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Thermodynamic formalism for
dynamical systems
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Orbits

Goal of dynamics : describe orbits for (X ,T ), X compact metric space,
T : X → X continuous.
Usually too difficult. Then describe only almost all trajectories. For that
purpose, need to select some special invariant measure = aim for
thermodynamic formalism.

Definition
(X ,T )= Dynamical System, A : X → R continuous called potential.

1 Pressure = P(A) := supµ T−inv
{

hµ(T ) +
∫

Adµ
}

,
2 Any measure realizing maximum = equilibrium state for A.

hµ(T )= Kolmogorov entropy.
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Theorem (Ruelle)
If (X ,T ) uniformly hyperbolic and A Hölder continuous, then there
exists a unique equilibrium state for A. Furthermore, P(β) = P(β.A),
β ∈ R is analytic.

my settings : subshift of finite type + A Lipschitz. Easy to check P(β) is
convex with asymptote at +∞:
Set µβ for unique equilibrium state for β.A.
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On the road to ergodic optimization

Here m(A) = max
µ T−inv

{∫
Adµ

}
.

Definition
An invariant measure is said to be A-maximizing if it realizes maximum.

h= maximal entropy among A-maximizing measures.

Theorem (Folklore)
Any accumulation for µβ is A-maximizing with entropy h.

Question
Is there convergence for µβ ? If yes why ? If not why ? How selects
different accumulation points.
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One example (Baraviera-L-Lopes)

Considering in Σ := {0,1,2}N and

A(x) =


−d(x ,0∞) if x ∈ [0]
−3d(x ,1∞) if x ∈ [1]
−α < 0 if x ∈ [2].

.

Theorem

Let ρ be the golden mean ρ :=
1 +

√
5

2
. Then

1 for α > 1, µβ converges to 1
2(δ0∞ + δ1∞) as β goes to +∞,

2 for α = 1, µβ converges to 1
1+ρ2 (ρ

2δ0∞ + δ1∞) as β goes to +∞,

3 for α < 1, µβ converges to δ0∞ as β goes to +∞.
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A good way to see ergodic
optimization
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The Aubry set

On one island = can walk without being wet. To go from 1 island to
another, need to go to the water = to pay.

Definition
Seeing A as a cost, Aubry set = some islands in X , invariant for T
where we can walk without paying.

Good tool for that = calibrated subaction.
Remind transfert operator gives all informations in thermodynamic
formalism:

L(g)(x) =
∑

y , T (y)=x

eβA(y)g(y).

eP(β)= unique single dominating eigenvalue, Hβ= eigenfunction, νβ=
eigenmeasure (for L∗), µβ = Hβ ⊗ νβ.
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Calibrated Subaction

eP(β)Hβ(x) =
∑

y

eβ.A(y)Hβ(y)

eβ
(

1
β
P(β)+ 1

β
logHβ(x)

)
=

∑
y

eβ(A(y)+ 1
β
logHβ(y))

1
β
log+β → +∞

m(A) + V (x) = max
y

{V (y) + A(y)}

Rewritten as A(y) + V (y)− V ◦ T (y)︸ ︷︷ ︸
=x

−m(A) ≤ 0 .

Up to coboundary + constant =no change for equilibrium states, A
always non positive. Aubry set ≈ bigger invariant set where A ≡ 0.
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First Result

Theorem (L-Mengue, in progress)
If the Aubry set is a subshift of finite type, then the pressure function
converges exponentially fast to the asymptote:

lim
β→+∞

1
β
log(P(β)− h) = γ < 0.

Furthermore, γ is identified as the unique eigenvalue for the matrix of
cost between the irreducible components for the Aubry set, within the
Max-Plus formalism

Max-plus : ⊕ = max, ⊗ = +.
lim 1

β log(eaβ + ecβ) = max{a, c}. + → max.
lim 1

β log(eaβ × ecβ) = a + c. × → +.
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Pertubations

Aubry set has zero measure for every µβ.

Question
Can we however see emerge the properties of the
convergence/accumulation point from the transfer operator at β < +∞,
as island emerging when tide is going out ?

Corollary
If we know that for some A µβ converge, can we get the same result if
we change a little bit A ?

L(g)(x) =
∑

y , T (y)=x

eβA(y)g(y).

Need control on Lipschitz norm for the potential: Blows up as β → +∞.
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Result 2

Only for X = {0,1}N= full 2 shift & A= special Walters potential. First
Theorem holds.

Theorem (L-Mengue, in progress)
If Bβ is a family of Lipschitz potentials going exponentially to 0 faster
than eγ.β (= speed for pressure), then,

lim
β→+∞

µβ.A+Bβ
= limβ→+∞µβ.A,

+ more properties.
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More precisely:
Set Ω=Aubry set = subshift of finite type.
Set S(x , y)= Mañé potential

S(x , y) = lim
ε→0

sup{Sn(A)(z), σn(z) = y , d(x , y) ≤ ε}.

Then,
1 Irreducible components for Ω as subshift of finite type coincide

with equivalence classes for

S(x , y) + S(y , x) = 0.

2 Set Ω = Ω1 ⊔ . . . ⊔ Ωk︸ ︷︷ ︸
entropy h

⊔Ωk+1 ⊔ . . . ⊔ Ωl︸ ︷︷ ︸
entropy<h

.

3 Set aij := supx∈Ωj
supy /∈Ωi , σ(y)∈Ωi

S(x , y).
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S(x , y) = lim
ε→0

sup{Sn(A)(z), σn(z) = y , d(x , y) ≤ ε}.

Then,
1 Irreducible components for Ω as subshift of finite type coincide

with equivalence classes for

S(x , y) + S(y , x) = 0.

2 Set Ω = Ω1 ⊔ . . . ⊔ Ωk︸ ︷︷ ︸
entropy h

⊔Ωk+1 ⊔ . . . ⊔ Ωl︸ ︷︷ ︸
entropy<h

.

3 Set aij := supx∈Ωj
supy /∈Ωi , σ(y)∈Ωi

S(x , y).

Some advances in the selection problem in ergodic optimization Renaud Leplaideur April 2, 2024 16 / 19



More precisely:
Set Ω=Aubry set = subshift of finite type.
Set S(x , y)= Mañé potential
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3 Set aij := supx∈Ωj
supy /∈Ωi , σ(y)∈Ωi

S(x , y).
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Then

If V = accumulation point for 1
β log(Hβ) = one selected subaction.

γ ⊗

V (Ω1)
...

V (Ωk )

 =

a11 a12 . . . a1k
...

...
...

...
ak1 ak2 . . . akk

⊗

V (Ω1)
...

V (Ωk )

 .

1 γ is uniquely determined by the “cycles” in the matrix.
2 But V⃗ is not necessarily unique.
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And next ?

Questions
1 Can we extend this when Ω not of finite type ?
2 Can we get convergence for 1

β logHβ to some special eigenvector
?

3 What is the role of components with smaller entropy ?
4 Can we detect/decide convergence in function of the phase

diagram that gives γ ?
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Thank You
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