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NIST call for proposals

Post-Quantum Cryptography standardization process, 2017–2022–
▶ KEM + Signature.
▶ based on mathematical problems resistant to quantum computer.
▶ 4 Rounds since 2017.
▶ first selection for standardization in 07/2022:

▶ 1 lattice-based KEM;
▶ 2 lattice-based signatures;
▶ 1 Hash-based signature.

▶ 3 code-based KEMs in the 4th Round.
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NIST call for Digital Signatures

Additional Digital Signature Schemes
▶ June 1, 2023. First Round ongoing.
▶ 40 submissions, with:

▶ multivariate cryptography (12).
▶ code-based cryptography (11).
▶ Symmetric-based cryptography (4).
▶ Lattice-based cryptography (7).
▶ Other (6).

Algebraic approaches are at the core of security assessment for multivariate and
code-based cryptography.
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Algebraic Modeling

Principle: write a Polynomial System
f1(x1, . . . ,xn)
...

fm(x1, . . . ,xn)

, deg(fi) = di, fi ∈ Fq[x1, . . . ,xn].

such that finding the set of solutions gives (part of) the secret:

V(f1, . . . , fm) =
{
(x1, . . . ,xn) ∈ Fq

n : fi(x1, . . . ,xn) = 0,∀i ∈ {1..m}
}

▶ Key-recovery attack.
▶ Message-recovery attack.
▶ Signature forgery attack.
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Relations between Solutions and Secrets

Ideally: any solution is related to the secret!

▶ Otherwise, we have to deal with spurious solutions → change the modeling!
▶ Only solutions in Fq

▶ Combinatorial approach = try “all possible solutions” efficiently (often solve a
linear system).

▶ Algebraic approach: solve an algebraic system with algebraic constraints xq
i −xi!

▶ Combinatorial vs Algebraic approaches: → hybrid approach (better over a Small
finite field).

▶ Large prime field?

▶ Cryptographic applications: always a finite number of solutions (one of them is
enough).

▶ Often 0 or 1 solution, but sometimes m solutions over Fqm .
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Multivariate public-key cryptography

Signature forgery (or Message-recovery attack)
▶ Public key: a polynomial system, indistinguishable from a random system.

f1(x1, . . . ,xn)
...

fm(x1, . . . ,xn)

, deg(fi) = 2, fi ∈ Fq[x1, . . . ,xn].

▶ (y1, . . . ,ym) hash of the message to be signed (or ciphertext).
▶ signature (or cleartext) = (x1, . . . ,xn) such that (y1, . . . ,ym) = (f1(x), . . . , fm(x))
▶ Secret key: a trapdoor to solve the system efficiently = Hash and sign.

▶ other approach: Zero-knowledge proof of knowledge.
How hard is it to solve a random system of algebraic equations?
How hard is it to solve a trapdoored system of algebraic equations?
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Algebraic Modeling

Solving the algebraic system using Gröbner bases (object)
▶ A particular basis of the ideal

I = ⟨f1, . . . , fm⟩=

{
m

∑
i=1

gifi : gi ∈ Fq[x1, . . . ,xn]

}

that solves the ideal-membership problem: f
?
∈ I.

▶ Depends on the choice of a monomial ordering.
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Monomial ordering examples

x1 x3 1 x3
3 x1x3 x2

2 x2
1

Lexicographical ordering x1 > · · ·> xn

xα1
1 . . .xαn

n > xβ1
1 . . .xβn

n iff αj = βj ∀j < i, and αi > βi.

x2
1 > x1x3 > x1 > x2

2 > x3
3 > x3 > 1

Graded Reverse Lexicographical ordering x1 > · · ·> xn

xα1
1 . . .xαn

n > xβ1
1 . . .xβn

n iff

{
deg(xα)> deg(xβ )

or αj = βj ∀j > i, and αi < βi.

x3
3 > x2

1 > x2
2 > x1x3 > x1 > x3 > 1
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Solving the system from a Gröbner basis

Different monomial orderings have different properties
▶ the lex order (Lexicographical): in Shape Position, for a zero-dimension ideal,

the (reduced) lex basis is 

x1− g1(xn),
x2− g2(xn),

...
xn−1− gn−1(xn),

gn(xn),

with deg(gn) = D the number of solutions to the system.
▶ the grevlex order (Graded Reverse Lexicographical): usually the best one w.r.t.

the complexity.
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Systems with 0 or 1 solution

The (reduced) grevlex and lex bases are the same:
▶ If the system has no solution:

⟨1⟩.

▶ If the system has 1 solution: 
x1 −a1,

...

xn −an,

where (a1, . . . ,an) ∈ Fn
q is the solution.
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Change of ordering

For zero-dimensional systems:
▶ The FGLM (J.-C. Faugère, Gianni, Daniel Lazard, and Mora (1993)) Algorithm

performs a change of ordering in complexity

O(nD3),

n number of variables, n → ∞, D degree of the ideal (number of solutions).
▶ Complexity for grevlex to lex (Shape position) (J.-C. Faugère, Gaudry, Huot, and

Renault (2014)):
O(log2(D)(Dω +n log2(D)D)).

ω coefficient of linear algebra.

We focus on the grevlex ordering
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Complexity classes

A Gröbner basis solves the Ideal Membership problem.

A hard problem
▶ Ideal Membership testing is EXPSPACE-complete,
▶ Existence of solutions to a system of polynomial

equations over a finite field is NP-complete (Fraenkel
and Yesha (1979)),
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For cryptographic applications

▶ We need precise estimates for concrete parameters.
▶ Asymptotic estimates are also appreciated.
▶ The security levels are 2143,2207 and 2272 bits operations.
▶ Take the best algorithm (combinatorial, algebraic, hybrid, . . . ).
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Gröbner basis algorithms

General algorithms, for any input system:
▶ Buchberger (1965);
▶ F4 from J.-C. Faugère (1999);

The algorithms will always terminate and give the Gröbner basis.
But the time is hard to predict for any instance.

Specific algorithms, for a particular class of systems:
▶ The algorithms will terminate in a predictable time.
▶ The result is not always a Gröbner basis of the system.
▶ For random instances in the specific class, the result is a Gröbner basis.
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Gröbner basis computation via linear algebra

System


f1(x1, . . . ,xn)
...

fm(x1, . . . ,xn)

, deg(fi) = di, fi ∈ Fq[x1, . . . ,xn].

▶ Macaulay Matrices Macaulay (1902):

Md({f1, . . . , fm}) =


xβ

...

(xα , i) coeff(xα fi,xβ )

...


deg(xα fi) = d = deg(xβ ).
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Example: 3 quadratic equations in 3 variables, F5


x2

1 + 3x1x2 + x2
2 + x1x3 + 2x2x3 + 2x2

3, (f1)
x2

1 + 4x1x2 + 3x2
2 + 4x1x3 + 3x2

3, (f2)
x2

1 + 2x2
2 + 4x2x3 + 3x2

3. (f3)

Ech(

M2

)

=
( x2

1 x1x2 x2
2 x1x3 x2x3 x2

3 )
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x2

1 x1x2 x2
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3

f1 1 3 1 1 2 2
f2 1 4 3 4 0 3
f3 1 0 2 0 4 3
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x2
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M3
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=



x3
1 x2

1x2 x1x2
2 x3

2 x2
1x3 x1x2x3 x2

2x3 x1x2
3 x2x2

3 x3
3

x3f1 1 3 1 1 2 2
x2f1 1 3 1 1 2 2
x1f1 1 3 1 1 2 2
x3f2 1 4 3 4 0 3
x2f2 1 4 3 4 0 3
x1f2 1 4 3 4 0 3
x3f3 1 0 2 0 4 3
x2f3 1 0 2 0 4 3
x1f3 1 0 2 0 4 3
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x2

1 + 2x1x3 + 3x2x3 + 4x2
3,

x1x2 + 2x2x3 + 2x2
3,

x2
2 + 4x1x3 + 3x2x3 + 2x2

3.

Ech(

M3

)

=



x3
1 x2

1x2 x1x2
2 x3

2 x2
1x3 x1x2x3 x2

2x3 x1x2
3 x2x2

3 x3
3

x3f̃1 1 2 3 4
x2f̃1 1 2 3 4
x1f̃1 1 2 3 4
x3f̃2 1 2 2
x2f̃2 1 2 2
x1f̃2 1 2 2
x3f̃3 1 4 3 2
x2f̃3 1 4 3 2
x1f̃3 1 4 3 2
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x2

1 + 2x1x3 + 3x2x3 + 4x2
3,

x1x2 + 2x2x3 + 2x2
3,

x2
2 + 4x1x3 + 3x2x3 + 2x2

3.

Ech( M3 ) =



x3
1 x2

1x2 x1x2
2 x3

2 x2
1x3 x1x2x3 x2

2x3 x1x2
3 x2x2

3 x3
3

˜x3f1 1 4
˜x2f1 1 4
˜x1f1 1 4

x3f̃2 1 4
x2f̃2 1 4
x1f̃2 0 1 4
x3f̃3 1 4
x2f̃3 1 4
x1f̃3 0 1 4
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Gröbner basis via linear algebra

Gröbner Basis =



x1x2
3 +4x3

3, (x1f2)

x2x2
3 +4x3

3, (x1f3)

x2
1 +2x1x3 +3x2x3 +4x2

3, (f1)

x1x2 +2x2x3 +2x2
3, (f2)

x2
2 +4x1x3 +3x2x3 +2x2

3 (f3).

One projective solution: (1,1,1).
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=
( x2

1 x1x2 x2
2 x1x3 x2x3 x2

3 )
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3,
x2

1 + 4x1x2 + 3x2
2 + 4x1x3 + 3x2

3,
x2

1 + 2x2
2 + 4x2x3 + 1x2

3.

Ech(

M2

)

=


x2

1 x1x2 x2
2 x1x3 x2x3 x2

3

f1 1 3 1 1 2 2
f2 1 4 3 4 0 3
f3 1 0 2 0 4 1
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1 x1x2 x2
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Example: 3 quadratic equations in 3 variables, F5

Ech(M3) =



x3
1 x2

1x2 x1x2
2 x3

2 x2
1x3 x1x2x3 x2

2x3 x1x2
3 x2x2

3 x3
3

x3f̃1 1 1
x2f̃1 1 1
x1f̃1 1 3
x3f̃2 1 1
x2f̃2 1 0
x1f̃2 0 1 3
x3f̃3 1 2
x2f̃3 1 1
x1f̃3 0 1 4



x1f3 vs x3f3: need to go to degree D = 4 to get the Gröbner Basis.
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x3
1 x2

1x2 x1x2
2 x3

2 x2
1x3 x1x2x3 x2

2x3 x1x2
3 x2x2

3 x3
3

x3f̃1 1 1
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Gröbner basis via linear algebra

At D = 4:
▶

(6
4
)
= 15 monomials of degree 4,

▶ 3
(4

2
)
= 18 rows tfi of degree 4,

▶ M4 has rank 15 → 3 rows reduce to 0 (x2
1 f2,x1x2f3,x2

1 f3), 1 new polynomial (x1x3f3).

Gröbner Basis =



x4
3, (x1x3f3)

x1x2
3 +3x3

3, (x1f2)

x2x2
3 +4x3

3, (x1f3)

x2
1 +2x1x3 +3x2x3 +4x2

3, (f1)

x1x2 +2x2x3 +4x2
3, (f2)

x2
2 +4x1x3 +3x2x3 +x2

3 (f3).

First system:
▶ M4 has rank 14 → 4 rows reduce to 0, no new polynomial.
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Do we need to compute the Gröbner basis?

▶ easy to recover the value of all variables from the evaluation of all monomials
of degree D.
e.g. from xn

D = α and xixn
D−1 = β we get xi =

β

α
xn (or xn = 0).

▶ evaluation of all monomials of degree D on a solution ⇒ a vector t such that
MD({f1, . . . , fm})t = 0

▶ Homogeneous system with 0 or 1 solution:

RkD =MonD or RkD =MonD−1.

⇒ only computes the kernel of MD (instead of a basis of M≤D):
▶ no need for RREF!
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Bi-homogeneous systems

fi = ∑
i,j

ci,jxiyj ∈ Fq[x,y].

Macaulay matrix at bi-degree (d1,d2) = the vector space ⟨xαyβ fi⟩ with
deg(xα) = d1 − 1, deg(yβ ) = d2 − 1.

▶ MD is a block diagonal matrix of the Md1,d2 ’s
▶ easy to recover the value of all variables from the evaluation of all monomial

of bi-degree (d1,d2)

e.g. from x1
d1y1

d2 = α and x1
d1−1xiy1

d2 = β we get xi =
β

α
x1 (or y1 = 0).

▶ At bi-degree (d1,d2), evaluation of all monomials of bi-degree (d1,d2) on a
solution ⇒ a vector t such that Md1,d2({f1, . . . , fm})t = 0

▶ 0 or 1 solution: the kernel of Md1,d2 for D = d1 +d2 such that:

Rkd1,d2 =Mond1,d2 or Rkd1,d2 =Mond1,d2 −1.
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Gröbner basis via linear algebra

Rows of Macaulay matrices:
▶ Describes the vector space ⟨tfi : deg(tfi) = d⟩Fq .
▶ D. Lazard (1983); Giusti (1984): linear algebra on the Macaulay matrices up to

degree D → Gröbner basis.
▶ “Linearization”! with an exponential number of rows/columns.

Main challenges to get complexity estimates for Gröbner Basis computations
▶ Estimate D.
▶ Estimate the cost of linear algebra.
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C of linear algebra. Jeannerod, Pernet, and Storjo-
hann (2013)

Matrix M with N rows, Mon columns, rank Rk, and δ non-zero elements per row.
Echelon Form can be computed in:

Cω ×N×Mon×Rkω−2+o(NMonRkω−2), N,Mon,Rk→ ∞,

For instance:
▶ (ω,Cω) = (3,1) for Gaussian Elimination;
▶ (ω,Cω) = (log2(7),4.4) for the Strassen Algorithm;

Probabilistic Wiedemann (1986) algorithm:

3δ ×N×Mon+o(δ NMon), N,Mon→ ∞.

These are upper bounds.
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Linear dependencies between rows

▶ the rows of M≤D are not linearly independent: e.g.

fkfℓ− fℓfk = 0.

▶ relations between the rows are called syzygies of the system.
▶ a system has trivial syzygies, and may have other: a system is regular if it has

only trivial syzygies.
▶ F5 criterion J.-C. Faugère (2002) = a criterion to detect syzygies. Can detect all

trivial syzygies.
▶ → construct a matrix with only RkD rows for regular sequences.

we cannot remove rows at random
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Estimation of D

For regular systems:
▶ we can count the number of trivial syzygies, hence estimate theoretically Rkd

for any d.

If the system has 1 (resp. 0) (projective) solution:
▶ then D is bounded by the smallest value such that

Rkd =Mond−1 (resp. Rkd =Mond).
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Hilbert Series (homogeneous system)

I ⊂ R = Fq[x1, . . . ,xn], R =⊕dRd, Id = Rd ∩ I.

HSR/I(z)
def
= ∑

d∈N
dim(Rd/Id)zd.

▶ dim(Rd/Id) is the co-rank of the Macaulay matrix Md = Mond−Rkd.
▶ Knowing all the parameters for the Macaulay matrices = knowing the Hilbert

series.
▶ No projective solution: dim(Rd/Id) = 0 for all d ≥ D (D = deg(HS)+ 1).
▶ One projective solution: dim(Rd/Id) = 1 for all d ≥ D.
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Known classes of “regular” systems

▶ regular systems; Macaulay (1994),

▶ semi-regular systems; Bardet, J.-C. Faugère, and Salvy (2004),
▶ solutions in F2: boolean semi-regular systems; Bardet, J.-C. Faugère, Salvy, and

Yang (2005),
▶ bi-regular bilinear systems; J.-C. Faugère, Safey El Din, and

P.-J. Spaenlehauer (2011).
▶ determinantal systems; Conca and Herzog (1994),

(not exhaustive)
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▶ determinantal systems; Conca and Herzog (1994),

(not exhaustive)
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Generic Complexity analysis

▶ Over an infinite field: Zariski topology, non-empty open sets are dense.

▶ The set of non-”regular” systems = a closed set for the Zariski topology.
▶ The set of “regular” systems = an open Zariski set.
▶ Conjecture: the open set is not empty.
▶ In practice: we take the coefficients in a finite field.
▶ Conjecture: the proportion of “regular” systems is large.

c-ex: there is no boolean semi-regular quadratic system of 1 polynomial in n > 6
variables. Hodges, Molina, and Schlather (2017).
More generally, if n ≫ m there is no boolean semi-regular sequence of m
polynomials of degree d1, . . . ,dm ≥ 2.
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Quadratic systems in different classes

▶ m = n regular system: D ≤ n+ 1, MonD =
(n+D−1

D
)

▶ m = n+ 1 semi-regular system: D ≤ ⌈n+2
2 ⌉, → hybrid approach

▶ m = n regular bilinear system with ⌊n
2 ⌋ variables x and ⌈n

2 ⌉ variables y:
D ≤ ⌊n

2 ⌋+2.
▶ m = 2n semi-regular system: D ≤ 0.0858n+o(n1/3)

▶ m = n regular over F2: D ≤ 0.0900n+o(n1/3), but MonD =
(n

D
)
.
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Affine systems

▶ Apply previous results: homogenize the system ! (new variable h)

▶ it may give overestimated Dh

▶ No spurious solution at infinity (h = 0) if F top = (f top
1 , . . . , f top

m ) is
zero-dimensional.

▶ If F top is not regular, there are some degree drop → harder to
estimate the complexity, not to compute the Gröbner basis!

▶ If F top is regular: Dtop

▶ may need Dtop + 1
▶ may need several echelon form at degree Dtop + 1 → complexity estimate?

▶ If you have degree drops: take that into account? estimate the new complexity?

▶ The complexity can be smaller or larger
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3 affine quadratic equations in 2 variables, F5


x2

1 + 2x1 + 3x2 + 4, (f1)
x1x2 + 2x2 + 2(or 4), (f2)

x2
2 + 4x1 + 3x2 + 2(or 1). (f3)

▶ Dtop = 2, not enough to get linear equations.

▶ Dh = 3 (or 4)
▶ D = 3 gives 

...

x2
2 +4,

x1 +4,
x2 +4.

or


...

x2
2 +2,

x1 +3,
x2 +4.

▶ second case: need another D = 2 matrix to get I = ⟨1⟩.
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Algebraic attack

For a class of system coming from an algebraic modeling
▶ determine the generic relations between rows in the Macaulay matrices =

syzygies,

▶ compute the rank of the Macaulay matrices for generic systems,
▶ deduce the maximal degree D → complexity estimates,
▶ design a specific Gb algorithm that is more efficient.
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1 NIST call for Post-Quantum cryptography

2 Algebraic Modeling

3 Complexity estimates

4 Examples

5 Rank metric codes

6 MinRank
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Let’s play a game

Some important parameters to estimate the complexity of solving a polynomial
system:
▶ the number of variables,
▶ the number of equations,
▶ the degree of the equations,
▶ the degree of the intermediate computations

But not sufficient!
Given a polynomial system of equations, what can you say “a priori” about its
complexity?
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Complexity of solving a system



x1 +2x5 +2x6 + 1,
x1 +x5 +x6 +2,
x1 +2x2 +2x3 +2x4 +x6 + 1,
x1 +x2 +x4 +2x5 +x6 + 1,
x1 +x2 +2x3 +x4 +x5 +x6,

2x1 +2x2 +x3 +x4 +x5 + 1

Linear system, polynomial time complexity.
Number of solutions? (F3)
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Example (Bayer-Stillman 1988)

Sex =



f0c0,ℓb2
0,ℓ+ s0c0,ℓ,

sici,1 + si+1,

sici,4 + fi+1,

fici,1 + sici,2, i ∈ {0..2}
sici,3 + fici,4, ℓ ∈ {1..4}
fici,2bi,1 + fici,3bi,4,

sici,2 + sici,3,

fici,2bi,3ci+1,ℓbi+1,ℓ+ fici,ℓci,2bi,2,

Sex ∈ F2[fi,si,ci,ℓ,bi,ℓ] for i ∈ {0..3}, ℓ ∈ {1..4}.
40 variables, 34 polynomials of degrees 2:15, 3:3, 4:4, 5:12.

D = 82 for regular systems
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Example (Bayer-Stillman 1988)

Sex =



f0c0,ℓb2
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,ℓci,2bi,2,

Sex ∈ F2[fi,si,ci,ℓ,bi,ℓ] for i ∈ {0..3}, ℓ ∈ {1..4}.
40 variables, 34 polynomials of degrees 2:15, 3:3, 4:4, 5:12.

D = 82

Sex solved in 3.3

448.5

seconds.
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D = 82
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3.3 448.5

seconds.
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Bayer and Stillman (1988) example

▶ parameter m,
▶ 10m+4 equations (degrees 2:5m, 3:m, 4:4, 5:4m),
▶ 10(m+ 1) variables.
▶ the Gröbner basis contains polynomials of degree 22m

+2.
▶ the example was m = 3: maximal degree 223

+2 = 258.

Magali Bardet – JNCF 2024 46 / 59



EX vs BS example m = 4

▶ 703 STEPS vs > 40770
▶ max degree 14 vs 65538
▶ time 27.5 sec vs > 1131 seconds (segfault...)
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80 quadratic equations 80 variables in F16

▶ regular? yes!
▶ Complexity? D = 81, Mon81 = 2156

▶ my system: 
x2

1 ,
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2,
...

x2
80.

Magali Bardet – JNCF 2024 48 / 59



80 quadratic equations 80 variables in F16

▶ regular?

yes!
▶ Complexity? D = 81, Mon81 = 2156

▶ my system: 
x2

1 ,

x2
2,
...

x2
80.

Magali Bardet – JNCF 2024 48 / 59



80 quadratic equations 80 variables in F16

▶ regular? yes!

▶ Complexity? D = 81, Mon81 = 2156

▶ my system: 
x2

1 ,

x2
2,
...

x2
80.

Magali Bardet – JNCF 2024 48 / 59



80 quadratic equations 80 variables in F16

▶ regular? yes!
▶ Complexity?

D = 81, Mon81 = 2156

▶ my system: 
x2

1 ,

x2
2,
...

x2
80.

Magali Bardet – JNCF 2024 48 / 59



80 quadratic equations 80 variables in F16

▶ regular? yes!
▶ Complexity? D = 81, Mon81 = 2156

▶ my system: 
x2

1 ,

x2
2,
...

x2
80.

Magali Bardet – JNCF 2024 48 / 59



80 quadratic equations 80 variables in F16

▶ regular? yes!
▶ Complexity? D = 81, Mon81 = 2156

▶ my system: 
x2

1 ,

x2
2,
...

x2
80.

Magali Bardet – JNCF 2024 48 / 59



1 NIST call for Post-Quantum cryptography

2 Algebraic Modeling

3 Complexity estimates

4 Examples

5 Rank metric codes

6 MinRank

Magali Bardet – JNCF 2024 49 / 59



1 NIST call for Post-Quantum cryptography

2 Algebraic Modeling

3 Complexity estimates

4 Examples

5 Rank metric codes

6 MinRank

Magali Bardet – JNCF 2024 50 / 59



<beamer>

1 NIST call for Post-Quantum cryptography

2 Algebraic Modeling

3 Complexity estimates

4 Examples

5 Rank metric codes

6 MinRank

Aguilar Melchor, Carlos, Nicolas Aragon, Slim Bettaieb, et al. (Apr. 2019). Rank
Quasi Cyclic (RQC). Second round submission to the NIST post-quantum
cryptography call.



Aragon, N., P. Gaborit, A. Hauteville, et al. (2019). “Low Rank Parity Check Codes:
New Decoding Algorithms and Application to Cryptography”. In: submitted to
IEEE IT, preprint available on arXiv.
Aragon, Nicolas, Olivier Blazy, Jean-Christophe Deneuville, et al. (Mar. 2019).
ROLLO (merger of Rank-Ouroboros, LAKE and LOCKER). Second round
submission to the NIST post-quantum cryptography call. NIST Round 2
submission for Post-Quantum Cryptography.
Baena, John, Pierre Briaud, Daniel Cabarcas, et al. (2022). “Improving
Support-Minors Rank Attacks: Applications to GeMSS and Rainbow”. In: Advances
in Cryptology - CRYPTO 2022 - 42nd Annual International Cryptology Conference,
CRYPTO 2022, Santa Barbara, CA, USA, August 15-18, 2022, Proceedings, Part III.
Ed. by Yevgeniy Dodis and Thomas Shrimpton. Vol. 13509. LNCS. Springer,
pp. 376–405.
Bardet, Magali and Manon Bertin (Sept. 2022). “Improvement of Algebraic
Attacks for Solving Superdetermined MinRank Instances”. In: Post-Quantum
Cryptography 2022. Ed. by Jung Hee Cheon and Thomas Johansson. Vol. 13512.
LNCS. Springer International Publishing: Cham, pp. 107–123.



Bardet, Magali, Pierre Briaud, Maxime Bros, et al. (2023). “Revisiting Algebraic
Attacks on MinRank and on the Rank Decoding Problem”. In: Designs, Codes and
Cryptography 91, pp. 3671–3707.
Bardet, Magali, Maxime Bros, Daniel Cabarcas, et al. (2020). “Improvements of
Algebraic Attacks for solving the Rank Decoding and MinRank problems”. In:
Advances in Cryptology - ASIACRYPT 2020, International Conference on the
Theory and Application of Cryptology and Information Security, 2020.
Proceedings. Vol. 12491. LNCS, pp. 507–536.
Bardet, Magali, Jean-Charles Faugère, and Bruno Salvy (2004). “On the
complexity of Gröbner basis computation of semi-regular overdetermined
algebraic equations”. In: Proceedings of the International Conference on
Polynomial System Solving ICPSS’04, pp. 71–74.
Bardet, Magali, Jean-Charles Faugère, Bruno Salvy, and Bo-Yin Yang (2005).
“Asymptotic expansion of the degree of regularity for semi-regular systems of
equations”. In: MEGA’05 – Effective Methods in Algebraic Geometry, pp. 1–14.
Bayer, David and Michael Stillman (1988). “On the complexity of computing
syzygies”. In: Journal of Symbolic Computation 6(2-3), pp. 135–147.



Bettale, Luk, Jean-Charles Faugere, and Ludovic Perret (2009). “Hybrid approach
for solving multivariate systems over finite fields”. In: Journal of Mathematical
Cryptology 3(3), pp. 177–197.
Buchberger, Bruno (1965). “Ein Algorithmus zum Auffinden der Basiselemente
des Restklassenringes nach einem nulldimensionalen Polynomideal”.
PhD thesis. Universitat Innsbruck.
Burle, Étienne, Philippe Gaborit, Younes Hatri, and Ayoub Otmani (2023).
Injective Rank Metric Trapdoor Functions with Homogeneous Errors. arXiv:
2310.08962 [cs.CR].
Casanova, Antoine, Jean-Charles Faugère, Gilles Macario-Rat, et al. (Apr. 2019).
GeMSS: A Great Multivariate Short Signature. Second round submission to the
NIST post-quantum cryptography call.
Conca, Aldo and Jurgen Herzog (1994). “On the Hilbert function of determinantal
rings and their canonical module”. In: Proc. Amer. Math. Soc 122, pp. 677–681.
Delsarte, Philippe (1978). “Bilinear Forms over a Finite Field, with Applications to
Coding Theory”. In: J. Comb. Theory, Ser. A 25(3), pp. 226–241.

https://arxiv.org/abs/2310.08962


Faugère, Jean-Charles (1999). “A New Efficient Algorithm for Computing Gröbner
Bases (F4)”. In: J. Pure Appl. Algebra 139(1-3), pp. 61–88.
Faugère, Jean-Charles (2002). “A new efficient algorithm for computing Gröbner
bases without reduction to zero (F5)”. English. In: Proceedings of the 2002
International Symposium on Symbolic and Algebraic Computation. Ed. by
Teo Mora. ACM Press: New York, 75–83 (electronic).
Faugère, Jean-Charles, Pierrick Gaudry, Louise Huot, and Guénaël Renault (2014).
“Sub-Cubic Change of Ordering for GröBner Basis: A Probabilistic Approach”. In:
ISSAC.
Faugère, Jean-Charles, Patrizia Gianni, Daniel Lazard, and Teo Mora (1993).
“Efficient Computation of Zero-Dimensional Gröbner Bases by Change of
Ordering”. In: J. Symbolic Comput. 16(4), pp. 329–344.
Faugère, Jean-Charles, Françoise Levy-dit-Vehel, and Ludovic Perret (2008).
“Cryptanalysis of Minrank”. In: Advances in Cryptology - CRYPTO 2008. Ed. by
David Wagner. Vol. 5157. LNCS, pp. 280–296.



Faugère, Jean-Charles, Mohab Safey El Din, and Pierre-Jean Spaenlehauer (2010).
“Computing loci of rank defects of linear matrices using Gröbner bases and
applications to cryptology”. In: International Symposium on Symbolic and
Algebraic Computation, ISSAC 2010, Munich, Germany, July 25-28, 2010,
pp. 257–264.
Faugère, Jean-Charles, Mohab Safey El Din, and Pierre-Jean Spaenlehauer (2011).
“Gröbner bases of bihomogeneous ideals generated by polynomials of bidegree
(1,1): Algorithms and complexity”. In: J. Symbolic Comput. 46(4), pp. 406–437.
Fraenkel, A.S. and Y. Yesha (1979). “Complexity of problems in games, graphs and
algebraic equations”. In: Discrete Applied Mathematics 1(1), pp. 15–30.
Gabidulin, Ernst M. (1985). “Theory of codes with maximum rank distance”. In:
Problemy Peredachi Informatsii 21(1), pp. 3–16.
Gabidulin, Ernst M., A. V. Paramonov, and O. V. Tretjakov (Apr. 1991). “Ideals over
a non-commutative ring and their applications to cryptography”. In: Advances in
Cryptology - EUROCRYPT’91. LNCS 547. Brighton, pp. 482–489.



Gaborit, Philippe, Adrien Hauteville, Duong Hieu Phan, and Jean-Pierre Tillich
(May 2016). Identity-based Encryption from Rank Metric. IACR Cryptology ePrint
Archive, Report2017/623. http://eprint.iacr.org/.
Gaborit, Philippe and Gilles Zémor (2016). “On the hardness of the decoding and
the minimum distance problems for rank codes”. In: IEEE Trans. Inform. Theory
62(12), pp. 7245–7252.
Giusti, M. (1984). “Some effectivity problems in polynomial ideal theory”. In:
Eurosam 84. Ed. by John Fitch. Vol. 174. Lecture Notes in Computer Science.
Cambridge, 1984. Springer Berlin / Heidelberg: Berlin, pp. 159–171.
Guo, Hao and Jintai Ding (2022). “Algebraic Relation of Three MinRank Algebraic
Modelings”. In: Arithmetic of Finite Fields. LNCS. Springer.
Hodges, Timothy J., Sergio D. Molina, and Jacob Schlather (2017). “On the
existence of homogeneous semi-regular sequences in F2[X1, ...,Xn]/(X2

1 , ...,X2
n)”.

In: Journal of Algebra 476, pp. 519–547.
Jeannerod, Claude-Pierre, Clément Pernet, and Arne Storjohann (2013).
“Rank-profile revealing Gaussian elimination and the CUP matrix
decomposition”. In: Journal of Symbolic Computation 56, pp. 46–68.

http://eprint.iacr.org/


Kipnis, Aviad and Adi Shamir (Aug. 1999). “Cryptanalysis of the HFE Public Key
Cryptosystem by Relinearization”. In: Advances in Cryptology - CRYPTO’99.
Vol. 1666. LNCS. Springer: Santa Barbara, California, USA, pp. 19–30.
Lazard, D. (1983). “Gröbner bases, Gaussian elimination and resolution of
systems of algebraic equations”. In: Computer algebra. Vol. 162. LNCS.
Proceedings Eurocal’83, London, 1983. Springer: Berlin, pp. 146–156.
Macaulay, Francis Sowerby (1902). “Some formulae in elimination”. In:
Proceedings of the London Mathematical Society 1(1), pp. 3–27.
Macaulay, Francis Sowerby (1994). The algebraic theory of modular systems.
Vol. 19. Cambridge University Press.
Ourivski, Alexei V. and Thomas Johansson (2002). “New Technique for Decoding
Codes in the Rank Metric and Its Cryptography Applications”. English. In:
Problems of Information Transmission 38(3), pp. 237–246.
Overbeck, Raphael (2005). “A New Structural Attack for GPT and Variants”. In:
Mycrypt. Vol. 3715. LNCS, pp. 50–63.



Tao, Chengdong, Albrecht Petzoldt, and Jintai Ding (2021). “Efficient Key Recovery
for All HFE Signature Variants”. In: Advances in Cryptology - CRYPTO 2021 - 41st
Annual International Cryptology Conference, CRYPTO 2021, Virtual Event, August
16-20, 2021, Proceedings, Part I. Ed. by Tal Malkin and Chris Peikert. Vol. 12825.
Lecture Notes in Computer Science. Springer, pp. 70–93.
Wiedemann, Douglas (1986). “Solving sparse linear equations over finite fields”.
In: IEEE transactions on information theory 32(1), pp. 54–62.


	NIST call for Post-Quantum cryptography
	Algebraic Modeling
	Complexity estimates
	Examples
	Rank metric codes
	MinRank
	References

