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Frenkel-Kontorova Model, 1938
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Used to represent dislocation in a crystal. Used to represent billard
in a convex smooth domain.
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(θn)n∈Z: increasing sequence of reals

Total (formal) energy/Action:

E((θn)n) =
∑
n∈Z

E (θn, θn+1),

for an interaction E : R× R→ R.

Problem: Find bi-infinite configuration which “minimizes” the
total action.
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A configuration (θn)n∈Z is said minimizing if for any segment
(θm, θm+1, . . . , θn)

n−1∑
j=m

E (θi , θi+1) ≤
n−1∑
j=m

E (θ′i , θ
′
i+1)

for any segment θ′m < θ′m+1 < · · · < θ′n with θ′m = θm and θ′n = θn.

Q. What are the properties of minimizing configurations?
(Existence ?,...)
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Examples of Frenkel-Kontorova model

Periodic 1D FK model:

E (x , y) =
1

2
|x − y − λ|2 + K (1− cos(2πx))

= W (x − y) + V (x)

λ ∈ R distance when there is no external interaction

W (x − y): elastic internal interaction

V (x): periodic external interaction.

Almost-periodic 1D FK model:

E (x , y) =
1

2
|x − y − λ|2 + K1(1− cos(2πx1)) + K2(1− cos(2πx

√
2))

Quasicrystalline 1D FK model: To explain
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Quasicrystalline interaction 1D FK model

Let V be defined on two intervals I0, I1

I0

I1
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Quasicrystalline interaction 1D FK model

A sequence (sn)n ∈ {0; 1}Z codes a tiling T of R by intervals I0, I1.
Ex. sn = bnαc − b(n − 1)αc, α ∈ (0, 1).

I0 I0 I1 I0

This defines V : R→ R that is strongly pattern equivariant with
respect to the tiling (Isn)n∈Z.
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Strongly pattern equivariant potential

Setting for any interval I ⊂ R

RI := {x ∈ R : V (·)|I = V (·+ x)|I},

Finite complexity: There are finitely many intervals I1, . . . , In
s.t. RIi is discrete and R =

⋃n
i=1RIi + Ii .

Repetitivity: Every set RI is relatively dense.

Uniform density: Every RI admits a density: the limit
limn→±∞

#RI∩[−n,n]
2n > 0 exists.
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Common feature on interaction E

A family of interactions Eω, indexed by an environnent ω ∈ Ω

1 Eω : R× R→ R is C 2.

2 Twist: for some α > 0, ∂2Eω
∂y∂x ≤ −α < 0.

3 Equivariance: ∀x , y , t ∈ R

Eω(x + t, y + t) = Eτt(ω)(x , y),

for some stricly ergodic continuous flow R τy Ω

Ω = R/Z, τtω = ω + t mod Z Periodic model
Ω = R2/Z2, Almost-periodic model
τt(ω1, ω2) = (ω1 + t, ω2 +

√
2t)

Ω = tiling space, τt = translation action Quasicrystalline model

4 Lagrangian form Eω(x , y) = L(τx(ω), y − x), for some
L : Ω× R→ R.

5 Superlinearity: lim|y−x |→+∞
Eω(x ,y)
|x−y | = +∞
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A minimizing configuration is critical.
Euler-Lagrange Equation

∂Eω
∂y

(θk−1, θk) +
∂Eω
∂x

(θk , θk+1) = 0.

∂Eω
∂x

(θk , ·)−1(−∂Eω
∂y

(θk−1, θk)) = θk+1.

Euler-Lagrange map

(
θk
θk−1

)
7→
(
θk+1

θk

)
extends to a homeo. ϕ : Ω× R→ Ω× R.

Periodic model ϕ = standard map

(
θ
p

)
7→
(

θ + p mod Z
p + K2π sin(θ2π)

)
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Theorem (Aubry-Le Daeron; Mather, 1983)

For the energy E (x , y) = W (x − y) + V (x) with V 1-periodic:
V (·+ 1) = V (·)
i) Any minimizing configuration (θn)n has a rotation number,

lim
n→±∞

θn − θ0

n
= ρ.

ii) Any real ρ ≥ 0 is the rotation number of some minimizing
configuration.
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By the twist condition: For any θi < θ′i < θi+1 < θ′i+1:

E (θi , θi+1) + E (θ′i , θ
′
i+1) < E (θi , θ

′
i+1) + E (θ′i , θi+1).

|
i

×
θi+1

•
θ′i+1

|
i + 1

×
θi

•
θ′i
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Lemma (Aubry-crossing lemma)

Two minimizing configurations cross each other at most once.
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Impossible case
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Theorem (Gambaudo-Guiraud-P.,06 )

For an quasicrystalline interaction E (x , y) = W (x − y) + V (x), V
strongly pattern equivariant.

i) Any minimizing configuration (θn)n has a rotation number,

lim
n→±∞

θn − θ0

n
= ρ.

ii) Any real ρ ≥ 0 is the rotation number of some minimizing
configuration.
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Theorem (Aubry; Mather, 1983)

For the periodic model, the Euler-Lagrange map
ϕ : R/Z× R→ R/Z× R, there is closed set Ξ ⊂ R/Z× R
ϕ-invariant (ϕ(Ξ) = Ξ).

Ξ is the graph of some Lipschitz map f : Ξ0 ⊂ R/Z→ R

Ξ = {(x , f (x)) : x ∈ Ξ0}.

An element in Ξ has a rotation number ρ ≥ 0.
If ρ ∈ Q, Ξ is finite.
If ρ ∈ R \Q, Ξ is a Cantor set or Ξ0 = R/Z.

Ξ is called a Aubry-Mather set.
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The ground energy is

Eω := lim
n→+∞

inf
x0,...,xn∈R

1

n

n−1∑
i=0

Eω(xi , xi+1).

Existence by subadditivity,
Eω = Ē independent of ω by strict ergodicity.

A configuration (θn)n is said calibrated (at the level Ē ) if for any
m ≤ n

n−1∑
i=m

[
Eω(θi , θi+1)− Ē

]
≤ inf

`≥1
inf

y0=θm,...,y`=θn

`−1∑
i=0

[
Eω(yi , yi+1)− Ē

]
.

A calibrated configuration for Eω(x , y)− λ(x − y) is a minimizing
configuration for Eω.
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Aubry-Mather theory

Theorem (Aubry, Mather, 83, 89, ...)

For the energy Eλ(x , y) = W (x − y)− λ(x − y) + V (x) with V
1-periodic.

λ ∈ R 7→ Eλ is a C 1 convex function.

∀λ ∈ R, there exists a calibrated configuration for Eλ(x , y),
with rotation number

ρ = lim
n→±∞

θn − θ0

n
= −dEλ

dλ
.

If ρ ∈ Q, then Λ(ρ) := {λ : ρ = −dĒλ
dλ } has non empty

interior. If ρ 6∈ Q, Int(Λ(ρ)) = ∅.

Any ρ ≥ 0 is the rotation number of a calibrated configuration.
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Aubry-Mather theory

Theorem (Garibaldi-P.-Thieullen, 2017)

For an quasicrystalline interaction Eω(x , y) = W (x − y) + Vω(x),
with Vω strongly pattern equivariant.
There exist configurations (θn)n∈Z calibrated for Eω with bounded
jumps:

sup
n∈Z
|θn+1 − θn| < +∞.
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weak KAM theory: some ideas

Weak KAM solution:[Chou-Griffiths 1986, Fathi 16] A C 0

function u : R→ R such that

u(y) + Ē ≤ u(x) + Eω(x , y) ∀y , x ∈ R

and the inequality is sharp:

u(y) + Ē = min
x

[u(x) + E (x , y)], ∀y (backward)

u plays the role of a discrete viscosity solution for the
Hamilton-Jacobi equation (sometimes also called calibrated
solution or corrector).
Analogy in the (min,+)-algebra: “a.b” = a + b

“a + b” = min(a, b)

“Ē .u(·)” = “
∑
x

u(x).E (x , ·)”

u is the eigenfunction of a linear operator.
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weak KAM theory: some ideas

A configuration (θn)n such that for some w-KAM solution

u(θn+1) + Ē = u(θn) + E (θn, θn+1), ∀n ∈ Z

is calibrated
Indeed ∀θn = y0 < y1 < . . . < y` = θm
`−1∑
i=0

Eω(yi , yi+1)− Ē ≥
`−1∑
i=0

u(yi+1)− u(yi )

=u(y`)− u(y0) = u(θm)− u(θn)

=
m−1∑
i=n

u(θi+1)− u(θi ) =
m−1∑
i=n

Eω(θi , θi+1)− Ē .

Interpretation: u creates a force on the left hand side of any
finite box [a, b] so that, if the particles (θn)n at the left hand side
are erased and replaced by the effective force, the configuration
stay unchanged. Analogy: u(y)− u(x) ≤ S(x , y), for the Mañé
potential

S(x , y) = inf
`>0

inf
x=x0,...,x`=y

`−1∑
i=0

E (xi , xi+1)− Ē .

S(x , y) ≤ S(x , z) + S(z , y) “pseudometric”
u(·) horofunction

calibrated configuration (θn)n geodesic
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Periodic model. There is a cont. periodic (hence bounded)
solution u, defining u : Ω→ R.
Almost-periodic and quasicrystalline models
Existence of a bounded solution is still unclear.

Theorem (GPT 23)

If infx Eω(x , x) > Ē , then there exists a Lipschitz w-KAM solution
uω : R→ R.

Theorem (GPT 23, Quasicrystalline model)

When the tiling is linearly repetitive, ∃ε ∈ {±1}, γ > 0 s.t. ∀
w-KAM solutions uω : R→ R belongs to one of the following case

1 sublinear growth limx→±∞ uω(x)/x = 0

2 lim supx→+∞ uω(εx)/|x | ≤ −γ, lim infx→−∞ uω(εx)/|x | ≥ γ.

3 lim supx→+∞ uω(εx)/|x | ≤ −γ, limx→−∞ uω(εx)/|x | = 0.
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Type I

Sublinear growth at ±∞.

Type II

ε = 1 ε = −1

At least (negative) linear
growth at −∞,

at most (negative) linear
growth at +∞.

At most (positive) linear
growth at −∞,

at least (positive) linear
growth at +∞.
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Type III

ε = 1 ε = −1

Sublinear growth at −∞,

at most (negative) linear

growth at +∞.

Sublinear growth at +∞,

at most (positive) linear

growth at −∞.
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FK in higher dimension d ≥ 1
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•
•

• • •
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FK in higher dimension d ≥ 1
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FK in higher dimension d ≥ 1

θ : Zr → Rd (θz)z∈Zr ∈ (Rd)Z
r

Total (formal) energy:

E((θz)z) =
∑
i ,j∈Zr

a(i − j)‖θi − θj − γ(i − j)‖2|i−j | +
∑
i∈Zr

V (θi ),

where

γ : Zr → Rd ;

a : Zr → R+ with finite support;

V : Rd → R smooth.
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FK in higher dimension d ≥ 1

A configuration (θz)z∈Zr ∈ (Rd)Z
r

is minimizing, if

E((θz)z) ≤ E((ηz)z)

for any configuration (ηz)z such that ηz = θz except finitely many
z ∈ Zr .

A configuration (θz)z∈Zr ∈ (Rd)Z
d

is equilibrium (or a critical
point), if ∀z ∈ Zr ,

∇θzE((θz)z) =∇θz

 ∑
i ,j∈Zd

a(i − j)|θi − θj − γ(i − j)|2|i−j |
+∇θzV (uz)

=0
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FK in higher dimension

Theorem (de la Llave-Valdinoci, 07, d = 1, r ≥ 1)

When V : R→ R is Z-periodic.
For any vector ρ ∈ Rr , there exists a minimizing configuration
(θz)z ∈ (R)Z

r
, such that

∀z ∈ Zr , |θz − 〈ρ, z〉| ≤ 1.

Moreover, if 〈ρ, j〉 ≥ n for some j ∈ Zr , n ∈ Z, then

∀z ∈ Zr , θz+j ≥ θz + n.

The minimizing configurations and their translations are organized
in a lamination Extension by changing Zr with G finitely
generated and residually finite group.
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FK in higher dimension

Theorem (Garibaldi-P-Thieullen 17 r = 1, d ≥ 1)

For
Eω∗((θz)z∈Z) =

∑
i∈Z

a‖θi − θi+1 − γ‖2 + Vω∗(θi ),

where Vω∗Rd → Rd is almost-periodic with respect a strictly
ergodic flow Rd τy Ω(ω∗),
then ∃ ω ∈ Ω(ω∗), and a calibrated configuration (θz)z ∈ (Rd)Z

for Eω.

Existence of minimizing configurations for each ω ∈ Ω(ω∗) is
unclear.
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FK in higher dimension d ≥ 1

Theorem (Treviño, 19, d ≥ 1, r ≥ 1)

When V is strongly pattern equivariant with respect to Rd tiling of
finite translation type.
For any ρ ∈ Hom(Zr ,Rd), for any large enough λ� 1 there exists
an equilibrium configuration (θz)z ∈ (Rd)Z

r
, for the energy

E((θz)z) =
∑
i∈Zr

∑
‖j−i‖=1

‖θi − θj − γ‖2 + λVω∗(θi ),

such that
sup
z∈Zr
‖θz − ρ(z)‖ < +∞.

J. Du-X. Su, 20: These configurations are not minimizing for
λ� 1.
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