Algebraic ATtacks For the Rank Decoding Problem

Olitis

Laboratoire d'Informatique, du Traitement de
MAGALI BARDET
magali.bardetauniv-rouen.fr
JNCF 2024,
MARCH 4-8, 2024 DE ROUEN

1 NIST call for Post-Quantum cryptography

2 Algebraic Modeling

3 Complexity estimates

4 Examples
5 Rank metric codes
6 MinRank

NIST CALL FOR PROPOSALS

Post-Quantum Cryptography standardization process, 2017-2022-

- KEM + Signature.
- based on mathematical problems resistant to quantum computer.
- 4 Rounds since 2017.
- first selection for standardization in 07/2022:
- 1 lattice-based KEM;
- 2 lattice-based signatures;
- 1 Hash-based signature.
- 3 code-based KEMs in the 4th Round.

NIST call for Digital Signatures

Additional Digital Signature Schemes

- June 1, 2023. First Round ongoing.
- 40 submissions, with:
- multivariate cryptography (12).
- code-based cryptography (11).
- Symmetric-based cryptography (4).
- Lattice-based cryptography (7).
- Other (6).

NIST CALL FOR DIGITAL Signatures

Additional Digital Signature Schemes

- June 1, 2023. First Round ongoing.
- 40 submissions, with:
- multivariate cryptography (12).
- code-based cryptography (11).
- Symmetric-based cryptography (4).
- Lattice-based cryptography (7).
- Other (6).

Algebraic approaches are at the core of security assessment for multivariate and code-based cryptography.

1 NIST call for Post-Quantum cryptography

2 Algebraic Modeling

3 Complexity estimates

4 Examples

5 Rank metric codes

6 MinRank

Algebraic Modeling

Principle: write a Polynomial System

$$
\left\{\begin{array}{l}
f_{1}\left(x_{1}, \ldots, x_{n}\right) \\
\vdots \\
f_{m}\left(x_{1}, \ldots, x_{n}\right)
\end{array} \quad, \quad \operatorname{deg}\left(f_{i}\right)=d_{i}, f_{i} \in \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right] .\right.
$$

such that finding the set of solutions gives (part of) the secret:

$$
V\left(f_{1}, \ldots, f_{m}\right)=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \overline{\mathbb{F}}_{q}^{n}: f_{i}\left(x_{1}, \ldots, x_{n}\right)=0, \forall i \in\{1 . . m\}\right\}
$$

Algebraic Modeling

Principle: write a Polynomial System

$$
\left\{\begin{array}{l}
f_{1}\left(x_{1}, \ldots, x_{n}\right) \\
\vdots \\
f_{m}\left(x_{1}, \ldots, x_{n}\right)
\end{array} \quad, \quad \operatorname{deg}\left(f_{i}\right)=d_{i}, f_{i} \in \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]\right.
$$

such that finding the set of solutions gives (part of) the secret:

$$
V\left(f_{1}, \ldots, f_{m}\right)=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \overline{\mathbb{F}}_{q}^{n}: f_{i}\left(x_{1}, \ldots, x_{n}\right)=0, \forall i \in\{1 . . m\}\right\}
$$

- Key-recovery attack.
- Message-recovery attack.
- Signature forgery attack.

Relations between Solutions and Secrets

Ideally: any solution is related to the secret!

Relations between Solutions and Secrets

Ideally: any solution is related to the secret!

- Otherwise, we have to deal with spurious solutions \rightarrow change the modeling!

Relations between Solutions and Secrets

Ideally: any solution is related to the secret!

- Otherwise, we have to deal with spurious solutions \rightarrow change the modeling!
- Only solutions in \mathbb{F}_{q}

Relations between Solutions and Secrets

Ideally: any solution is related to the secret!

- Otherwise, we have to deal with spurious solutions \rightarrow change the modeling!
- Only solutions in \mathbb{F}_{q}
- Combinatorial approach = try "all possible solutions" efficiently (often solve a linear system).

Relations between Solutions and Secrets

Ideally: any solution is related to the secret!

- Otherwise, we have to deal with spurious solutions \rightarrow change the modeling!
- Only solutions in \mathbb{F}_{q}
- Combinatorial approach = try "all possible solutions" efficiently (often solve a linear system).
- Algebraic approach: solve an algebraic system with algebraic constraints $x_{i}^{q}-x_{i}$!

Relations between Solutions and Secrets

Ideally: any solution is related to the secret!

- Otherwise, we have to deal with spurious solutions \rightarrow change the modeling!
- Only solutions in \mathbb{F}_{q}
- Combinatorial approach = try "all possible solutions" efficiently (often solve a linear system).
- Algebraic approach: solve an algebraic system with algebraic constraints $x_{i}^{q}-x_{i}$!
- Combinatorial vs Algebraic approaches: \rightarrow hybrid approach (better over a Small finite field).

Relations between Solutions and Secrets

Ideally: any solution is related to the secret!

- Otherwise, we have to deal with spurious solutions \rightarrow change the modeling!
- Only solutions in \mathbb{F}_{q}
- Combinatorial approach = try "all possible solutions" efficiently (often solve a linear system).
- Algebraic approach: solve an algebraic system with algebraic constraints $x_{i}^{q}-x_{i}$!
- Combinatorial vs Algebraic approaches: \rightarrow hybrid approach (better over a Small finite field).
- Large prime field? :

Relations between Solutions and Secrets

Ideally: any solution is related to the secret!

- Otherwise, we have to deal with spurious solutions \rightarrow change the modeling!
- Only solutions in \mathbb{F}_{q}
- Combinatorial approach = try "all possible solutions" efficiently (often solve a linear system).
- Algebraic approach: solve an algebraic system with algebraic constraints $x_{i}^{q}-x_{i}$!
- Combinatorial vs Algebraic approaches: \rightarrow hybrid approach (better over a Small finite field).
- Large prime field? :
- Cryptographic applications: always a finite number of solutions (one of them is enough).

Relations between Solutions and Secrets

Ideally: any solution is related to the secret!

- Otherwise, we have to deal with spurious solutions \rightarrow change the modeling!
- Only solutions in \mathbb{F}_{q}
- Combinatorial approach = try "all possible solutions" efficiently (often solve a linear system).
- Algebraic approach: solve an algebraic system with algebraic constraints $x_{i}^{q}-x_{i}$!
- Combinatorial vs Algebraic approaches: \rightarrow hybrid approach (better over a Small finite field).
- Large prime field? :
- Cryptographic applications: always a finite number of solutions (one of them is enough).
- Often o or 1 solution, but sometimes m solutions over $\mathbb{F}_{q^{m}}$.

MULTIVARIATE PUBLIC-KEY CRYPTOGRAPHY

Signature forgery (or Message-recovery attack)

- Public key: a polynomial system, indistinguishable from a random system.

$$
\left\{\begin{array}{l}
f_{1}\left(x_{1}, \ldots, x_{n}\right) \\
\vdots \\
f_{m}\left(x_{1}, \ldots, x_{n}\right)
\end{array} \quad, \quad \operatorname{deg}\left(f_{i}\right)=2, \quad f_{i} \in \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right] .\right.
$$

- $\left(y_{1}, \ldots, y_{m}\right)$ hash of the message to be signed (or ciphertext).
- signature (or cleartext) $=\left(x_{1}, \ldots, x_{n}\right)$ such that $\left(y_{1}, \ldots, y_{m}\right)=\left(f_{1}(\boldsymbol{x}), \ldots, f_{m}(\boldsymbol{x})\right)$
- Secret key: a trapdoor to solve the system efficiently = Hash and sign.

Multivariate public-key cryptography

Signature forgery (or Message-recovery attack)

- Public key: a polynomial system, indistinguishable from a random system.

$$
\left\{\begin{array}{l}
f_{1}\left(x_{1}, \ldots, x_{n}\right) \\
\vdots \\
f_{m}\left(x_{1}, \ldots, x_{n}\right)
\end{array} \quad, \quad \operatorname{deg}\left(f_{i}\right)=2, \quad f_{i} \in \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right] .\right.
$$

- $\left(y_{1}, \ldots, y_{m}\right)$ hash of the message to be signed (or ciphertext).
- signature (or cleartext) $=\left(x_{1}, \ldots, x_{n}\right)$ such that $\left(y_{1}, \ldots, y_{m}\right)=\left(f_{1}(\mathbf{x}), \ldots, f_{m}(\boldsymbol{x})\right)$
- Secret key: a trapdoor to solve the system efficiently = Hash and sign.
- other approach: Zero-knowledge proof of knowledge.

MULTIVARIATE PUBLIC-KEY CRYPTOGRAPHY

Signature forgery (or Message-recovery attack)

- Public key: a polynomial system, indistinguishable from a random system.

$$
\left\{\begin{array}{l}
f_{1}\left(x_{1}, \ldots, x_{n}\right) \\
\vdots \\
f_{m}\left(x_{1}, \ldots, x_{n}\right)
\end{array} \quad, \quad \operatorname{deg}\left(f_{i}\right)=2, \quad f_{i} \in \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right] .\right.
$$

- $\left(y_{1}, \ldots, y_{m}\right)$ hash of the message to be signed (or ciphertext).
- signature (or cleartext) $=\left(x_{1}, \ldots, x_{n}\right)$ such that $\left(y_{1}, \ldots, y_{m}\right)=\left(f_{1}(\boldsymbol{x}), \ldots, f_{m}(\boldsymbol{x})\right)$
- Secret key: a trapdoor to solve the system efficiently = Hash and sign.
- other approach: Zero-knowledge proof of knowledge.

How hard is it to solve a random system of algebraic equations?

MULTIVARIATE PUBLIC-KEY CRYPTOGRAPHY

Signature forgery (or Message-recovery attack)

- Public key: a polynomial system, indistinguishable from a random system.

$$
\left\{\begin{array}{l}
f_{1}\left(x_{1}, \ldots, x_{n}\right) \\
\vdots \\
f_{m}\left(x_{1}, \ldots, x_{n}\right)
\end{array} \quad, \quad \operatorname{deg}\left(f_{i}\right)=2, \quad f_{i} \in \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right] .\right.
$$

- $\left(y_{1}, \ldots, y_{m}\right)$ hash of the message to be signed (or ciphertext).
- signature (or cleartext) $=\left(x_{1}, \ldots, x_{n}\right)$ such that $\left(y_{1}, \ldots, y_{m}\right)=\left(f_{1}(\boldsymbol{x}), \ldots, f_{m}(\boldsymbol{x})\right)$
- Secret key: a trapdoor to solve the system efficiently = Hash and sign.
- other approach: Zero-knowledge proof of knowledge.

How hard is it to solve a random system of algebraic equations?
How hard is it to solve a trapdoored system of algebraic equations?

Algebraic Modeling

Solving the algebraic system using Gröbner bases (object)

- A particular basis of the ideal

$$
I=\left\langle f_{1}, \ldots, f_{m}\right\rangle=\left\{\sum_{i=1}^{m} g_{i} f_{i}: g_{i} \in \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right]\right\}
$$

that solves the ideal-membership problem: $f \stackrel{?}{\in} I$.

- Depends on the choice of a monomial ordering.

Monomial ordering examples

$$
\begin{array}{lllllll}
x_{1} & x_{3} & 1 & x_{3}^{3} & x_{1} x_{3} & x_{2}^{2} & x_{1}^{2}
\end{array}
$$

Monomial ordering examples

$$
\begin{array}{lllllll}
x_{1} & x_{3} & 1 & x_{3}^{3} & x_{1} x_{3} & x_{2}^{2} & x_{1}^{2}
\end{array}
$$

Lexicographical ordering $x_{1}>\cdots>x_{n}$

$$
x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}>x_{1}^{\beta_{1}} \ldots x_{n}^{\beta_{n}} \text { iff } \quad \alpha_{j}=\beta_{j} \quad \forall j<i, \text { and } \alpha_{i}>\beta_{i}
$$

Monomial ordering examples

$$
\begin{array}{lllllll}
x_{1} & x_{3} & 1 & x_{3}^{3} & x_{1} x_{3} & x_{2}^{2} & x_{1}^{2}
\end{array}
$$

Lexicographical ordering $x_{1}>\cdots>x_{n}$

$$
\begin{gathered}
x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}>x_{1}^{\beta_{1}} \ldots x_{n}^{\beta_{n}} \text { iff } \quad \alpha_{j}=\beta_{j} \quad \forall j<i, \text { and } \alpha_{i}>\beta_{i} . \\
x_{1}^{2}>x_{1} x_{3}>x_{1}>x_{2}^{2}>x_{3}^{3}>x_{3}>1
\end{gathered}
$$

Monomial ordering examples

$$
\begin{array}{lllllll}
x_{1} & x_{3} & 1 & x_{3}^{3} & x_{1} x_{3} & x_{2}^{2} & x_{1}^{2}
\end{array}
$$

Lexicographical ordering $x_{1}>\cdots>x_{n}$

$$
\begin{gathered}
x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}>x_{1}^{\beta_{1}} \ldots x_{n}^{\beta_{n}} \text { iff } \quad \alpha_{j}=\beta_{j} \quad \forall j<i, \text { and } \alpha_{i}>\beta_{i} . \\
x_{1}^{2}>x_{1} x_{3}>x_{1}>x_{2}^{2}>x_{3}^{3}>x_{3}>1
\end{gathered}
$$

Graded Reverse Lexicographical ordering $x_{1}>\cdots>x_{n}$

$$
x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}>x_{1}^{\beta_{1}} \ldots x_{n}^{\beta_{n}} \text { iff }\left\{\begin{array}{l}
\operatorname{deg}\left(\boldsymbol{x}^{\alpha}\right)>\operatorname{deg}\left(\boldsymbol{x}^{\beta}\right) \\
\operatorname{or} \alpha_{j}=\beta_{j} \forall j>i, \text { and } \alpha_{i}<\beta_{i} .
\end{array}\right.
$$

Monomial ordering examples

$$
\begin{array}{lllllll}
x_{1} & x_{3} & 1 & x_{3}^{3} & x_{1} x_{3} & x_{2}^{2} & x_{1}^{2}
\end{array}
$$

Lexicographical ordering $x_{1}>\cdots>x_{n}$

$$
\begin{gathered}
x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}>x_{1}^{\beta_{1}} \ldots x_{n}^{\beta_{n}} \text { iff } \quad \alpha_{j}=\beta_{j} \quad \forall j<i, \text { and } \alpha_{i}>\beta_{i} . \\
x_{1}^{2}>x_{1} x_{3}>x_{1}>x_{2}^{2}>x_{3}^{3}>x_{3}>1
\end{gathered}
$$

Graded Reverse Lexicographical ordering $x_{1}>\cdots>x_{n}$

$$
\begin{gathered}
x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}>x_{1}^{\beta_{1}} \ldots x_{n}^{\beta_{n}} \text { iff }\left\{\begin{array}{l}
\operatorname{deg}\left(\boldsymbol{x}^{\alpha}\right)>\operatorname{deg}\left(\boldsymbol{x}^{\beta}\right) \\
\operatorname{or} \alpha_{j}=\beta_{j} \forall j>i, \text { and } \alpha_{i}<\beta_{i} .
\end{array}\right. \\
x_{3}^{3}>x_{1}^{2}>x_{2}^{2}>x_{1} x_{3}>x_{1}>x_{3}>1
\end{gathered}
$$

Solving the system from a Gröbner basis

Different monomial orderings have different properties

- the lex order (Lexicographical): in Shape Position, for a zero-dimension ideal, the (reduced) lex basis is

$$
\left\{\begin{array}{rr}
x_{1}- & g_{1}\left(x_{n}\right), \\
x_{2}- & g_{2}\left(x_{n}\right), \\
\vdots & \\
x_{n-1}- & g_{n-1}\left(x_{n}\right), \\
& g_{n}\left(x_{n}\right),
\end{array}\right.
$$

with $\operatorname{deg}\left(g_{n}\right)=D$ the number of solutions to the system.

- the grevlex order (Graded Reverse Lexicographical): usually the best one w.r.t. the complexity.

SYSTEMS WITH O OR 1 SOLUTION

The (reduced) grevlex and lex bases are the same:

- If the system has no solution:

$$
\langle 1\rangle .
$$

SYSTEMS WITH O OR 1 SOLUTION

The (reduced) grevlex and lex bases are the same:

- If the system has no solution:

$$
\langle 1\rangle .
$$

- If the system has 1 solution:

$$
\left\{\begin{array}{c}
x_{1}-a_{1} \\
\vdots \\
x_{n}-a_{n}
\end{array}\right.
$$

where $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{F}_{q}^{n}$ is the solution.

Change of ordering

For zero-dimensional systems:

- The FGLM (J.-C. Faugère, Gianni, Daniel Lazard, and Mora (1993)) Algorithm performs a change of ordering in complexity

$$
O\left(n D^{3}\right),
$$

n number of variables, $n \rightarrow \infty$, D degree of the ideal (number of solutions).

- Complexity for grevlex to lex (Shape position) (J.-C. Faugère, Gaudry, Huot, and Renault (2014)):

$$
O\left(\log _{2}(D)\left(D^{\omega}+n \log _{2}(D) D\right)\right) .
$$

ω coefficient of linear algebra.

Change of ordering

For zero-dimensional systems:

- The FGLM (J.-C. Faugère, Gianni, Daniel Lazard, and Mora (1993)) Algorithm performs a change of ordering in complexity

$$
O\left(n D^{3}\right),
$$

n number of variables, $n \rightarrow \infty$, D degree of the ideal (number of solutions).

- Complexity for grevlex to lex (Shape position) (J.-C. Faugère, Gaudry, Huot, and Renault (2014)):

$$
O\left(\log _{2}(D)\left(D^{\omega}+n \log _{2}(D) D\right)\right) .
$$

ω coefficient of linear algebra.
We focus on the grevlex ordering

1 NIST call for Post-Quantum cryptography

2 Algebraic Modeling

3 Complexity estimates

4 Examples

5 Rank metric codes

6 MinRank

Complexity classes

A Gröbner basis solves the Ideal Membership problem.
A hard problem

- Ideal Membership testing is EXPSPACE-complete,
- Existence of solutions to a system of polynomial equations over a finite field is NP-complete (Fraenkel and Yesha (1979)),

FOR CRYPTOGRAPHIC APPLICATIONS

- We need precise estimates for concrete parameters.
- Asymptotic estimates are also appreciated.
- The security levels are $2^{143}, 2^{207}$ and 2^{272} bits operations.
- Take the best algorithm (combinatorial, algebraic, hybrid, ...).

GRÖbNER BASIS ALGORITHMS

General algorithms, for any input system:

- Buchberger (1965);
- F4 from J.-C. Faugère (1999);

The algorithms will always terminate and give the Gröbner basis. But the time is hard to predict for any instance.

GRÖBNER BASIS ALGORITHMS

General algorithms, for any input system:

- Buchberger (1965);
- F4 from J.-C. Faugère (1999);

The algorithms will always terminate and give the Gröbner basis. But the time is hard to predict for any instance.

Specific algorithms, for a particular class of systems:

- The algorithms will terminate in a predictable time.
- The result is not always a Gröbner basis of the system.
- For random instances in the specific class, the result is a Gröbner basis.

Gröbner basis computation via linear algebra

$$
\text { System }\left\{\begin{array}{l}
f_{1}\left(x_{1}, \ldots, x_{n}\right) \\
\vdots \\
f_{m}\left(x_{1}, \ldots, x_{n}\right)
\end{array} \quad, \quad \operatorname{deg}\left(f_{i}\right)=d_{i}, f_{i} \in \mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right] .\right.
$$

- Macaulay Matrices Macaulay (1902):

$$
\operatorname{deg}\left(\boldsymbol{x}^{\alpha} f_{i}\right)=d=\operatorname{deg}\left(\boldsymbol{x}^{\beta}\right)
$$

EXAMPLE: 3 QUADRATIC EQUATIONS IN 3 VARIABLES, \mathbb{F}_{5}

$$
\left\{\begin{aligned}
x_{1}^{2}+3 x_{1} x_{2}+x_{2}^{2}+x_{1} x_{3}+2 x_{2} x_{3}+2 x_{3}^{2}, & \left(f_{1}\right) \\
x_{1}^{2}+4 x_{1} x_{2} & +3 x_{2}^{2}+4 x_{1} x_{3} \\
x_{1}^{2} & +2 x_{2}^{2}
\end{aligned}\right.
$$

EXAMPLE: 3 QUADRATIC EQUATIONS IN 3 VARIABLES, \mathbb{F}_{5}

$$
\begin{aligned}
& \left\{\begin{aligned}
x_{1}^{2}+3 x_{1} x_{2}+x_{2}^{2}+x_{1} x_{3}+2 x_{2} x_{3}+2 x_{3}^{2}, & \left(f_{1}\right) \\
x_{1}^{2}+4 x_{1} x_{2}+3 x_{2}^{2}+4 x_{1} x_{3} & +3 x_{3}^{2}, \\
x_{1}^{2} & \left.+2 f_{2}^{2}\right) \\
& +4 x_{2} x_{3}+3 x_{3}^{2} .
\end{aligned}\right. \\
& \mathscr{M}_{2}=\begin{array}{c}
f_{1}\left(\begin{array}{cccccc}
x_{1}^{2} & x_{1} x_{2} & x_{2}^{2} & x_{1} x_{3} & x_{2} x_{3} & x_{3}^{2} \\
f_{2} \\
f_{3} & 3 & 1 & 1 & 2 & 2 \\
1 & 4 & 3 & 4 & 0 & 3 \\
1 & 0 & 2 & 0 & 4 & 3
\end{array}\right) .
\end{array}
\end{aligned}
$$

EXAMPLE: 3 QUADRATIC EQUATIONS IN 3 VARIABLES, \mathbb{F}_{5}

$$
\begin{aligned}
& \left\{\begin{aligned}
x_{1}^{2}+3 x_{1} x_{2}+x_{2}^{2}+x_{1} x_{3}+2 x_{2} x_{3}+2 x_{3}^{2}, & \left(f_{1}\right) \\
x_{1}^{2}+4 x_{1} x_{2}+3 x_{2}^{2}+4 x_{1} x_{3} & +3 x_{3}^{2}, \\
x_{1}^{2} & \left.+2 f_{2}^{2}\right) \\
& +4 x_{2} x_{3}+3 x_{3}^{2} .
\end{aligned}\right. \\
& \operatorname{Ech}\left(\mathscr{M}_{2}\right)=\begin{array}{c}
\tilde{f}_{1} \\
\tilde{f}_{2} \\
\tilde{f}_{2}^{2} \\
\tilde{f}_{3}
\end{array}\left(\begin{array}{cccccc}
1 & & & 2 & 3 & 4 \\
0 & 1 & & & 2 & 2 \\
0 & & 1 & 4 & 3 & 2
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{aligned}
& x_{1}^{2}+3 x_{1} x_{2}+x_{2}^{2}+x_{1} x_{3}+2 x_{2} x_{3} \\
& x_{1}^{2}+4 x_{1} x_{2}+3 x_{3}^{2}, \\
& x_{1}^{2}+4 x_{1}^{2} x_{3} \\
&+3 x_{3}^{2} \\
&+4 x_{2} x_{3} \\
&+3 x_{3}^{2}
\end{aligned}\right. \\
& x_{1}^{3} \quad x_{1}^{2} x_{2} \quad x_{1} x_{2}^{2} \quad x_{2}^{3} \quad x_{1}^{2} x_{3} \quad x_{1} x_{2} x_{3} \quad x_{2}^{2} x_{3} \quad x_{1} x_{3}^{2} \quad x_{2} x_{3}^{2} \quad x_{3}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{llll}
x_{1}^{2} & & +2 x_{1} x_{3} & +3 x_{2} x_{3}+4 x_{3}^{2}, \\
& x_{1} x_{2} & \\
& & & \\
& & x_{2}^{2}+4 x_{2} x_{3}+2 x_{3}^{2} & +3 x_{2} x_{3}+2 x_{3}^{2} .
\end{array}\right. \\
& x_{1}^{3} \quad x_{1}^{2} x_{2} \quad x_{1} x_{2}^{2} \quad x_{2}^{3} \quad x_{1}^{2} x_{3} \quad x_{1} x_{2} x_{3} \quad x_{2}^{2} x_{3} \quad x_{1} x_{3}^{2} \quad x_{2} x_{3}^{2} \quad x_{3}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}^{3} \quad x_{1}^{2} x_{2} \quad x_{1} x_{2}^{2} \quad x_{2}^{3} \quad x_{1}^{2} x_{3} \quad x_{1} x_{2} x_{3} \quad x_{2}^{2} x_{3} \quad x_{1} x_{3}^{2} \quad x_{2} x_{3}^{2} \quad x_{3}^{3}
\end{aligned}
$$

Gröbner basis via linear algebra

Gröbner Basis $= \begin{cases}x_{1} x_{3}^{2}+4 x_{3}^{3}, & \left(x_{1} f_{2}\right) \\ x_{2} x_{3}^{2}+4 x_{3}^{3}, & \left(x_{1} f_{3}\right) \\ x_{1}^{2}+2 x_{1} x_{3}+3 x_{2} x_{3}+4 x_{3}^{2}, & \left(f_{1}\right) \\ x_{1} x_{2}+2 x_{2} x_{3}+2 x_{3}^{2}, & \left(f_{2}\right) \\ x_{2}^{2}+4 x_{1} x_{3}+3 x_{2} x_{3}+2 x_{3}^{2} & \left(f_{3}\right) .\end{cases}$
One projective solution: $(1,1,1)$.

EXAMPLE: 3 QUADRATIC EQUATIONS IN 3 VARIABLES, \mathbb{F}_{5}

$$
\left\{\begin{aligned}
& x_{1}^{2}+3 x_{1} x_{2}+x_{2}^{2}+x_{1} x_{3}+2 x_{2} x_{3} \\
& x_{1}^{2}+4 x_{1} x_{2}+3 x_{2}^{2} \\
& x_{1}^{2}+4 x_{1}^{2} \\
& x_{1}^{2}+3 x_{3}^{2} \\
&+4 x_{2} x_{3} \\
&+3 x_{3}^{2}
\end{aligned}\right.
$$

EXAMPLE: 3 QUADRATIC EQUATIONS IN 3 VARIABLES, \mathbb{F}_{5}

$$
\begin{gathered}
\left\{\begin{array}{r}
x_{1}^{2}+3 x_{1} x_{2}+x_{2}^{2}+x_{1} x_{3}+2 x_{2} x_{3} \\
x_{1}^{2}+4 x_{1} x_{2} \\
x_{1}^{2}
\end{array} 3_{2}^{2}+2 x_{3}^{2},\right. \\
\\
+2 x_{2}^{2}
\end{gathered}
$$

EXAMPLE: 3 QUADRATIC EQUATIONS IN 3 VARIABLES, \mathbb{F}_{5}

$$
\begin{array}{r}
\left\{\begin{array}{rlrl}
x_{1}^{2}+3 x_{1} x_{2} & +x_{2}^{2} & +x_{1} x_{3} & +2 x_{2} x_{3} \\
x_{1}^{2}+4 x_{1} x_{2} & +3 x_{2}^{2} \\
x_{1}^{2}
\end{array}\right. \\
\\
\\
+2 x_{2}^{2}
\end{array}
$$

EXAMPLE: 3 QUADRATIC EQUATIONS IN 3 VARIABLES, \mathbb{F}_{5}

$\operatorname{Ech}\left(\mathscr{M}_{3}\right)=$| x_{1}^{3} | $x_{1}^{2} x_{2}$ | $x_{1} x_{2}^{2}$ | x_{2}^{3} | $x_{1}^{2} x_{3}$ | $x_{1} x_{2} x_{3}$ | $x_{2}^{2} x_{3}$ | $x_{1} x_{3}^{2}$ | $x_{2} x_{3}^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x_{3} \tilde{f}_{1}$ | x_{3}^{3} | | | | | | | |
| $x_{2} \tilde{f}_{1}$ | | | | | | | | |
| $x_{1} \tilde{f}_{1}$ | | | | | | | | |
| $x_{3} \tilde{f}_{2}$ | | | | | | | | |
| $x_{2} \tilde{f}_{2}$ | | | | | | | | |
| $x_{1} \tilde{f}_{2}$ | | | | | | | | |
| $x_{3} \tilde{f}_{3}$ | | | | | | | | |
| $x_{2} \tilde{f}_{3}$ | | | | | | | | |
| $x_{1} \tilde{f}_{3}$ | 1 | | | 1 | | | | |
| 1 | | | | | | | | |
| x_{1} | | | | | | | | |
| 1 | | | | | | | | |

EXAMPLE: 3 QUADRATIC EQUATIONS IN 3 VARIABLES, \mathbb{F}_{5}

$$
\begin{aligned}
& x_{1}^{3} \quad x_{1}^{2} x_{2} \quad x_{1} x_{2}^{2} \quad x_{2}^{3} \quad x_{1}^{2} x_{3} \quad x_{1} x_{2} x_{3} \quad x_{2}^{2} x_{3} \quad x_{1} x_{3}^{2} \quad x_{2} x_{3}^{2} \quad x_{3}^{3}
\end{aligned}
$$

$x_{1} f_{3}$ vs $x_{3} f_{3}$: need to go to degree $D=4$ to get the Gröbner Basis.

Gröbner basis via linear algebra

At $D=4$:

- $\binom{6}{4}=15$ monomials of degree 4,
- $3\binom{4}{2}=18$ rows $t f_{i}$ of degree 4,
- \mathscr{M}_{4} has rank $15 \rightarrow 3$ rows reduce to o $\left(x_{1}^{2} f_{2}, x_{1} x_{2} f_{3}, x_{1}^{2} f_{3}\right)$, 1 new polynomial ($\left(x_{1} x_{3} f_{3}\right)$.

GröbNER BASIS VIA LINEAR ALGEBRA

At $D=4$:

- $\binom{6}{4}=15$ monomials of degree 4,
- $3\binom{4}{2}=18$ rows $t f_{i}$ of degree 4 ,
- \mathscr{M}_{4} has rank $15 \rightarrow 3$ rows reduce to $o\left(x_{1}^{2} f_{2}, x_{1} x_{2} f_{3}, x_{1}^{2} f_{3}\right)$, 1 new polynomial ($\left(x_{1} x_{3} f_{3}\right)$.

$$
\text { Gröbner Basis }= \begin{cases}x_{3}^{4}, & \left(x_{1} x_{3} f_{3}\right) \\ x_{1} x_{3}^{2}+3 x_{3}^{3}, & \left(x_{1} f_{2}\right) \\ x_{2} x_{3}^{2}+4 x_{3}^{3}, & \left(x_{1} f_{3}\right) \\ x_{1}^{2}+2 x_{1} x_{3}+3 x_{2} x_{3}+4 x_{3}^{2}, & \left(f_{1}\right) \\ x_{1} x_{2}+2 x_{2} x_{3}+4 x_{3}^{2}, & \left(f_{2}\right) \\ x_{2}^{2}+4 x_{1} x_{3}+3 x_{2} x_{3}+x_{3}^{2} & \left(f_{3}\right) .\end{cases}
$$

GröbNER BASIS VIA LINEAR ALGEBRA

At $D=4$:

- $\binom{6}{4}=15$ monomials of degree 4,
- $3\binom{4}{2}=18$ rows $t f_{i}$ of degree 4,
- \mathscr{M}_{4} has rank $15 \rightarrow 3$ rows reduce to o $\left(x_{1}^{2} f_{2}, x_{1} x_{2} f_{3}, x_{1}^{2} f_{3}\right)$, 1 new polynomial $\left(x_{1} x_{3} f_{3}\right)$.
Gröbner Basis $= \begin{cases}x_{3}^{4}, & \left(x_{1} x_{3} f_{3}\right) \\ x_{1} x_{3}^{2}+3 x_{3}^{3}, & \left(x_{1} f_{2}\right) \\ x_{2} x_{3}^{2}+4 x_{3}^{3}, & \left(x_{1} f_{3}\right) \\ x_{1}^{2}+2 x_{1} x_{3}+3 x_{2} x_{3}+4 x_{3}^{2}, & \left(f_{1}\right) \\ x_{1} x_{2}+2 x_{2} x_{3}+4 x_{3}^{2}, & \left(f_{2}\right) \\ x_{2}^{2}+4 x_{1} x_{3}+3 x_{2} x_{3}+x_{3}^{2} & \left(f_{3}\right) .\end{cases}$

First system:

- \mathscr{M}_{4} has rank $14 \rightarrow 4$ rows reduce to 0 , no new polynomial.

Do we need to compute the Gröbner basis?

- easy to recover the value of all variables from the evaluation of all monomials of degree D.
e.g. from $x_{n}{ }^{D}=\alpha$ and $x_{i} x_{n}{ }^{D-1}=\beta$ we get $x_{i}=\frac{\beta}{\alpha} x_{n}$ (or $x_{n}=0$).

Do we need to compute the Gröbner basis?

- easy to recover the value of all variables from the evaluation of all monomials of degree D.
e.g. from $x_{n}{ }^{D}=\alpha$ and $x_{i} x_{n}{ }^{D-1}=\beta$ we get $x_{i}=\frac{\beta}{\alpha} x_{n}$ (or $x_{n}=0$).
- evaluation of all monomials of degree D on a solution \Rightarrow a vector \boldsymbol{t} such that $\mathscr{M}_{D}\left(\left\{f_{1}, \ldots, f_{m}\right\}\right) \boldsymbol{t}=0$

Do we need to compute the Gröbner basis?

- easy to recover the value of all variables from the evaluation of all monomials of degree D.
e.g. from $x_{n}{ }^{D}=\alpha$ and $x_{i} x_{n}{ }^{D-1}=\beta$ we get $x_{i}=\frac{\beta}{\alpha} x_{n}$ (or $x_{n}=0$).
- evaluation of all monomials of degree D on a solution \Rightarrow a vector t such that $\mathscr{M}_{D}\left(\left\{f_{1}, \ldots, f_{m}\right\}\right) \boldsymbol{t}=0$
- Homogeneous system with o or 1 solution:

$$
\mathrm{Rk}_{D}=\operatorname{Mon}_{D} \text { or } \mathrm{Rk}_{D}=\operatorname{Mon}_{D}-1 .
$$

\Rightarrow only computes the kernel of \mathscr{M}_{D} (instead of a basis of $\mathscr{M}_{\leq D}$):

Do we need to compute the Gröbner basis?

- easy to recover the value of all variables from the evaluation of all monomials of degree D.
e.g. from $x_{n}{ }^{D}=\alpha$ and $x_{i} x_{n}{ }^{D-1}=\beta$ we get $x_{i}=\frac{\beta}{\alpha} x_{n}$ (or $x_{n}=0$).
- evaluation of all monomials of degree D on a solution \Rightarrow a vector t such that $\mathscr{M}_{D}\left(\left\{f_{1}, \ldots, f_{m}\right\}\right) \boldsymbol{t}=0$
- Homogeneous system with o or 1 solution:

$$
\mathrm{Rk}_{D}=\operatorname{Mon}_{D} \text { or } \mathrm{Rk}_{D}=\operatorname{Mon}_{D}-1 .
$$

\Rightarrow only computes the kernel of \mathscr{M}_{D} (instead of a basis of $\mathscr{M}_{\leq D}$):

- no need for RREF!

BI-HOMOGENEOUS SYSTEMS

$$
f_{i}=\sum_{i, j} c_{i, j} x_{i} y_{j} \in \mathbb{F}_{q}[\mathbf{x}, \boldsymbol{y}] .
$$

Macaulay matrix at bi-degree $\left(d_{1}, d_{2}\right)=$ the vector space $\left\langle\mathbf{x}^{\alpha} \boldsymbol{y}^{\beta} f_{i}\right\rangle$ with $\operatorname{deg}\left(\boldsymbol{x}^{\alpha}\right)=d_{1}-1, \operatorname{deg}\left(\boldsymbol{y}^{\beta}\right)=d_{2}-1$.

BI-HOMOGENEOUS SYSTEMS

$$
f_{i}=\sum_{i, j} c_{i, j} x_{i} y_{j} \in \mathbb{F}_{q}[\mathbf{x}, \boldsymbol{y}] .
$$

Macaulay matrix at bi-degree $\left(d_{1}, d_{2}\right)=$ the vector space $\left\langle\mathbf{x}^{\alpha} \boldsymbol{y}^{\beta} f_{i}\right\rangle$ with $\operatorname{deg}\left(\boldsymbol{x}^{\alpha}\right)=d_{1}-1, \operatorname{deg}\left(\boldsymbol{y}^{\beta}\right)=d_{2}-1$.

- \mathscr{M}_{D} is a block diagonal matrix of the $\mathscr{M}_{d_{1}, d_{2}}$'s

BI-HOMOGENEOUS SYSTEMS

$$
f_{i}=\sum_{i, j} c_{i, j} x_{i} y_{j} \in \mathbb{F}_{q}[\mathbf{x}, \boldsymbol{y}] .
$$

Macaulay matrix at bi-degree $\left(d_{1}, d_{2}\right)=$ the vector space $\left\langle\mathbf{x}^{\alpha} \boldsymbol{y}^{\beta} f_{i}\right\rangle$ with $\operatorname{deg}\left(\boldsymbol{x}^{\alpha}\right)=d_{1}-1, \operatorname{deg}\left(\boldsymbol{y}^{\beta}\right)=d_{2}-1$.

- \mathscr{M}_{D} is a block diagonal matrix of the $\mathscr{M}_{d_{1}, d_{2}}$'s
- easy to recover the value of all variables from the evaluation of all monomial of bi-degree $\left(d_{1}, d_{2}\right)$
e.g. from $x_{1}{ }^{d_{1}} y_{1}{ }^{d_{2}}=\alpha$ and $x_{1}{ }^{d_{1}-1} x_{i} y_{1}{ }^{d_{2}}=\beta$ we get $x_{i}=\frac{\beta}{\alpha} x_{1}$ (or $y_{1}=0$).

BI-HOMOGENEOUS SYSTEMS

$$
f_{i}=\sum_{i, j} c_{i, j} x_{i} y_{j} \in \mathbb{F}_{q}[\mathbf{x}, \boldsymbol{y}] .
$$

Macaulay matrix at bi-degree $\left(d_{1}, d_{2}\right)=$ the vector space $\left\langle\mathbf{x}^{\alpha} \boldsymbol{y}^{\beta} f_{i}\right\rangle$ with $\operatorname{deg}\left(\boldsymbol{x}^{\alpha}\right)=d_{1}-1, \operatorname{deg}\left(\boldsymbol{y}^{\beta}\right)=d_{2}-1$.

- \mathscr{M}_{D} is a block diagonal matrix of the $\mathscr{M}_{d_{1}, d_{2}}$'s
- easy to recover the value of all variables from the evaluation of all monomial of bi-degree $\left(d_{1}, d_{2}\right)$
e.g. from $x_{1}{ }^{d_{1}} y_{1}{ }^{d_{2}}=\alpha$ and $x_{1}{ }^{d_{1}-1} x_{i} y_{1}{ }^{d_{2}}=\beta$ we get $x_{i}=\frac{\beta}{\alpha} x_{1}$ (or $y_{1}=0$).
- At bi-degree $\left(d_{1}, d_{2}\right)$, evaluation of all monomials of bi-degree $\left(d_{1}, d_{2}\right)$ on a solution \Rightarrow a vector \boldsymbol{t} such that $\mathscr{M}_{d_{1}, d_{2}}\left(\left\{f_{1}, \ldots, f_{m}\right\}\right) \boldsymbol{t}=0$

BI-HOMOGENEOUS SYSTEMS

$$
f_{i}=\sum_{i, j} c_{i, j} x_{i} y_{j} \in \mathbb{F}_{q}[\mathbf{x}, \boldsymbol{y}] .
$$

Macaulay matrix at bi-degree $\left(d_{1}, d_{2}\right)=$ the vector space $\left\langle\boldsymbol{x}^{\alpha} \boldsymbol{y}^{\beta} f_{i}\right\rangle$ with $\operatorname{deg}\left(\boldsymbol{x}^{\alpha}\right)=d_{1}-1, \operatorname{deg}\left(\boldsymbol{y}^{\beta}\right)=d_{2}-1$.

- \mathscr{M}_{D} is a block diagonal matrix of the $\mathscr{M}_{d_{1}, d_{2}}$'s
- easy to recover the value of all variables from the evaluation of all monomial of bi-degree $\left(d_{1}, d_{2}\right)$
e.g. from $x_{1}{ }^{d_{1}} y_{1}{ }^{d_{2}}=\alpha$ and $x_{1}{ }^{d_{1}-1} x_{i} y_{1}{ }^{d_{2}}=\beta$ we get $x_{i}=\frac{\beta}{\alpha} x_{1}$ (or $y_{1}=0$).
- At bi-degree $\left(d_{1}, d_{2}\right)$, evaluation of all monomials of bi-degree $\left(d_{1}, d_{2}\right)$ on a solution \Rightarrow a vector \boldsymbol{t} such that $\mathscr{M}_{d_{1}, d_{2}}\left(\left\{f_{1}, \ldots, f_{m}\right\}\right) \boldsymbol{t}=0$
- o or 1 solution: the kernel of $\mathscr{M}_{d_{1}, d_{2}}$ for $D=d_{1}+d_{2}$ such that:

$$
\mathrm{Rk}_{d_{1}, d_{2}}=\operatorname{Mon}_{d_{1}, d_{2}} \text { or } \mathrm{Rk}_{d_{1}, d_{2}}=\operatorname{Mon}_{d_{1}, d_{2}}-1 .
$$

GRÖbNER BASIS VIA LINEAR ALGEBRA

Rows of Macaulay matrices:

- Describes the vector space $\left\langle t f_{i}: \operatorname{deg}\left(t f_{i}\right)=d\right\rangle_{\mathbb{F}_{q}}$.
- D. Lazard (1983); Giusti (1984): linear algebra on the Macaulay matrices up to degree $D \rightarrow$ Gröbner basis.
- "Linearization"! with an exponential number of rows/columns.

GröbNER BASIS VIA LINEAR ALGEBRA

Rows of Macaulay matrices:

- Describes the vector space $\left\langle t f_{i}: \operatorname{deg}\left(t f_{i}\right)=d\right\rangle_{\mathbb{F}_{q}}$.
- D. Lazard (1983); Giusti (1984): linear algebra on the Macaulay matrices up to degree $D \rightarrow$ Gröbner basis.
- "Linearization"! with an exponential number of rows/columns.

Main challenges to get complexity estimates for Gröbner Basis computations

- Estimate D.
- Estimate the cost of linear algebra.

\mathbb{C} of linear algebra. Jeannerod, Pernet, and StorjoHANN (2013)

Matrix \mathscr{M} with N rows, Mon columns, rank Rk, and δ non-zero elements per row. Echelon Form can be computed in:

$$
C_{\omega} \times \mathrm{N} \times \operatorname{Mon} \times \mathrm{Rk}^{\omega-2}+o\left(\mathrm{NMon} \mathrm{Rk}^{\omega-2}\right), \quad \mathrm{N}, \text { Mon, } \mathrm{Rk} \rightarrow \infty,
$$

For instance:

- $\left(\omega, C_{\omega}\right)=(3,1)$ for Gaussian Elimination;
- $\left(\omega, C_{\omega}\right)=\left(\log _{2}(7), 4.4\right)$ for the Strassen Algorithm;

\mathbb{C} OF Linear Algebra. Jeannerod, Pernet, and StorjoHANN (2013)

Matrix \mathscr{M} with N rows, Mon columns, rank Rk, and δ non-zero elements per row. Echelon Form can be computed in:

$$
C_{\omega} \times \mathrm{N} \times \operatorname{Mon} \times \mathrm{Rk}^{\omega-2}+o\left(\mathrm{NMon} \mathrm{Rk}^{\omega-2}\right), \quad \mathrm{N}, \text { Mon, Rk } \rightarrow \infty,
$$

For instance:

- $\left(\omega, C_{\omega}\right)=(3,1)$ for Gaussian Elimination;
- $\left(\omega, C_{\omega}\right)=\left(\log _{2}(7), 4.4\right)$ for the Strassen Algorithm;

Probabilistic Wiedemann (1986) algorithm:

$$
3 \delta \times \mathrm{N} \times \text { Mon }+o(\delta \text { N Mon }), \quad \mathrm{N}, \text { Mon } \rightarrow \infty
$$

\mathbb{C} of linear algebra. Jeannerod, Pernet, and StorjoHANN (2013)

Matrix \mathscr{M} with N rows, Mon columns, rank Rk, and δ non-zero elements per row. Echelon Form can be computed in:

$$
C_{\omega} \times \mathrm{N} \times \operatorname{Mon} \times \mathrm{Rk}^{\omega-2}+o\left(\mathrm{NMon} \mathrm{Rk}^{\omega-2}\right), \quad \mathrm{N}, \text { Mon, Rk } \rightarrow \infty,
$$

For instance:

- $\left(\omega, C_{\omega}\right)=(3,1)$ for Gaussian Elimination;
- $\left(\omega, C_{\omega}\right)=\left(\log _{2}(7), 4.4\right)$ for the Strassen Algorithm;

Probabilistic Wiedemann (1986) algorithm:

$$
3 \delta \times \mathrm{N} \times \operatorname{Mon}+o(\delta \mathrm{~N} \text { Mon }), \quad \text { N, Mon } \rightarrow \infty
$$

These are upper bounds.

Linear dependencies between rows

- the rows of $\mathscr{M}_{\leq D}$ are not linearly independent: e.g.

$$
f_{k} f_{\ell}-f_{\ell} f_{k}=0 .
$$

Linear dependencies between rows

- the rows of $\mathscr{M}_{\leq D}$ are not linearly independent: e.g.

$$
f_{k} f_{\ell}-f_{\ell} f_{k}=0 .
$$

- relations between the rows are called syzygies of the system.

Linear dependencies between rows

- the rows of $\mathscr{M}_{\leq D}$ are not linearly independent: e.g.

$$
f_{k} f_{\ell}-f_{\ell} f_{k}=0 .
$$

- relations between the rows are called syzygies of the system.
- a system has trivial syzygies, and may have other: a system is regular if it has only trivial syzygies.

Linear dependencies between rows

- the rows of $\mathscr{M}_{\leq D}$ are not linearly independent: e.g.

$$
f_{k} f_{\ell}-f_{\ell} f_{k}=0 .
$$

- relations between the rows are called syzygies of the system.
- a system has trivial syzygies, and may have other: a system is regular if it has only trivial syzygies.
- F5 criterion J.-C. Faugère (2002) = a criterion to detect syzygies. Can detect all trivial syzygies.

Linear dependencies between rows

- the rows of $\mathscr{M}_{\leq D}$ are not linearly independent: e.g.

$$
f_{k} f_{\ell}-f_{\ell} f_{k}=0 .
$$

- relations between the rows are called syzygies of the system.
- a system has trivial syzygies, and may have other: a system is regular if it has only trivial syzygies.
- F5 criterion J.-C. Faugère (2002) = a criterion to detect syzygies. Can detect all trivial syzygies.
- \rightarrow construct a matrix with only Rk_{D} rows for regular sequences.

Linear dependencies between rows

- the rows of $\mathscr{M}_{\leq D}$ are not linearly independent: e.g.

$$
f_{k} f_{\ell}-f_{\ell} f_{k}=0 .
$$

- relations between the rows are called syzygies of the system.
- a system has trivial syzygies, and may have other: a system is regular if it has only trivial syzygies.
- F5 criterion J.-C. Faugère (2002) = a criterion to detect syzygies. Can detect all trivial syzygies.
- \rightarrow construct a matrix with only Rk_{D} rows for regular sequences.
- the rows of $\mathscr{M}_{\leq D}$ are not linearly independent: e.g.

$$
f_{k} f_{\ell}-f_{\ell} f_{k}=0 .
$$

- relations between the rows are called syzygies of the system.
- a system has trivial syzygies, and may have other: a system is regular if it has only trivial syzygies.
- F5 criterion J.-C. Faugère (2002) = a criterion to detect syzygies. Can detect all trivial syzygies.
$-\rightarrow$ construct a matrix with only Rk_{D} rows for regular sequences.
\triangle we cannot remove rows at random 4

Estimation of D

For regular systems:

- we can count the number of trivial syzygies, hence estimate theoretically Rk_{d} for any d.

Estimation of D

For regular systems:

- we can count the number of trivial syzygies, hence estimate theoretically Rk_{d} for any d.
If the system has 1 (resp. o) (projective) solution:
- then D is bounded by the smallest value such that

$$
\mathrm{Rk}_{d}=\mathrm{Mon}_{d}-1 \quad\left(\text { resp. } \mathrm{Rk}_{d}=\mathrm{Mon}_{d}\right)
$$

Hilbert Series (homogeneous system)

$$
I \subset R=\mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right], \quad R=\oplus_{d} R_{d}, \quad I_{d}=R_{d} \cap I
$$

$$
H S_{R / I}(z) \stackrel{\text { def }}{=} \sum_{d \in \mathbb{N}} \operatorname{dim}\left(R_{d} / I_{d}\right) z^{d}
$$

Hilbert Series (homogeneous system)

$$
\begin{aligned}
I \subset R=\mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right], \quad R=\oplus_{d} R_{d}, \quad I_{d} & =R_{d} \cap I . \\
H S_{R / I}(z) & \stackrel{\operatorname{def}}{=} \sum_{d \in \mathbb{N}} \operatorname{dim}\left(R_{d} / I_{d}\right) z^{d} .
\end{aligned}
$$

$-\operatorname{dim}\left(R_{d} / I_{d}\right)$ is the co-rank of the Macaulay matrix $\mathscr{M}_{d}=$ Mon $_{d}-\mathrm{Rk}_{d}$.

Hilbert Series (homogeneous system)

$I \subset R=\mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right], \quad R=\oplus_{d} R_{d}, \quad I_{d}=R_{d} \cap I$.

$$
H S_{R / /}(z) \stackrel{\text { def }}{=} \sum_{d \in \mathbb{N}} \operatorname{dim}\left(R_{d} / I_{d}\right) z^{d} .
$$

- $\operatorname{dim}\left(R_{d} / I_{d}\right)$ is the co-rank of the Macaulay matrix $\mathscr{M}_{d}=$ Mon $_{d}-\mathrm{Rk}_{d}$.
- Knowing all the parameters for the Macaulay matrices = knowing the Hilbert series.

Hilbert Series (homogeneous system)
$I \subset R=\mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right], \quad R=\oplus_{d} R_{d}, \quad I_{d}=R_{d} \cap I$.

$$
H S_{R / /}(z) \stackrel{\text { def }}{=} \sum_{d \in \mathbb{N}} \operatorname{dim}\left(R_{d} / I_{d}\right) z^{d} .
$$

- $\operatorname{dim}\left(R_{d} / I_{d}\right)$ is the co-rank of the Macaulay matrix $\mathscr{M}_{d}=$ Mon $_{d}-\mathrm{Rk}_{d}$.
- Knowing all the parameters for the Macaulay matrices = knowing the Hilbert series.
- No projective solution: $\operatorname{dim}\left(R_{d} / I_{d}\right)=0$ for all $d \geq D(D=\operatorname{deg}(H S)+1)$.

Hilbert Series (homogeneous system)
$I \subset R=\mathbb{F}_{q}\left[x_{1}, \ldots, x_{n}\right], \quad R=\oplus_{d} R_{d}, \quad I_{d}=R_{d} \cap I$.

$$
H S_{R / I}(z) \stackrel{\operatorname{def}}{=} \sum_{d \in \mathbb{N}} \operatorname{dim}\left(R_{d} / I_{d}\right) z^{d}
$$

- $\operatorname{dim}\left(R_{d} / I_{d}\right)$ is the co-rank of the Macaulay matrix $\mathscr{M}_{d}=$ Mon $_{d}-\mathrm{Rk}_{d}$.
- Knowing all the parameters for the Macaulay matrices = knowing the Hilbert series.
- No projective solution: $\operatorname{dim}\left(R_{d} / I_{d}\right)=0$ for all $d \geq D(D=\operatorname{deg}(H S)+1)$.
- One projective solution: $\operatorname{dim}\left(R_{d} / I_{d}\right)=1$ for all $d \geq D$.

Known CLASSES OF "REGULAR" SYSTEMS

- regular systems; Macaulay (1994),
(not exhaustive)

Known CLASSES OF "REGULAR" SYSTEMS

- regular systems; Macaulay (1994),
- semi-regular systems; Bardet, J.-C. Faugère, and Salvy (2004),
(not exhaustive)

Known CLASSES OF "REGULAR" SYSTEMS

- regular systems; Macaulay (1994),
- semi-regular systems; Bardet, J.-C. Faugère, and Salvy (2004),
- solutions in \mathbb{F}_{2} : boolean semi-regular systems; Bardet, J.-C. Faugère, Salvy, and Yang (2005),
(not exhaustive)

Known CLASSES OF "REGULAR" SYSTEMS

- regular systems; Macaulay (1994),
- semi-regular systems; Bardet, J.-C. Faugère, and Salvy (2004),
- solutions in \mathbb{F}_{2} : boolean semi-regular systems; Bardet, J.-C. Faugère, Salvy, and Yang (2005),
- bi-regular bilinear systems; J.-C. Faugère, Safey El Din, and P.-J. Spaenlehauer (2011).
(not exhaustive)

Known CLASSES OF "REGULAR" SYSTEMS

- regular systems; Macaulay (1994),
- semi-regular systems; Bardet, J.-C. Faugère, and Salvy (2004),
- solutions in \mathbb{F}_{2} : boolean semi-regular systems; Bardet, J.-C. Faugère, Salvy, and Yang (2005),
- bi-regular bilinear systems; J.-C. Faugère, Safey El Din, and P.-J. Spaenlehauer (2011).
- determinantal systems; Conca and Herzog (1994),
(not exhaustive)

Generic Complexity analysis

- Over an infinite field: Zariski topology, non-empty open sets are dense.

Generic Complexity analysis

- Over an infinite field: Zariski topology, non-empty open sets are dense.
- The set of non-"regular" systems = a closed set for the Zariski topology.

Generic Complexity analysis

- Over an infinite field: Zariski topology, non-empty open sets are dense.
- The set of non-"regular" systems = a closed set for the Zariski topology.
- The set of "regular" systems = an open Zariski set.

Generic Complexity analysis

- Over an infinite field: Zariski topology, non-empty open sets are dense.
- The set of non-"regular" systems = a closed set for the Zariski topology.
- The set of "regular" systems = an open Zariski set.
- Conjecture: the open set is not empty.

Generic Complexity analysis

- Over an infinite field: Zariski topology, non-empty open sets are dense.
- The set of non-"regular" systems = a closed set for the Zariski topology.
- The set of "regular" systems = an open Zariski set.
- Conjecture: the open set is not empty.
- In practice: we take the coefficients in a finite field.

Generic Complexity analysis

- Over an infinite field: Zariski topology, non-empty open sets are dense.
- The set of non-"regular" systems = a closed set for the Zariski topology.
- The set of "regular" systems = an open Zariski set.
- Conjecture: the open set is not empty.
- In practice: we take the coefficients in a finite field.
- Conjecture: the proportion of "regular" systems is large.

Generic Complexity analysis

- Over an infinite field: Zariski topology, non-empty open sets are dense.
- The set of non-"regular" systems = a closed set for the Zariski topology.
- The set of "regular" systems = an open Zariski set.
- Conjecture: the open set is not empty.
- In practice: we take the coefficients in a finite field.
- Conjecture: the proportion of "regular" systems is large.

Generic Complexity analysis

- Over an infinite field: Zariski topology, non-empty open sets are dense.
- The set of non-"regular" systems = a closed set for the Zariski topology.
- The set of "regular" systems = an open Zariski set.
- Conjecture: the open set is not empty.
- In practice: we take the coefficients in a finite field.
- Conjecture: the proportion of "regular" systems is large.
c-ex: there is no boolean semi-regular quadratic system of 1 polynomial in $n>6$ variables. Hodges, Molina, and Schlather (2017).
More generally, if $n \gg m$ there is no boolean semi-regular sequence of m polynomials of degree $d_{1}, \ldots, d_{m} \geq 2$.

Quadratic systems in different classes

- $m=n$ regular system: $D \leq n+1$, Mon $_{D}=\binom{n+D-1}{D}$

QuAdratic systems in different classes

- $m=n$ regular system: $D \leq n+1$, Mon $_{D}=\binom{n+D-1}{D}$
- $m=n+1$ semi-regular system: $D \leq\left\lceil\frac{n+2}{2}\right\rceil, \rightarrow$ hybrid approach :

QuAdratic systems in different classes

- $m=n$ regular system: $D \leq n+1$, Mon $_{D}=\binom{n+D-1}{D}$
- $m=n+1$ semi-regular system: $D \leq\left\lceil\frac{n+2}{2}\right\rceil, \rightarrow$ hybrid approach :
- $m=n$ regular bilinear system with $\left\lfloor\frac{n}{2}\right\rfloor$ variables x and $\left\lceil\frac{n}{2}\right\rceil$ variables y : $D \leq\left\lfloor\frac{n}{2}\right\rfloor+2$.

QuAdratic systems in different classes

- $m=n$ regular system: $D \leq n+1$, Mon $_{D}=\binom{n+D-1}{D}$
- $m=n+1$ semi-regular system: $D \leq\left\lceil\frac{n+2}{2}\right\rceil$, \rightarrow hybrid approach :-
- $m=n$ regular bilinear system with $\left\lfloor\frac{n}{2}\right\rfloor$ variables x and $\left\lceil\frac{n}{2}\right\rceil$ variables y : $D \leq\left\lfloor\frac{n}{2}\right\rfloor+2$.
- $m=2 n$ semi-regular system: $D \leq 0.0858 n+o\left(n^{1 / 3}\right)$

QuAdratic systems in different classes

- $m=n$ regular system: $D \leq n+1$, Mon $_{D}=\binom{n+D-1}{D}$
- $m=n+1$ semi-regular system: $D \leq\left\lceil\frac{n+2}{2}\right\rceil$, \rightarrow hybrid approach :-
- $m=n$ regular bilinear system with $\left\lfloor\frac{n}{2}\right\rfloor$ variables x and $\left\lceil\frac{n}{2}\right\rceil$ variables y : $D \leq\left\lfloor\frac{n}{2}\right\rfloor+2$.
- $m=2 n$ semi-regular system: $D \leq 0.0858 n+o\left(n^{1 / 3}\right)$
- $m=n$ regular over $\mathbb{F}_{2}: D \leq 0.0900 n+o\left(n^{1 / 3}\right)$, but Mon $_{D}=\binom{n}{D}$.

Affine systems

- Apply previous results: homogenize the system ! (new variable h)

Affine systems

- Apply previous results: homogenize the system ! (new variable h)
- it may give overestimated D^{h}

Affine systems

- Apply previous results: homogenize the system ! (new variable h)
- it may give overestimated D^{h}
- No spurious solution at infinity $(h=0)$ if $\mathscr{F}^{\text {top }}=\left(f_{1}^{\text {top }}, \ldots, f_{m}^{\text {top }}\right)$ is zero-dimensional.

Affine systems

- Apply previous results: homogenize the system ! (new variable h)
- it may give overestimated D^{h}
- No spurious solution at infinity $(h=0)$ if $\mathscr{F}^{\text {top }}=\left(f_{1}^{\text {top }}, \ldots, f_{m}^{\text {top }}\right)$ is zero-dimensional.
- If $\mathscr{F}^{\text {top }}$ is not regular, there are some degree drop \rightarrow harder to estimate the complexity, not to compute the Gröbner basis!

Affine systems

- Apply previous results: homogenize the system ! (new variable h)
- it may give overestimated D^{h}
- No spurious solution at infinity $(h=0)$ if $\mathscr{F}^{\text {top }}=\left(f_{1}^{\text {top }}, \ldots, f_{m}^{\text {top }}\right)$ is zero-dimensional.
- If $\mathscr{F}^{\text {top }}$ is not regular, there are some degree drop \rightarrow harder to estimate the complexity, not to compute the Gröbner basis!
- If $\mathscr{F}^{\text {top }}$ is regular: $D^{\text {top }}$

Affine systems

- Apply previous results: homogenize the system ! (new variable h)
- it may give overestimated D^{h}
- No spurious solution at infinity $(h=0)$ if $\mathscr{F}^{\text {top }}=\left(f_{1}^{\text {top }}, \ldots, f_{m}^{\text {top }}\right)$ is zero-dimensional.
- If $\mathscr{F}^{\text {top }}$ is not regular, there are some degree drop \rightarrow harder to estimate the complexity, not to compute the Gröbner basis!
- If $\mathscr{F}^{\text {top }}$ is regular: $D^{\text {top }}$
- may need $D^{\text {top }}+1$

Affine systems

- Apply previous results: homogenize the system ! (new variable h)
- it may give overestimated D^{h}
- No spurious solution at infinity $(h=0)$ if $\mathscr{F}^{\text {top }}=\left(f_{1}^{\text {top }}, \ldots, f_{m}^{\text {top }}\right)$ is zero-dimensional.
- If \mathscr{F} top is not regular, there are some degree drop \rightarrow harder to estimate the complexity, not to compute the Gröbner basis!
- If $\mathscr{F}^{\text {top }}$ is regular: $D^{\text {top }}$
- may need $D^{\text {top }}+1$
- may need several echelon form at degree $D^{\text {top }}+1 \rightarrow$ complexity estimate?

Affine systems

- Apply previous results: homogenize the system ! (new variable h)
- it may give overestimated D^{h}
- No spurious solution at infinity $(h=0)$ if \mathscr{F} top $=\left(f_{1}^{\text {top }}, \ldots, f_{m}^{\text {top }}\right)$ is zero-dimensional.
- If \mathscr{F} top is not regular, there are some degree drop \rightarrow harder to estimate the complexity, not to compute the Gröbner basis!
- If $\mathscr{F}^{\text {top }}$ is regular: $D^{\text {top }}$
- may need $D^{\text {top }}+1$
- may need several echelon form at degree $D^{\text {top }}+1 \rightarrow$ complexity estimate?
- If you have degree drops: take that into account? estimate the new complexity?

Affine systems

- Apply previous results: homogenize the system ! (new variable h)
- it may give overestimated D^{h}
- No spurious solution at infinity $(h=0)$ if \mathscr{F} top $=\left(f_{1}^{\text {top }}, \ldots, f_{m}^{\text {top }}\right)$ is zero-dimensional.
- If $\mathscr{F}^{\text {top }}$ is not regular, there are some degree drop \rightarrow harder to estimate the complexity, not to compute the Gröbner basis!
- If $\mathscr{F}^{\text {top }}$ is regular: $D^{\text {top }}$
- may need $D^{\text {top }}+1$
- may need several echelon form at degree $D^{\text {top }}+1 \rightarrow$ complexity estimate?
- If you have degree drops: take that into account? estimate the new complexity?
- The complexity can be smaller or larger ? ?

3 AFFINE QUADRATIC EQUATIONS IN 2 VARIABLES, \mathbb{F}_{5}

$$
\left\{\begin{array}{llllll}
x_{1}^{2} & & & +2 x_{1} & +3 x_{2} & + \\
& & & 4, & \left(f_{1}\right) \\
& x_{1} x_{2} & & & & \\
& & x_{2}^{2} & +4 x_{1} & +3 x_{2}+2(\operatorname{or} 4), & \left(f_{2}\right) \\
& & +2) . & \left(f_{3}\right)
\end{array}\right.
$$

- $D^{\text {top }}=2$, not enough to get linear equations.

3 AFFINE QUADRATIC EQUATIONS IN 2 VARIABLES, \mathbb{F}_{5}

$$
\left\{\begin{array}{llllll}
x_{1}^{2} & & & +2 x_{1} & +3 x_{2}+ & 4, \\
& x_{1} x_{2} & & \left(f_{1}\right) \\
& & x_{2}^{2}+2 x_{2}+2(\operatorname{or} 4), & \left(f_{2}\right) \\
& & +3 x_{1}+2(\operatorname{or} 1) . & \left(f_{3}\right)
\end{array}\right.
$$

- $D^{\text {top }}=2$, not enough to get linear equations.
- $D^{h}=3$ (or 4)

3 AFFINE QUADRATIC EQUATIONS IN 2 VARIABLES, \mathbb{F}_{5}

$$
\left\{\begin{array}{llllll}
x_{1}^{2} & & & +2 x_{1} & +3 x_{2} & + \\
& & +2 x_{2} & +2(\text { or } 4), & & \left(f_{1}\right) \\
& x_{1} x_{2} & & \left(f_{2}\right) \\
& & x_{2}^{2} & +4 x_{1} & +3 x_{2}+2(\text { or } 1) . & \left(f_{3}\right)
\end{array}\right.
$$

- $D^{\text {top }}=2$, not enough to get linear equations.
- $D^{h}=3$ (or 4)
- $D=3$ gives

$$
\left\{\begin{array} { l }
{ \vdots } \\
{ x _ { 2 } ^ { 2 } + 4 , } \\
{ x _ { 1 } + 4 , } \\
{ x _ { 2 } + 4 }
\end{array} \text { or } \left\{\begin{array}{l}
\vdots \\
x_{2}^{2}+2 \\
x_{1}+3 \\
x_{2}+4
\end{array}\right.\right.
$$

3 AFFINE QUADRATIC EQUATIONS IN 2 VARIABLES, \mathbb{F}_{5}

$$
\left\{\begin{array}{llllll}
x_{1}^{2} & & & +2 x_{1} & +3 x_{2} & + \\
& & & 4, & \left(f_{1}\right) \\
& x_{1} x_{2} & & & & \\
& & x_{2}^{2} & +4 x_{1} & +3 x_{2}+2(\operatorname{or} 4), & \left(f_{2}\right) \\
& & +2) . & \left(f_{3}\right)
\end{array}\right.
$$

- $D^{\text {top }}=2$, not enough to get linear equations.
- $D^{h}=3$ (or 4)
- $D=3$ gives

$$
\left\{\begin{array} { l }
{ \vdots } \\
{ x _ { 2 } ^ { 2 } + 4 , } \\
{ x _ { 1 } + 4 , } \\
{ x _ { 2 } + 4 }
\end{array} \quad \text { or } \left\{\begin{array}{l}
\vdots \\
x_{2}^{2}+2 \\
x_{1}+3 \\
x_{2}+4
\end{array}\right.\right.
$$

- second case: need another $D=2$ matrix to get $I=\langle 1\rangle$.

Algebraic attack

For a class of system coming from an algebraic modeling

- determine the generic relations between rows in the Macaulay matrices = syzygies,

AlgEbraic ATtack

For a class of system coming from an algebraic modeling

- determine the generic relations between rows in the Macaulay matrices = syzygies,
- compute the rank of the Macaulay matrices for generic systems,

AlgEbraic ATtack

For a class of system coming from an algebraic modeling

- determine the generic relations between rows in the Macaulay matrices = syzygies,
- compute the rank of the Macaulay matrices for generic systems,
- deduce the maximal degree $D \rightarrow$ complexity estimates,

Algebraic attack

For a class of system coming from an algebraic modeling

- determine the generic relations between rows in the Macaulay matrices = syzygies,
- compute the rank of the Macaulay matrices for generic systems,
- deduce the maximal degree $D \rightarrow$ complexity estimates,
- design a specific Gb algorithm that is more efficient.

1 NIST call for Post-Quantum cryptography

2 Algebraic Modeling

3 Complexity estimates

4 Examples

5 Rank metric codes

6 MinRank

LET'S PLAY A GAME

Some important parameters to estimate the complexity of solving a polynomial system:

- the number of variables,
- the number of equations,
- the degree of the equations,
- the degree of the intermediate computations

LET'S PLAY A GAME

Some important parameters to estimate the complexity of solving a polynomial system:

- the number of variables,
- the number of equations,
- the degree of the equations,
- the degree of the intermediate computations

But not sufficient!

LET'S PLAY A GAME

Some important parameters to estimate the complexity of solving a polynomial system:

- the number of variables,
- the number of equations,
- the degree of the equations,
- the degree of the intermediate computations

But not sufficient!
Given a polynomial system of equations, what can you say "a priori" about its complexity?

COMPLEXITY OF SOLVING A SYSTEM

$$
\left\{\begin{array}{l}
x_{1}+2 x_{5}+2 x_{6}+1, \\
x_{1}+x_{5}+x_{6}+2, \\
x_{1}+2 x_{2}+2 x_{3}+2 x_{4}+x_{6}+1, \\
x_{1}+x_{2}+x_{4}+2 x_{5}+x_{6}+1, \\
x_{1}+x_{2}+2 x_{3}+x_{4}+x_{5}+x_{6} \\
2 x_{1}+2 x_{2}+x_{3}+x_{4}+x_{5}+1
\end{array}\right.
$$

COMPLEXITY OF SOLVING A SYSTEM

$$
\left\{\begin{array}{l}
x_{1}+2 x_{5}+2 x_{6}+1, \\
x_{1}+x_{5}+x_{6}+2, \\
x_{1}+2 x_{2}+2 x_{3}+2 x_{4}+x_{6}+1, \\
x_{1}+x_{2}+x_{4}+2 x_{5}+x_{6}+1, \\
x_{1}+x_{2}+2 x_{3}+x_{4}+x_{5}+x_{6}, \\
2 x_{1}+2 x_{2}+x_{3}+x_{4}+x_{5}+1
\end{array}\right.
$$

Linear system, polynomial time complexity.

COMPLEXITY OF SOLVING A SYSTEM

$$
\left\{\begin{array}{l}
x_{1}+2 x_{5}+2 x_{6}+1, \\
x_{1}+x_{5}+x_{6}+2, \\
x_{1}+2 x_{2}+2 x_{3}+2 x_{4}+x_{6}+1, \\
x_{1}+x_{2}+x_{4}+2 x_{5}+x_{6}+1, \\
x_{1}+x_{2}+2 x_{3}+x_{4}+x_{5}+x_{6}, \\
2 x_{1}+2 x_{2}+x_{3}+x_{4}+x_{5}+1
\end{array}\right.
$$

Linear system, polynomial time complexity. Number of solutions? $\left(\mathbb{F}_{3}\right)$

EXAMPLE (BAYER-Stillman 1988)

$$
\mathscr{S}_{e x}= \begin{cases}f_{0} c_{0, \ell} b_{0, \ell}^{2}+s_{0} c_{0, \ell} & \\ s_{i} c_{i, 1}+s_{i+1}, & \\ s_{i} c_{i, 4}+f_{i+1}, & i \in\{0 . .2\} \\ f_{i} c_{i, 1}+s_{i} c_{i, 2}, & \ell \in\{1 . .4\} \\ s_{i} c_{i, 3}+f_{i} c_{i, 4} & \\ f_{i} c_{i, 2} b_{i, 1}+f_{i} c_{i, 3} b_{i, 4}, & \\ s_{i} c_{i, 2}+s_{i} c_{i, 3}, & \\ f_{i} c_{i, 2} b_{i, 3} c_{i+1, \ell} b_{i+1, \ell}+f_{i} c_{i, \ell} c_{i, 2} b_{i, 2}, & \end{cases}
$$

$\mathscr{S}_{e x} \in \mathbb{F}_{2}\left[f_{i}, s_{i}, c_{i, \ell}, b_{i, \ell}\right]$ for $i \in\{0 . .3\}, \ell \in\{1 . .4\}$.
40 variables, 34 polynomials of degrees $2: 15,3: 3,4: 4,5: 12$.

EXAMPLE (BAYER-Stillman 1988)

$$
\mathscr{S}_{e x}= \begin{cases}f_{0} c_{0, \ell} b_{0, \ell}^{2}+s_{0} c_{0, \ell} & \\ s_{i} c_{i, 1}+s_{i+1}, & \\ s_{i} c_{i, 4}+f_{i+1}, & i \in\{0 . .2\} \\ f_{i} c_{i, 1}+s_{i} c_{i, 2}, & \ell \in\{1 . .4\} \\ s_{i} c_{i, 3}+f_{i} c_{i, 4} & \\ f_{i} c_{i, 2} b_{i, 1}+f_{i} c_{i, 3} b_{i, 4}, & \\ s_{i} c_{i, 2}+s_{i} c_{i, 3}, & \\ f_{i} c_{i, 2} b_{i, 3} c_{i+1, \ell} b_{i+1, \ell}+f_{i} c_{i, \ell} c_{i, 2} b_{i, 2}, & \end{cases}
$$

$\mathscr{S}_{e x} \in \mathbb{F}_{2}\left[f_{i}, s_{i}, c_{i, \ell}, b_{i, \ell}\right]$ for $i \in\{0 . .3\}, \ell \in\{1 . .4\}$.
40 variables, 34 polynomials of degrees $2: 15,3: 3,4: 4,5: 12$.
$D=82$ for regular systems

Step Degrees during the grevlex computation for $\mathscr{S}_{\text {ex }}($ magma V2.28-2)

Step Degrees during the grevlex computation for $\mathscr{S}_{\text {ex }}($ magma V2.28-2)

- Step degree
$\times \quad$ New polys

Time of the computation (in sec) for $\mathscr{S}_{\text {ex }}$ (magma V2.28-2)

EXAMPLE (BAYER-Stillman 1988)

$$
\mathscr{S}_{e x}= \begin{cases}f_{0} c_{0, \ell} b_{0, \ell}^{2}+s_{0} c_{0, \ell} & \\ s_{i} c_{i, 1}+s_{i+1}, & \\ s_{i} c_{i, 4}+f_{i+1}, & i \in\{0 . .2\} \\ f_{i} c_{i, 1}+s_{i} c_{i, 2}, & \ell \in\{1 . .4\} \\ s_{i} c_{i, 3}+f_{i} c_{i, 4} & \\ f_{i} c_{i, 2} b_{i, 1}+f_{i} c_{i, 3} b_{i, 4} & \\ s_{i} c_{i, 2}+s_{i} c_{i, 3}, & \\ f_{i} c_{i, 2} b_{i, 3} c_{i+1, \ell} b_{i+1, \ell}+f_{i} c_{i},{ }_{\ell} c_{i, 2} b_{i, 2}, & \end{cases}
$$

$\mathscr{S}_{e x} \in \mathbb{F}_{2}\left[f_{i}, s_{i}, c_{i, \ell}, b_{i, \ell}\right]$ for $i \in\{0 . .3\}, \ell \in\{1 . .4\}$.
40 variables, 34 polynomials of degrees $2: 15,3: 3,4: 4,5: 12$.
$\mathscr{S}_{\text {ex }}$ solved in 3.3 seconds.

EXAMPLE (BAYER-Stillman 1988)

$$
\mathscr{S}_{\text {ex }}= \begin{cases}f_{0} c_{0, \ell} b_{0, \ell}^{2}+s_{0} c_{0, \ell} & \\ s_{i} c_{i, 1}+s_{i+1}, & \\ s_{i} c_{i, 4}+f_{i+1}, & i \in\{0 . .2\} \\ f_{i} c_{i, 1}+s_{i} c_{i, 2}, & \ell \in\{1 . .4\} \\ s_{i} c_{i, 3}+f_{i} c_{i, 4} & \\ f_{i} c_{i, 2} b_{i, 1}+f_{i} c_{i, 3} b_{i, 4}, & \\ s_{i} c_{i, 2}+s_{i} c_{i, 3}, & \\ f_{i} c_{i, 2} b_{i, 3} c_{i+1, \ell} b_{i+1, \ell}+f_{i} c_{i+1, \ell} c_{i, 2} b_{i, 2}, & \end{cases}
$$

$\mathscr{S}_{e x} \in \mathbb{F}_{2}\left[f_{i}, s_{i}, c_{i, \ell}, b_{i, \ell}\right]$ for $i \in\{0 . .3\}, \ell \in\{1 . .4\}$.
40 variables, 34 polynomials of degrees $2: 15,3: 3,4: 4,5: 12$.
$\mathscr{S}_{\text {ex }}$ solved in seconds.

EXAMPLE (BAYER-Stillman 1988)

$$
\mathscr{S}_{b s}= \begin{cases}f_{0} c_{0, \ell} b_{0, \ell}^{2}+s_{0} c_{o, \ell} & \\ s_{i} c_{i, 1}+s_{i+1}, & \\ s_{i} c_{i, 4}+f_{i+1}, & i \in\{0 . .2\} \\ f_{i} c_{i, 1}+s_{i} c_{i, 2}, & \ell \in\{1 . .4\} \\ s_{i} c_{i, 3}+f_{i} c_{i, 4} & \\ f_{i} c_{i, 2} b_{i, 1}+f_{i} c_{i, 3} b_{i, 4}, & \\ s_{i} c_{i, 2}+s_{i} c_{i, 3}, & \\ f_{i} c_{i, 2} b_{i, 3} c_{i+1, \ell} b_{i+1, \ell}+f_{i} c_{i+1, \ell} c_{i, 2} b_{i, 2}, & \end{cases}
$$

$\mathscr{S}_{b s} \in \mathbb{F}_{2}\left[f_{i}, s_{i}, c_{i, \ell}, b_{i, \ell}\right]$ for $i \in\{0 . .3\}, \ell \in\{1 . .4\}$.
40 variables, 34 polynomials of degrees $2: 15,3: 3,4: 4,5: 12 . D=82$? © $\mathscr{S}_{b s}$ solved in seconds.

EXAMPLE (BAYER-Stillman 1988)

$$
\mathscr{S}_{b s}= \begin{cases}f_{0} c_{0, \ell} b_{0, \ell}^{2}+s_{0} c_{0, \ell}, & \\ s_{i} c_{i, 1}+s_{i+1}, & \\ s_{i} c_{i, 4}+f_{i+1}, & i \in\{0 . .2\} \\ f_{i} c_{i, 1}+s_{i} c_{i, 2}, & \ell \in\{1 . .4\} \\ s_{i} c_{i, 3}+f_{i} c_{i, 4} & \\ f_{i} c_{i, 2} b_{i, 1}+f_{i} c_{i, 3} b_{i, 4}, & \\ s_{i} c_{i, 2}+s_{i} c_{i, 3}, & \\ f_{i} c_{i, 2} b_{i, 3} c_{i+1, \ell} b_{i+1, \ell}+f_{i} c_{i+1, \ell} c_{i, 2} b_{i, 2}, & \end{cases}
$$

$\mathscr{S}_{b s} \in \mathbb{F}_{2}\left[f_{i}, s_{i}, c_{i, \ell}, b_{i, \ell}\right]$ for $i \in\{0 . .3\}, \ell \in\{1 . .4\}$.
40 variables, 34 polynomials of degrees $2: 15,3: 3,4: 4,5: 12 . D=82$? © $\mathscr{S}_{\text {bs }}$ solved in 448.5 seconds.

Step Degrees during the computation for $\mathscr{S}_{b s}$ and $\mathscr{S}_{\text {ex }}$ (magma V2.28-2)

$$
\begin{aligned}
& -\mathscr{S}_{b s} \\
& -\mathscr{S}_{e x} \\
& \hline
\end{aligned}
$$

Time of the computation (in sec) for $\mathscr{S}_{\text {bs }}$ and $\mathscr{S}_{\text {ex }}$ (magma V2.28-2)

Bayer and Stillman (1988) example

- parameter m,
- $10 \mathrm{~m}+4$ equations (degrees $2: 5 \mathrm{~m}, 3: \mathrm{m}, 4: 4,5: 4 \mathrm{~m}$),
- 10($m+1$) variables.
- the Gröbner basis contains polynomials of degree $2^{2^{m}}+2$.
- the example was $m=3$: maximal degree $2^{2^{3}}+2=258$.

EX vs BS EXAMPLE $m=4$

- 703 STEPS vs > 40770
- max degree 14 vs 65538
- time 27.5 sec vs > 1131 seconds (segfault...)

80 QUADRATIC EQUATIONS 80 VARIABLES IN \mathbb{F}_{16}

80 QUADRATIC EQUATIONS 80 VARIABLES IN \mathbb{F}_{16}

- regular?

80 QUADRATIC EQUATIONS 80 VARIABLES IN \mathbb{F}_{16}

- regular? yes!

80 QUADRATIC EQUATIONS 80 VARIABLES IN \mathbb{F}_{16}

- regular? yes!
- Complexity?

80 QUADRATIC EQUATIONS 80 VARIABLES IN \mathbb{F}_{16}

- regular? yes!
- Complexity? $D=81$, Mon $_{81}=2^{156}$

80 QUADRATIC EQUATIONS 80 VARIABLES IN \mathbb{F}_{16}

- regular? yes!
- Complexity? $D=81$, Mon $_{81}=2^{156}$
- my system:

$$
\left\{\begin{array}{l}
x_{1}^{2} \\
x_{2}^{2} \\
\vdots \\
x_{80}^{2}
\end{array}\right.
$$

1 NIST call for Post-Quantum cryptography

2 Algebraic Modeling

3 Complexity estimates

4 Examples

5 Rank metric codes

6 MinRank

1 NIST call for Post-Quantum cryptography

2 Algebraic Modeling

3 Complexity estimates

4 Examples

5 Rank metric codes

6 MinRank

<beamer>

1 NIST call for Post-Quantum cryptography

2 Algebraic Modeling

3 Complexity estimates

4 Examples

5 Rank metric codes

6 MinRank

屢 Aguilar Melchor, Carlos, Nicolas Aragon, Slim Bettaieb, et al. (Apr. 2019). Rank Quasi Cyclic (RQC). Second round submission to the NIST post-quantum cryptography call.

囦 Aragon，N．，P．Gaborit，A．Hauteville，et al．（2019）．＂Low Rank Parity Check Codes： New Decoding Algorithms and Application to Cryptography＂．In：submitted to IEEE IT，preprint available on arXiv．
國 Aragon，Nicolas，Olivier Blazy，Jean－Christophe Deneuville，et al．（Mar．2019）． ROLLO（merger of Rank－Ouroboros，LAKE and LOCKER）．Second round submission to the NIST post－quantum cryptography call．NIST Round 2 submission for Post－Quantum Cryptography．
國 Baena，John，Pierre Briaud，Daniel Cabarcas，et al．（2022）．＂Improving Support－Minors Rank Attacks：Applications to GeMSS and Rainbow＂．In：Advances in Cryptology－CRYPTO 2022－42nd Annual International Cryptology Conference， CRYPTO 2022，Santa Barbara，CA，USA，August 15－18，2022，Proceedings，Part III． Ed．by Yevgeniy Dodis and Thomas Shrimpton．Vol．13509．LNCS．Springer， pp．376－405．
䍰 Bardet，Magali and Manon Bertin（Sept．2022）．＂Improvement of Algebraic Attacks for Solving Superdetermined MinRank Instances＂．In：Post－Quantum Cryptography 2022．Ed．by Jung Hee Cheon and Thomas Johansson．Vol． 13512. LNCS．Springer International Publishing：Cham，pp．107－123．

Bardet, Magali, Pierre Briaud, Maxime Bros, et al. (2023). "Revisiting Algebraic Attacks on MinRank and on the Rank Decoding Problem". In: Designs, Codes and Cryptography 91, pp. 3671-3707.
嗇 Bardet, Magali, Maxime Bros, Daniel Cabarcas, et al. (2020). "Improvements of Algebraic Attacks for solving the Rank Decoding and MinRank problems". In: Advances in Cryptology - ASIACRYPT 2020, International Conference on the Theory and Application of Cryptology and Information Security, 2020. Proceedings. Vol. 12491. LNCS, pp. 507-536.
: Bardet, Magali, Jean-Charles Faugère, and Bruno Salvy (2004). "On the complexity of Gröbner basis computation of semi-regular overdetermined algebraic equations". In: Proceedings of the International Conference on Polynomial System Solving ICPSS'04, pp. 71-74.
Bardet, Magali, Jean-Charles Faugère, Bruno Salvy, and Bo-Yin Yang (2005). "Asymptotic expansion of the degree of regularity for semi-regular systems of equations". In: MEGA'05 - Effective Methods in Algebraic Geometry, pp. 1-14. Bayer, David and Michael Stillman (1988). "On the complexity of computing syzygies". In: Journal of Symbolic Computation 6(2-3), pp. 135-147.

目 Bettale，Luk，Jean－Charles Faugere，and Ludovic Perret（2009）．＂Hybrid approach for solving multivariate systems over finite fields＂．In：Journal of Mathematical Cryptology 3（3），pp．177－197．
Buchberger，Bruno（1965）．＂Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal＂． PhD thesis．Universitat Innsbruck．
围 Burle，Étienne，Philippe Gaborit，Younes Hatri，and Ayoub Otmani（2023）． Injective Rank Metric Trapdoor Functions with Homogeneous Errors．arXiv： 2310．08962［cs．CR］．
囯 Casanova，Antoine，Jean－Charles Faugère，Gilles Macario－Rat，et al．（Apr．2019）． GeMSS：A Great Multivariate Short Signature．Second round submission to the NIST post－quantum cryptography call．
－Conca，Aldo and Jurgen Herzog（1994）．＂On the Hilbert function of determinantal rings and their canonical module＂．In：Proc．Amer．Math．Soc 122，pp．677－681．
－Delsarte，Philippe（1978）．＂Bilinear Forms over a Finite Field，with Applications to Coding Theory＂．In：J．Comb．Theory，Ser．A 25（3），pp．226－241．

圊 Faugère，Jean－Charles（1999）．＂A New Efficient Algorithm for Computing Gröbner Bases（F4）＂．In：J．Pure Appl．Algebra 139（1－3），pp．61－88．
囲 Faugère，Jean－Charles（2002）．＂A new efficient algorithm for computing Gröbner bases without reduction to zero $\left(F_{5}\right)$＂．English．In：Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation．Ed．by Teo Mora．ACM Press：New York，75－83（electronic）．
囯 Faugère，Jean－Charles，Pierrick Gaudry，Louise Huot，and Guénaël Renault（2014）． ＂Sub－Cubic Change of Ordering for GröBner Basis：A Probabilistic Approach＂．In： ISSAC．
䍰 Faugère，Jean－Charles，Patrizia Gianni，Daniel Lazard，and Teo Mora（1993）． ＂Efficient Computation of Zero－Dimensional Gröbner Bases by Change of Ordering＂．In：J．Symbolic Comput．16（4），pp．329－344．
囯 Faugère，Jean－Charles，Françoise Levy－dit－Vehel，and Ludovic Perret（2008）． ＂Cryptanalysis of Minrank＂．In：Advances in Cryptology－CRYPTO 2008．Ed．by David Wagner．Vol．5157．LNCS，pp．280－296．

國 Faugère，Jean－Charles，Mohab Safey El Din，and Pierre－Jean Spaenlehauer（2010）． ＂Computing loci of rank defects of linear matrices using Gröbner bases and applications to cryptology＂．In：International Symposium on Symbolic and Algebraic Computation，ISSAC 2010，Munich，Germany，July 25－28，2010， pp．257－264．
囯 Faugère，Jean－Charles，Mohab Safey El Din，and Pierre－Jean Spaenlehauer（2011）． ＂Gröbner bases of bihomogeneous ideals generated by polynomials of bidegree （1，1）：Algorithms and complexity＂．In：J．Symbolic Comput．46（4），pp．406－437．
嗇 Fraenkel，A．S．and Y．Yesha（1979）．＂Complexity of problems in games，graphs and algebraic equations＂．In：Discrete Applied Mathematics 1（1），pp．15－30．
围 Gabidulin，Ernst M．（1985）．＂Theory of codes with maximum rank distance＂．In： Problemy Peredachi Informatsii 21（1），pp．3－16．
雷 Gabidulin，Ernst M．，A．V．Paramonov，and O．V．Tretjakov（Apr．1991）．＂Ideals over a non－commutative ring and their applications to cryptography＂．In：Advances in Cryptology－EUROCRYPT＇91．LNCS 547．Brighton，pp．482－489．

Gaborit，Philippe，Adrien Hauteville，Duong Hieu Phan，and Jean－Pierre Tillich （May 2016）．Identity－based Encryption from Rank Metric．IACR Cryptology ePrint Archive，Report2017／623．http：／／eprint．iacr．org／．
围 Gaborit，Philippe and Gilles Zémor（2016）．＂On the hardness of the decoding and the minimum distance problems for rank codes＂．In：IEEE Trans．Inform．Theory 62（12），pp．7245－7252．
囯 Giusti，M．（1984）．＂Some effectivity problems in polynomial ideal theory＂．In： Eurosam 84．Ed．by John Fitch．Vol．174．Lecture Notes in Computer Science． Cambridge，1984．Springer Berlin／Heidelberg：Berlin，pp．159－171．
雷 Guo，Hao and Jintai Ding（2022）．＂Algebraic Relation of Three MinRank Algebraic Modelings＂．In：Arithmetic of Finite Fields．LNCS．Springer．
囯 Hodges，Timothy J．，Sergio D．Molina，and Jacob Schlather（2017）．＂On the existence of homogeneous semi－regular sequences in $F_{2}\left[X_{1}, \ldots, X_{n}\right] /\left(X_{1}^{2}, \ldots, X_{n}^{2}\right)$＂． In：Journal of Algebra 476，pp．519－547．
圊 Jeannerod，Claude－Pierre，Clément Pernet，and Arne Storjohann（2013）． ＂Rank－profile revealing Gaussian elimination and the CUP matrix decomposition＂．In：Journal of Symbolic Computation 56，pp．46－68．

囯 Kipnis，Aviad and Adi Shamir（Aug．1999）．＂Cryptanalysis of the HFE Public Key Cryptosystem by Relinearization＂．In：Advances in Cryptology－CRYPTO＇99． Vol．1666．LNCS．Springer：Santa Barbara，California，USA，pp．19－30．
國 Lazard，D．（1983）．＂Gröbner bases，Gaussian elimination and resolution of systems of algebraic equations＂．In：Computer algebra．Vol．162．LNCS． Proceedings Eurocal＇83，London，1983．Springer：Berlin，pp．146－156．
围 Macaulay，Francis Sowerby（1902）．＂Some formulae in elimination＂．In： Proceedings of the London Mathematical Society 1（1），pp．3－27．
圊 Macaulay，Francis Sowerby（1994）．The algebraic theory of modular systems． Vol．19．Cambridge University Press．
目 Ourivski，Alexei V．and Thomas Johansson（2002）．＂New Technique for Decoding Codes in the Rank Metric and Its Cryptography Applications＂．English．In： Problems of Information Transmission 38（3），pp．237－246．
四 Overbeck，Raphael（2005）．＂A New Structural Attack for GPT and Variants＂．In： Mycrypt．Vol．3715．LNCS，pp．50－63．

Tao, Chengdong, Albrecht Petzoldt, and Jintai Ding (2021). "Efficient Key Recovery for All HFE Signature Variants". In: Advances in Cryptology - CRYPTO 2O21-41st Annual International Cryptology Conference, CRYPTO 2021, Virtual Event, August 16-20, 2021, Proceedings, Part I. Ed. by Tal Malkin and Chris Peikert. Vol. 12825. Lecture Notes in Computer Science. Springer, pp. 70-93.
围 Wiedemann, Douglas (1986). "Solving sparse linear equations over finite fields". In: IEEE transactions on information theory 32(1), pp. 54-62.

