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Expansiveness for Rd -actions

Let (X , d) be a compact metric space, with metric d .

Definition 1

An Rd -action T is called weakly expansive if there is an expansive
constant δ > 0 so that for any x , y ∈ X , if d(T tx ,T ty) < δ for all
t ∈ Rd , then y = T t0x for some ||t0|| < δ.

An Rd -action T is called strongly expansive if there is an expansive
constant δ > 0 so that for any x , y ∈ X , there is a
homeomorphism h = hx ,y : Rd → Rd with h(0) = 0 such that if
d(T tx ,T h(t)y) < δ for all t ∈ Rd , then y = T t0x for some
||t0|| < δ.
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Directional expansiveness for Rd -actions

For 1 ≤ e < d , an e-dimensional direction for T is a subspace
V ⊆ Rd . For t > 0 define V t :=


r∈V

Bt(r).

Definition 2

1. An Rd -action T is called weakly expansive in the direction V
if for all  > 0 there is an expansive constant δ > 0 and
expansive radius t > 0 such that if for some x , x ′ ∈ X ,
d(T tx ,T tx ′) < δ for all t ∈ V t , then x ′ = T t0x for some
t0 ∈ Rd with ||t0||∞ < .
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Definition 3

2. An Rd -action T is called strongly expansive in the direction V
if for all  > 0 there is an expansive constant δ > 0 and
expansive radius t > 0 so that for any x , x ′ ∈ X , there exists a
continuous homeomorphism h = hx ,x ′ : V → V with
h(0) = 0 such that if d(T tx ,T h(t)x ′) < δ for all t ∈ V t ,
then x ′ = T t0x for some t0 ∈ Rd with ||t0||∞ < .
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Lemma 4

Strong expansiveness in a direction V implies weak expansiveness
in a direction V .

Proposition 1

If an Rd -action T is weakly (or strongly) expansive in a direction
V , then it is weakly (or strongly) expansive in any direction W
with V ⊆ W. If particular, T is weakly (or strongly) expansive as
an Rd -action.
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Finite local complexity full tiling space

Fix d = 2.

Definition 5

Let p be a finite set of inequivalent tiles in R2. Assume there is
given finite set p2 of “allowed ” 2-tile patches by tiles from p.

Let Xp denote the set of all tilings by tiles from p, and such that
every 2-tile patch in x ∈ Xp is in p2.

Assuming Xp ∕= ∅, we call Xp finite local complexity (abbreviated
FLC) full tiling space on R2.
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Example 6

Figure: Unmarked rhombic tiles and a tiling.

Let p be the set of 20 tiles obtained by all rotations of these two
tiles by multiples of 2π/10. Let p2 be the “edge-to-edge ”
condition.

The corresponding FLC full tiling space Xp is clearly non-empty.
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R2-FLC tiling dynamical system

Definition 7

Let Xp be a FLC full tiling space on R2 with R2 translation action
T . An FLC tiling space X is a closed T -invariant subset X ⊆ Xp.
We call the translation action T on X a FLC tiling dynamical
system.

Theorem 8 (Frank-Sadun, 2012)

For T a FLC tiling dynamical system, weak expansiveness implies
strong expansiveness.

Theorem 9

Any R2-FLC tiling dynamical system T is strongly expansive.
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Directional expansiveness for R2-FLC tiling dynamical
systems

For t > 0 and x ∈ X define an infinite strip x [V t ] by

x [V t ] = {τ ∈ x : τ ∩ V t ∕= ∅}.

Proposition 2

Let (X ,T ) be an FLC tiling dynamical system. Then V is a weakly
expansive direction if and only if there is a t > 0 so that whenever
x , y ∈ X satisfy x [V t ] = y [V t ], then x = y.

Proposition 3

If X is an FLC tiling space on R2, then a direction V is weakly
expansive if and only if it is strongly expansive.
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Penrose tiling

This version is based on a prototile set p called arrowed rhomb
Penrose tiles.

Figure: Penrose tiles (72◦, 108◦ and 36◦, 144◦, respectively. We look at
rotation of these)

Xp is the corresponding the FLC full tiling space. The tilings
x ∈ Xp are called the arrowed rhomb Penrose tilings.
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Main result

Theorem 10

In the Penrose tiling dynamical systems (Xp,T ), there are exactly
5 non expansive directions. They are the directions perpendicular
to 5th roots of unity.
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Multigrid tiling

Multigrid

Let v0, v1, · · · , v4 be the 5th roots of unity, defined by

vj = [Re(e2πij/5), Im(e2πij/5)], j = 0, 1, · · · , 4 (1)

For 0 ≤ j < 5, let

ℓj(u) = {t ∈ R2 : 〈vj , t〉 = u} = {vj}⊥ + uvj ,

be a line in a direction j and let

Lj(u) =


k∈Z
ℓj(u + k).
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Multigrid tiling

Multigrid (Continued)

Now, take u = (u0, u1, · · · , u4) ∈ R5 and define the multigrid by

y(u) = L0(u0) ∪ L1(u1) ∪ · · · ∪ L4(u4).

We call these 5-grid tilings. The tiles have at most 5 edges and
parallel to some v⊥j .
Let

Y = {y(u) : u ∈ R5}

be the set of all such grid tilings.

In this case, there are infinitely many prototiles.
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5-grid tiling

Figure: y(u) = L0(u0) ∪ L1(u1) ∪ · · · ∪ L4(u4)
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Nonsingular and singular tilings

Recall y(u) is 5-grid tiling defined as before.

Definition 11

We call a 5-grid tiling y(u),u ∈ T5 nonsingular if no more than 2
grid lines cross at any point, and otherwise call it singular. We
denote the nonsingular vectors by T5

n.
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R2-action K on T5

Definition 12

Define a 5× 2 matrix V =





v0
v1
...
v4




with row vectors vj .

Define a R2-action K = {K t}t∈R2 on T5 by

K tu = u+ V t mod 1. (2)
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Penrose condition

Penrose condition

We define the Penrose condition for u ∈ T5 by

T5
0 = {u ∈ T5 : u0 + · · ·+ u4 = 0 mod 1}, (3)

with T5
0,n = T5

0 ∩ T5
n.

Later, we will see u ∈ T5
0 correspond to Penrose tilings.

Let Lt = K t|T5
0
.

Lemma 13 (Robinson (1996))

The R2-action Lt is minimal and uniquely ergodic.

T5
0
∼= T4 by making u3 = −(u0 + u1 + u2 + u4). L

t is a minimal
rotation.
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Duality

Definition 14

We say a tiling y∗ is the dual of a grid tiling y if there are 1:1
correspondences,

vertices of y ↔ faces of y∗

faces of y ↔ vertices of y∗

edges of y ↔ edges of y∗

We call the duality geometric if the edges of y are perpendicular to
the corresponding edges of y∗.

18 / 34



Dual to y(u)

Theorem 15 (de Bruijn, 1981)

If u ∈ T5
0,n then there is a unique geometric dual y∗(u) ∈ Xp with

all edges length 2
5 , that is a Penrose tiling in Xp.
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Dual to y(u)

Robinson (1996) showed that there is a unique translation
t(u) = 2

5V
Tu ∈ R2 so that x(u) = T t(u)y∗(u) satisfies

x(Ltu) = T tx(u).

Let Xn = {x(u) : u ∈ T5
0,n}. The map ϕ : Xn → T5

0,n satisfying
ϕ(x(u)) = u is continuous (in the tiling to topology).
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Type A

Let u ∈ T5
0\T5

0,n := T5
0,s call y(u) singular.

Definition 16

For u ∈ T5
0,s and assume all the multiple crossings in y(u) are

3-fold. There are two kinds. In the first kind, two lines cross with
angle 2π/5, bisected by the third line. In the second kind lines
cross with angle 4π/5.

All 3-fold crossings occur along a single grid line, called a spine.
We call y(u) Type A.
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Type B

Definition 17

If there is a 5-fold crossing in y(u) we call it Type B. Then there
are infinite sequences of 3-fold crossings along each of the lines
through the 5-fold crossing.
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Penrose tiling and its dual

Let X = X n. The mapping ϕ extends to X .

Theorem 18 (Robinson)

The mapping ϕ : X → T5
0 is an almost 1:1 factor mapping with

card(ϕ−1(u)) =






1 if u is nonsingular,
2 if u is Type A,
10 if u is Type B.

There are 2 ways to fill in a spine with Penrose tiles and 10 ways
to fill in the dual of a grid tiling within a 5-fold crossing. These are
obtained as the duals of y(u) for small perturbations of u ∈ T5

0,s .
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Type A and its dual

The two kinds of crossings correspond to the vertices in dual up to
its rotation.

Figure: This is generally called a worm
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3-fold crossings with small perturbations

Figure: Any perturbation of y(u) moves a spine above or below the origin.
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A big patch of 24 Penrose Wang tiles

The red tiles divides a Penrose tiling into patches, called “Penrose
Wang tile ”. There are 24 of them, and they cover any Penrose
tilings. These are described in Grunbaum and Shephard [3].
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Four examples of 24 Wang tiles and their duals
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Tensor product of Z2

Let {0, 1}⊗ {0, 1} := {0⊗ 0, 0⊗ 1, 1⊗ 0, 1⊗ 1}. For P ⊆ {0, 1}Z,
Q ⊆ {0, 1}Z closed and S-invariant, we define

P ⊗ Q = {p ⊗ q : p ∈ P , q ∈ Q} ⊆ ({0, 1}⊗ {0, 1})Z2
,

where

p ⊗ q =





...
p0 ⊗ q2

. . . p−1 ⊗ q1 p0 ⊗ q1 p1 ⊗ q1 . . .

. . . p−1 ⊗ q0 p0 ⊗ q0 p1 ⊗ q0 . . .
p0 ⊗ q−1

...





Call P ⊗ Q tensor product of P and Q.
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Sturmian sequences

Definition 19

Fix α ∈ [0, 1)/Q and let Rαx = x + α mod 1 be the irrational
rotation on T.
Define w = w(x) ∈ {0, 1}Z by

wn =


0 if Rn

αx ∈ [0, 1− α)

1 if Rn
αx ∈ [1− α, 1)

W = {w(x) : x ∈ [0, 1)} is a subshift W ⊆ {0, 1}Z called Sturmian
subshift.

Choose α =
√
5−1
2 . We look at w ⊗w.
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Sturmian sequences along the lines ℓ2 and ℓ4 through ℓ0
and 1

Figure: Sturmian sequences 0110 along the vertical row and Sturmian
sequences 0110 along the horizontal row
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Penrose 4-grid patches

Figure: Tensor products in Penrose 4-grid patches
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Dual of Penrose 5-grid patches

Lemma 20

Suppose x ∈ Xn. Let M be a sufficiently wide enough strip not in
the direction 0 or 1. Then x |M determines x.

Lemma 21

If x ∈ Xs and M is a sufficiently wide strip not in the directions
0, 1, 2, 3 or 4 then x |M determines x.

Lemma 22

For any strip M parallel to ℓj , j = 0, · · · , 4 (no matter how wide)
there exists x ∈ Xs so that x |M does not determine x.
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Thank you
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