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\WWhat’s in This Talk?

e \What is quantum nonlocality? The story behind the 2022 Nobel prize
In physics.

e The marginal problem in 1D and its applications in quantum
information.

e The 2D marginal problem: results, progress and open questions.



And the Award Goes To...

lll. Niklas EImehed © Nobel Prize
Outreach

[ll. Niklas ElImehed © Nobel Prize lll. Niklas EImehed © Nobel Prize
Outreach Outreach

Alain Aspect John F. Clauser Anton Zeilinger

Prize share: 1/3 Prize share: 1/3 Prize share: 1/3

The Nobel Prize in Physics 2022 was awarded jointly to Alain Aspect, John F.
Clauser and Anton Zeilinger "for experiments with entangled photons, establishing
the violation of Bell inequalities and pioneering quantum information science”
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\What Are “Bell Inequalities”?

Albert Einstein John S. Bell John F. Clauser Alain Aspect Anton Zeilinger

Formalize LHV / Bell Ist Bell Test / CH- 1st Bell Test with Loophole-free Bell

EPR Paradox Inequality CHSH Inequalities Entangled Photons Test




Albert Einstein

It all Beganin 1935...

EPR Paradox

MAY 15, 193§

PHYSICAL REVIEW

VOLUME 47

Can Quantum—Mechanical Description of Physical Reality Be Considered Complete?

A. EiNsTEIN, B. PopoLsky AND N. ROSEN, Iustitute for Advanced Study, Princeton, New Jersey
| (Received March 25, 1935)

In a complete theory there is an element corresponding
to each element of reality. A sufficient condition for the
reality of a physical quantity is the possibility of predicting
it with certainty, without disturbing the system. In
quantum mechanics in the case of two physical quantities
described by non-commuting operators, the knowledge of
one precludes the knowledge of the other. Then either (1)
the description of reality given by the wave function in

quantum mechanics i1s not complete or (2) these two
quantities cannot have simultaneous reality. Consideration
of the problem of making predictions concerning a system
on the basis of measuremeénts made on another system that
had previously interacted with it leads to the result that if
(1) is false then (2) is also false. One is thus led to conclude
that the description of reality as given by a wave function
is not complete.



What Is “Real”?

“Physical Reality”

What is "real"?




What Is “Real”?
“Physical Reality”

It you’re talking about what you can teel, smell,
taste and see, then “real” is simply electrical signals

interpreted by your brain.




What Is “Real”?

The possibility of predicting its Every element of the physical

value with certainty, without disturbing reality must ho\{e a counterpart in the
the system. physical theory.
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What Is “Real”?

The EPR Argument

1. Consider position and momentum: x and p.

2. In quantum mechanics, they correspond to operators X and P.

3. These operators do not commute: XP + PX.

4. Therefore the measurement of one precludes the knowledge of the other.

5. Therefore they can not have simultaneous reality.
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What Is “Real”?

Something is missing...

«Are wave functions real?
«Even if they are real, how can we measure them?

«If the wave function does not give a complete description of physical
reality, what does?

\What if there’s some “hidden variable”, which can not be experimentally
revealed, but nevertheless dictates the outcomes of our experiments?
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John Bell

Think Outside the Box

Enter John Bell

«“Real job” is a particle physicist working at CERN.

e Thinking about quantum foundations is his “secret
hobby”.

*Only a few close friends at CERN knew what he was

doing. One of them is Reinhold Bertlmann, whose

colorful socks were made famous by Bell.

eDied from brain hemorrhaging in 1990, the year when

he was considered for a Nobel prize.

Propose the first “Bell’s inequality” exactly 60 year ago!
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Think Outside the Box

Bell's Insight

\We need a theory-independent framework to compare quantum and classical physics.

1. Allow both quantum and classical physics to make predictions.
2. General enough to incorporate “unknown variables”.

3. Able to express the notions of “independence” and “disturbance”.

Use probability!
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Think Outside the Box _}

Local Hidden Variable Theory P(b|n) “

9 <
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P(a,b|m,n) = J'P(a | m, \)P(b|n, )P(A) dA




Think Outside the Box

Local Hidden Variable Theory

P(a,b|m,n) = J'P(a | m, \)P(b|n, )P(A) dA

1. Physical reality means probability =1.
2. “No disturbance” guaranteed by special relativity.
3. Hidden influence also can not travel raster than light.

4. Predictions in LHV may ditter trom those made in quantum theory!
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Make It Testable

John Clauser, the capital C

« Bell’s original formulation is not very experiment-friendly.

« EPR and Bell all used the singlet as the quantum mechanical
model.

e To actually test LHV using quantum particles, Clauser had to
invent new “inequalities”.

 The most famous “Bell inequalities” are called CH and CHSH.

e Clauseris the first “C” in both of them.
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Think Outside the Box

Local Hidden Variable Theory

P(a,b|m,n) = P(a\m AP | n, A)P(A) dA

-t

E(mn) = P(O0|mn) + P(11|mn) — P(O1 |mn) — P(10 | mn)

{

P(00|00) — P(00|01) — P(00|10) — P(11]11) < 0 —2 < E00)+ EO1) +E(10)—E(11) <2

CH Inequality

CHSH Inequality
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Quantum Theory Is Incompatible With LHV

In LHV theory In quantum theory

P(00|00) — P(OO|O1) — P(O0|10)—P(11]11) <0

CH Inequality q

—2 < EO0)+EOD)+E0)—-E(11)<L?2

CHSH Inequality q max(CHSH) =
20

For almost all pure states, the

inequality > 0




That’s Fine

P(a|m) P
P(0]0) P(4 = 00)
2 inputs/outputs P(l ‘ O) Bijective map between the values P(/l — 01) 4 values (2 bits)
of the hidden variable and the local
PO]|1) response functions P(4 = 10)
P(1]1) P =11)

A. Fine, Phys. Rev. Lett., 48, 291 (1982)
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That’s Fine

P(0]0)

P(110)
P(a|m)

ror

P(1|1)

P(A=00) + P =01
P(L=10) + PA=11)

Which bit to look at

PL=00) + P(1=10)
POAL=01) + PUA=11)
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That’s Fine

P(a,b|m, n)

PO1[10) = Py(O]1) - Py, (1]0)
= P(y = 00)P(,, = 10) + P(Ly = 00)P(A,, = 11) + P(Ly = 10)P(4,, = 10) + P(Ay = 10)P(4,, = 11)

P(1|10) = PA=10) + PUA=11)
PO|1) = PA=00) + P =10
Local Hidden Variable models are convex polytopes!
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The First Experimental Test

Experimental Test of Local Hidden-Variable Theories*

Stuart J. Freedman and John F. Clauser
Depavtment of Physics and Lawvence Bevkeley Laboratory, Univevsity of California, Berkeley, California 94720
(Received 4 February 1972)

We have measured the linear polarization correlation of the photons emitted in an atom-
ic cascade of calcium. It has been shown by a generalization of Bell’s inequality that the
existence of local hidden variables imposes restrictions on this correlation in conflict
with the predictions of quantum mechanics. Our data, in agreement with quantum me-
chanics, violate these restrictions to high statistical accuracy, thus providing strong evi-
dence against local hidden~variable theories.

LENS LENS

AMP

|

—-DELAY COINC.

PH.A. TAC.

L |

FIG. 1. Schematic diagram of apparatus and associat-
ed electronics. Scalers (not shown) monitored the out-
puts of the discriminators and coincidence circuits dur-
ing each 100-sec count period. The contents of the
scalers and the experimental configuration were record-
ed on paper tape and analyzed on an IBM 1620-II com-
puter.
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Locality Loophole

- LHV assumes no
communication
between Morpheus
and Neo.

The “ultimate

physical bound” to
enforce this is given
by the speed of light.

*Enforce physical
separation on the
order of dozens of
meters.

The Loopholes

Detection Loophole

- Morpheus and Neo
can cheat by
refusing to give

answers sometimes.

This will “bias” the
inequality to show a
violation.

«Detector efficiency

must be sufficiently
high:
24/2 — 2 ~ 82.84 %

Memory Loophole

- The experimental

rounds are assumed
to be i.i.d.

This is not a problem
when the
experiment is
infinitely long, but is
a problem with finite
data.

e Use non-i.i.d.
estimators and
sophisticated
statistical analysis.

Free-will Loophole

- Morpheus and Neo

can cheat if they
have information
about the inputs.
They can collude to
produce outputs
which violate the
inequality.

 Fast switching of
inputs with good
random number
generators.




The Road to Loophole-Free Tests

VOLUME 49, NUMBER 2 PHYSICAL REVIEW LETTERS 12 Jury 1982

Experimental Realization of Einstein-Podolsky-Rosen- Bohm Gedankenexperiment:
A New Violation of Bell’s Inequalities

Alain Aspect, Philippe Grangier, and Gérard Roger
Institut d’Optique Théovique et Appliquée, Labovatoive associé au Centve National de la Rechevche Scientifique,
Universitée Pavis Sud, F-91406 Ovsay, France
(Received 30 December 1981)

The linear-polarization correlation of pairs of photons emitted in a radiative cascade of
calcium has been measured. The new experimental scheme, using two-channel polarizers
(i.e., optical analogs of Stern-Gerlach filters), is a straightforward transposition of Ein-
stein-Podolsky~Rosen-Bohm gedankenexpeviment. The present results, in excellent
agreement with the quantum mechanical predictions, lead to the greatest violation of gen-
eralized Bell’s inequalities ever achieved.

PACS numbers: 03.65.Bz, 35.80.+s

 Fully optical. Uses entangled photons.

* Nlo locality loophole!

Alain Aspect
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The Road to Loophole-Free Tests

PHYSICAL REVIEW
LETTERS

VOLUME 81 7 DECEMBER 1998 NUMBER 23 Locality Loophole, 1998
’

Violation of Bell’s Inequality under Strict Einstein Locality Conditions

Gregor Weihs, Thomas Jennewein, Christoph Simon, Harald Weinfurter, and Anton Zeilinger

Institut fiir Experimentalphysik, Universitdt Innsbruck, Technikerstrafle 25, A-6020 Innsbruck, Austria
(Received 6 August 1998)

Violation of local realism with freedom of choice

Thomas Scheidl?, Rupert Ursin®, Johannes Kofler*®!, Sven Ramelow?®®, Xiao-Song Ma**, Thomas Herbst®,

Lothar Ratschbacher®?, Alessandro Fedrizzi*?, Nathan K. Langford**, Thomas Jennewein®, and Anton Zeilinger*®" F ree- Wl ll LOO p h 0 le 2 0" 0
’

%Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria; and °Faculty of Physics,
University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria

Edited by William D. Phillips, National Institute of Standards and Technology, Gaithersburg, MD, and approved September 15, 2010 (received for review March

‘/;‘ g 4, 2010)

LETTER

An ton Zei I i nger doi:10.1038/nature12012

Bell violation using entangled photons without the Detection Loophole, 2013
fair-sampling assumption

Marissa Giustina®?*, Alexandra Mech"%*, Sven Ramelow"**, Bernhard Wittmann"?*, Johannes Kofler':*, J6rn Beyer*,
Adriana Lita®, Brice Calkins®, Thomas Gerrits®, Sae Woo Nam®, Rupert Iﬁs?ql & Anton Zeilinger"?




Experimental Proof That Reality Is Nonlocal

|84 Selected for a Viewpoint in Physics week ending
PRL 115, 250401 (2015) PHYSICAL REVIEW LETTERS 18 DECEMBER 2015

S

Significant-Loophole-Free Test of Bell’s Theorem with Entangled Photons

: SN 1 » 12 qes 1,2 .12 , .12
Marissa Giustina, ™™ Marijn A. M. Versteegh, = Soren Wengerowsky, "~ Johannes Handsteiner, ™ Armin Hochrainer,

Kevin Phelan,1 Fabian Steinlechner,1 Johannes Koﬂer,3 Jan-Ake Lalrsson,4 Carlos Abellén,5 Waldimar Amaya,5
Valerio Pruneri,S’6 Morgan W. Mitc:hell,s’6 Jorn Beyer,7 Thomas Ge:rrits,8 Adriana E. Lita,8 Lynden K. Shalm,8
Sae Woo Nam,8 Thomas Scheidl,l’2 Rupert Ursin,1 Bernhard Wittmann,l’2 and Anton Zeilingerl’z’T

LETTER

Loophole-free Bell inequality violation using
electron spins separated by 1.3 kilometres

B. Hensen"?, H. Bernien"?, A. E. Dréau™?, A. Reiserer"?, N. Kalb"?, M. S. Blok"?, J. Ruitenberg"?, R. F. L. Vermeulen'?,
R. N. Schouten'?, C. Abellan®, W. Amaya®, V. Pruneri>*, M. W. Mitchell>* M. Markham?, D. J. Twitchen®, D. Elkouss',

S. Wehner!, T. H. Taminiau"? & R. Hanson"?

doi:10.1038/naturel5759

|24 Selected for a Viewpoint in Physics week ending
PRL 115, 250402 (2015) PHYSICAL REVIEW LETTERS 18 DECEMBER 2015

S

Strong Loophole-Free Test of Local Realism”

Lynden K. Shallm,l’T Evan Meyelr—Scott,2 Bradley G. Chlristensen,3 Peter Bielrhorst,1 Michael A. Wayne,3’4 Martin
J. Stevens,1 Thomas Gerrits,1 Scott Glancy,1 Deny R. Hamel,5 Michael S. Allman,1 Kevin J. Coakley,1 Shellee D. Dyer,1
Carson Hodge,1 Adriana E. Lita,1 Varun B. Verma,1 Camilla Lambrocco,1 Edward Tortorici,1 Alan L. Migdall,“’6
Yanbao Zhang,2 Daniel R. Kumor,3 William H. Farlr,7 Francesco Marsili,7 Matthew D. Shaw,7 Jeffrey A. Stern,7
Carlos Abella’m,8 Waldimar Amaya,8 Valerio Prunelri,g’9 Thomas Jennewein,z’10 Morgan W. Mitchell,g’9 Paul G. Kwiat,3
Joshua C. Bienfang,“’6 Richard P. Mirin,1 Emanuel Knill,1 and Sae Woo Nam'*
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The Marginal Problem in 1D
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Necessary Condition for Translation Invariance
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' nvariance
Condition for Translation I
Necessary
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Necessary Condition for Translation Invariance

1
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Necessary Condition for Translation Invariance
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Necessary Condition for Translation Invariance




Is the Necessary Condition Also Sufficient?

Local Translation Invariance (LTI)

==

P(AOJAl :AZ)

P(Ag,Aq) = ZP(AO:AlaAZ) = ZP(AO:AlaAZ) = P(A;,A;)
Ay Ag
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Is the Necessary Condition Also Sufficient?

L ocal Translation Invariance (LTI)

==

p(A—lJAOJAlJAZPHEABD(AD)AZ)AZ)p(A—l |AO)A1)

P(A—laAOJAl)

P(Aq,A;,A)P(A_1|Ar,Ay) = P(An, A, LA
( 0 1 2) ( 1| 0 1) ( 0 1 2) p(AQ,Al)
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Is the Necessary Condition Also Sufficient?

= |




Is the Necessary Condition Also Sufficient?

Yes!

LTI reduces a global property to a local one.
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Is the Necessary Condition Also Sufficient?

Bonus

P(Ag,Aq1) = ZP(AO:AlaAZ) = ZP(AOaAlaAZ) = P(A;,A,)
A2 AO

Z P(AOzAlaAZ) =1
ApA

It’s a convex polytope!
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Extreme Points of the LTI Polytope

( )
\_ J




Extreme Points of the LTI Polytope

4 )
. J




Extreme Points of the LTI Polytope
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Extreme Points of the Bell-LTI Polytope
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Extreme Points of the Bell-LTI Polytope

P(0/0) P(1]0)

( )
. v




Extreme Points of the Bell-LTI Polytope

P(0[1) P(1]1)

( )
. v




Facets of the Bell-LTI Polytope

tz

1,2 1,2 | 1,2 1,3 1,3 .
—2E)—4E, = 2E}:2 + 2E}2 4 2E 12 4 2E2 4 E13 + E13 > — 4

1,2 1,2 1,2 1,2 1,3 1,3 1,3 -
—4Ey— 6E| — 3E, ;> + 2E > + 3E,.> + 2E»> + 2E P + E > + E|> > — 6
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Ground State Energy of
Quantum Hamiltonians Bell Local

Contextuality of Local1D TI
Local Hamiltonians

Bounded

Interaction
Distance




From Contextuality Witnesses to GS Energy of Quantum Models

Contextuolit\/ Compute GS

haracterization witn timiz
Chara esses Op e energy of
quantum models

of LTI polytope (Classical Observables
Models)

Linear Polytope

Programming computation SGD / PGD + SDP

If quantum GS energy < classical
bound, then quantum model is
contextual




\What Have We Learned?

In D, the LTI condition is both necessary and sufficient for a
distribution to have a TI extension.

The LTI condition allows a nice polytope characterization.

The extreme points of the LTI polytope can be visualized using
Dominoes.

Classical TI/LTI behavior can be completely characterized using the
Bell-LTTI polytope.
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Tiles and 2D Marginals
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LTI Conditionin 2D

g




LTI Conditionin 2D




Local Translation Invariance in 2D

*

X

Necessary

v

Mere on this later.
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Approximations of 2D TI Marginals
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Easy Scenarios In 2D

e The 2D LTI condition is sutticient only when each site takes 2 values.

e \When each site takes 2 values, the marginals of the nearest and next-

to-nearest neighbor distributions can be characterized by projecting
from the 2D LTI polytope.

e If there is also a reflection symmetry, then the problem becomes
essentially 1D.

’r’



Extreme Points of the 2D Binary LTI Pol\/tope

C1 C2

- e

C4 CS

=
=






















Hard Scenarios In 2D

The 2D Binary LTI polytope only has 13 vertices, which can be grouped
into 6 classes.

If the each site takes 3 values, how many vertices will the polytope have?
HUNDREDS OF MILLIONS!

Can we say anything in this scenario?

Yes! If we only look at nearest neighbors.

This polytope only has 98 vertices, grouped into 10 classes.
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Extreme Points of the 2D Ternary Nearest-Neighbor TI Marginals
C1 C2 C3 C4 CS

}

=
C/ C3 CS C10

1T
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\We Have Seen the Easy, the Hard.



* No Scientologist was harmed during the completion of the following proofs.
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Theorem Impossible 7: Computing the Average
Energy per Site of an Arbitrary TI Hamiltonian

With Only Nearest-Neighbor Interaction Is
Undecidable.
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Aperiodic Tilings and Dynamical Systems

(—1,1) 0,1)

(—1,0) (0,0)
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Aperiodic Tilings and Dynamical Systems

(—1,1) (0,1) (1,1)

(—1,0) (0,0) (1,0)
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Aperiodic Tilings and Dynamical Systems

(—1,1) (0,1) (1,1)

(—1,0) (0,0) (1,0)
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Aperiodic Tilings and Dynamical Systems

(—1,1) (0,1) (1,1)

(—1,0) (0,0) (1,0)
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Aperiodic Tilings and Dynamical Systems

(—1,1) (0,1) (1,1)

(—1,0) (0,0) (1,0)

f@Q)=MZ—-c)+c
4 _3
M = 45
[ ?]

1
: 2=l < =
*7 5
04

wn|w U
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Aperiodic Tilings and Dynamical Systems

e The action of this dynamical system is to rotate a vector by an angle
which is an irrational multiple of 2.

e A vector which allows this dynamical system to continue forever is
called an “immortal point”.

e This system has an (uncountably) infinite number of immortal points.

e However, all of them, together with the action of the dynamical
system, can be simulated by a finite number of tiles.
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Aperiodic Tilings and Dynamical Systems

f+1l=b+r

corner

rational rational

corner
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Aperiodic Tilings and Dynamical Systems




Aperiodic Tilings and Dynamical Systems

(1) = %i I
k=1

5) =~ b
k=1

f(1) = (b),m =



Aperiodic Tilings and Dynamical Systems

A (V) = [kV]

B(Wv)=A()—A,_,(V)

B, (v)

JA () = A (f() + (k= 1)e JA () = A(f (V) + ke

B (f(¥))

f)+1l=b+r
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Aperiodic Tilings and Dynamical Systems

e The construction is similar to Kari, SOFSEM 2008, LNCS 4910 (2008).
e The dynamical system can be simulated using 2947 tiles.

e The number 2947 is not optimal and it may go down a lot with better
construction.

e Maybe it will go to 4.

e \We can define a set of 2D TI marginals implementing this tiling, and
look at the shape of one of its linear projections.
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Theorem Impossible 2: \When the local
dimension of each site is 2947, the set of
2D TI marginals is not semi-algebraic.



Progress and Open Questions

e Similar to the 1D case, we wish to characterize the set of Bell local
Hamiltonians with local interactions in 2D.

e Again, we need to use Fine’s theorem, so this problem reduces to
finding an inner approximation of TI marginals with 4 values per site.

e Again, we need to use tilings, but this time it’s corner tilings.
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The End Game: Characterization of 2D Local TI

Hamiltonians
The Workflow
P(ABCD) P(AB)
Al B Take marginals
-_— A | B | And
C| D

4% = 256 dimensional

y
p 0 "\I to p e el |
b

Take expectations
The Bell
—

3 dimensional 104 D * 222 = 32 dimensional



The End Game: Characterization of 2D Local TI
Hamiltonians

Linear Programming Technique

» After the projections M, a LTI probability distribution (d = 4, K = 2 X 2), denoted by x;, is projected to a 8
-dimensional vector y in the LTI Bell polytope. Call these projections M.

1. Use random objective function ¢ to solve the following linear program (LP)

Maxmize CTy

subjectto Mx =1y

Xis2X2-LTI
2. Solve the LP many times to get many points of y and denote this set by Sy.

3. Compute the polytope from Sy to get the vertices V and facets F. Call the coefficient vector of the facets ¢; and
the bounds b,

4. Update Sy = V. For each facet of F, solve the same LPs by substituting ¢ with c,. If the optimal value exceeds b,
add the corresponding y to Sy. It no violation appears, go to step 5. Otherwise, go to step 3.

5. We get the LTI Bell polytope V. (05



The End Game: Characterization of 2D Local TI
Hamiltonians

LTI but not TI VVertices

The LTI Bell polytope has 192 vertices.

Trying to tile the plane with these 192 vertices as corner tiles, we find only 128
correspond to valid tilings, the remaining 64 vertices are essentially the same.

Computing the polytope &' from the 128 vertices, we have an internal
approximation. &' has 808 facets, and we call the coefficient vectors f; and bounds b,.

2 X 2-LTI is not sufficient to characterize the TI Bell polytope.
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The End Game: Characterization of 2D Local TI
Hamiltonians

From 2X2 to 3X3 LTI Patch

A LTI probability distribution (d = 4, K = 3 X 3), denoted by x (4°-dimensional), is projected to a 8-dimensional vector in the
LTI Bell polytope. Call these projections M.

Using f; from &' as the objective function in the following linear programming:

Maxmize fl.Ty
subjectto Mx =1y
Xis3 X3 LTI

If the optimal value exceeds c;, we check y using corner tiling. If it can tile the plane, we have a new valid vertex.
Using the above method, we find 64 new valid vertices.

Combined with the former 128 points, we have 192 valid vertices.
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The End Game: Characterization of 2D Local TI
Hamiltonians

LTI is too weak to do the job!
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The Search for Tighter Relaxations in 2D

Corner Tilings and Translation Invariance

» Corner tile: a square with its tour corners cotorecz-

* For a given tile set, there are three possibilities:
e Cannot tile a square of size n for some n

» Can tile a square ot size n tor some n with the same colors on the borders——
periodic tiling

» Can tile the entire plane but cannot do it periodically——aperiodic tiling
* There exist aperiodic tilings.

* The corner tiling problem is undecidable.

Ref: Lagae A, Kari J, Dutre P. Aperiodic Sets of Square Tiles with Colored Corners, Report CW 460, KU Leuven (2006)
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The Search for Tighter Relaxations in 2D

Corner Tilings and Translation Invariance

» The simplest case: Each random variables at the region K = 2 X 2 takes value

0(1) with probability 1.

These two probability distributions are clearly TI marginals.

* \What about other deterministic probability distributions?

For iInstance:
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The Search for Tighter Relaxations in 2D

Corner Tilings and Translation Invariance

» Taking —++ for example, repeat this probability distribution all over the plane.
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The Search for Tighter Relaxations in 2D

Corner Tilings and Translation Invariance

» By summing over the four 2 X 2 distributions inside the 3 X 3 red box and
taking the average, we get a 2 X 2 TI marginal.

» Every periodic corner tiling corresponds to a TI marginal. Count the number

of tiles: P(1001) = P(0110) = 2/4 = 1/2
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The Search for Tighter Relaxations in 2D

Transducers

» How to efficiently tile a strip of height N
e N=1

» VView a corner tile as a mapping (green — 1, yellow — 0):

— @

* The mapping is to map left two colors to the right two colors.

* The nodes are named by the colors from top to bottom. The left two colors of the tile are
green and yellow, so the left node is 10. Same for the right node.

Ref: E. Jeandel and M. Rao, an Aperiodic Set of 11 Wang Tiles, AiC (2021).
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The Search for Tighter Relaxations in 2D

Transducers

+N=1

 Suppose we have two tiles

— @ o — @

 Construct a transducer, a directed graph using the nodes and edges

* A tiling of height N = 1 is a biinfinite path on the transducer. The tiling exists if and only if there exists a cycle in

the graph.

* For this tiling to be periodic, we just need to check each node whether the first number equals the second
number. For our example, it is not.
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The Search for Tighter Relaxations in 2D

Transducers

c N=2

e Construct tiles of size 2 X 1

— CQo—Cu — QO—C

* The bottom colors of the top tile must be identical to the top colors of the bottom tile. The nodes are
named the same way before, except the overlapping colors are identified: 1001 — 101

» Construct the graph: |E E

* Check each node: the tirst number equals to the last number. We get a valid periodic tiling!

« If N = 2 is not enough, we go to next height until we find periodic tilings, or find that there is no cycle
in the graph.
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The Search for Tighter Relaxations in 2D

Transducers

Compose to the next height

CONSTRUCT
PERI DIC TILIN

NO VALID TILING!
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The Search for Tighter Relaxations in 2D

Corner Tilings and Cycle Generators in 2 Colors

* Minimal cycle generator: a tile set that admits a valid tiling, but none of its subsets
can.

» There are 17 minimal cycle generators for d = 2 (2 colors), corresponding to 17 TI
vertices.

mcg

. \We compute the convex polytope from these 17 TI vertices, denoted by ‘@2><2'

. Comparing to the facet representation of 9%){12 @g‘;g has 8 more linear inequalities.

Ref: W.-G. Hu and S.-S. Lin, Nonemptiness Problems of Plane Square Tiling with Two Colors, Proc. Amer. Math. Soc. 139, 03 (2011).
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Corner Tilings and Cycle Generators in 2 Colors

* Minimal cycle generator: a tile set that admits a valid tiling, but none of its
subsets can.

» There are 17 minimal cycle generators for d = 2 (2 colors), corresponding to 17
T1I vertices.

mcg

» \We compute the convex polytope from the 17 TI vertices, denoted by ‘@2><2'

. Comparing to the facet representation of 9%?2 @’;g has 8 more linear

inequalities.

Ref: W.-G. Hu and S.-S. Lin, Nonemptiness Problems of Plane Square Tiling with Two Colors, Proc. Amer. Math. Soc. 139, 03 (2011).
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The Search for Tighter Relaxations in 2D

The Extra Facets for a Tighter Relaxation
P(¢)) — P(€,) < P(e,) + P(e3)

P(e,) — P(é3) < P(e) + P(ey) € 2 e3 e,
P(ée;) — P(é,) < P(ey) + P(ey) L1op (oft}] |Oofo0}] [0]0
i i olo]| [olo| [1]o] [o]1

P(éy) — P(é)) < P(e,) + P(e3)
P(é;) < P(&,) + P(&3) + P(éy) €| € Z €y
P(é&)) < P(é)) + P(&3) + P(éy) O[] [jof (][]t
111 111 011 110

P(e;) < P(é;) + P(ey) + P(éy)
P(e,) < P(é)) + P(éy) + P(é3)

e Can these facets be generalized to more than 2 colors?

e Can we do it for 4 colors to use Fine’s Theorem?
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2D Classical

Thank You

ical+
1D ClassicalrQuantum o o A 474: 20170822 (2018) 1D Quantum

Phys. Rev. Lett.118.230401 (2017) npj Quantum Information 8, 89 (2022)
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