given by Anng(f), O = K(n, k){(S,, Sk)-

We aim at computing a creative telescoping relation of the form:

pr(n)f(n+rk)+ - +po(n)fin k) =gn,k+1)—g(n,k)
= (Sk - 1) : g(”? k)

Where should we look for g(n, k)?

Note that there are “trivial” solutions like:
k—1

g(n, k) = Z (pr(n)f(n + Tai) +o +p0(n)f(nai))'

1=0

A reasonable choice for where to search for g is O - f.
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Creative Telescoping for D-finite Sequences
Let f(n, k) be D-finite, given by Anng(f), O = K(n, k){(S,, Sk)-

We aim at computing a creative telescoping relation of the form:

pr(n)f(n+rk)+ - +po(n)fin k) =gn,k+1)—g(n,k)
= (Sk - 1) : g(”? k)

Where should we look for g(n, k)?

Note that there are “trivial” solutions like:
k—1

g(n, k) = Z (pr(n)f(n + Tai) +o +p0(n)f(nai))'

i=0
A reasonable choice for where to search for g is O - f.
Task: find P(n,S,) = py(n)S, +---+po(n) and @ € O such that
(P—(S—1)Q) f=0
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Creative Telescoping for D-finite Sequences
Let f(n, k) be D-finite, given by Anng(f), O = K(n, k){(S,, Sk)-

We aim at computing a creative telescoping relation of the form:

pr(n)f(n+rk)+ - +po(n)fin k) =gn,k+1)—g(n,k)
= (Sk - 1) : g(”? k)

Where should we look for g(n, k)?

Note that there are “trivial” solutions like:
k—1

g(n, k) = Z (pr(n)f(n + Tai) +o —|—p0(n)f(n,i)).

i=0
A reasonable choice for where to search for g is O - f.

Task: find P(n,S,) = p,(n)S; +---+po(n) and Q € O such that
(P=(S—1)Q)-f=0 <= P—(S—1Q e Amp(f).
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Creative Telescoping for D-finite Functions

Let f(x,y) be D-finite, given by Annp(f), O = K(z,y)(Ds, D).
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Creative Telescoping for D-finite Functions

Let f(x,y) be D-finite, given by Annp(f), O = K(z,y)(Ds, D).

We aim at computing a creative telescoping relation of the form:

pr(@) g5 (2, y) + -+ o) f2,y) = L gz, y)

A reasonable choice for where to search for g is O - f.
Task: find P(x,D,) = pr(z)D} + - -+ po(x) and Q € O such that

(P-DyQ) - f=0 <= P-D,Q e Amp(f).
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Example for Creative Telescoping

0 yy—l-l
Consider the int | F(z) := ——J) dy.
onsider the integral F'(z) /0 21 (xy) dy

:If(l’7y)
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Example for Creative Telescoping

0 yy—l-l
Consider the int | F(z) := ——J) dy.
onsider the integral F'(z) /0 2T (xy) dy

::f(xvy)
The function f is D-finite with holonomic rank 2 (Basis: f, d%f):

{(y3+y)Dy—x(y2+1)Dx—yy2—V+y2—1, 2?D? 42D, +2%y* —1?}
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Example for Creative Telescoping

0 yy—l-l
Consider the int | F(z) := ——J) dy.
onsider the integral F'(z) /0 2T (xy) dy

::f(xvy)
The function f is D-finite with holonomic rank 2 (Basis: f, d%f):

{(v*+y)Dy—2(y*+1) Dy —vy* —v+y* —1, 22 D2+ Dy +2*y* —1*}
Creative telescoping delivers:
P =2’D? +xD, — 2* — 1*
T (y2 + 1) vyt +v
M T p, 2T
Yy Yy

Q=
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Example for Creative Telescoping

0 yy—l-l
Consider the int | F(z) := ——J) dy.
onsider the integral F'(z) /0 2T (xy) dy

::f(xvy)
The function f is D-finite with holonomic rank 2 (Basis: f, d%f):

{(v*+y)Dy—2(y*+1) Dy —vy* —v+y* —1, 22 D2+ Dy +2*y* —1*}
Creative telescoping delivers:
P =2’D? +xD, — 2* — 1*

:c(y2+1) vy? +v

Q=
Yy

g9(z,y) = Q- f = y" (zyJ,(xy) — v, (2y))

D, —
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Example for Creative Telescoping

0 yy—l-l
Consider the int | F(z) := ——J) dy.
onsider the integral F'(z) /0 i1 (xy) dy

::f(xvy)
The function f is D-finite with holonomic rank 2 (Basis: f, d%f):

{(v*+y)Dy—2(y*+1) Dy —vy* —v+y* —1, 22 D2+ Dy +2*y* —1*}
Creative telescoping delivers:
P =2’D? +xD, — 2* — 1*

:c(y2+1) vy? +v

Q=
Yy
9(w,y) = Q- f = y" (zyJ, (xy) — vJ,(ay))
Integrating (P — D,Q) - f=0,ie, P-f= dy g(z,y), yields

D, —

WP (@) + aF (2) = (@ + )P (@) = g(o.y)]|_ =0,
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Example for Creative Telescoping

0 yy—l-l
Consider the int | F(z) := ——J) dy.
onsider the integral F'(z) /0 i1 (xy) dy

::f(xvy)
The function f is D-finite with holonomic rank 2 (Basis: f, d%f):

{(v*+y)Dy—2(y*+1) Dy —vy* —v+y* —1, 22 D2+ Dy +2*y* —1*}
Creative telescoping delivers:
P =2’D? +xD, — 2* — 1*

:c(y2+1) vy? +v

Q=
Yy
9(w,y) = Q- f = y" (zyJ, (xy) — vJ,(ay))
Integrating (P — D,Q) - f=0,ie, P-f= dy g(z,y), yields

D, —

PF(x) + 2F (@) - (P + 1)) = glo,y)||_ =0,
y:
Indeed, we have F(z) = K, ().
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Computing CT Relations

Idea: Make an ansatz for the telescoper P and the certificate ().
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Idea: Make an ansatz for the telescoper P and the certificate ().

Telescoper: Fix an integer r and set

P= sz(:c)D; with unknown coefficients p; € K(x).
=0

Certificate:
Let 4 denote the set of monomials under the stairs of a Grobner
basis for Anng (f), or any other vector space basis of O/ Anng(f).
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Computing CT Relations

Idea: Make an ansatz for the telescoper P and the certificate ().

Telescoper: Fix an integer r and set

P= sz(x)D; with unknown coefficients p; € K(z).
=0

Certificate:
Let 4 denote the set of monomials under the stairs of a Grobner
basis for Anng (f), or any other vector space basis of O/ Anng(f).

Since @ € O/ Anng(f), we can set

Q= un(x,y) u with unknowns ¢, € K(z,y).
uci
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Chyzak’s Algorithm
Putting things together:

P-D,Q= Zpl D Dquu$y

uel
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P-D,Q= Zpl D Dquuxy

uel

_ Zpi(x)pg = (qu(@,9)Dy + 4 qu(z,y)) u
1=0

uell
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Chyzak’s Algorithm
Putting things together:

P — DQ sz D DyZquy

uell
= Zpi(m)Df; > (qul@,y)Dy + f-qu(z,y)) u
=0 uell

Since we want P — Dy@Q € Annp(f) we reduce the above
expression with a Grobner basis of Anng(f) and equate the
(Dy, Dy)-coefficients to zero.
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This yields a coupled first-order linear system of differential
equations for the ¢,'s with parameters py, . ..,p, € K(x).
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= Zpi(m)Df; > (qul@,y)Dy + f-qu(z,y)) u
=0 uell

Since we want P — Dy@Q € Annp(f) we reduce the above
expression with a Grobner basis of Anng(f) and equate the
(Dy, Dy)-coefficients to zero.

This yields a coupled first-order linear system of differential
equations for the ¢,'s with parameters py, . ..,p, € K(x).
—— There are algorithms to find rational solutions of such systems.
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Chyzak’s Algorithm
Putting things together:

P — DQ sz D DyZquy

uell

= Zpi(m)Df; > (qul@,y)Dy + f-qu(z,y)) u
1=0 uci

Since we want P — Dy@Q € Annp(f) we reduce the above

expression with a Grobner basis of Anng(f) and equate the

(Dy, Dy)-coefficients to zero.

This yields a coupled first-order linear system of differential
equations for the ¢,'s with parameters py, . ..,p, € K(x).
—— There are algorithms to find rational solutions of such systems.

Finally: loop over the (a priori) unknown order 7 of the telescoper.

— This is Chyzak's algorithm (analogously in other Ore algebras).
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Creative Telescoping in Full Generality

In general, a creative telescoping operator has the form
P(mv a:l:) + AlQl(xa y, ati 6y) +--+ AQO(wv Yy, ail:) ay)

where A; = S, — 1 or A; = D,, (depending on the problem).
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Creative Telescoping in Full Generality

In general, a creative telescoping operator has the form
P(:I), a:l:) + AlQl(xu y, awv 6y) +--+ AQO(wv Yy, 8:(:) ay)
where A; = S, — 1 or A; = D,, (depending on the problem).

» Corresponds to an m-fold summation/integration problem.
> Yy =1vyi,...,Ym are the summation/integration variables.

> x = x1,...,x; are the surviving parameters.

v

P(x, 8z) is called the telescoper.
The Q;i(x,y, Oz, Oy) are called the certificates.

v

v

The certificates certify the correctness of the telescoper.
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Ansatz with Specific Denominators
For finding CT operators, we proposed an ansatz of the form

Y rale 8"‘+ZA PR

uesl ’j :B y

with unknowns p, and g; ; g, and with specific denominators d; ;.
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Ansatz with Specific Denominators
For finding CT operators, we proposed an ansatz of the form

2_pal 8"‘+ZA D Tty

uesl

ZB qm gz
dij(x,y)

with unknowns p, and g; ; g, and with specific denominators d; ;.

> input: a left Grobner basis G of Anng(f)
» denote by 4 the (finitely many) monomials under its stairs
» reduce the ansatz with G and equate coefficients to zero
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Ansatz with Specific Denominators
For finding CT operators, we proposed an ansatz of the form

2 q,
S ralerog + 30y OO
u€esl ’j :B y
with unknowns p, and g; ; g, and with specific denominators d; ;.
> input: a left Grobner basis G of Anng(f)

denote by 4l the (finitely many) monomials under its stairs
reduce the ansatz with G and equate coefficients to zero

v

v

new: coefficient comparison w.r.t. y
this leads to a linear system of equations over K(x)

v

v
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Ansatz with Specific Denominators

For finding CT operators, we proposed an ansatz of the form

Y rale 80‘+ZA PR
dij(z,y)

uesl

with unknowns p, and g; ; g, and with specific denominators d; ;.

>

>

>

>

input: a left Grobner basis G of Anng(f)

denote by 4l the (finitely many) monomials under its stairs
reduce the ansatz with G and equate coefficients to zero
new: coefficient comparison w.r.t. y

this leads to a linear system of equations over K(x)

the denominators d; ; can be roughly predicted from the
leading coefficients of the Grobner basis G
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Ansatz with Specific Denominators

For finding CT operators, we proposed an ansatz of the form

Y rale 80‘+ZA PR
dij(z,y)

uesl

with unknowns p, and g; ; g, and with specific denominators d; ;.

>

>

>

>

input: a left Grobner basis G of Anng(f)

denote by 4l the (finitely many) monomials under its stairs
reduce the ansatz with G and equate coefficients to zero
new: coefficient comparison w.r.t. y

this leads to a linear system of equations over K(x)

the denominators d; ; can be roughly predicted from the
leading coefficients of the Grobner basis G

implemented in HolonomicFunctions (Mathematica)
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Application: Special Function Identities

Journal of Computational and Applied Mathematics 32 (1990) 321368 21
North-Holland

A holonomic systems approach to special
functions identities *

Doron ZEILBERGER
Department of Mathematics, Temple University, Philadelphia, PA 19122, USA

Received 14 November 1989

Abstract: We observe that many special functions are solutions of so-called holonomic systems. Bernstein’s deep theory i

of holonomic systems is then invoked to show that any identity involving sums and integrals of products of these
special functions can be verified in a finite number of steps. This is partially substantiated by an algorithm that proves
terminating hypergeometric series identities, and that is given both in English and in MAPLE.
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Table of Integrals by Gradshteyn and Ryzhik
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7.32 Combinations of Gegenbauer polynomials C¥(x) and elementary functions
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Table of Integrals by Gradshteyn and Ryzhik
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Table of Integrals by Gradshteyn and Ryzhik

%%@%%

Gegenbauer Gamma
polynomials C’,(La)(a:) function I'(x)

l

1 1 1—v n
_ 2\ z iax o iy w2 L I‘(2u+’n) —v
-[1 (1-2% &' O (z) dz = S a ¥ Jugn(a)




%&%ﬁ

Gegenbauer Gamma Bessel
polynomials C{*(z)  function T'(z) function J,(z)

l

s = 21 D(2v 4 n)
_ 2\VTz iax ~w - 1 4 —v
[1 (1-2% €' CY (z) dw T () a ¥ Jugn(a)
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Table of Integrals by Gradshteyn and Ryzhik

——"y
(i |

Gegenbauer Gamma Bessel
polynomials C\*)(z)  function I'(z) function J,(z)
2 v—1 a2V T(2v +n)
[ -y e oy = BT T g )

Let's prove this identity with creative telescoping. ..
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Von Doron Zeilberger &

An Mich <christoph.koutschan@ricam.oeaw.ac.at> @

Kopie (CC) Alberto Maspero <amaspero@sissa.it> @, Mark van Hoeij <hoeij@m.

Betreff Challenge to your Holonomic package

Dear Christoph,
Hope all is well.

| recently wrote a paper

front:
hitps:/sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/bcmv. html
pdf:
http://iwww.math.rutgers.edu/~zeilberg/mamarim/mamarimPDF/bcmvV/2.pdf

where | claimed that your amazing package can routinely prove
that the unigue solution of the sequence defined in

procedure DxH(p,x) is the same as the

unigue sequence defined in DxR(p,x)

and similarly for CxH(p,x) and CxR(p,x)

hitps://sites.math.rutgers.edu/~zeilberg/tokhniot/BCMV. txt

(i) Was | right?
(ii) If it is not too much trouble, can you actually do it.

In version 1 it was not so important, since | did not claim a fully
rigorous proof to conj. (4) in the paper, but now that Mark van Hoeij
was able to solve the recurrence that would imply a rigorous proof,
just to appease the god of rigorous mathematics, can you do it?

Best wishes
Doron
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A Problem from Doron Zeilberger
Let D,(z) be defined as follows:

Dy (z) = 21=2) (%(x R =R CLES VR %)
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A Problem from Doron Zeilberger
Let D,(z) be defined as follows:

Dy (z) = 20=2) (%(x . N YO ) I %)

x3—z

Dy(z) = Ri(p,x +ZR2 i,p,x +ZR3(i,P,9€)Di(-’L‘)

_ _12p%(p—x) (2’ —=)(pt=) 27410 _z¥—x _ 13pz
Ri(p,x) = x3—x—p3+p(5(p2+pz+a:2 1) + 6p 9

282 29
) +R)
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A Problem from Doron Zeilberger
Let D,(z) be defined as follows:

Di(z) = 12(1—x) (%($_$3)_ MJF%(mz_l)_mszL%)

Dp(z) = Ri(p,x) + ZRQ i,p,x) + ZRg(i,p,w)Di(-’L‘)
12 —x (z°—z)(p+x) 274 32—z 13pz
Ri(p,x) = ac3—pa:(—pp3—&-)p(5(p2+pz+1;2—1) + p T 6p S;D
22
. 14442 p(p—i)(i—x) (p—x) 13z (p—1) 134
R2(Z7p> ) @—D)z(z+1)(z—1) (@ —z—p3+p) (— 5 _ 927
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A Problem from Doron Zeilberger
Let D,(z) be defined as follows:

_ 12(1-2) (%(m_LEs)_MJF%(xz_l)_l%sz%)

p
Dy(x) = Ri(p, ® +ZRz Oy +ZR3(i,p,9€)Di(w‘)

_ 12p%(p—2) (z°—2)(p+x) 274p _ x—x _ 13pz
Ri(p,x) = mS—m—p3+p(5(p2+pz+a:2—1) + 6p 9

282 29
9 +R)

. 1447 i)(i—z)(p—x) 13z (p—1i) 134,
Ro(i,p,r) = (@—1)z (m_f%o(x)(l)(zsfx P5+p) <_ 50 _Tp

(2% ) (p+) 38 5(a’—z) | 49
+ 5(p2+pxr+x2—1) + 115) + 18p + E)

RS(i7p> ) - (wlz?((ﬁfsj)z(ppg?rp)
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282 29
9 +R)

. 1447 i)(i—z)(p—x) 13z (p—1i) 134,
Ro(i,p,r) = (@—1)z (m_f%o(x)(l)(zsfx P5+p) <_ 50 _Tp

(2% ) (p+) 38 5(a’—z) | 49
+ 5(p2+pxr+x2—1) + 115) + 18p + E)

RS(i7p> ) - (wlz?((ﬁfsj)z(ppg?rp)

Task: Show that D,(z) satisfies the second-order recurrence:
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A Problem from Doron Zeilberger

Task: Show that D,(z) satisfies the second-order recurrence:

P+ Dp+2)(p—z+1)(p? + zp + 22 — 1)(100p° — 26xp® + 1350p8 — 3122p” +
7800p7 — 251x3p8 — 1309xp8 + 25200p° + 5224p5 — 225923p® — 52:2p5 — 1953xp® +
49800p° + 390z4p? — 8231a3p* — 39022p? + 1601xp? + 61650p* + 202253 +
74024 p3 — 1550123p3 — 94222 p? 4 9417xp3 + 46700p> — 2627 p2 +90926p2 + 5225p2 —
180z4p? — 1591623 p? — 72922p? + 12874xp? +19800p? — 78x7 p+131326p 4+ 15625p —
1482z4p — 8490x3p + 169x2p + 7788xzp + 3600p + 32° — 61x7 + 60626 + 11325 —
900z* — 185523 + 29422 4 1800x) Dy () — 2p(p + 2)(100p*2 — 26xp'! + 1200p'! —
286xp0 4 5900p0 — 35123p° — 897xp? + 15000p° + 7824p® — 315923 p8 — 78x2pS +
507zp® 4+19500p8 + 62424 p” — 1173023p” — 624a2p” +9312xp” 4+ 7200p7 +45320p% +
1122248 — 2314223p% — 157522p% + 23688xp® — 13900p8 — 782 7p5 + 2718x5p° +
156z8p5 — 2004x4p5 — 2603723p® — T14a2p® + 29027xp5 — 21000p® — 39027 p* +
6642:5p* + 780x°p? — 10086x4p* — 16701x3p? + 3444x2p* 4 18703zp* — 11600p* —
19929p3 — 18327 p3 + 844825p3 + 96325p3 — 15336x4p® — 574123p? + 6888x2p> +
5784xp3 — 2400p3 + 26210p2 — 5972%p2 — 7828p2 + 101127 p? + 565525p2 —
2312°%p2 — 10868z p? — 77123p? + 526512p2 + 588xp? + 52210p — 38029p — 15628p +
8282 7p 4 166228p — 516x%p — 3064x*p + 6823p + 150622p — 3212 + 12210 4- 182° —
1828 — 5427 + 1225 + 5425 — 32* — 182%)Dpy1(z) + p(p+ 1)(p —z + 1)(p? + 2p +
4p + 2% + 22 + 3)(100p° — 262p® + 450p% — 104ap” + 600p” — 25123p% + 1472p8 +
52x4p® — 75323p® — 5222p® 4 805zp® — 600p°® + 130z*p* — 70123p* — 130z2p* +
831xp? — 450p* + 20228p3 — 300243 — 14723p3 + 9822p3 + 1992p3 — 100p® —
26x7p2 + 3032%p2 + 522°p2 — 58024 p? + 26a3p2 + 277x2p? — 52xp2 — 262 p +
1012%p + 522°p — 2022%p — 2623p + 10122p + 32° — 927 4 92° — 323)Dpya(z) =0

63 / 66



Hermite Reduction
Let f € K(z).

Goal: f = ¢ + h/b* where b* is squarefree and deg(h) < deg(b*)
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Hermite Reduction
Let f € K(z). Write its squarefree partial fraction decomposition:

a a a2 Qm . 2 m
= — = _ _ “e _— thb:bb"‘b .
f b a0+b1+b§+ +bm wi 105 m
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Hermite Reduction
Let f € K(z). Write its squarefree partial fraction decomposition:

f:——ag—i—b——i—bQ—i— +Z% with b = byb2 - - ™.

m

Now let a,b € K[z] with b squarefree and deg(a) < deg(b™).

@
bm
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Hermite Reduction
Let f € K(z). Write its squarefree partial fraction decomposition:

f:——ag—i—b——i—bQ—i— +Z% with b = byb2 - - ™.

m

Now let a,b € K[z] with b squarefree and deg(a) < deg(b™).

/
LA Z% (EEA: ub + o' = a)

_ Uy, ((1 — m)_lv)/ C(L=m)~W

bmfl

(IBP: (521) = 555 + (1 - m) )

Goal: f = ¢ + h/b* where b* is squarefree and deg(h) < deg(b*).
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Hermite Reduction
Let f € K(z). Write its squarefree partial fraction decomposition:

f:——ag—i—b——i—bQ—i— +Z% with b = byb2 - - ™.
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Hermite Reduction
Let f € K(z). Write its squarefree partial fraction decomposition:

f:——ag—i—b——i—bQ—i— +Z% with b = byb2 - - ™.

m

Now let a,b € K[z] with b squarefree and deg(a) < deg(b™).

/
LA Z% (EEA: ub + o' = a)

_ Uy, ((1 — m)_lv)/ C(L=m)~W

bmfl
(IBP: (5ir)' = gimr + (1 —m) k)
<(1—m)_1v>/ u—(1—m) 1
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bmfl

P\ q .
=...= (W) + 5 with p, ¢ € K|z], deg(q) < deg(b)
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Hermite Reduction
Let f € K(z). Write its squarefree partial fraction decomposition:

f:——ag—i—b——i—bQ—i— +Z% with b = byb2 - - ™.

m

Now let a,b € K[z] with b squarefree and deg(a) < deg(b™).

/
LA Z% (EEA: ub + o' = a)

_ Uy, ((1 — m)_lv)/ C(L=m)~W

bmfl
(IBP: (1) = pr + (1 —m) )
_ <(1—m)_1”>/ puzomT

bmfl

P\ g .
=...= (W) + 5 with p, ¢ € K|z], deg(q) < deg(b)

Goal: f =g + h/b* where b* = bibs - - b, and deg(h) < deg(b*).
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Reduction-Based Telescoping

» Typically, the certificate @) is much larger than the telescoper.
» Often @ is not needed (natural boundaries / closed contour).
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Reduction-Based Telescoping

» Typically, the certificate @) is much larger than the telescoper.
» Often @ is not needed (natural boundaries / closed contour).

Differential case: define a reduction procedure p: F — F s.t.
» for each f € F there is g € F such that f — p(f) = ¢/,
» p(f) =0if and only if f is integrable.

Example: Hermite reduction for (univariate) rational functions.

To compute a telescoper for ff f(x,y) dy, apply this reduction p
to the successive derivatives of the integrand f:

f=g+p(f) =go+ ho,
Lf=gi+p(Lf) =g+,
2 2
Lf=g9+po(L5f)=dh+ho, ...
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Reduction-Based Telescoping

» Typically, the certificate @) is much larger than the telescoper.

» Often @ is not needed (natural boundaries / closed contour).

Differential case: define a reduction procedure p: F — F s.t.
» for each f € F there is g € F such that f — p(f) = ¢/,
» p(f) =0if and only if f is integrable.

Example: Hermite reduction for (univariate) rational functions.

To compute a telescoper for ff f(x,y) dy, apply this reduction p
to the successive derivatives of the integrand f:

f=g0+r(f) =30+ ho,
sl =+ o(Ef) =g+ h,
L =gt o(Lf) =gy +ha ...
If the h; live in a finite-dimensional KK (x)-vector space, then there
exists a nontrivial linear combination pohg + - - - 4+ p-h, = 0.
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Reduction-Based Telescoping

» Typically, the certificate @) is much larger than the telescoper.

» Often @ is not needed (natural boundaries / closed contour).

Differential case: define a reduction procedure p: F — F s.t.
» for each f € F there is g € F such that f — p(f) = ¢/,
» p(f) =0if and only if f is integrable.

Example: Hermite reduction for (univariate) rational functions.

To compute a telescoper for ff f(x,y) dy, apply this reduction p
to the successive derivatives of the integrand f:

f=g0+r(f) =30+ ho,
sl =+ o(Ef) =g+ h,
L =gt o(Lf) =gy +ha ...
If the h; live in a finite-dimensional KK (x)-vector space, then there
exists a nontrivial linear combination pohg + - - - 4+ p-h, = 0.

— Hence, the desired telescoper is pg + p1 Dy + -+ -+ pr Dy

65 / 66



Reduction-Based Creative Telescoping

» Bostan, Chen, Chyzak, Li (2010): integrating rat. functions
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Reduction-Based Creative Telescoping

Bostan, Chen, Chyzak, Li (2010): integrating rat. functions
Chen, Singer (2012): (g-) summation of rational functions
Bostan, Lairez, Salvy (2013, 2015): multiv. rational functions
Bostan, Chen, Chyzak, Li, Xin (2013): hyperexp. functions
Chen, Huang, Kauers, Li (2015, 2016): hypergeometric terms
Bostan, Dumont, Salvy (2016): hypergeom.-hyperexp. terms
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Reduction-Based Creative Telescoping

Bostan, Chen, Chyzak, Li (2010): integrating rat. functions
Chen,