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Proving theorems by pattern recognition IIProving theorems by pattern recognition IIProving theorems by pattern recognition IIProving theorems by pattern recognition IIProving theorems by pattern recognition IIProving theorems by pattern recognition IIProving theorems by pattern recognition IIProving theorems by pattern recognition IIProving theorems by pattern recognition IIProving theorems by pattern recognition IIProving theorems by pattern recognition IIProving theorems by pattern recognition IIProving theorems by pattern recognition II

“In connection with the ∀x ∃y ∀z case,
an amusing combinatorial problem is
suggested in Section 4.1.”

— Hao Wang.
Proving theorems by pattern recognition II.
Bell Systems Technical Journal, XL(1), 1961.
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Wang tilesWang tilesWang tilesWang tilesWang tilesWang tilesWang tilesWang tilesWang tilesWang tilesWang tilesWang tilesWang tiles

Wang tile:

Tileset:

Tiling of a square:
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Periodicity in 2DPeriodicity in 2DPeriodicity in 2DPeriodicity in 2DPeriodicity in 2DPeriodicity in 2DPeriodicity in 2DPeriodicity in 2DPeriodicity in 2DPeriodicity in 2DPeriodicity in 2DPeriodicity in 2DPeriodicity in 2D
Definition

A 2D tiling is weakly periodic
if it has one direction of periodicity.

Definition

A 2D tiling is strongly periodic
if it has two directions of periodicity.
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Wang’s algorithmWang’s algorithmWang’s algorithmWang’s algorithmWang’s algorithmWang’s algorithmWang’s algorithmWang’s algorithmWang’s algorithmWang’s algorithmWang’s algorithmWang’s algorithmWang’s algorithm

Definition

The Domino problem is the following:

Input: a tileset T

Output: does T have tiling?

Remark

Wang’s algorithm finds periodic tilings.

Conjecture (1961)

Wang’s algorithm is correct.

Algorithm (Wang, 1961)

1 n← 1

2 Try all tilings of the n × n square

3 If there is a repeatable tiled square

Return true

4 If there is no tiled square

Return false

5 Else

n← n + 1

Go to 2
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Plot twistPlot twistPlot twistPlot twistPlot twistPlot twistPlot twistPlot twistPlot twistPlot twistPlot twistPlot twistPlot twist

Theorem (Berger, 1966)

The Domino problem is undecidable.

Corollary

Wang’s algorithm doesn’t stop on some inputs.

Corollary

There exist aperiodic tilesets.

(Tilesets with at least one tiling, but only aperiodic tilings.)
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The long list of aperiodic tilesetsThe long list of aperiodic tilesetsThe long list of aperiodic tilesetsThe long list of aperiodic tilesetsThe long list of aperiodic tilesetsThe long list of aperiodic tilesetsThe long list of aperiodic tilesetsThe long list of aperiodic tilesetsThe long list of aperiodic tilesetsThe long list of aperiodic tilesetsThe long list of aperiodic tilesetsThe long list of aperiodic tilesetsThe long list of aperiodic tilesets

Tilings:

Berger, 1964

Knuth, 1968

Robinson, 1971

Penrose, 1974

Ammann, 1977

Kari, 1996

Kari-Culik, 1996

Jeandel-Rao, 2015

Labbé, 2018, 2024

Methods:

Self-similarity

Cut-and-project

Computation on reals
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Robinson tilesRobinson tilesRobinson tilesRobinson tilesRobinson tilesRobinson tilesRobinson tilesRobinson tilesRobinson tilesRobinson tilesRobinson tilesRobinson tilesRobinson tiles

Tiles:

+ Rotations

Rules (can be encoded with colors):
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Robinson tilingsRobinson tilingsRobinson tilingsRobinson tilingsRobinson tilingsRobinson tilingsRobinson tilingsRobinson tilingsRobinson tilingsRobinson tilingsRobinson tilingsRobinson tilingsRobinson tilings

Theorem (Robinson, 1971)

Robinson tiles do tile the plane, and all tilings are fixed-points of the substitution.

Claim

Any Robinson tiling is aperiodic.

Any periodicity vector would send each red square to another

There are arbitrarily large squares

The periodicity vector would have to be infinite
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Another aperiodic tilesetAnother aperiodic tilesetAnother aperiodic tilesetAnother aperiodic tilesetAnother aperiodic tilesetAnother aperiodic tilesetAnother aperiodic tilesetAnother aperiodic tilesetAnother aperiodic tilesetAnother aperiodic tilesetAnother aperiodic tilesetAnother aperiodic tilesetAnother aperiodic tileset
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Computing on averages
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AveragesAveragesAveragesAveragesAveragesAveragesAveragesAveragesAveragesAveragesAveragesAveragesAverages

Let w = . . .w−2w−1w0w1w2 . . . be a biinfinite word.

Definition

The average of w is the following limit:

avg(w) = lim
n→∞

w−n + · · ·+w0 + · · ·+wn

2n + 1

if it exists.

avg(. . . 01 01 01 01 01 01 . . . ) = 1/2

avg(. . . 722 722 722 722 722 722 . . . ) = 11/3

avg(. . . 0 11 0000 11111111 0000000000000000 . . . ) = not well-defined
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Line encodingsLine encodingsLine encodingsLine encodingsLine encodingsLine encodingsLine encodingsLine encodingsLine encodingsLine encodingsLine encodingsLine encodingsLine encodings

10 ...

...

...

... 0 0 0 01 1 0 0 1 0 0 1 10

We can encode a line as its (−, /)-approximation on the unit grid.

If the line has slope α, the alphabet is {⌊α⌋, ⌈α⌉}.
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Line encodings have averagesLine encodings have averagesLine encodings have averagesLine encodings have averagesLine encodings have averagesLine encodings have averagesLine encodings have averagesLine encodings have averagesLine encodings have averagesLine encodings have averagesLine encodings have averagesLine encodings have averagesLine encodings have averages

Claim

The average of a line encoding exists and equals the slope of the line.

Proof ideas

If w encodes the line y = αx + β, then:

wi = ⌊(i + 1)α+ β⌋ − ⌊iα+ β⌋.

This yields a telescopic sum:
+n∑

i=−n

wi = ⌊(n + 1)α+ β⌋ − ⌊−(n + 1)α+ β⌋.

Now use r − 1 ≤ ⌊r⌋ ≤ r to bound the average above and below by α.

Line encodings have many amazing properties! But that’s out of scope for this talk.
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TransducersTransducersTransducersTransducersTransducersTransducersTransducersTransducersTransducersTransducersTransducersTransducersTransducers

Definition

A transducer T is a digraph where each
arc is labeled with a couple of symbols.

Vertices are called states and arcs transitions.

0 1

2, 2

2, 2

1, 0

0, 1

1, 1

0, 0

2, 0 2, 1

If u and w are words, we say that
T accepts output w on input u iff

. . . (u−1,w−1) (u0,w0) (u1,w1) . . .

is a biinfinite path in T .

One input may have several possible outputs!

0 2 0 1 0 2 0 1 0 2 0

0 0 0 1 0 2 1 0 1 1 1
0 0 0 0 0 0 1 1 1 1 1 1

. . .

. . . . . .

. . .
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T2 and T 2/3 and T2/3T2 and T 2/3 and T2/3T2 and T 2/3 and T2/3T2 and T 2/3 and T2/3T2 and T 2/3 and T2/3T2 and T 2/3 and T2/3T2 and T 2/3 and T2/3T2 and T 2/3 and T2/3T2 and T 2/3 and T2/3T2 and T 2/3 and T2/3T2 and T 2/3 and T2/3T2 and T 2/3 and T2/3T2 and T 2/3 and T2/3
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1, 0 1, 0
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Examples of T2-runsExamples of T2-runsExamples of T2-runsExamples of T2-runsExamples of T2-runsExamples of T2-runsExamples of T2-runsExamples of T2-runsExamples of T2-runsExamples of T2-runsExamples of T2-runsExamples of T2-runsExamples of T2-runs
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1. . .

. . . . . .

. . .1 1 0 1 1 1 0 1 1 1 1 0 1 1

2 1 2 1 22 1 1 2 2 1 2 1 2 2
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Examples of T 2/3-runsExamples of T 2/3-runsExamples of T 2/3-runsExamples of T 2/3-runsExamples of T 2/3-runsExamples of T 2/3-runsExamples of T 2/3-runsExamples of T 2/3-runsExamples of T 2/3-runsExamples of T 2/3-runsExamples of T 2/3-runsExamples of T 2/3-runsExamples of T 2/3-runs
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α-multiplicative transitionsα-multiplicative transitionsα-multiplicative transitionsα-multiplicative transitionsα-multiplicative transitionsα-multiplicative transitionsα-multiplicative transitionsα-multiplicative transitionsα-multiplicative transitionsα-multiplicative transitionsα-multiplicative transitionsα-multiplicative transitionsα-multiplicative transitions

Let α ∈ R and T be a transducer.

Definition

Let p
(u,w)−−−→ q denote a transition. If:

p + αu = w + q

then it is an α-multiplicative transition.

−1 0

1, 1

0, 1
1, 2 1, 2

Theorem

Assume all transitions of T are α-multiplicative.

If T accepts w on input u and avg(u) = x , then avg(w) = αx .
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α-multiplicative transducers compute on averagesα-multiplicative transducers compute on averagesα-multiplicative transducers compute on averagesα-multiplicative transducers compute on averagesα-multiplicative transducers compute on averagesα-multiplicative transducers compute on averagesα-multiplicative transducers compute on averagesα-multiplicative transducers compute on averagesα-multiplicative transducers compute on averagesα-multiplicative transducers compute on averagesα-multiplicative transducers compute on averagesα-multiplicative transducers compute on averagesα-multiplicative transducers compute on averages

Let p
(u,w)−−−→ q denote a transition. If p + αu = w + q then it is α-multiplicative.

Theorem

If T (α-multiplicative) accepts w on input u and avg(u) = x , then avg(w) = αx .

Let pn
(un,wn)−−−−→ qn be the nth transition of the path. We have:

+n∑
i=−n

pi + αui =
+n∑

i=−n

wi + qi

+n∑
i=−n

αui −wi =
+n∑

i=−n

qi − pi

w−n w+nw0. . .

. . .

u−n u+nu0. . . . . .

p−n q+n

w1

u1

. . .

. . .

p0 p1 p2

... but qi = pi+1! (Calculation on the blackboard: replace qi and divide by 2n + 1.)
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Properties of T2, T 2/3 and T2/3Properties of T2, T 2/3 and T2/3Properties of T2, T 2/3 and T2/3Properties of T2, T 2/3 and T2/3Properties of T2, T 2/3 and T2/3Properties of T2, T 2/3 and T2/3Properties of T2, T 2/3 and T2/3Properties of T2, T 2/3 and T2/3Properties of T2, T 2/3 and T2/3Properties of T2, T 2/3 and T2/3Properties of T2, T 2/3 and T2/3Properties of T2, T 2/3 and T2/3Properties of T2, T 2/3 and T2/3

Let L(α, β) denote the line encoding with slope α and offset β.

Claims about T2

All transitions are 2-multiplicative.

Accepts L(2α, β) on L(α, β) for all α ∈ [ 1
2
, 1].

−1 0

1, 1

0, 1
1, 2 1, 2

Claims about T2/3

All transitions are (2/3)-multiplicative.

Accepts L( 2
3
α, β) on L(α, β) for all α ∈ [1, 3

2
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Claims about T 2/3

All transitions are (2/3)-multiplicative.

Accepts L( 2
3
α, β) on L(α, β) for all α ∈ [ 3

2
, 2].
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Kari’s tileset
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Transducers to tilesetsTransducers to tilesetsTransducers to tilesetsTransducers to tilesetsTransducers to tilesetsTransducers to tilesetsTransducers to tilesetsTransducers to tilesetsTransducers to tilesetsTransducers to tilesetsTransducers to tilesetsTransducers to tilesetsTransducers to tilesets
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The tilesThe tilesThe tilesThe tilesThe tilesThe tilesThe tilesThe tilesThe tilesThe tilesThe tilesThe tilesThe tiles

−1 0

1, 1

0, 1
1, 2 1, 2 −1−1 −1 −100 00

0

11

1 11

2 2

− 1
3

0
3

1
3

2
3

1, 1 1, 1 1, 1

2, 1 2, 1 2, 1

2

1

−1
3

0
3

2

1

0
3

1
3

2

1

1
3

2
3

1

1

2
3

1
3

1

1

1
3

0
3

1

1

0
3

−1
3− 1

3
0
3

1
3

2
3

1, 1 1, 1 1, 1

2, 1 2, 1 2, 1

2

1

−1
3

0
3

2

1

0
3

1
3

2

1

1
3

2
3

2, 2 2, 2

2

2

2
3

0
3

2

2

1
3

−1
3

1, 0 1, 0
1

0

0
3

2
3

1

0

−1
3

1
3

Guilhem Gamard Wang tiles, Kari tiles, and computation in tilings



31/44

Multiplicative tilesMultiplicative tilesMultiplicative tilesMultiplicative tilesMultiplicative tilesMultiplicative tilesMultiplicative tilesMultiplicative tilesMultiplicative tilesMultiplicative tilesMultiplicative tilesMultiplicative tilesMultiplicative tiles

p + αu = q + w

u2

w2

u1

w1

p1

u3

w3

. . .

un

wn

un−1

wn−1

qn

p1 + α
∑
i

ui = qn +
∑
i

wi
p1
n

+ α avg(ui ) = avg(wi ) +
qn
n
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The dynamical systemThe dynamical systemThe dynamical systemThe dynamical systemThe dynamical systemThe dynamical systemThe dynamical systemThe dynamical systemThe dynamical systemThe dynamical systemThe dynamical systemThe dynamical systemThe dynamical system

Recall that: T2 is 2-multiplicative and accepts inputs over {0, 1}
T 2/3 is (2/3)-multiplicative and accepts inputs over {1, 2}.

Claim

Suppose we have a tiling where the nth line has an existing average xn. Then:

xn+1 = f (xn) =

{
2xn if xn ≤ 1,

2xn/3 if xn ≥ 1.

Observe that (xn) is an aperiodic sequence (otherwise 2k+ℓ = 3ℓ for some k, ℓ).

In a periodic tiling, every line has an average.

Lemma (Kari, 1996)

There is no periodic tiling of the plane.
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At least one tilingAt least one tilingAt least one tilingAt least one tilingAt least one tilingAt least one tilingAt least one tilingAt least one tilingAt least one tilingAt least one tilingAt least one tilingAt least one tilingAt least one tiling

Recall that: T2 accepts L(2α, β) on L(α, β) for all α ∈ [ 1
2
, 1]

T 2/3 accepts L( 2
3
α, β) on L(α, β) for all α ∈ [1, 2].

Lemma (Kari, 1996)

There is at least one periodic tiling of the plane (with line encodings).

Theorem (Kari, 1996)

There is an aperiodic tileset of 14 tiles.
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14 tiles14 tiles14 tiles14 tiles14 tiles14 tiles14 tiles14 tiles14 tiles14 tiles14 tiles14 tiles14 tiles
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Properties
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Line averages always existLine averages always existLine averages always existLine averages always existLine averages always existLine averages always existLine averages always existLine averages always existLine averages always existLine averages always existLine averages always existLine averages always existLine averages always exist

We have tilings but only aperiodic tilings.

Nothing guarantees that line averages exist!
We could have “emergent behavior” — but that behavior has to be aperiodic.

Proposition (Durand, Γ, Grandjean, 2014)

In any tiling, the line averages exist.

Lemma

The dynamical system f has dense orbits.

Up to a change of variable, the dynamical system reduces to:

y 7→ y +
log(2)

log(2)− log(2/3)
mod 1,

which has dense orbits.
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Line averages always existLine averages always existLine averages always existLine averages always existLine averages always existLine averages always existLine averages always existLine averages always existLine averages always existLine averages always existLine averages always existLine averages always existLine averages always exist

Lemma

The dynamical system f has dense orbits.

Proposition (Durand, Γ, Grandjean, 2014)

In any tiling, the line averages exist.

Suppose the line 0 has no average.

We have large blocks of average ρ and large blocks of average ρ′ < ρ.

Because the orbits of f are dense, we have f n(ρ′) < 1 < f n(ρ) for some n.

The line n is both over alphabet {0, 1} and {1, 2}, which is impossible.
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Factor complexityFactor complexityFactor complexityFactor complexityFactor complexityFactor complexityFactor complexityFactor complexityFactor complexityFactor complexityFactor complexityFactor complexityFactor complexity

Fix a tileset T .

Definition

The complexity PT (n) is the number of distinct n× n-blocks that appear in T -tilings.

The growth of PT encodes the “chaos level” of T -tilings.

Definition

The topological entropy hT is the following limit (that always exists):

lim
n→∞

log2 PT (n)

n2
.

Entropy = how many bits of information in each cell of a T -tiling?
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Topological entropy of substitutive tilesetsTopological entropy of substitutive tilesetsTopological entropy of substitutive tilesetsTopological entropy of substitutive tilesetsTopological entropy of substitutive tilesetsTopological entropy of substitutive tilesetsTopological entropy of substitutive tilesetsTopological entropy of substitutive tilesetsTopological entropy of substitutive tilesetsTopological entropy of substitutive tilesetsTopological entropy of substitutive tilesetsTopological entropy of substitutive tilesetsTopological entropy of substitutive tilesets

Theorem (folklore)

If T is a substitutive tileset, then hT = 0.

=⇒

PT (n) ≤ PT (n/k) + k2
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Interchangeable pairsInterchangeable pairsInterchangeable pairsInterchangeable pairsInterchangeable pairsInterchangeable pairsInterchangeable pairsInterchangeable pairsInterchangeable pairsInterchangeable pairsInterchangeable pairsInterchangeable pairsInterchangeable pairs

Theorem (Durand, Γ, Grandjean, 2014)

If K is Kari’s tileset, then hK > 0.

Definition

An interchangeable pair is a pair of distinct
blocks with the same colors on the borders.

1

0

1 1

0

1

1

1
3

1

1
3

1

1
3

1

1
3

−1−1

Lemma

The above interchangeable pair appears “often” in any tiling.

This comes from the denseness of f .
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Conclusion
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Recap and thank youRecap and thank youRecap and thank youRecap and thank youRecap and thank youRecap and thank youRecap and thank youRecap and thank youRecap and thank youRecap and thank youRecap and thank youRecap and thank youRecap and thank you

Domino problem undecidable =⇒ aperiodic tilesets exist

Substitutive tilesets (e.g. Robinson) are aperiodic

Averages and line encodings; T2 and T2/3 multiply averages

f : x 7→ 2x or 2x/3 such that f (x) ∈ [ 23 , 2] is aperiodic + has dense orbits

Kari’s tileset is aperiodic because f is, and has tilings by line encodings

Line averages always exist because f has dense orbits

Interchangeable pairs occur often =⇒ doubly-exponentially many blocks of size n × n

Thank you for your attention!
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