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Overview

Physical space: Zd, d = 1, 2

Configurations: Ω = {1, ..., n}Zd

Nonperiodic configurations in Ω → ground-state configurations

of some Hamiltonians

d=2, nonperiodic tilings (Robinson’s tilings)

in general systems of finite type

d=1, substitution dynamical systems (Thue-Morse sequences),

Sturmian systems (Fibonacci sequences),

in general systems of minimal infinite type

Main theme: stability of nonperiodic ground states



Main Open Problem

Does there exist a lattice-gas model with translation-invariant

finite-range interactions without periodic ground-state configurations

and non-periodic Gibbs state at low temperatures?



Raphael Robinson 1911 - 1995

6 (56) tiles which cover planes but only in a non-periodic way,    1971



Structure of an infinite tiling
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Structure of an infinite tiling

Configurations with period 2n+1   on sublattices 2nZ2 n ≥ 1

Global order from local rules



Robinson’s tilings

All Robinson’s tilings look the same. When you look at local

subsets of the lattice you cannot say which Robinson’s tiling it

is.

Let us formalize this.

Let X ∈ Ω = {1, ..., 56}Z2
be a Robinson’s tiling and T

a translation on Ω,

(TaX)i = Xi−a; a, i ∈ Z2

R = closure{TaX, a ∈ Z2} in the product topology.

R is uniquely defined by a finite number of forbidden patterns

– two neighboring tiles that do not match.

There exists the unique translation-invariant measure µR
on R given by

µR = limL→∞
1
L2

∑
a∈Λ0

L
δTaX ,

where δTaX is a probability measure which assign 1 to TaX.

(Ω, R, T, µR) is called a dynamical system of finite type.



Alternatively

we look at frequencies of finite patterns in any Robinson’s

tiling.

Let X ∈ R and Λa
L be a square with the side lenght L and the

center at a ∈ Z2, and ar ∈ {1, ..., }Λar be a local pattern.

nLar(X) = |Λ ⊂ Λa
L,Λ = TbΛar, b ∈ Z2;X(Λ) = ar(Λar)|

is the number of occurances of the pattern ar in Λa
L.

The following limit exists and is independent of X ,

ωar = lim
L→∞

nLar
L2
.

This is the frequency of ar in any Robinson’s tiling.

We obviously have

µR(Iar) = ωar

for every X ∈ R, where Iar(X) = 1 if X(Λar) = ar(Λar).



Strict Boundary Property of nonperiodic tilings

(nonperiodic configurations in general) [1,2]

X ∈ Ω satisfies the Strict Boundary Property for a local

pattern ar if there is a constant Car such that

|nLar(X)− ωarL2| < CarL.

Such property is also called a rapid convergence to equilibrium

of frequency of patterns [3,4].

In fact we need a following stronger version for local tilings.

Let W ⊂ Ω be a set of nonperiodic tilings for a given tiling

set such that there is the unique translation-invariant probability

measure supported by tilings.

W satisfies the Strict Boundary Property for a local pat-

tern ar if for any local tiling Y of Λ0
L, not necessarily extendable

to the whole Z2

|nLar(Y )− ωarL2| < CarL.



Open Problem

Are there any non-periodic tilings which satisfy

the Strict Boundary Property for any local tiling?



Classical lattice-gas models based on tilings

forbidden patterns  have positive energy 

ground-state configurations – configurations which minimize the energy



Robinson’s tilings → classical lattice-gas model 

with finite-range,translational-invariant interactions

and without periodic ground-state configurations

with the unique translation-invariant

ground-state measure supported

by non-periodic ground-state configurations,

C. Radin,  Phys. Lett.  A,1986 [5]



systems of finite type → lattice-gas models with finite-range interactions

ergodic measures → ground-state measures

Systems of finite type are defined by the absence of a finite number of finite patterns.

We construct hamiltonians by assigning a positive energy to forbidden patterns.

However, there is a classical lattice-gas model with finite–range interactions

which does not correspond to any system of finite type.

J. Miękisz, J. Stat. Phys. 1998 [6]



Strict Boundary Property for local excitations

Ω = {1, ..., n}Λ, Λ is a finite subset of Zd.

ΦΛ : ΩΛ → R are interactions.

HΛ =
∑

ΦV⊂Λ is Hamiltonian of our lattice-gas model.

Y is a local excitation of X , X, Y ∈ Ω, Y ∼ X

if |i ∈ Zd, Y (i) 6= X(i)| <∞

For Y ∼ X , H(Y |X) =
∑

Λ⊂Zd(ΦΛ(Y )− ΦΛ(X))

is a relative Hamiltonian.

X ∈ Ω is a ground-state configuration

if for any Y ∼ X , H(Y |X) ≥ 0

HΛ =
∑

ΦV⊂Λ is non-frustrated

if there exists X ∈ Ω such that

for every Λ, ΦΛ(X) = minY ∈Ω ΦΛ(Y ).

We may assume that the minimum is equal to 0

and all other interactions are equal to 1.



Strict Boundary Property for local excitations

X is a ground-state configuration, Y ∼ X ,

then H(Y |X) = B(Y ) is the number of broken bonds,

that is the number of Λ such that ΦΛ(Y ) = 1.

nar(Y |X) is the difference of the number of appearances

of ar in Y and in X .

A classical lattice-gas model satisfies

Strict Boundary Property for local excitations

if for any local pattern ar, there exists Car
such that for every Y ∼ X

|nar(Y |X)| < CarB(Y ).



Theorem (J. Miękisz, J. Stat. Phys.1997 [1])

A unique ground-state measure of a finite-range

Hamiltonian is stable against small perturbations

of interactions of range smaller than r if and only if

Strict Boundary Property is satisfied for patterns

of diameter smaller than r 



Theorem (J. Miękisz, C. Radin, Phys. Lett. 1986) [7])

Robinson’s ground state is not stable against

an arbitrarily small chemical potential favoring

one type of particles corresponding to an arrow tile. 



Low-temperature stability





Open Problem

Does there exist a lattice-gas model with translation-invariant

finite-range interactions without periodic ground-state configurations

and non-periodic Gibbs state at positive temperature?

so far

nonperiodic Gibbs states

van Enter, Miękisz, CMP 1990 [9]

nonperiodic Gibbs states for summable interactions in d=1

van Enter, Miękisz, Zahradnik, JSP 1998 [10]

nonperiodic Gibbs states for exponentially decaying interactions in d=3



One-dimensional lattice-gas models

It is known that one-dimensional lattice-gas models

with finite-range interactions have at least one periodic

ground-state configurations, see [11,12,13].

Therefore to force nonperiodicity we have to consider

models with infinite-range potentials.



substitutions

0 →  01

1 →  10

0

0110

01

01101001

0110100110010110

Thue-Morse sequences



Characterizations of Thue-Morse  sequences

Goal:  looking for the minimal set of forbidden patterns

Gottschalk and Hedlung, 1964

TM is uniquely characterized by the absence of BBb, 

where B is any word and b is its first character, 0 or 1

TM is uniquely characterized by the absence of infinitely many 4-point patterns

(Gardner, Radin, Miękisz, van Enter, J. Phys. A,1989) [14]

4-body Hamiltonian with Thue-Morse sequences as unique ground states





Fibonacci sequences

substitutions

0 →  01

1 →  0

0

01

010

01001

01001010

0100101001001

1

2

3

5

8

13

density of 0’s  =  

Another construction of Fibonacci sequences



Most homogeneous configurations

Fibonacci sequences are most homogeneous

Forbidden distances between 1’s  = 1,4,9,12,17,22,25,30,… 

We also forbid   000

and construct non-frustrated Hamiltonian with Fibonacci sequences 

as only ground-state configurations 



In an anologous way we construct two-body 

interactions for any Sturmian system.

van Enter, Koivusalo, Miękisz, J. Stat. Phys. 2021 [15]

Unfortunately they are unstable with respect to 

arbitrarily small chemical potentials which favor

particles.

Głodkowski, Miękisz, preprint, 2024 [16]
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[6] J. Miȩkisz, Ultimate frustration in classical lattice-gas mod-

els, J. Stat. Phys. 90: 285-300 (1998).
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