FUNCTIONAL EQUATIONS AND COMBINATORICS II

LuCia Di Vizio
 (Laboratoire de Mathématiques de Versailles, CNRS-UVSQ)

JNCF 2024

BACKGROUND

KLAZAR'S THEOREM

Bell numbers, $B_{n}:=$ number of partitions of a set of cardinality $n \geq 1$
defined by $\sum_{n \geq 0} \frac{B_{n}}{n!} t^{n}:=\exp \left(e^{t}-1\right)$
$\left.B(t):=1+\sum_{n \geq 1} B_{n} t^{n}=1+t+2 t+5 t^{3}+15 t^{4}+52 t^{5}+203 t^{6}+877 t^{6}+4440 t^{7}+21147 t^{8}+115975 t^{9}+\cdots \in \mathbb{Z}[t]\right]$
$B\left(\frac{t}{1+t}\right)=t B(t)+1$

Theorem (Klazar 2003)

$B(t)$ is differentially transcendental over the field of meromorphic functions at 0 , i.e. is not solution of an algebraic differential equation with coefficients meromophic at o.

RMK. $z(t):=\Gamma\left(\frac{1}{t}\right)^{-1}$ solution of $z\left(\frac{t}{t+1}\right)=t z(t)$
homogeneous eq. associated to $B\left(\frac{t}{t+1}\right)=t B(t)+1$

General result on D-transcendence (Adamczewski-DreyfusHardouin, 2019)

Theorem (Adamczewski-Dreyfus-Hardouin, 2019)

Let $f \in \mathbb{C}((t))$ satisfy

$$
\alpha_{0} y+\alpha_{1} \tau(y)+\cdots+\alpha_{n} \tau^{n}(y)=0,
$$

where $\alpha_{i} \in \mathbb{C}(t)$ and τ is one of the following operators:

- $\tau(f(t))=f\left(\frac{t}{t+1}\right)$;

■ $\tau(f(t))=f(q t)$ for some $q \in \mathbb{C}^{*}$, not a root of unity;

- $\tau(f(t))=f\left(t^{m}\right)$ for some $m \in \mathbb{Z}_{>1}$.

Then either $f \in \mathbb{C}(t)$ or it is D-transcendental over $\mathbb{C}(t)$.

Conjecture (Pak-Yeliussizov, 2018)

$\left.\sum_{n \geq 0} a_{n} t^{n}, \sum_{n \geq 0} a_{n} \frac{t^{n}}{n!} \in \mathbb{C}[t]\right]$ are D-algebraic over $\mathbb{C}(t)$
\Rightarrow both are D-finite
[\Leftrightarrow both $\left(a_{n}\right)_{n \geq 0}$ and $\left(\frac{a_{n}}{n!}\right)_{n \geq 0}$ satisfiy a lin. recurrence with polynomial coeff. in n]

GENERATING SERIES COMING FROM

 COMBINATORICS AND FUNCTIONAL EQUATIONS À LA Klazar
BOREL TRANSFORM AND EGF

${ }^{\wedge}, \Phi_{\tau}: \mathbb{C}[[t]] \rightarrow \mathbb{C}[[t]]:$
$\left(\sum_{n \geq 0} g_{n} t^{n}\right):=\sum_{n \geq 0} g_{n} \frac{t^{n}}{n!} \quad \Phi_{\tau}(f):=\frac{1}{1-t} \cdot f\left(\frac{t}{1-t}\right)$
$\forall f, g \in C\left[[t]: \quad \phi_{\tau}(f)=g \Leftrightarrow \hat{g}=\hat{f} \cdot e^{t} ; \quad \frac{d}{d t}(\hat{f})=\left(\frac{f(t)-f(0)}{t}\right)\right.$.

Proposition (Bostan, D.V., Raschel)

Let $f \in \mathbb{C}[[t]]$. If $\exists a_{\circ}(t), \ldots, a_{r}(t), P(t) \in C[t]$, s.t.:

$$
a_{0}\left(e^{t}\right) \hat{f}+a_{1}\left(e^{t}\right)(\hat{f})^{\prime}+\cdots+a_{r}\left(e^{t}\right)(\hat{f})^{(r)}=P(t)
$$

then f satisfies a linear inhomog. τ-eq., with $\tau(t):=\frac{t}{t+1}$ (of order at most max ${ }_{i}\left(\operatorname{deg} a_{i}\right)$, with coefficients in $C[t]$ of degree at most max ${ }_{i}\left(\operatorname{deg} a_{i}, \operatorname{deg} P\right)$).

Example
$B(t)$ OGF of Bell numbers
$\hat{B}(t):=\exp \left(\mathrm{e}^{t}-1\right)$ EGF
$\Rightarrow \frac{d}{d t}(\hat{B})-e^{t} \cdot \hat{B}=0$
$\Rightarrow \frac{B-1}{t}=\Phi_{\tau}(B)$
$\Rightarrow \tau(B)=t B+1$

polynomial $P_{n}(x)$	EGF $\sum_{n \geq 0} P_{n}(x) \frac{t^{n}}{n!}$	a	b
Bernoulli $B_{n}(x)$	$\frac{t}{\mathrm{e}^{t}-1} \cdot \exp (x t)$	$1+t$	$-\frac{(1+t) t}{(x t-t-1)^{2}}$
Glaisher $U_{n}(x)$	$\frac{t}{\mathrm{e}^{t}+1} \cdot \exp (x t)$	$1+t$	$\frac{(1+t) t}{(x t-t-1)^{2}}$
Apostol-Bernoulli $A_{n}^{(\gamma)}(x)$	$\frac{t}{\gamma \mathrm{e}^{t}-1} \cdot \exp (x t)$	$\gamma(1+t)$	$-\frac{(1+t) t}{(x t-t-1)^{2}}$
Imschenetsky $S_{n}(x)$	$\frac{t}{\mathrm{e}^{t}-1} \cdot(\exp (x t)-1)$	$1+t$	$\frac{t^{2} x(x t-2 t-2)}{(1+t)(x t-t-1)^{2}}$
Euler $E_{n}(x)$	$\frac{2}{\mathrm{e}^{t}+1} \cdot \exp (x t)$	$-(1+t)$	$\frac{2(1+t)}{1+t-x t}$
Genocchi $G_{n}(x)$	$\frac{2 t}{\mathrm{e}^{t}+1} \cdot \exp (x t)$	$-(1+t)$	$\frac{2(1+t) t}{(1+t-x t)^{2}}$
Carlitz $C_{n}^{(\gamma)}(x)$	$\frac{1-\gamma}{1-\gamma \mathrm{e}^{t}} \cdot \exp (x t)$	$\gamma(1+t)$	$\frac{(1-\gamma)(1+t)}{1+t-x t}$
Fubini $F_{n}(x)$	$1 /\left(1-x\left(e^{t}-1\right)\right)$	$\frac{x}{x+1} \cdot(1+t)$	$\frac{1}{x+1}$
Bell-Touchard $\phi_{n}(x)$	$\exp \left(x\left(e^{t}-1\right)\right)$	$x t$	1
Mahler $s_{n}(x)$	$\exp \left(x\left(1+t-e^{t}\right)\right)$	$\frac{x(1+t) t}{x t-t-1}$	$\frac{1+t}{1+t-x t}$
Toscano's actuarial $a_{n}^{(\gamma)}(x)$	$\exp \left(-x e^{t}+\gamma t+x\right)$	$\frac{x(1+t) t}{\gamma t-t-1}$	$\frac{1+t}{1+t-\gamma t}$

$$
\leadsto \tau(y)=a y+b
$$

Theorem (Bostan, D.V.,Raschel)

Let $a, b \in \mathbb{C}(t)$, with $a \neq 0$, and let $w \in \mathbb{C}((t)) \backslash \mathbb{C}(t)$ verify the difference equation $w\left(\frac{t}{1+t}\right)=a w+b$. Then w is differentially transcendental over $\mathbb{C}(\{t\})$.

The proof relies on difference Galois theory....

AN EXAMPLE OF WALKS IN THE QUARTER PLANE

Walks in \mathbb{N}^{2} starting at $(0,0)$, with steps $\mathcal{S}=\{\searrow, \swarrow, \nwarrow\}$
$q_{\mathcal{S}}(i, j ; n)=\#$ walks of length n ending at $(i, j) ; Q_{\mathcal{S}}(x, y ; t)=\sum_{i, j, n=0}^{\infty} q_{\mathcal{S}}(i, j ; n) x^{i} y^{j} t^{n} \in \mathbb{Z}[[x, y, t]]$

$$
\begin{gathered}
K(x, y, t) Q(x, y ; t)=x y-t x^{2} Q(x, 0 ; t)-t y^{2} Q(0, y ; t) \\
K(x, y)=x y-t\left(y^{2}+x^{2} y^{2}+x^{2}\right), \text { with } t=\frac{v}{1+v^{2}} \quad t \in(0,1 / 2) \Leftrightarrow v \in(0,1)
\end{gathered}
$$

Parametrization of $K:\left(x_{0}(s)=\frac{\left(1-v^{2}\right) s}{v\left(s^{2}+1\right)}, y_{0}(s)=\frac{\left(1-v^{2}\right) s}{v^{2} s^{2}+1}\right) \quad\left(\tilde{x}_{0}(s)=\frac{\left(1-v^{2}\right) v s}{v^{4} s^{2}+1}, y_{0}(s)\right)$, with $\widetilde{x}_{0}(s)=x_{0}\left(v^{2} s\right)$
For $v \in(0,1): G_{0}\left(v^{2} s\right)-G_{0}(s)=\frac{\left(v^{2}-1\right)}{v}\left(\frac{1}{s^{2}+1}-\frac{2}{v^{2} s^{2}+1}+\frac{1}{v^{4} s^{2}+1}\right)$
$\Rightarrow Q(x, 0, t)$ is D-transc (and also $Q(0, y, t), Q(x, y, t))$ for any $t \in(0,1 / 2)$.

$$
\begin{gathered}
K(x, y)=\frac{1}{2}(i x-i y+x y)(i x-i y-x y) \Rightarrow(x, y)=x y-\frac{1}{2}\left(y^{2}+x^{2} y^{2}+x^{2}\right) \quad t=1 / 2 \Leftrightarrow v=1 \\
G_{1}(x):=\frac{x^{2}}{2} Q\left(x, 0, \frac{1}{2}\right) \text { verifies the functional equation } \\
\left.G_{1}(\tau(x))=G_{1}(x)+\frac{i x}{1+i x}\right) \in \mathbb{C}(x)^{2} \\
1+i x
\end{gathered}, \text { with } \tau(x)=\frac{i x}{1+i x} .
$$

$\rightarrow Q(x, 0,1 / 2)$ is D-transc (and also $Q(0, y, 1 / 2), Q(x, y, 1 / 2)$) is D-transc. over the meromorphic functions at the origin.

Theorem (Bostan-DV-Raschel)

$$
Q(x, 0 ; \pm 1 / 2)=2 \sum_{n \geq 0}\left(2^{2 n+2}-1\right) \frac{(-1)^{n}}{n+1} B_{2 n+2} x^{2 n}
$$

where $\left(B_{n}\right)=\left(1,-\frac{1}{2}, \frac{1}{6}, 0,-\frac{1}{30}, 0, \frac{1}{42}, \ldots\right)$ is the sequence of Bernoulli numbers.

ITERATIVE FUNCTIONAL EQUATIONS

$R(t) \in \mathbb{C}(t), R(0)=0, R^{\prime}(0) \in\{0,1$, roots of unity $\}$, but no iteration of $R(t)$ is equal to the identity.

Theorem (DV-Fernandes-Mishna)

Let $R(t)$ satisfy assumption (\mathcal{R}). We suppose that there exist $a, b \in \mathbb{C}(t)$, and $f \in \mathbb{C}((t))$ such that $f(R(t))=a(t) f(t)+b(t)$. Then either f is f is D-transc. over $\mathbb{C}(t)$ or:

1. if $b=0, \exists N \in \mathbb{Z}, N \geq 1$, such that $f^{N} \in \mathbb{C}(t)$;
2. if $a=1, f \in \mathbb{C}(t)$;
3. in all the cases there exists $\alpha, \beta \in \mathbb{C}(t)$ such that $f^{\prime}=\alpha f+\beta$.

A permutation $\sigma \in \mathfrak{S}_{n}$ is said to avoid the consecutive pattern 1423 if there is no $1 \leq i \leq n-4$ such that $\sigma(i)<\sigma(i+4)<\sigma(i+2)<\sigma(i+3)$.
$\widehat{P}(t)=$ EGF for permutations that avoid the consecutive pattern 1423
[OEISA2O1692]
$\widehat{P}(t)=\frac{1}{2-\widehat{S}(t)} \quad$ such that $\quad S(t)=S\left(\frac{t}{1+t^{2}}\right) \frac{t}{1+t}+1$
[Elizalde and Noy, 2012]
$S(t)$ has infinite number of singularities \Rightarrow not D-finite [Beaton, Conway and Guttmann, 2017]

Corollary

$S(t)$ is D-transc. over $\mathbb{C}(t)$

Question

The theorem above gives a potentially simpler path to establish that $S(t)$ is not D-finite (and indeed the even stronger conclusion that it is differentially transcendental) since you would just need to show that $S(t)$ is not solution of an inhomogeneous linear differential equation of order 1.

Complete $\{2,3\}$-TREES

Figure: All complete $\{2,3\}$-trees up to size 6
$t_{n}=\#$ trees with n leaves $\leadsto T(t)=\sum_{n \geq 1} t_{n} t^{n} \mathrm{OGS}$
$\leadsto T(t)=t+T\left(t^{2}+t^{3}\right)$
$T(t)=t+t^{2}+t^{3}+t^{4}+2 t^{5}+2 t^{6}+O\left(t^{7}\right)($ OEISAO14535)
Corollary. $T(t)$ is D-trasc. over $\mathbb{C}(t)$
On easily proves that it cannot be rational!

$$
S_{0}=_, \quad \text { Iteration: } \quad \mapsto \nabla
$$

Figure: Initial iterates defining the Sierpiński graph.

Green function = probability generating function which describes the n-step displacement starting and returning to a certain origin vertex

Green function $G(t)$ for walks that return to their origin on the Sierpiński graph satisfies the functional equation:
[Grabner and Woess 1997]

$$
\begin{equation*}
G\left(\frac{t^{2}}{4-3 t}\right)=\frac{(2+t)(4-3 t)}{(4+t)(2-t)} G(t) . \tag{1}
\end{equation*}
$$

$$
\Rightarrow D \text {-transc. over } \mathbb{C}(t)
$$

GALOIS THEORY OF FUNCTIONAL EQUATIONS
K of characteristic zero field + an automorphism $\tau: K \rightarrow K$
$C:=K^{\tau}:=\{f \in K: \tau(f)=f\}=$ algebraically closed field (=the "constants of the theory")

EXAMPLE.

$K=\mathbb{C}((t))$ and $\tau(f(t)):=f\left(\frac{t}{t+1}\right), \forall f \in \mathbb{C}((t)) \Rightarrow \mathbb{C}((t))^{\tau}=\mathbb{C}$
$\tau(\vec{y})=A \vec{y}$, where $A \in G L_{\nu}(K)$

RMK. \vec{y} is a vector of unknowns and τ acts on vectors (and later also on matrices) componentwisely.

A Picard-Vessiot ring for $\tau(\vec{y})=A \vec{y}$ over K is a K-algebra R plus an

 automorphism extending the action of τ :1. R is τ-simple;
2. $\exists Y \in \mathrm{GL}_{\nu}(R)$ s.t. $\tau(Y)=A Y$ and $R=K\left[Y, \operatorname{det} Y^{-1}\right]$.

RMK. A Picard-Vessiot ring always exists.

EXAMPLE

Let $a \in K, a \neq 0$ and R be the Picard-Vessiot ring of $\tau(y)=a y$. Then there exists $z \in R$ such that $\tau(z)=a z$ and $R=K\left[z, z^{-1}\right]$.

The Galois group G of $\tau(\vec{y})=A \vec{y}$ over K :

Aut ${ }^{\tau}(R / K)=$ automorphisms of rings $\varphi: R \rightarrow R$ that commute with τ and s.t. $\varphi_{\mid K}=i d$
$\varphi(Y) \in \mathrm{GL}_{\nu}(R)$ solution of $\tau(\vec{y})=A \vec{y}$.
$\tau\left(Y^{-1} \varphi(Y)\right)=Y^{-1} \varphi(Y)$ and hence that $Y^{-1} \varphi(Y) \in \mathrm{GL}_{\nu}(C)$.
\sim a natural group morphism $G \rightarrow \mathrm{GL}_{\nu}(C)$.

THEOREM

1. $G \rightarrow \mathrm{GL}_{\nu}(C), \varphi \mapsto Y^{-1} \varphi(Y)$ is an injective group morphism.
2. $\operatorname{tr} . \operatorname{deg}_{K} R=\operatorname{dim}_{C} G$.

EXAMPLE. $\tau(y)=a y, a \in K$
$\forall \varphi$ of $G \varphi(z)$ is another solution of $\tau(y)=a y: \varphi(z)=c_{\varphi} z$, for some $c_{\varphi} \in C \Rightarrow G \subset C^{*}$
z is transcendental / K if and only if $G=C^{*}$.
Since the only algebraic subgroups of C^{*} are the groups of roots of unity, z is algebraic over K if and only if G is a group of roots of unity, i.e., if and only if there exists a positive integer N s.t. $z^{N} \in K$.
$\tau(y)=a y+f, a, b \in K \leadsto \tau(\vec{y})=\left(\begin{array}{ll}a & f \\ 0 & 1\end{array}\right) \vec{y}$
$Y=\left(\begin{array}{cc}z & w \\ 0 & 1\end{array}\right)$, with $\tau(z)=a z$ and $\tau(w)=a w+f$
$\Rightarrow R=K\left[z, z^{-1}, w\right]$ (Picard-Vessiot ring)
$\forall \varphi \in G$, therefore there exist $c_{\varphi}, d_{\varphi} \in C$ such that $\varphi(z)=c_{\varphi} z$ and $\varphi(w)=w+d_{\varphi} z$
$\varphi\left(\begin{array}{ll}z & w \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}z & w \\ 0 & 1\end{array}\right)\left(\begin{array}{cc}c_{\varphi} & d_{\varphi} \\ 0 & 1\end{array}\right)$
$\widetilde{G}:=\left\{\left(\begin{array}{ll}c & d \\ 0 & 1\end{array}\right): c, d \in C, c \neq 0\right\} \subset \operatorname{GL}_{2}(C)$
According to whether z and w are algebraically dependent or not, either G will be a proper linear algebraic subgroup of \widetilde{G}, or $G=\widetilde{G}$.
$R=\mathbb{R}_{1} \oplus \cdots \oplus \mathbb{R}_{r}$ is a direct sum of domains
$\mathbb{L}=\mathbb{L}_{1} \oplus \cdots \oplus \mathbb{L}_{r}$, where $\mathbb{L}_{i}=\operatorname{Frac}\left(R_{i}\right)$ and $\tau\left(\mathbb{L}_{i}\right)=\mathbb{L}_{i+1}$
$\mathbb{L}=$ the total Picard-Vessiot ring of $\tau(\vec{y})=A \vec{y}$

The action of the Galois group Aut $^{\tau}(R / K)$ naturally extends from R to \mathbb{L}.

Porposition

\mathbb{L} is uniquely determined (up to an isomorphism) by the following properties:

1. \mathbb{L} has no nilpotent elements and any non-zero divisor of \mathbb{L} is invertible.
2. $\mathbb{L}^{\tau}=C$.
3. $\exists Y \in \mathrm{GL}_{\nu}(\mathbb{L})$ solution of $\tau(\vec{y})=A \vec{y}$.
4. \mathbb{L} is minimal with respect to the inclusion and the three previous properties.

Any τ-ring satisfying the 1,2,3 above contains a copy of R.
$\mathcal{F}=\{\tau$-stable rings $K \subset F \subset \mathbb{L}$, s.t. $\forall f \in F$ is either a zero divisor or a unit in $F\}$

$$
\begin{gathered}
\forall F \in \mathcal{F}, H_{F}:=\{\varphi \in \mathcal{G}: \varphi(f)=f \text { for all } f \in F\} . \\
\mathcal{G}=\{\text { linear algebraic subgroups of } G\} \\
\forall H \in \mathcal{G}, \mathbb{L}^{H}=\{f \in \mathbb{L}: \varphi(f)=f \text { for all } \varphi \in H\}
\end{gathered}
$$

Theorem. The following two maps are each other's inverses:

$$
\begin{array}{rlc}
\mathcal{G} & \rightarrow & \mathcal{F} \\
H & \mapsto & \mathbb{L}^{H}
\end{array} \quad \text { and } \quad \begin{gathered}
\mathcal{F}
\end{gathered} \rightarrow \begin{gathered}
\mathcal{G} \\
F
\end{gathered}
$$

In particular, $\mathbb{L}^{H}=K$ if and only if $H=G$.

Application to D-transcendence

There exists a derivation ∂ on K commuting with τ.
EXAMPLE: for $\tau(f(t))=f\left(\frac{t}{1+t}\right)$, we can take $\partial:=t^{2} \frac{d}{d t}$

Existence-definition of ∂-Picard-Vessiot ring (Wibmer)

There exists a K-algebra \mathcal{R}, equipped with an extension of τ and of ∂, preserving the commutation, such that:

1. there exists $Y \in \mathrm{GL}_{\nu}(\mathcal{R})$ such that $\tau(Y)=A Y$;
2. \mathcal{R} is generated over K by the entries of $Y, \frac{1}{\operatorname{det}(Y)}$ and all their derivatives;
3. \mathcal{R} is τ-simple.

Moreover, the total ring of fractions of \mathcal{R} contains the total Picard-Vessiot ring L.

Applying ∂^{n} to the system $\tau(\vec{y})=A \vec{y}$ for any positive integer n, we can consider the difference system:

$$
\tau(\vec{y})=\left(\begin{array}{cccc}
A & \partial(A) & \cdots & \frac{\partial^{n}}{n}(A) \\
0 & A & \ddots & \vdots \\
\vdots & \ddots & \ddots & \partial(A) \\
0 & \cdots & 0 & A
\end{array}\right) \vec{y}, \text { with solution }\left(\begin{array}{cccc}
\frac{\partial^{n}}{n!}(Y) & \frac{\partial^{n-1}}{(n-1)!}(Y) & \cdots & Y \\
0 & \frac{\partial^{n}}{n!}(Y) & \ddots & \vdots \\
\vdots & \ddots & \ddots & \frac{\partial^{n-1}}{(n-1)!}(Y) \\
0 & \cdots & 0 & \frac{\partial^{n}}{n!}(Y)
\end{array}\right) .
$$

F will be a K-algebra s.t.:

1. with no nilpotent elements;
2. any element is either a zero divisor, or invertible;
3. $\exists \tau$ and of ∂ on F, preserving the commutation;
4. $F^{\tau}=C$

Proposition

Let $f \in K$, and let $w \in F$ be such that $\tau(w)=w+f$. Then the following assertions are equivalent:

1. w is differentially algebraic over K.
2. \exists integer $n \geq 0, \alpha_{0}, \ldots, \alpha_{n} \in C$ (not all zero) and $g \in K$ s.t.

$$
\alpha_{0} f+\alpha_{1} \partial(f)+\cdots+\alpha_{n} \partial^{n}(f)=\tau(g)-g .
$$

3. \exists integer $n \geq 0, \alpha_{0}, \ldots, \alpha_{n} \in C$ (not all zero) s.t. $g:=\sum_{i=0}^{n} a_{i} \partial^{i}(w) \in K$.

We consider the OGF of the family of Bernoulli polynomials,

$$
\tau(B)=(1+t) \cdot B-\frac{t(1+t)}{(1+t-t x)^{2}},
$$

$\widetilde{B}(x, t):=t B(x, t) \leadsto \tau(\widetilde{B})=\widetilde{B}-\left(\frac{t}{1+t-t x}\right)^{2}$

\widetilde{B} is differentially transcendental over $\mathbb{C}(t), \forall x \in \mathbb{C}$

By contradiction, $\exists n \geq, \alpha_{0}, \ldots, \alpha_{n}$ (not all zero) and $g \in \mathbb{C}(t)$ such that
$\alpha_{0} b+\alpha_{1} \partial(b)+\cdots+\alpha_{n} \partial^{n}(b)=\tau(g)-g$, with $\partial:=t^{2} \frac{d}{d t}$ and $b=\left(\frac{t}{1+t-t x}\right)^{2}$.
$\partial^{k}(b)=(k+1)!\left(\frac{t}{1+t-t x}\right)^{k+2} \quad \forall k \geq 1$
$x \neq 1 \Rightarrow$ the left-hand side of has a unique pole at $t_{0}=\frac{1}{x-1} \ldots$
$x=1 \Rightarrow$, the left-hand side is a non-zero polynomial with no constant term... one shows that g can only be a constant...

Let b and a be non-zero elements of K, and let us consider the difference equation $\tau(y)=a y+b$.

Theorem

$\tau(y)=a y+b$, with $a, b \in K$, such that $a \neq 0,1$ and $b \neq 0$.
Let F / K be a field extension such that there exists $w \in F \backslash K$ satisfying the equation $\tau(w)=a w+b$.
Moreover, let F_{a} be a K-algebra as above, such that there exists $z \in F_{a}$ satisfying the equation $\tau(z)=a z$.
If z is differentially transcendental over K, then w is differentially transcendental over K.

THANKS!

TABLE OF CONTENTS

Background

Klazar's theorem $\boldsymbol{\rightarrow}$
General result on D-transcendence (Adamczewski-Dreyfus-Hardouin, 2019) $=$ Conjecture of Pak-Yeliussizov, $2018 \boldsymbol{\square}$
Generating series coming from combinatorics and functional equations

à la Klazar

Borel transform and EGF $\boldsymbol{\rightarrow}$
Other examples \rightarrow
Main result of transcendence over $\mathbb{C}(\{t\})=$
An example of walks in the quarter plane $\boldsymbol{\omega}$
Iterative functional equations
Iterative functional equations $\boldsymbol{\Delta}$
Application $\boldsymbol{\rightarrow}$
Complete $\{2,3\}$-trees $\boldsymbol{} \rightarrow$
Galois theory of functional equations
Setting $\boldsymbol{\rightarrow}$
The Picard-Vessiot ring $\boldsymbol{} \boldsymbol{\sigma}$
The Galois group $\boldsymbol{\rightarrow}$
An example: $\operatorname{Phi}(y)=a y+f \Rightarrow$
Total Picard-Vessiot ring $\boldsymbol{} \rightarrow$
Galois correspondence $\boldsymbol{\rightarrow}$
Application to D-transcendence $\boldsymbol{} \rightarrow$
Differential prolongations \Rightarrow
Algebra where do to what we want $\boldsymbol{\omega}$
Example $=$
$\tau(f)=a f+b=$
Thanks!

