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Gibbs Measures on Finite Spaces

- Q a finite set of states.
- E:Q — R* an energy function.
- B the inverse temperature.

Theorem (Variational Principle)
The distribution pg(w) o< exp (—BE(w)) is the only maximiser of u+— H(p) — Bu(E),
with H(p) := > — log, (u(w))p(w) the entropy.

We call pg a Gibbs measure.
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- Q a finite set of states.
- E:Q — R* an energy function.
- B the inverse temperature.

Theorem (Variational Principle)
The distribution pg(w) o< exp (—BE(w)) is the only maximiser of u+— H(p) — Bu(E),

with H(p) := > — log, (u(w))p(w) the entropy.

We call pg a Gibbs measure.

- At high temperatures, as 3 — 0, we converge to the uniform distribution ¢/(),

that maximises H.
- At low temperatures, as  — oo, we converge to the uniform distribution ¢/ (Q*),
that maximises H among measures of minimal energy, supported by Q* := arg min(E).
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Invariant Gibbs Measures on Lattice Models

- Q= A% the phase space, with A a finite alphabet.

- 79 A Q4 the shift action, so that o*(w), = wy_x forany x,y € Z9 and w € Q.

- M, (Q4) the set of invariant measures on Q4, such that o ¢* = u for any x € Z¢.
- ¢ : Q4 — RT a continuous potential, the contribution of 0 € Z? to the energy.
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Invariant Gibbs Measures on Lattice Models

- Q= A% the phase space, with A a finite alphabet.

7% A Q4 the shift action, so that o*(w), = wy_x forany x,y € Z9 and w € Q.
- M, (Q4) the set of invariant measures on Q4, such that o ¢* = u for any x € Z¢.
- ¢ : Q4 — RT a continuous potential, the contribution of 0 € Z? to the energy.

Definition (Pressure Function)

Define the pressure p,(58) := h(u) — Bu(y),
with h(p) := lim -5 H (upo,n—1¢) the entropy per site.

Let G, () := arg max,,c o, Pu(B) the set of Gibbs measures.

* ¢ has finite range if it is locally constant, if ¢(w) only depends on wy_, e
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Limit Behaviour for Ground States

- We call (up € G5(8))4s, a cooling trajectory of the model.

- Denote G, (00) := Accpoo Go(B) the set of ground states,
of accumulation points of all the cooling trajectories.

- G(o0) is a connected compact set (for the weak- topology).
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Limit Behaviour for Ground States

- We call (up € G5(8))4s, a cooling trajectory of the model.

- Denote G, (00) := Accpoo Go(B) the set of ground states,
of accumulation points of all the cooling trajectories.

- G(o0) is a connected compact set (for the weak- topology).

Assume that X := {w € Qu,VYx € Z9, p 0 o*(w) = 0} # 0.
Then G,(o0) € M,(X), and the ground states have maximal entropy h in My (X).

- Measures that maximise h in M, (X) are not necessarily in G,(c0).
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Tilings With Local Rules

_
- i

Figure 1: In this example, there is a unique way to globally extend the tiling.

Formally, the set F of forbidden patterns induces a set of admissible tilings Xz C Q4.
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Tilings With Local Rules

Figure 2: This example is locally but not globally admissible.

Formally, the set F of forbidden patterns induces a set of admissible tilings Xz C Q4.
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Joining Thermodynamics and Combinatorics

Lemma

Assume that Xz # 0, and let ¢ := 1 = covers o the induced finite-range potential.
Then G,(o0) C M, (Xx), and the ground states have maximal entropy h in My (Xx).

What can we ask about G, (c0)?
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Stability and Chaos

Definition (Stability)

A model is stable if all the cooling trajectories converge to the same limit.

Definition (Chaoticity)
A model is chaotic if there is no converging cooling trajectory.

Definition (Uniformity)

A model is uniform if all the cooling trajectories have the same accumulation set.
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Recap of Behaviours

Chaoticity: Stability:

VV7V(Mﬁ)7uB7L>V E'V,V(ﬂg),/,l,g—)l/

Figure 3: Inventory and comparison of model behaviours.
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Recap of Behaviours

Chaoticity: Uniformity: Stability:
V(up),|Acc(pp) = Go(o0)

VV7V(Mﬁ)7MB7L>V E'V,V(ug),/,l,g—)ll

Figure 3: Inventory and comparison of model behaviours.
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Recap of Behaviours

Chaoticity: Uniformity: Stability:

V(pp) | Ace () = Go(o0)

Vv,V (ug), s # v 00 + |Gol()| — 1 I, Y (1g), g — v

Figure 3: Inventory and comparison of model behaviours.
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The Infinite-Alphabet Case [ER07]

- Continuous spin alphabet A = R /277,
- Potential made of infinitely nested (anti)ferromagnetic wells:

A U

172

| -
1 L

0 T X

Figure 4: Interaction U( — 6') between neighbouring spins on the grid.
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General Idea for Chaoticity

d(Gs(8), 1) < 5 d(9s(8), ') < 5

Figure 5: Alternating between mutually exclusive adherence values on non-overlapping intervals.
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General Idea for Chaoticity

d(Gs(8), 1) < 5 d(9s(8), ') < 5

Figure 5: Alternating between mutually exclusive adherence values on non-overlapping intervals.

Thus Acc (up) intersects the disjoint neighbourhoods of both p and .

12/34



Thermodynamic Formal ) Overview ticity Results

Locally Admissible Typical Behaviours

[]—> —> —> —>

Figure 6: Each temperature range will correspond to a scale of locally admissible tilings.
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General Idea for Uniformity

We want (u,) and e, — 0 st

d(ga(ﬁ)vlm) <& d(ga(ﬁ)alB) <e3
—_——— —_————
—_——— N —

d (gU(IB)ﬂMZ) < €2 d(go—(ﬁ),/m) < EL

Figure 7: Contracting tube of measures with overlapping intervals.
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General Idea for Uniformity

We want (u,) and e, — 0 st

d(ga(ﬁ)vlm) <& d(ga(ﬁ)alB) <e3
—_——— —_————
—_——— N —

d (gU(IB)ﬂMZ) < €2 d(go—(ﬁ),/m) < EL

Figure 7: Contracting tube of measures with overlapping intervals.

Thus Acc (pg) = Go(00) = Acc (un).
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Realisation Result on the Limit Set [GST23]

Proposition (Obstruction)

In every uniform model with computable interactions,
the set of ground states G,(oc0) is compact, connected and M,-computable.

In the general non-uniform case, the computability bound becomes 5.

Theorem (Realisation)

Given a connected M,-computable compact set K of probability measures on {1},
there exists a 2D uniform model with zero-one finite-range interactions,
for which G,(c0) is computably and affinely homeomorphic to K.

In particular, for any non-singleton set K, the model is (uniformly) chaotic.
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Turing Machines



Thermodynamic Formalism 101 y Results Computability is Everywhere

Turing Machines

Formally, M is made of:
- internal states Q,
- an initial state go € Q,
- accepting states Q4 C Q,
- rejecting states Qg C Q,
- an input alphabet A,
- atape alphabet I > AL {#},

- a transition function
§:QxT—=QxT x{LR}

Figure 8: Real-life Turing machine
(Source: wikimedia.org)
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https://commons.wikimedia.org/wiki/File: Model_of_a_Turing_machine.jpg

Thermodyr Formal ) Overview of Chac Computabil

Tileset of Space-Time Diagrams

A Turing machine M = (Q, qo, Qa, Qg, A, T, d) can be simulated by a Wang tileset:

5(Q’ a) = (q,7b7 D)
D=1L D=R
a a a a b b a
L JJ ‘ % (géﬁ g
a a a a a a a
qgeQ g € Q\(QalQg) q e QalQr

Figure 9: Turing space-time diagram Wang tiles for each lettera € T.
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The Halting Problem

Can we algorithmically decide if the machine M halts on the input u?

Lemma (Diagonal Argument)

The halting problem is not decidable.

- Assume it is with a machine H, and use it to define D so that:

- if M halts on its own code u = (M) as the input, then D loops forever on (M),
- else, D stops once it has determined the other computation doesn’t end.

- We feed the code of the machine (D) to itself.

- If D halts on (D), then by construction it means that H says D doesn’t halt on (D),
and conversely [...], hence a paradox.
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Simulacra and Simulation



Canonical Robinson Tiling
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Figure 10: Hierarchical structure of the Robinson tiling. ;
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Canonical Robinson Tiling
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Simulating Tilesets

Figure 11: Alternating Red-Black structure,
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Simulating Tilesets
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Figure 11: Alternating Red-Black structure, with a sparse computation area.
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The Domino Problem

Given a set of forbidden patterns F, can we tile the space (i.e. Xz # 0)?

Lemma

By reduction from the halting problem, the domino problem is undecidable.

This will more broadly be true of most tiling problems,
and likewise for thermodynamic properties.
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Effectlve Simulation Results [Hoc09 DRS‘IO' AS13]

We say that Y C BZ" simulates X ¢ A% ifthereis 0 : B — A (that extends to Z¢) st.

o(Y) == {0(w'), W' € Y} = {wz"'*d, wex}.

Xz is effective if F (not necessarily finite) can be enumerated by a Turing machine.

For any 1D effective subshift X and any dimension d > 2,
there is a d-dimensional SFT Y that simulates X.
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De Facto Simulation of Probability Distributions [GST23]

Figure 12: Multi-scale structure that “realises” probability distributions.
24/34



Thermodynamic Formalism 101 es! Computability is Everywhere

De Facto Simulation of Probablllty Dlstrlbutlons [GST23]

- Red lines encode bits, synchronised between neighbouring squares in blue areas.
- Each outermost blue square runs the same deterministic Turing machine.

- As the input, the machine gets the scale of simulation n,
and a binary sequence b of length .

- The machine’s output must be the prefix of the encoded sequence.

- Each input b corresponds to 1 admissible tiling of the corresponding blue square,
thus it is uniformly distributed in the thermodynamic setting,
and we say the square “computes” the output distribution.

- Consequently, in the appropriate temperature range,

the Gibbs states “simulate” a measure u, on {il}]N,
that averages the distributions “computed” at all the scales lower than n.

2434



Therm Formal ) 0 ity R Computability

De Facto Simulation of Probability Distributions [GST23]

This simulation argument allows us to relate families of
translational-invariant 2D Gibbs measures to non-invariant 1D measures,
up to the aforementioned computable affine bijections.

Which sequences (un) can be simulated?
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Arithmetical Hierarchy

The countable set X c IN is M,-computable iff there is a computable ¢ such that:

X EX@V)H,El}/z,vy%-.-,QD(X,)M,...,yk)

Likewise, we define L\, problems starting with an 3 quantifier.
The family (X, M) gives an increasing hierarchy of undecidable complexity.

The halting problem is ¥;-complete (it's ¥1 and any ¥; problem reduces to it).
The domino problem is IMN;-complete.
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Computational Complexity of Uncountable Sets

Let (X, d) a metric space with a countable dense basis B.

Let Y C X be a closed set and NV (Y) := {(x,r) € B x Q™*,B(x,r)NY # 0}.
The set Y is said to be Mg-computable iff the countable set A/(Y) is.

Here, for invariant measures M, (2.4) with the weak-* topology,
we use the periodic measures dy, with w € A[[O’”‘”]d, as a basis B.
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Upper Bound on the Complexity of Unlform Accumulation Sets

Let ¢ @ computable potential, inducing a uniform model.

Proposition ([GST23, Proposition 3])

There is a sequence B — oo such that diam (G, (B¢)) — 0 and G, (o0) = Acc (G (Br)).

Without loss of generality, we can use rational parameters 8, € Q.

Theorem ([GST23, Theorem 17])
We have B(x,r) N G,(oo) # 0 iff:

Ve € ¢24_*7\j/30 € ¢24-*, 3[3 € ¢2;>B ’ 3)/ € lgu
G+(B) C B(y,e) and B(y,e) N B(x,r) # 0.

Consequently, we have a M, upper bound on the complexity of G, (o).
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Equivalent Characterisation of I, as Accumulation Sets

Proposition ([GST23, Proposition 5])

There is a characterisation of N,-computable sets through accumulation points:

Yern, & Y = Acc(xp) with (x,) € BY computable.
Y € N, and connected & Y = Acc(x,) with (x,) € BY computable,
and d (Xp, Xp4+1) — O.

28/34



Thermodyr rm. ) Overview of Chac Computability i

Complexity of Stability

For any computable sequence (x,) associated to a connected M, set Y ¢ M ({+1}I),
there is a related simulated sequence p, such that Y = Acc ().

Theorem ([GST23, Theorem 62])

The problem of chaoticity (with a computable ¢ for the input) is ¥3-complete.

29/34



Thermodynamic Formalism 101

Bibliography

[AS13] Nathalie Aubrun and Mathieu Sablik. Simulation of Effective Subshifts by
Two-Dimensional Subshifts of Finite Type. In: Acta Applicandae Mathematicae 126
(2013), pp. 35-63. 10.1007/510440-013-9808-5.

[Bar+22] Sebastian Barbieri, Rodrigo Bissacot, Gregorio Dalle Vedove and
Philippe Thieullen. Chaos in Bidimensional Models With Short-Range. 2022.
10.48550/arXiv.2208.10346

[Bré03] Julien Brémont. Gibbs Measures at Temperature Zero. |n: Nonlinearity 16.2 (2003),
pp. 419-426.10.1088/0951-7715/16/2/303.

[CH10]  Jean-René Chazottes and Michael Hochman. On the Zero-Temperature Limit of
Gibbs States. In: Communications in Mathematical Physics 2971 (2010), pp. 265-281.
10.1007/s00220-010-0997-8.

30/34


https://www.doi.org/10.1007/s10440-013-9808-5
https://www.doi.org/10.48550/arXiv.2208.10346
https://www.doi.org/10.1088/0951-7715/16/2/303
https://www.doi.org/10.1007/s00220-010-0997-8

Thermodynamic Formalism 101

Bibliography

[CS20]  Jean-René Chazottes and Mao Shinoda. On the Absence of Zero-Temperature
Limit of Equilibrium States for Finite-Range Interactions on the Lattice 7. 2020.
10.48550/arXiv.2010.08998.

[DRS10] Bruno Durand, Andrei Romashchenko and Alexander Shen. Effective Closed
Subshifts in 1D Can Be Implemented in 2D. In: Fields of Logic and Computation:
Essays Dedicated to Yuri Gurevich on the Occasion of His 70th Birthday. Springer, 2010,
pp. 208-226.10.1007/978-3-642-15025-8_12

[ERO7]  Aernout van Enter and Wioletta Ruszel. Chaotic Temperature Dependence at
Zero Temperature. In: Journal of Statistical Physics 127.3 (2007), pp. 567-573.
10.1007/510955-006-9260-2.

[GST23] Léo Gayral, Mathieu Sablik and Siamak Taati. Characterisation of the Set of
Ground States of Uniformly Chaotic Finite-Range Lattice Models. 2023.
10.48550/arXiv.2302.07326.

31/34


https://www.doi.org/10.48550/arXiv.2010.08998
https://www.doi.org/10.1007/978-3-642-15025-8_12
https://www.doi.org/10.1007/s10955-006-9260-2
https://www.doi.org/10.48550/arXiv.2302.07326

Thermodynamic Formalisrr

)1

Bibliography

[Hoc09]

[Lep05]

[NS03]

[Rob71]

Michael Hochman. On the Dynamics and Recursive Properties of
Multidimensional Symbolic Systems. In: Inventiones mathematicae 1761 (2009),
pp. 131-167. 10.1007/s00222-008-0161-7.

Renaud Leplaideur. A Dynamical Proof for the Convergence of Gibbs Measures
at Temperature Zero. In: Nonlinearity 18.6 (2005), pp. 2847-2880.
10.1088/0951-7715/18/6/023.

Charles Newman and Daniel Stein. Ordering and Broken Symmetry in
Short-Ranged Spin Glasses. In: Journal of Physics: Condensed Matter 15.32 (2003).
10.1088/0953-8984/15/32/202.

Raphael Robinson. Undecidability and Nonperiodicity for Tilings of the Plane.
In: Inventiones mathematicae 12 (1971), pp. 177-209. 10.1007/BF01418780.

32/34


https://www.doi.org/10.1007/s00222-008-0161-7
https://www.doi.org/10.1088/0951-7715/18/6/023
https://www.doi.org/10.1088/0953-8984/15/32/202
https://www.doi.org/10.1007/BF01418780

Bibliography

[Rog87] Hartley Rogers. Theory of Recursive Functions and Effective Computability. MIT
press, 1987.

[Soa87] Robert Soare. Recursively Enumerable Sets and Degrees. Springer, 1987.

[Tur3e]  Alan Turing. On Computable Numbers, With an Application to the
Entscheidungsproblem. In: Proceedings of the London Mathematical Society. Second
Series 42.3 (1936), pp. 230-265. 10.1112/plms/s2-42.1.230.

33/34


https://www.doi.org/10.1112/plms/s2-42.1.230

What's Next?

WIP:

- Non-robustness of the accumulation set to perturbations of the potential.

Open:

- Is robustness to perturbations of the (computable) potentials (a)typical?

- Can we realise M5 sets in the general (non-uniform) case?
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THE END OF
PRESENTATION

ONE MORE SLIDE:

Thank you.
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