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Background



Klazar’s theorem

Bell numbers, Bn := number of partitions of a set of cardinality n ≥ 1
defined by

∑
n≥0

Bn
n! t

n := exp(et − 1)

B(t) := 1 +
∑

n≥1 Bnt
n = 1 + t + 2t + 5t3 + 15t4 + 52t5 + 203t6 + 877t6 + 4140t7 + 21147t8 + 115975t9 + · · · ∈ Z[[t]]

B
(

t
1+t

)
= tB(t) + 1

Theorem (Klazar 2003)
B(t) is di�erentially transcendental over the field of meromorphic functions at 0, i.e. is not
solution of an algebraic di�erential equation with coe�cients meromophic at 0.

RMK. z(t) := Γ
( 1
t
)−1 solution of z

(
t
t+1

)
= tz(t)

homogeneous eq. associated to B
(

t
t+1

)
= tB(t) + 1
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General result on D-transcendence (Adamczewski-Dreyfus-
Hardouin, 2019)

Theorem (Adamczewski-Dreyfus-Hardouin, 2019)
Let f ∈ C((t)) satisfy

α0y + α1τ(y) + · · ·+ αnτ
n(y) = 0,

where αi ∈ C(t) and τ is one of the following operators:

τ(f (t)) = f
(

t
t+1

)
;

τ(f (t)) = f (qt) for some q ∈ C∗, not a root of unity;

τ(f (t)) = f (tm) for some m ∈ Z>1.

Then either f ∈ C(t) or it is D-transcendental over C(t).
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Conjecture of Pak-Yeliussizov, 2018

Conjecture (Pak-Yeliussizov, 2018)∑
n≥0 antn,

∑
n≥0 an

tn
n! ∈ C[[t]] are D-algebraic over C(t)

⇒ both are D-finite

[⇔ both (an)n≥0 and
( an
n!
)
n≥0 satisfiy a lin. recurrence with polynomial coe�. in n]
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Generating series coming from
combinatorics and functional equations

à la Klazar



Borel transform and EGF

·̂,Φτ : C[[t]]→ C[[t]]:
(
∑

n≥0 gntn)ˆ :=
∑

n≥0 gn
tn
n! Φτ (f ) := 1

1−t · f
(

t
1−t

)
∀f ,g ∈ C[[t]]: Φτ (f ) = g⇔ ĝ = f̂ · et; d

dt (f̂ ) =
(
f (t)−f (0)

t

)̂
.

Proposition (Bostan, D.V., Raschel)
Let f ∈ C[[t]]. If ∃a0(t), . . . ,ar(t),P(t) ∈ C[t], s.t.:

a0(et)f̂ + a1(et)(f̂ )′ + · · ·+ ar(et)(f̂ )(r) = P(t),

then f satisfies a linear inhomog. τ-eq., with τ(t) := t
t+1

(of order at most maxi(deg ai), with coe�cients in C[t] of degree at most maxi(deg ai, deg P)).

Example

B(t) OGF of Bell numbers

B̂(t) := exp(et − 1) EGF

⇒ d
dt (B̂)− et · B̂ = 0

⇒ B−1
t = Φτ (B)

⇒ τ(B) = tB+ 1
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polynomial Pn(x) EGF
∑

n≥0 Pn(x) t
n

n! a b

Bernoulli Bn(x) t
e
t−1 · exp (xt) 1 + t − (1+t)t

(xt−t−1)2

Glaisher Un(x) t
e
t+1 · exp (xt) 1 + t (1+t)t

(xt−t−1)2

Apostol-Bernoulli A(γ)n (x) t
γ e

t−1 · exp (xt) γ (1 + t) − (1+t)t
(xt−t−1)2

Imschenetsky Sn(x) t
e
t−1 · (exp(xt)− 1) 1 + t t2x(xt−2 t−2)

(1+t)(xt−t−1)2

Euler En(x) 2
e
t+1 · exp (xt) −(1 + t) 2(1+t)

1+t−xt

Genocchi Gn(x) 2 t
e
t+1 · exp (xt) −(1 + t) 2 (1+t)t

(1+t−xt)2

Carlitz C(γ)n (x) 1−γ
1−γ e

t · exp (xt) γ (1 + t) (1−γ)(1+t)
1+t−xt

Fubini Fn(x) 1/(1− x(et − 1)) x
x+1 · (1 + t) 1

x+1

Bell-Touchard φn(x) exp
(
x(et − 1)

)
xt 1

Mahler sn(x) exp
(
x(1 + t− e

t)
) x(1+t)t

xt−t−1
1+t

1+t−xt

Toscano’s actuarial a(γ)n (x) exp
(
−xet + γt+ x

) x(1+t)t
γt−t−1

1+t
1+t−γt

; τ(y) = ay + b
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Theorem (Bostan, D.V.,Raschel)
Let a,b ∈ C(t), with a 6= 0, and let w ∈ C((t)) \ C(t) verify the di�erence equation
w
(

t
1+t

)
= aw + b. Then w is di�erentially transcendental over C({t}).

The proof relies on di�erence Galois theory.... Franke (1963), van der Put-Singer (1997)
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An example of walks in the quarter plane

Walks in N2 starting at (0,0), with steps S = {↘,↙,↖}

qS(i, j;n) = # walks of length n ending at (i, j); QS(x, y; t) =
∞∑

i,j,n=0

qS(i, j;n)xiyjtn ∈ Z[[x, y, t]]

K(x, y, t)Q(x, y; t) = xy − tx2Q(x,0; t)− ty2Q(0, y; t)
K(x, y) = xy − t (y2 + x2y2 + x2), with t = v

1+v2 t ∈ (0, 1/2)⇔ v ∈ (0, 1)

Parametrization of K:
(
x0(s) =

(1−v2)s
v(s2+1) , y0(s) =

(1−v2)s
v2s2+1

) (
x̃0(s) =

(1−v2)v s
v4s2+1 , y0(s)

)
,

with x̃0(s) = x0(v2s)

For v ∈ (0, 1): G0(v2s)− G0(s) =
(v2 − 1)

v

(
1

s2 + 1 −
2

v2s2 + 1 +
1

v4s2 + 1

)
⇒ Q(x,0, t) is D-transc (and also Q(0, y, t), Q(x, y, t)) for any t ∈ (0, 1/2).

[Dreyfus-Hardouin-Raschel-Singer 2020, Bostan-DV-Raschel 2021]
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; K(x, y) = xy − 1
2 (y2 + x2y2 + x2) t = 1/2⇔ v = 1

K(x, y) =
1
2 (ix − iy + xy) (ix − iy − xy)⇒

(
x, y(x) :=

ix
1 + ix

)
∈ C(x)2

G1(x) := x2

2 Q
(
x,0, 1

2
)

verifies the functional equation

G1 (τ(x)) = G1(x) + ix2

1+ix , with τ(x) = ix
1+ix .

→ Q(x,0, 1/2) is D-transc (and also Q(0, y, 1/2), Q(x, y, 1/2)) is D-transc. over the
meromorphic functions at the origin.

Theorem (Bostan-DV-Raschel)

Q(x,0;±1/2) = 2
∑
n≥0

(22n+2 − 1)
(−1)n

n+ 1 B2n+2x2n,

where (Bn) =
(

1,− 1
2 ,

1
6 ,0,−

1
30 ,0,

1
42 , . . .

)
is the sequence of Bernoulli numbers.
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Iterative functional equations



(R)
R(t) ∈ C(t), R(0) = 0, R′(0) ∈ {0, 1, roots of unity},
but no iteration of R(t) is equal to the identity.

Theorem (DV-Fernandes-Mishna)
Let R(t) satisfy assumption (R). We suppose that there exist a,b ∈ C(t), and f ∈ C((t)) such
that f (R(t)) = a(t)f (t) + b(t). Then either f is f is D-transc. over C(t) or:

1. if b = 0, ∃N ∈ Z, N ≥ 1, such that fN ∈ C(t);

2. if a = 1, f ∈ C(t);

3. in all the cases there exists α, β ∈ C(t) such that f ′ = αf + β.
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A permutation σ ∈ Sn is said to avoid the consecutive pattern 1423 if there is
no 1 ≤ i ≤ n− 4 such that σ(i) < σ(i+ 4) < σ(i+ 2) < σ(i+ 3).

P̂(t) = EGF for permutations that avoid the consecutive pattern 1423 [OEISA201692]
P̂(t) = 1

2−Ŝ(t)
such that S(t) = S

(
t

1+t2

)
t

1+t + 1 [Elizalde and Noy, 2012]

S(t) has infinite number of singularities⇒ not D-finite [Beaton, Conway and Guttmann, 2017]

Corollary
S(t) is D-transc. over C(t)

Question
The theorem above gives a potentially simpler path to establish that S(t) is not D-finite
(and indeed the even stronger conclusion that it is di�erentially transcendental) since you
would just need to show that S(t) is not solution of an inhomogeneous linear di�erential
equation of order 1.
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Complete {2, 3}-trees

•

◦ ◦

◦

◦ ◦

◦

◦ ◦

◦

◦ ◦

◦

◦ ◦

◦

◦ ◦ ◦

T ≡ • + T

• 7→
◦

+

◦ 

Figure: All complete {2, 3}-trees up to size 6

tn = # trees with n leaves ; T(t) =
∑

n≥1 tntn OGS

; T(t) = t+ T(t2 + t3) T(t) = t+ t2 + t3 + t4 + 2t5 + 2t6 + O(t7) (OEISA014535)

Corollary. T(t) is D-trasc. over C(t)
On easily proves that it cannot be rational!
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S0 = , Iteration: 7→

S0 = S1 = S2 = S3 = S4 =

Figure: Initial iterates defining the Sierpiński graph.

Green function = probability generating function which describes the n-step displacement
starting and returning to a certain origin vertex

Green function G(t) for walks that return to their origin on the Sierpiński
graph satisfies the functional equation: [Grabner and Woess 1997]

G
(

t2

4− 3t

)
=

(2 + t)(4− 3t)
(4 + t)(2− t) G(t). (1)

⇒ D-transc. over C(t).
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Galois theory of functional equations



K of characteristic zero field + an automorphism τ : K → K
C := Kτ := {f ∈ K : τ(f ) = f} = algebraically closed field (=the “constants of the theory”)

EXAMPLE.
K = C((t)) and τ(f (t)) := f

(
t
t+1

)
,∀ f ∈ C((t))⇒ C((t))τ = C

τ(~y) = A~y, where A ∈ GLν(K)

RMK. ~y is a vector of unknowns and τ acts on vectors (and later also on matrices)
componentwisely.
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A Picard-Vessiot ring for τ(~y) = A~y over K is a K-algebra R plus an
automorphism extending the action of τ :

1. R is τ-simple;

2. ∃Y ∈ GLν(R) s.t. τ(Y) = AY and R = K[Y, det Y−1].

RMK. A Picard-Vessiot ring always exists.

EXAMPLE
Let a ∈ K, a 6= 0 and R be the Picard-Vessiot ring of τ(y) = ay. Then there exists z ∈ R such
that τ(z) = az and R = K[z, z−1].
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The Galois group G of τ(~y) = A~y over K:
Autτ (R/K) = automorphisms of rings ϕ : R→ R that commute with τ and s.t. ϕ|K = id

ϕ(Y) ∈ GLν(R) solution of τ(~y) = A~y.
τ(Y−1ϕ(Y)) = Y−1ϕ(Y) and hence that Y−1ϕ(Y) ∈ GLν(C).
; a natural group morphism G→ GLν(C).

THEOREM
1. G→ GLν(C), ϕ 7→ Y−1ϕ(Y) is an injective group morphism.
2. tr. degK R = dimC G.

EXAMPLE. τ(y) = ay, a ∈ K
∀ϕ of G ϕ(z) is another solution of τ(y) = ay: ϕ(z) = cϕz, for some cϕ ∈ C⇒ G ⊂ C∗

z is transcendental /K if and only if G = C∗.
Since the only algebraic subgroups of C∗ are the groups of roots of unity,
z is algebraic over K if and only if G is a group of roots of unity,
i.e., if and only if there exists a positive integer N s.t. zN ∈ K.

15 24



τ(y) = ay + f , a,b ∈ K ; τ(~y) =

(
a f
0 1

)
~y

Y =

(
z w
0 1

)
, with τ(z) = az and τ(w) = aw + f

⇒ R = K[z, z−1,w] (Picard-Vessiot ring)

∀ϕ ∈ G , therefore there exist cϕ,dϕ ∈ C such that ϕ(z) = cϕz and ϕ(w) = w + dϕz

ϕ

(
z w
0 1

)
=

(
z w
0 1

)(
cϕ dϕ
0 1

)

G̃ :=

{(
c d
0 1

)
: c,d ∈ C, c 6= 0

}
⊂ GL2(C)

According to whether z and w are algebraically dependent or not, either G will be a proper
linear algebraic subgroup of G̃, or G = G̃.
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R = R1 ⊕ · · · ⊕ Rr is a direct sum of domains
L = L1 ⊕ · · · ⊕ Lr, where Li = Frac(Ri) and τ(Li) = Li+1

L = the total Picard-Vessiot ring of τ(~y) = A~y

The action of the Galois group Autτ (R/K) naturally extends from R to L.

Porposition
L is uniquely determined (up to an isomorphism) by the following properties:

1. L has no nilpotent elements and any non-zero divisor of L is invertible.

2. Lτ = C.

3. ∃Y ∈ GLν(L) solution of τ(~y) = A~y.

4. L is minimal with respect to the inclusion and the three previous properties.

Any τ-ring satisfying the 1, 2, 3 above contains a copy of R.
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F = {τ-stable rings K ⊂ F ⊂ L, s.t. ∀f ∈ F is either a zero divisor or a unit in F}

∀F ∈ F , HF := {ϕ ∈ G : ϕ(f ) = f for all f ∈ F}.

G = {linear algebraic subgroups of G}

∀H ∈ G, LH = {f ∈ L : ϕ(f ) = f for all ϕ ∈ H}

Theorem. The following two maps are each other’s inverses:

G → F
H 7→ LH and F → G

F 7→ HF
.

In particular, LH = K if and only if H = G.
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Application to D-transcendence

There exists a derivation ∂ on K commuting with τ .

EXAMPLE: for τ(f (t)) = f
( t

1+t
)
, we can take ∂ := t2 ddt

Existence-definition of ∂-Picard-Vessiot ring (Wibmer)
There exists a K-algebra R, equipped with an extension of τ and of ∂, preserving the
commutation, such that:

1. there exists Y ∈ GLν(R) such that τ(Y) = AY;

2. R is generated over K by the entries of Y, 1
det(Y) and all their derivatives;

3. R is τ-simple.

Moreover, the total ring of fractions of R contains the total Picard-Vessiot ring L.
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Applying ∂n to the system τ(~y) = A~y for any positive integer n, we can consider the
di�erence system:

τ(~y) =


A ∂(A) · · · ∂n

n (A)

0 A
. . .

...
...

. . . . . . ∂(A)
0 · · · 0 A

~y, with solution


∂n

n! (Y) ∂n−1

(n−1)! (Y) · · · Y

0 ∂n

n! (Y)
. . .

...
...

. . . . . . ∂n−1

(n−1)! (Y)

0 · · · 0 ∂n

n! (Y)

 .
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F will be a K-algebra s.t.:

1. with no nilpotent elements;

2. any element is either a zero divisor, or invertible;

3. ∃ τ and of ∂ on F, preserving the commutation;

4. Fτ = C

Proposition
Let f ∈ K, and let w ∈ F be such that τ(w) = w + f . Then the following assertions are
equivalent:

1. w is di�erentially algebraic over K.

2. ∃ integer n ≥ 0, α0, . . . , αn ∈ C (not all zero) and g ∈ K s.t.
α0f + α1∂(f ) + · · ·+ αn∂

n(f ) = τ(g)− g.

3. ∃ integer n ≥ 0, α0, . . . , αn ∈ C (not all zero) s.t. g :=
∑n

i=0 ai∂i(w) ∈ K.
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We consider the OGF of the family of Bernoulli polynomials,

τ(B) = (1 + t) · B− t(1 + t)
(1 + t− tx)2 ,

B̃(x, t) := tB(x, t) ; τ(B̃) = B̃−
(

t
1+t−tx

)2

B̃ is di�erentially transcendental over C(t), ∀ x ∈ C

By contradiction, ∃n ≥, α0, . . . , αn (not all zero) and g ∈ C(t) such that

α0b+ α1∂(b) + · · ·+ αn∂
n(b) = τ(g)− g, with ∂ := t2 d

dt and b =
(

t
1+t−tx

)2
.

∂k(b) = (k+ 1)!
(

t
1+t−tx

)k+2
∀k ≥ 1

x 6= 1⇒ the left-hand side of has a unique pole at t0 = 1
x−1 ...

x = 1⇒, the left-hand side is a non-zero polynomial with no constant term... one shows
that g can only be a constant...
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Let b and a be non-zero elements of K, and let us consider the di�erence equation
τ(y) = ay + b.

Theorem
τ(y) = ay + b, with a,b ∈ K, such that a 6= 0, 1 and b 6= 0.
Let F/K be a field extension such that there exists w ∈ F \ K satisfying the equation
τ(w) = aw + b.
Moreover, let Fa be a K-algebra as above, such that there exists z ∈ Fa satisfying the
equation τ(z) = az.
If z is di�erentially transcendental over K, then w is di�erentially transcendental over K.

23 24



Thanks!
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