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Gibbs Measures on Finite Spaces

• Ω a finite set of states.
• E : Ω→ R+ an energy function.
• β the inverse temperature.

Theorem (Variational Principle)
The distribution µβ(ω) ∝ exp (−βE(ω)) is the only maximiser of µ 7→ H(µ)− βµ(E),
with H(µ) :=

∑
− log2(µ(ω))µ(ω) the entropy.

We call µβ a Gibbs measure.

• At high temperatures, as β → 0, we converge to the uniform distribution U(Ω),
that maximises H.

• At low temperatures, as β →∞, we converge to the uniform distribution U (Ω∗),
that maximises H among measures of minimal energy, supported by Ω∗ := argmin(E).
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Invariant Gibbs Measures on Lattice Models

• ΩA := AZd the phase space, with A a finite alphabet.
• Zd σy ΩA the shift action, so that σx(ω)y = ωy−x for any x, y ∈ Zd and ω ∈ ΩA.
• Mσ (ΩA) the set of invariant measures on ΩA, such that µ ◦ σx = µ for any x ∈ Zd.
• ϕ : ΩA → R+ a continuous potential, the contribution of 0 ∈ Zd to the energy.

Definition (Pressure Function)
Define the pressure pµ(β) := h(µ)− βµ(ϕ),
with h(µ) := lim 1

ndH
(
µJ0,n−1Kd

)
the entropy per site.

Let Gσ(β) := argmaxµ∈Mσ
pµ(β) the set of Gibbs measures.

• ϕ has finite range if it is locally constant, if ϕ(ω) only depends on ωJ−r,rKd .
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Limit Behaviour for Ground States

• We call (µβ ∈ Gσ(β))β>0 a cooling trajectory of the model.
• Denote Gσ(∞) := Accβ→∞ Gσ(β) the set of ground states,
of accumulation points of all the cooling trajectories.

• Gσ(∞) is a connected compact set (for the weak-∗ topology).

Lemma
Assume that X :=

{
ω ∈ ΩA,∀x ∈ Zd, ϕ ◦ σx(ω) = 0

}
6= ∅.

Then Gσ(∞) ⊂Mσ(X), and the ground states have maximal entropy h inMσ(X).

• Measures that maximise h inMσ(X) are not necessarily in Gσ(∞).
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Tilings With Local Rules

Figure 1: In this example, there is a unique way to globally extend the tiling.

Formally, the set F of forbidden patterns induces a set of admissible tilings XF ⊂ ΩA.
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Tilings With Local Rules

Figure 2: This example is locally but not globally admissible.

Formally, the set F of forbidden patterns induces a set of admissible tilings XF ⊂ ΩA.
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Joining Thermodynamics and Combinatorics

Lemma
Assume that XF 6= ∅, and let ϕ := 1F covers 0 the induced finite-range potential.
Then Gσ(∞) ⊂Mσ (XF ), and the ground states have maximal entropy h inMσ (XF ).

What can we ask about Gσ(∞)?
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Timeline

Are there models with chaotic temperature dependence? [NS03]
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Stability and Chaos

Definition (Stability)
A model is stable if all the cooling trajectories converge to the same limit.

Definition (Chaoticity)
A model is chaotic if there is no converging cooling trajectory.

Definition (Uniformity)
A model is uniform if all the cooling trajectories have the same accumulation set.
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Recap of Behaviours

Chaoticity:

∀ν, ∀ (µβ) , µβ 6→ ν

Stability:

∃ν, ∀ (µβ) , µβ → ν

Figure 3: Inventory and comparison of model behaviours.
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The Infinite-Alphabet Case [ER07]

• Continuous spin alphabet A = R/2πZ,
• Potential made of infinitely nested (anti)ferromagnetic wells:

Figure 4: Interaction U(θ − θ′) between neighbouring spins on the grid.
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General Idea for Chaoticity

We have two measures µ 6= µ′ s.t. d (µ, µ′) ≥ r and:

β
︷ ︸︸ ︷d (Gσ(β), µ) ≤ r

3

︸ ︷︷ ︸
d (Gσ(β), µ′) ≤ r

3

︷ ︸︸ ︷d (Gσ(β), µ) ≤ r
3

︸ ︷︷ ︸
d (Gσ(β), µ′) ≤ r

3

Figure 5: Alternating between mutually exclusive adherence values on non-overlapping intervals.

Thus Acc (µβ) intersects the disjoint neighbourhoods of both µ and µ′.
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Locally Admissible Typical Behaviours

Figure 6: Each temperature range will correspond to a scale of locally admissible tilings.
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General Idea for Uniformity

We want (µn) and εn → 0 s.t.:

β
︷ ︸︸ ︷d (Gσ(β), µ1) ≤ ε1

︸ ︷︷ ︸
d (Gσ(β), µ2) ≤ ε2

︷ ︸︸ ︷d (Gσ(β), µ3) ≤ ε3

︸ ︷︷ ︸
d (Gσ(β), µ4) ≤ ε4

Figure 7: Contracting tube of measures with overlapping intervals.

Thus Acc (µβ) = Gσ(∞) = Acc (µn).
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Realisation Result on the Limit Set [GST23]

Proposition (Obstruction)
In every uniform model with computable interactions,
the set of ground states Gσ(∞) is compact, connected and Π2-computable.

In the general non-uniform case, the computability bound becomes Π3.

Theorem (Realisation)
Given a connected Π2-computable compact set K of probability measures on {±1}N,
there exists a 2D uniform model with zero-one finite-range interactions,
for which Gσ(∞) is computably and affinely homeomorphic to K.

In particular, for any non-singleton set K , the model is (uniformly) chaotic.
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Timeline
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Turing Machines

Turing machines are a model equivalent to real-life computers and algorithms.

Figure 8: Real-life Turing machine
(Source: wikimedia.org)

Formally, M is made of:
• internal states Q,
• an initial state q0 ∈ Q,
• accepting states QA ⊂ Q,
• rejecting states QR ⊂ Q,
• an input alphabet A,
• a tape alphabet Γ ⊃ A t {#},
• a transition function
δ : Q× Γ→ Q× Γ× {L,R}.
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Tileset of Space-Time Diagrams

A Turing machine M = (Q,q0,QA,QR,A, Γ, δ) can be simulated by a Wang tileset:

a

a

a

a

q

a

a

q

q ∈ Q
a

a

q0

a

b

qq
′

a

b

qq
′

δ(q,a) = (q′,b,D)
D = L D = R

q ∈ Q\ (QA t QR)
a

a

q

q ∈ QA t QR

Figure 9: Turing space-time diagram Wang tiles for each letter a ∈ Γ.
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The Halting Problem

Can we algorithmically decide if the machine M halts on the input u?

Lemma (Diagonal Argument)
The halting problem is not decidable.

• Assume it is with a machine H, and use it to define D so that:
• if M halts on its own code u = 〈M〉 as the input, then D loops forever on 〈M〉,
• else, D stops once it has determined the other computation doesn’t end.

• We feed the code of the machine 〈D〉 to itself.
• If D halts on 〈D〉, then by construction it means that H says D doesn’t halt on 〈D〉,
and conversely [...], hence a paradox.
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Canonical Robinson Tiling

Figure 10: Hierarchical structure of the Robinson tiling.
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Simulating Tilesets

Figure 11: Alternating Red-Black structure,

with a sparse computation area.
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The Domino Problem

Given a set of forbidden patterns F , can we tile the space (i.e. XF 6= ∅)?

Lemma
By reduction from the halting problem, the domino problem is undecidable.

This will more broadly be true of most tiling problems,
and likewise for thermodynamic properties.
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Effective Simulation Results [Hoc09; DRS10; AS13]

We say that Y ⊂ BZd
′

simulates X ⊂ AZd if there is θ : B → A (that extends to Zd) s.t.:

θ(Y) := {θ(ω′), ω′ ∈ Y} =
{
ωZ

d′−d
, ω ∈ X

}
.

XF is effective if F (not necessarily finite) can be enumerated by a Turing machine.

Theorem
For any 1D effective subshift X and any dimension d ≥ 2,
there is a d-dimensional SFT Y that simulates X.
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De Facto Simulation of Probability Distributions [GST23]

Figure 12: Multi-scale structure that “realises” probability distributions.
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De Facto Simulation of Probability Distributions [GST23]

• Red lines encode bits, synchronised between neighbouring squares in blue areas.
• Each outermost blue square runs the same deterministic Turing machine.
• As the input, the machine gets the scale of simulation n,
and a binary sequence b of length ln.

• The machine’s output must be the prefix of the encoded sequence.
• Each input b corresponds to 1 admissible tiling of the corresponding blue square,
thus it is uniformly distributed in the thermodynamic setting,
and we say the square “computes” the output distribution.

• Consequently, in the appropriate temperature range,
the Gibbs states “simulate” a measure µn on {±1}N,
that averages the distributions “computed” at all the scales lower than n.

24/34



Thermodynamic Formalism 101 Overview of Chaoticity Results Computability is Everywhere

De Facto Simulation of Probability Distributions [GST23]

This simulation argument allows us to relate families of
translational-invariant 2D Gibbs measures to non-invariant 1D measures,
up to the aforementioned computable affine bijections.

Which sequences (µn) can be simulated?

24/34
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Arithmetical Hierarchy

Definition
The countable set X ⊂ N is Πk-computable iff there is a computable ϕ such that:

x ∈ X ⇔ ∀y1,∃y2,∀y3, . . . , ϕ (x, y1, . . . , yk)

Likewise, we define Σk problems starting with an ∃ quantifier.
The family (Σk,Πk) gives an increasing hierarchy of undecidable complexity.

The halting problem is Σ1-complete (it’s Σ1 and any Σ1 problem reduces to it).
The domino problem is Π1-complete.

25/34



Thermodynamic Formalism 101 Overview of Chaoticity Results Computability is Everywhere

Computational Complexity of Uncountable Sets

Let (X,d) a metric space with a countable dense basis B.

Definition
Let Y ⊂ X be a closed set and N (Y) := {(x, r) ∈ B ×Q+∗,B(x, r) ∩ Y 6= ∅}.

The set Y is said to be Πk-computable iff the countable set N (Y) is.

Here, for invariant measuresMσ (ΩA) with the weak-* topology,
we use the periodic measures δ̂w , with w ∈ AJ0,n−1Kd , as a basis B.
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Upper Bound on the Complexity of Uniform Accumulation Sets

Let ϕ a computable potential, inducing a uniform model.

Proposition ([GST23, Proposition 3])
There is a sequence βk →∞ such that diam (Gσ (βk))→ 0 and Gσ(∞) = Acc (Gσ (βk)).

Without loss of generality, we can use rational parameters βk ∈ Q.

Theorem ([GST23, Theorem 17])
We have B(x, r) ∩ Gσ(∞) 6= ∅ iff:

∀ε ∈ Q+∗,∀β0 ∈ Q+∗, ∃β ∈ Q+∗
>β0

,∃y ∈ B,
Gσ(β) ⊂ B(y, ε) and B(y, ε) ∩ B(x, r) 6= ∅.

Consequently, we have a Π2 upper bound on the complexity of Gσ(∞).
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Equivalent Characterisation of Π2 as Accumulation Sets

Proposition ([GST23, Proposition 5])
There is a characterisation of Π2-computable sets through accumulation points:

Y ∈ Π2 ⇔ Y = Acc (xn) with (xn) ∈ BN computable.
Y ∈ Π2 and connected ⇔ Y = Acc (xn) with (xn) ∈ BN computable,

and d (xn, xn+1)→ 0.
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Complexity of Stability

Proposition
For any computable sequence (xn) associated to a connected Π2 set Y ⊂M

(
{±1}N

)
,

there is a related simulated sequence µn such that Y = Acc (µn).

Theorem ([GST23, Theorem 62])
The problem of chaoticity (with a computable ϕ for the input) is Σ3-complete.
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What’s Next?

WIP:

• Non-robustness of the accumulation set to perturbations of the potential.

Open:

• Is robustness to perturbations of the (computable) potentials (a)typical?
• Can we realise Π3 sets in the general (non-uniform) case?
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Thank you.
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