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Expansiveness for R%-actions

Let (X, d) be a compact metric space, with metric d.

Definition 1

An R%action T is called weakly expansive if there is an expansive
constant § > 0 so that for any x,y € X, if d(Ttx, Tty) < § for all
t € RY, then y = Ttox for some ||to]| < 6.

An R9-action T is called strongly expansive if there is an expansive
constant § > 0 so that for any x,y € X, there is a
homeomorphism h = h,, : RY — R with h(0) = 0 such that if
d(Ttx, Th(®)y) < § for all t € RY, then y = T*tox for some

[lEol| < 6.



Directional expansiveness for R9-actions

For 1 < e < d, an e-dimensional direction for T is a subspace
V CRY. For t > 0 define Vi := |J By(r).
reVv

1. An R9%action T is called weakly expansive in the direction V
if for all € > 0 there is an expansive constant § > 0 and
expansive radius t > 0 such that if for some x, x" € X,
d(Ttx, Ttx") < 6 for all t € V*, then X' = T'x for some
to € R with ||to]|o < .
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2. An R%action T is called strongly expansive in the direction V
if for all € > 0 there is an expansive constant § > 0 and
expansive radius t > 0 so that for any x, x’ € X, there exists a
continuous homeomorphism h = h, . : V — V with
h(0) = 0 such that if d(Ttx, T"t)x') < § for all t € V7,
then x' = Ttox for some tg € RY with ||tg||o0 < .



Lemma 4

Strong expansiveness in a direction V' implies weak expansiveness
in a direction V.

Proposition 1

If an R¥-action T is weakly (or strongly) expansive in a direction
V, then it is weakly (or strongly) expansive in any direction W
with V. C W. If particular, T is weakly (or strongly) expansive as
an R9-action.



Finite local complexity full tiling space

Fix d = 2.
Definition 5

Let p be a finite set of inequivalent tiles in R%. Assume there is
given finite set p? of “allowed” 2-tile patches by tiles from p.

Let X, denote the set of all tilings by tiles from p, and such that
every 2-tile patch in x € X, is in p>.

Assuming X, # (), we call X, finite local complexity (abbreviated
FLC) full tiling space on R2.



Example 6

o

Figure: Unmarked rhombic tiles and a tiling.

Let p be the set of 20 tiles obtained by all rotations of these two
tiles by multiples of 277/10. Let p? be the “edge-to-edge”
condition.

The corresponding FLC full tiling space X, is clearly non-empty.



R2-FLC tiling dynamical system

Definition 7

Let X, be a FLC full tiling space on R? with R? translation action
T. An FLC tiling space X is a closed T-invariant subset X C X,.
We call the translation action T on X a FLC tiling dynamical
system.

Theorem 8 (Frank-Sadun, 2012)

For T a FLC tiling dynamical system, weak expansiveness implies
strong expansiveness.

Any R2-FLC tiling dynamical system T is strongly expansive.




Directional expansiveness for R?>-FLC tiling dynamical
systems

For t > 0 and x € X define an infinite strip x[V*] by

x[Vi]={rex: TNV #£0}.

Proposition 2

Let (X, T) be an FLC tiling dynamical system. Then V is a weakly
expansive direction if and only if there is a t > 0 so that whenever
x,y € X satisfy x[V'] = y[V?], then x = y.

Proposition 3

If X is an FLC tiling space on R?, then a direction V is weakly
expansive if and only if it is strongly expansive.



Penrose tiling

This version is based on a prototile set p called arrowed rhomb

Penrose tiles.

Figure: Penrose tiles (72°,108° and 36°,144°, respectively. We look at
rotation of these)

Xp is the corresponding the FLC full tiling space. The tilings
x € Xp are called the arrowed rhomb Penrose tilings.
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Main result

Theorem 10

In the Penrose tiling dynamical systems (X,, T), there are exactly
5 non expansive directions. They are the directions perpendicular
to 5t roots of unity.
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Multigrid tiling

Multigrid

Let vo, Vi1, ,vq be the 5th roots of unity, defined by

v; = [Re(e*™1/%), Im(e*™I/%)],j = 0,1, ,4 (1)
For 0 <j <5, let

Gi(u) = {t e R?: (vj,t) = u} = {v;}* + uv;,

be a line in a direction j and let

Liu) = | (u+ k).

kEZ
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Multigrid tiling

Multigrid (Continued)

Now, take u = (ug, u1, - - , us) € R® and define the multigrid by
y(u) = Lo(uo) U L1(u1) U--- U La(ua).

We call these 5-grid tilings. The tiles have at most 5 edges and

parallel to some vi-.

Let !
Y = {y(u) :u € R°}

be the set of all such grid tilings.

In this case, there are infinitely many prototiles.
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5-grid tiling

QPRI

Figure: y(u) LO(UO) U L1(U1) Uu---u L4(U4)
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Nonsingular and singular tilings

Recall y(u) is 5-grid tiling defined as before.

Definition 11

We call a 5-grid tiling y(u),u € T° nonsingular if no more than 2
grid lines cross at any point, and otherwise call it singular. We
denote the nonsingular vectors by T3.
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R2-action K on T®

Definition 12

Vo
. . Vi .
Define a 5 x 2 matrix V = | | | with row vectors v;.

\Z!

Define a R?-action K = {K"'}cp2 on T® by

K'u=u+ Vt mod 1. (2)
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Penrose condition

Penrose condition

We define the Penrose condition for u € T° by

TE={ueT:u+ +u=0 mod1}, (3)
with Tg,n = T3 N'T>.
Later, we will see u € T3 correspond to Penrose tilings.

Lemma 13 (Robinson (1996))

The R2-action Lt is minimal and uniquely ergodic.

T3 = T* by making uz = —(ug + u1 + ta + ug). L% is a minimal
rotation.
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Duality

Definition 14

We say a tiling y* is the dual of a grid tiling y if there are 1:1
correspondences,

vertices of y « faces of y*

faces of y <+ vertices of y*
edges of y <> edges of y*

We call the duality geometric if the edges of y are perpendicular to
the corresponding edges of y*.
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Dual to y(u)

Theorem 15 (de Bruijn, 1981)

If u € T3, then there is a unique geometric dual y*(u) € X, with
all edges length % that is a Penrose tiling in X,.
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Dual to y(u)

Robinson (1996) showed that there is a unique translation
t(u) = 2VTu € R? so that x(u) = TH"y*(u) satisfies
x(Ltu) = Ttx(u).

Let X, = {x(u) : u € T§ ,}. The map ¢ : X, — T3 , satisfying
©(x(u)) = u is continuous (in the tiling to topology).
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Type A

Letu € Tg\'ﬂ‘an = Tas call y(u) singular.

Definition 16

For u € T3, and assume all the multiple crossings in y(u) are
3-fold. There are two kinds. In the first kind, two lines cross with
angle 27t/5, bisected by the third line. In the second kind lines
cross with angle 4 /5.

All 3-fold crossings occur along a single grid line, called a spine.
We call y(u) Type A.

21/34



Type B

Definition 17

If there is a 5-fold crossing in y(u) we call it Type B. Then there
are infinite sequences of 3-fold crossings along each of the lines
through the 5-fold crossing.
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Penrose tiling and its dual

Let X = X,. The mapping ¢ extends to X.
Theorem 18 (Robinson)

The mapping ¢ : X — ’]I‘g is an almost 1:1 factor mapping with

1 if u is nonsingular,
card(p Y(u)) =< 2 ifuis Type A,
10 ifu is Type B.

There are 2 ways to fill in a spine with Penrose tiles and 10 ways
to fill in the dual of a grid tiling within a 5-fold crossing. These are
obtained as the duals of y(u) for small perturbations of u € Tg ..
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Type A and its dual

The two kinds of crossings correspond to the vertices in dual up to

=
>K

Figure: This is generally called a worm

|
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3-fold crossings with small perturbations

Figure: Any perturbation of y(u) moves a spine above or below the origin.
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. There are 24 of them, and they cover any Penrose

The red tiles divides a Penrose tiling into patches, called “Penrose
tilings. These are described in Grunbaum and Shephard [3].
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Four examples of 24 Wang tiles and their duals




Tensor product of 72

Let {0,1} ®{0,1} :={0®0,0®1,1®0,1®1}. For P C {0,1}%,
Q C{o, 1}Z closed and S-invariant, we define

PoQ={p2qg:peP.qgeQ}C({0,1}®{0,1})7,

where

Po & q2
p-1®qr po®q p1Oq
P-1®q pPo®qo P1Xqo

pPo ® q-1

p®q=

Call P® Q tensor product of P and Q.
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Sturmian sequences

Definition 19

Fix @ € [0,1)/Q and let Ryx = x + a mod 1 be the irrational
rotation on T.
Define w = w(x) € {0,1}Z by

0 fR%xe[0,1-a)
w, =
1 ifRxe[l—a,1)

W = {w(x) : x € [0,1)} is a subshift W C {0,1}# called Sturmian
subshift.

Choose o = @ We look at w @ w.
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Sturmian sequences along the lines ¢, and ¢4 through /g
and 1
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Figure: Sturmian sequences 0110 along the vertical row and Sturmian
sequences 0110 along the horizontal row
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Penrose 4-grid patches
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Figure: Tensor products in Penrose 4-grid patches
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Dual of Penrose 5-grid patches

Suppose x € X,,. Let M be a sufficiently wide enough strip not in
the direction 0 or 1. Then x|p determines x.

Lemma 21

If x € Xs and M is a sufficiently wide strip not in the directions
0,1,2,3 or 4 then x|y determines x.

Lemma 22

For any strip M parallel to ¢;, j =0,--- ,4 (no matter how wide)
there exists x € Xs so that x|y does not determine x.
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Thank you
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