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I
Praving (heerems by pattemn fesegiiiion 00

“In connection with the Vx dy Vz case,
an amusing combinatorial problem is
suggested in Section 4.1."

— Hao Wang.
Proving theorems by pattern recognition Il.
Bell Systems Technical Journal, XL(1), 1961.
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Weng (iflzs

Wang tile: Tiling of a square:
Tileset:

EEN A
X i
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INNS——.
Reriodicityling2b)]
A 2D tiling is weakly periodic A 2D tiling is strongly periodic
if it has one direction of periodicity. if it has two directions of periodicity.
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\Wanggs¥algorithm
[ Definiton

Definition
QO n«1

The Domino problem is the following:

INPUT: a tileset T @ Try all tilings of the n x n square

' R _ _
ORI (o2 (P ENS Sl Q |If there is a repeatable tiled square

o Return true

: . : . e - Q If there is no tiled square
Wang's algorithm finds periodic tilings.
o Return false

O Else
: . . e n<n+1
Wang's algorithm is correct.
o Goto?2
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R
Blot}twisH

Theorem (Berger, 1966)

The Domino problem is undecidable.

Corollary

Wang's algorithm doesn’t stop on some inputs.

Corollary

There exist aperiodic tilesets.

(Tilesets with at least one tiling, but only aperiodic tilings.)
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oo lomz Bt of epertodie tlessis
Tilings: Methods:
o Berger, 1964 o Self-similarity
o Knuth, 1968 o Cut-and-project
e Robinson, 1971 o Computation on reals

e Penrose, 1974

e Ammann, 1977

e Kari, 1996

o Kari-Culik, 1996

e Jeandel-Rao, 2015

o Labbé, 2018, 2024 10/44




[
Robinsongtiles!

Tiles:

+ Rotations

Rules (can be encoded with colors):
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EEEEE—————————————
Rebinsen Hhings

Theorem (Robinson, 1971)

Robinson tiles do tile the plane, and all tilings are fixed-points of the substitution.

Any Robinson tiling is aperiodic.

@ Any periodicity vector would send each red square to another
@ There are arbitrarily large squares
@ The periodicity vector would have to be infinite

13/44

Guilhem Gamard Wang tiles, Kari tiles, and computation in tilings



HEEEEE——————————
IAnotherfaperiodictileset]

1 1 0 1
-1 -1 -1 0 0 -1 0 0
2 1 1 2
2 2 2 1 1 1
=1 0 0 1 1 2 2 1 1 0 0 =1
3 3 3 3 3 3 3 3 3 3 3 3
1 1 1 1 1 1
2 2 1 1
1 =1 2 0 =1 1 0 2
3 3 3 3 3 3 3 3
2 2 0 0
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Computing on averages
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Let w=...w_ow_q1WoWwiws ... be a biinfinite word.

Definition

The average of w is the following limit:

W_p,+---+WwWo+- - +wj

avg(w) = lim_ 2n+ 1
if it exists.
avg(...010101010101...)=1/2

avg(...722722722722722722...) = 11/3
avg(...0110000 11111111 0000000000000000 ...) = not well-defined
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Uine encedings

/

601 001001O0O01O0O0T1TO0°71

We can encode a line as its (—, /)-approximation on the unit grid.

If the line has slope «, the alphabet is {|a], [a]}. 18/44
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N
Line cncedings (eve averags

The average of a line encoding exists and equals the slope of the line.

Proof ideas

If w encodes the line y = ax + (3, then:
w;=|[(i+1)a+ 8] —|ia+ 8]
This yields a telescopic sum:

+n
> wi=[(n+Da+p]—|—(n+a+4].

i=—n

Now use r —1 < |r| < r to bound the average above and below by a.

Line encodings have many amazing properties! But that's out of scope for this talk. 19/44

Guilhem Gamard Wang tiles, Kari tiles, and computation in tilings



1,1 1,0

Definition Q O
2,2

. . )
A tr'ansducer T is a digraph where each 2, OC — :) 2,1
arc is labeled with a couple of symbols. 2,2
Vertices are called states and arcs transitions.

0,0 0,1

If u and w are words, we say that
T accepts output w on input u iff

..,0201020102°0...
- (u_1,w_1) (uo, wo) (u1,wr) ... (@O ~0D~0)~0)~0) D)~ DD D DDD)
,00010210111...

is a biinfinite path in T.
20/44

One input may have several possible outputs!
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T2/3 —

Ta3 =

21/44

Guilhem Gamard Wang tiles, Kari tiles, and computation in tilings



Examplesfof@ipiruns

1,1
1.2( ’4’* 1,2
0,1

...1 1101 11011110T1T1...
.21 212121221212 2.,
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Tema—

11 11 11

.21 212121212121 2..
.1 1111111111111 T1...
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transitions

ozmultiplicative

Let « € R and T be a transducer.

(u, w)

1,1
Let p —— g denote a transition. If: 19 @—’,®:> 19
0.1

p+aoau=w-+gqg

then it is an a-multiplicative transition.

Theorem

Assume all transitions of T are a-multiplicative.

If T accepts w on input u and avg(u) = x, then avg(w) = ax.

24/44
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BN
multiplicativejtransducersfcomputeJonfaverages
(

Let p U—W)> g denote a transition. If p+ au = w + g then it is a-multiplicative.

(%

Theorem

If T (a-multiplicative) accepts w on input u and avg(u) = x, then avg(w) = ax.

(Un,Wn)

Let pp —— @, be the nt" transition of the path. We have:

+n +n
Zpi+aui: Zwi+qi Wop - Wo Wi s W
i=—n i=—n (= @ @ @ 4.
+n +n U_pn o u; Uiy
d oui—wi=Y g-p
i=—n i=—n
... but gi = pj+1! (Calculation on the blackboard: replace g; and divide by 2n+ 1.) 25 /44
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Propertis of T T2P and Ty

Let £(a, B) denote the line encoding with slope « and offset 3.

Claims about T

All transitions are 2-multiplicative. L ‘Q e. 12

Accepts L(2a, 8) on L(a, B) for all o € [3,1].

Claims about T3

All transitions are (2/3)-multiplicative.
Accepts L(3a, 8) on L(a,3) forall a € [1, 3

1

Claims about 72/3

;

All transitions are (2/3)-multiplicative.
Accepts L(3a, 8) on L(a, ) for all a € [2,2]. e
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Kari’s tileset
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ilransducersito}tilesets]

2,1 2
0 1 1 0
=578y (G (») — D
I1
1
2.1 2 1
D=0 ~ 15 D
3 3 3 3
L1
1 1
1 2 1 2 1 2 1 1 2 1 2 1
1 0
3 3
1 1 1 1 1 1 1 1 1 1 1 1
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Multiplicative}tiles]

ptoau=q+w

Ul U9 Uus Unp—1 Unp,
I~ ] L ] .~
hd 24 g & ZENZZIZEs
"/ b b/ V" b
w1 w2 w3 Wy —1 Wn,

p1+ozZu, = q,,+ZW, + aavg(u;) = avg(w;) +
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ljheldynamicalfsystem)

Recall that: T, is 2-multiplicative and accepts inputs over {0,1}
T2/3 is (2/3)-multiplicative and accepts inputs over {1,2}.

Claim

Suppose we have a tiling where the n'" line has an existing average x,. Then:

2Xp if x, <1,
Xp+1 = f(Xn) = .
2x,/3  if x, > 1.
Observe that (x,) is an aperiodic sequence (otherwise 257" = 3% for some k. /).

In a periodic tiling, every line has an average.

Lemma (Kari, 1996)

There is no periodic tiling of the plane.
32/44
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BN
JAt]leastfoneltiling;

Recall that: T, accepts £(2a, 3) on L(a, 3) for all o € [%,1]
T2/3 accepts L(3a, 8) on L(a, B) for all a € [1,2].

Lemma (Kari, 1996)

There is at least one periodic tiling of the plane (with line encodings).

Theorem (Kari, 1996)

There is an aperiodic tileset of 14 tiles.
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N
Uine averagss alvas adst

We have tilings but only aperiodic tilings.

Nothing guarantees that line averages exist!
We could have “emergent behavior” — but that behavior has to be aperiodic.

Proposition (Durand, I, Grandjean, 2014)

In any tiling, the line averages exist.

Lemma

The dynamical system f has dense orbits.

Up to a change of variable, the dynamical system reduces to:

log(2)

Y iog(2) - log(2/3)

mod 1,

which has dense orbits.
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Uine averagss alvas adst

Lemma

The dynamical system f has dense orbits.

Proposition (Durand, I, Grandjean, 2014)

In any tiling, the line averages exist.

@ Suppose the line 0 has no average.
@ We have large blocks of average p and large blocks of average p’ < p.
@ Because the orbits of f are dense, we have f"(p') < 1 < f"(p) for some n.
@ The line n is both over alphabet {0,1} and {1,2}, which is impossible.
]
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EEEEEEEEEEE—————————
Facter complzdy

Fix a tileset T.

Definition

The complexity Pr(n) is the number of distinct n x n-blocks that appear in T-tilings.

The growth of P7 encodes the “chaos level” of T-tilings.

Definition
The topological entropy hr is the following limit (that always exists):

lim log, F;T(”)
n—oo n

Entropy = how many bits of information in each cell of a T-tiling?
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Tepalegie=]] offsubstitutiveltilesets

If T is a substitutive tileset, then h+ = 0.

Pr(n) < Pr(n/k) + k*
40/44
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Interchangeable]pairs)

If K is Kari's tileset, then hyx > 0.

1 1 1 1
. . . . - -1 0 -1 0
An interchangeable pair is a pair of distinct
blocks with the same colors on the borders. . . . .
3 3 3 3
1 1 1 1

The above interchangeable pair appears “often” in any tiling.

This comes from the denseness of f. 41/44
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.
Reeap and thenl yew

@ Domino problem undecidable = aperiodic tilesets exist

@ Substitutive tilesets (e.g. Robinson) are aperiodic

Averages and line encodings; T> and T,,3 multiply averages

f : x> 2x or 2x/3 such that f(x) € [2,2] is aperiodic + has dense orbits

Kari's tileset is aperiodic because f is, and has tilings by line encodings

Line averages always exist because f has dense orbits

Interchangeable pairs occur often = doubly-exponentially many blocks of size n x n

Thank you for your attention!
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