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Uri N. Peled

Uri was born in Haifa, Israel, in 1944.

Education:

Hebrew University, Mathematics-Physics, B.Sc., 1965.
Weizmann Institute of Science, Physics, M.Sc., 1967

University of Waterloo, Mathematics, Ph.D., 1976

University of Toronto, Postdoc in Mathematics, 1976—78
Appointments:

1978-82, Assistant Professor, Columbia University

1982-91, Associate Professor, University of lllinois at Chicago
1991-2009, Professor, University of lllinois at Chicago

Areas of research: Graphs, combinatorial optimization, boolean
functions.

Uri published about 57 papers and one influential book jointly with
Mahadev

THRESHOLD GRAPHS and related topics

Uri died September 4, 2009 after a long battle with brain tumor.
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Z-Subshift

View [n] = {1,...,n}, as n > 2 particles (alphabet)
Hamming distance on [n]: dx(p, q) = dpq

¢ : Z — [n] configuration ¢ = {¢(f), i € Z}, mi(¢p) = ¢(i)
[n)% configurations space, maps from Z to [n]

metric on [A% : d(¢, 1) = Yz 27 Mdn(é(7), (i)
[n)2-complete metric space, with diameter 3

The shift map: o(¢)(i) = ¢(i+1),i € Z

S C [n]? subshift: S-closed, o(S) = S
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Z-Subshift Of Finite type (SOFT)

3 finite window W C Z, admissible configurations A c [n]W

s.t.mw(p) e A = ¢S

Near Neighbor SOFT (NNSOFT): 3 digraph ' = ([n], E):

m(6) €8 = (6(1).4(2)) € E)

Equivalently: ¢ € S <= (o(i), p(i+ 1)) € E forallieZ,peS
Every NNSOFT is Wang tiling: every diedge ﬁq

corresponds to an interval with left and right painted in colors p and q

Every Wang tiling is NNSOFT: corresponds to a diedge EE]

NNSOFT is more efficient presentation than Wang tiling for Z-SOET
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Every Z-SOFT can be coded as NNSOFT

Can assume W = [M],M > 2
Code each element of allowable configuration as a particle ay, - - - , a4
view a and b as configurationson {1,...,M} and {2,..., M+ 1}
_>
ab allowable iff a and b have the same projections on {2,..., M}
Equivalently o my(@) = 71, .m—13(b) if @, b € A.
Z-SOFT is a binfinite walk on a digraph I
. . — —
I symmetric, (undirected graph): pgell < qpeTl

Z-SOFT empty set iff I has no dicycle
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Entropies of Z-SOFT |

W™(T) -all allowable I words of length m, all walks on I of length m
WEEm(n)] < [WRD)[Wm(T)| =

subadditivity: log |W**+™(I)| < log |WX(I)| + log |W™(I)|

Fekete lemma: Agom(S) = limp_,o, AW 0L < '°9|V,'fk(r)|,l eN
Combinatorial entropy, or capacity

Theorem: heom(I") = hiop(I)-topological entropy of S

Proof outline: Topological entropy is the growth of e-separated points

equivalent to combinatorial entropy
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Entropies of Z-SOFT Il

Wm(r) =1TA™11, A = A(T') adjacency matrix of I

. T Am—1

Wger(I)-words of length m + 1: first letter=last letter
W2 (D) = Tr A", Au = p(A)u, ATv = p(A)v,v u =1

hper(I) = lim sup,;,_, o w = log p(A)

Theorem: heom(I) = htop(I) = hper(I)

Expl. A™ = [al™] € Z1*", a"-#-config: i .. j
—~~
m+

A-primitive: A™ = p(A)™uv’ (1 + 0o(1)), else use Frobenius normal form
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The measure of maximal entropy

City...,im) ={op € S,(p(1),...,0(m)) = (i,...,im)}-cylinder of S
Assume T strongly connected <= A = A(l')-irreduble:

A=[a;] € {0,1}™" Au=pu,v A= pv' uv>0viu=1
Measure of maximal entropy, Parry measure:

w(C(ity - im))) = p(A) "™, ai @i, - 8y Ui

If A norirreducible, S(I') # 0 same formulas apply, where u,v > 0
u, v may not be unique:

Frobenius nomal (upper triangular) form
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[n]Zd—aII configurations ¢ of n-particles on Z9,d € N
d(6, %) = Fiezs 27 ha(6(1), (D).

mx : [n]%° = [n]X projection on X C Z¢

e =0jt,....0) . je[d,1=(1,....1)T ezd
j-shift: ai(¢)(i) = ¢(i + €)),i € Z9,j € [d]

S C [n]%"-subshift, if

S closed

invariant: ;(S) = S,j € [d]
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79-SOFT |

m=(my,...,my)" € N9 [m] =[my] x ---[my], vol(m) = my --- my
m + Ze;: Z-line in direction of axis j through m

A subshift S ¢ Z9-is Z9-SOFT:

3 finite window W C Z¢, admissible configurations A C [n]W

s.t.mw(p) €A <= ¢S
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79-SOFT Il

Z9-NNSOFT: given by I = ('y,...,T4), digraph T'; = ([n], E,-),j € [d]
Projection of ¢ € S(I') on m + Ze; is Z-NNSOFT given by T;

d = 2: Every Z2-NNSOFT is Wang tiling

(M1, 2)-allowable filling of [2] x [2] is a Wang tile

square with the colors corresponding di-edges of I'1, > respec.
colors of diedges of 'y and I, are different

Every Wang tiling is Z2-NNSOFT on n-number of Wang tiles
— —
pq € E; if tile g can be to the right of tile p

— —
pq € E, if tile g can be on top of tile p
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Every Z9-SOFT can be coded as NNSOFT

Canassume W =[M|,M= (M;,....My) >2-1
Code each element of allowable configuration as a particle ay, - - - , a4

Assume a and b allowable configurations on [M]
— —
ab e E; if
T2, My} [Mo] - x [Mg] (8) = T My 1y [Mo] x - x [M] (D) IT @, b € A
— —
similar conditions for ab € Ej,j > 1
— =
d=2:abe E if

T x42,...Mp}(8) = T < {1, . M—13 (D) iT @, b € A
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Decidability of Z?-SOFT

Koéning 1927= Z2-NNSOFT nonempty iff W(»M(T) £ Vne N
Outline of proof: Ty = [-2K,2K]2 N Z2, k € N, ©-admissible
configuration of 7. Choose infinite subseq. {©}72; with same
projection on Ty. Choose infinite subsequence {©,2}72 of {©}7,
same projection on T», and so on. Take Cantor diagonal subsequence.
Wang: S(IM)-decidable if either 3 periodic configuration or S(I') = (
Berger 1966: 3 nondecidable Wang tiling=nonperiodic (Gamard lec.)
Shahar Mozes 1989: Z2-ergodic theory yields nonperiodic Wang tilings

Jeandel-Rao 2021: 11 Wang tiles with 4 colors -minimal example
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Combinatorial entropy of Z9-SOFT |

m=(my,...,my) € N9 d>1,pec|d],

mP = (my,...,Mp 1, Mpi1,...,Mg),m = (MP mp)

W™m(I) -allowable I' configuration on box [m]

WPHR(D)| < [WmD(0)|| W) =

p-subadditivity: log WM +K) ()| < log | WM™)(F)| + log | W™k (1)

~ mp mp
(1) log p(p, MP) := lim_,., AWTIOI < log WET(T)

p(p, mP)-spectral radius Z-NNSOFT in direction p on states W™ (I'?)
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Combinatorial entropy of Z?-SOFT I

log W™ ()|
]

FIx j, observe subadditive in variable q € [d] \ {p}

log p(p, mP)-subbaddive in each variable in [d] \ {j}

; log |W™(T" | , p loa | W™ (T
(2) heom(I") = liMm—s00 ogv|ol(m() ! < O?/;((%g; ) < ogv‘ol(m() 4 ke N

Theorem: heom(I") = hiop(I7)-topological entropy of S(I)
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No periodic solution for nonempty Z9-NNSOFT

periodic state: ¢ € Sperm(T),  ¢(i+mje)) = ¢(i),i € 29, m; € N,j € [d]
W5er(T) = {7m+11(¢), ¢ € Sperm(T)}

all states in W™(I") extending to periodic states in Sperm(I")

Lemma: Assume d > 1,p € [d] and W™ (P) nonempty.

Simpy(T) = 0, iff Z-SOFT induced by I, on W™ (P) is empty
equivalently Al Wmﬁ'(rf’)(p, W™ (1) = 0

Corollary §((I'1,T2)) has no periodic states iff for each j € N s.1.

Wi (T1) # 0, Z -SOFT induced by ', on W), (T'1) is empty
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Periodic entropies

log0 = —

. log [W5ioq (NI

Theorem (Friedland 1997) If d — 1 digraphs in (I'y,...,Tg) are

symmetric then hyp(I") = hper('), and the entropy is computable
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The case d = 2 and 'y symmetric |

Claim: S(I') #0 < p(2,2) >0

Proof: p(2,2) >0 «— W) £pvi>2

Assume WE(T) #£ 0, A(1,i) € {0, 13NN N = |W/(Ty)|
nonzero symmetric transfer matrix on states in Wi(I',) =

WHI(T) # 0 = S(T) # 0
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The case d = 2 and 'y symmetric Il

Wé’e‘;';)1 (F)-i-states induced by [z on W, (T+)

Aper(2, k)-transfer matrix in direction 2 on states W,’)‘e,(ﬂ)
Observe pper(2, k) = p(Aper(2,k)) < p(2, k) (explained later)
A1, 02T = 0 = p(1, 127 = p(A2T(1, 1)) < Tr APM(1, 1) =

2m,i i
IWER(O)] =17 ALl (2,2m)1,1 € RN, N = [W32(Ty)|

2m,i ]
l0g (1) 109 IWee (I _ log | Wi
i

= @myi = em)i Ll fori> 1 fixed m

o0 = i) < e
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Computability of h(I') for d = 2 and 'y symmetric

(4) |09P(17ll3;r2q4r1) _ |°gp(1;)2<7+1) < h(r) < |09Pper(2 2m) .pEN,geZ:

RHS of (5) is shown in (3)

xTA(1,i)Px

max characterization of p(1,/)P > =

choose x = A(1,/)91 =

Iogp(1 i) > log1TA(1,)P*291 _ log1TA(1,)?31 _ log WP29+17(T)  log W2at"/(T)
oi i i i

let i — oo to obtain LHS of (4)

Use (2)and g = 0: |09p(:37p+1) _ log P’g“) < h(r) < IOQT%H) (5)

Markley-Paul 1981 showed (5) for primitive symmetric A(T'1)
Note that computation of p(1,p+ 1) is exponential in p

as the number of nonzero entries of A(1,p+1) is at Ieast O( (2 2)P+1)
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Observations on pper(j, g) and p(j, q)

AssumeS((T1,T2)) # 0

Claim pper(j,q) < p(j,q) forj € [2], 2 2, p(2,9) < p(2,9 + 1)

Proof: Enough to assume pper(2,q) > 1. View

Aver(2,9) = [ast], s, t € WI(Ty) s.t. ast =0, unless s,t € Wger (1)
Aper(2,9) < A(2,q) = pper(2,q) < p(2,9)

As Iy is symmetric extend each k-walk to k + 1 walk by reversing
last edge = A(2, k) prin. subm. of A(2,k+ 1) = p(2,k) < p(2,k + 1)

M1 symmetric = liMx_ o0 W = limsup_, w = h(I)

Shmuel Friedland Entropy, pressure, and densities



Residual entropy of ice

Z2-NNSOFT particles, where no two same particles are adjacent
'y = N> = K3-complete graph on 3 vertices (symmetric)

E. Lieb computed periodic entropy 1967:

h(r) = 3log % = log (4/3)%% = 0.43152. ..

h(T") not a log of algebraic integer as for Z-SOFT

For p = 2 lower bound in (5) is 0.4122579570

Upper bound in (4) for m = 2: 0.462989385
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Monomer-dimer model in Z¢

A monomer is a particle that occupies a point in Z9,

or a d-unit cube centered at a point in Z¢

A dimer is a domino in positioned in direction e;,j € Z9, ) € [d]
or two glued unit cubes

One can consider just dimers without monomers

The dimer coding correspond to n = 2d particles

The monomer-dimer model corresponds to n = 2d + 1 particles

Z2-dimer entropy is 1 = 3%, (2/+1)2 = 0.29156090 .
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Density of the Monomer-dimer model

For a fixed p € [0, 1]: W (') € W™M(I')-all configurations with density
of dimers € (p1, p2)

. log |WJ , (T .
(1 P2). 1) = liMm-soc i h(p.T) = limp, . h((p1. ). T)

Claim h(") = max,co 1] h(p,T)
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Pressure function for an external field

ci(¢)-# i-particles in ¢ € WM(T), ¢(¢) = (¢i1(¢),...,cn(¢))" € 71
Wwm(T,c) ={p € WM(I'),c(¢) =c}, c € vollm),NZ]

109 3" sewm(ry exp(c(¢) "u)

T
VOl(m) ,u:(U1,...,Un) ER”

Pr(u7 m) =

Pr(u, m)-convex in u, subadditive in each m;
VPr(u,m) € P, - the set of probability vectors in R" =
[Pr(v,m) — Pr(u,m)| < [V -

Pr(u+t1,m) =t+Pr(u,m) = can assume u, =0
Pr(u) := liMm_ oo Pr(u,m) < Pr(u,m)

convex, |Pr(v) —Pr(u)| < |lVv—u|«

subgradient OPr(u) € M, exists Yu € R”,  VPr)(u)3 a.e.
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Pressure function for an external field for Z-SOFT

d =1:Pr(u) = log p(A(T', u)), A(', u) = [a; exp((u; + 4;))/2]
A(lN)-irreducible=- Pr(u) analytic in u, and

MNr-a convex hull of probability vectors

corresponding to uniform distribution on cycles in I

Example: T has on cycle on [n]: N = {11}

Pr(u) = #, VPr(u) =11 vueR”

A(T") reducible-T has k-strongly connected components I'y, ..., T;
Pr(u) = max;c( log AT, u))

It is possible that Pr(u)-not differentialble at some points
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Density points

p € M, idensity point of C-(Z9): 3{mg} C N9 ¢4 € (vol(mg)M,) NZ17,
qu(rchI) 75 ®7 q € N7 (5) Iimmq%oo mcq = p (E nn)

My closed nonempty set of density pts (Cantor diagonal sequence)

m9
hr(p) = lim SUPm, 0 W (> 0) for all m satisfying (5)

hr(p) - density entropy

is upper-semicontinuous on My
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Conjugate pressure function |

Legendre-Fenchel transform: PE(V) := supycgn V'U — Pr(u),v € R™
convex, v € 9Pr(u) = P*(v) = v'u — Pr(u)

{v,P{(v) < oo} =domPf D 0Pr(R") Dr.i. dom(Py), Pr* =Pr
THM(F-Peled) 2011

hr(p) < —P{(p), p €M, dom P} = convI

Pr(u) = maxpen  (P'U+ hr(p)),u €R" =

Pr(0) = hr = maxpen, hr(p)

Let Mr(u) := argmaxpen, (P 'u + hr(p))

hr(p) = Pr(u) —p'u = —Pg(p) forp € Mr(u),u € R"
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Conjugate pressure function |l

Generalization of Hammersley for the monomer-dimer entropy:
hr is concave on a convex subset of INr

hr(p) = —Pf(p) continuous, has subdifferential on

Mr(R") = UyernMr(u),

If [n] has a friendly particle, or configutation then N is convex
For monomer-dimer Z2-SOFT, full d-dimers and monomer

are friendly configurations
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Identification of particles

In the study of monomer-dimer models one identifies dimers in
in each direction i € [d] in pressure function
Computation of pressure function reduces to a function in one variable

In general Z9-SOFT identify i = j by letting u; = u; in Pr(u)
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First order phase transition

First order phase transition (FOPT) at u € R” if VPr(u)-does not exist
hr = 0 = Pr = maXpen, P'U = MaXpeconvry P' U
In this case FOPT for u # 0 if supporting hyperplane to conv MNr

orthogonal to u passes at least through two points in M
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Hammersley’s results

Hammersley in 60’s studied extensively the monomer-dimer model. He
showed MM = My, 1 for d-dimensional model p = (p1, . - ., Pg, Pd+1)
pi-the dimer density in e;-direction i = 1,..., d pgt+1-the monomer
density Hammersley studied p := p; + ... + pg-the total dimer density
h4(p)-the p-dimer density in Z9, p € [0,1]

He showed hy4(p)-concave continuous function on [0, 1]

Heilman and Lieb 72: hy(p) analytic on (0, 1)

No phase transition in parameter p € (0, 1)
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Graph estimates for hx(p)

=
R

\AUMC

] LMC
FT

o

o
s

Figure 1: Monomer-dimer tiling of the 2-dimensional grid: entropy as a function of dimer
density. FT is the Friedland-Tverberg lower bound, h2 is the true monomer-dimer entropy.
B are Baxter’s computed values. ALMC is the Asymptotic Lower Matching Conjecture.

AUMC is the entropy of a countable union of Ky 4. conjectured to be an upper bound by
the Asymptotic Upper Matching Conjecture.




Graphs of two dimensional pressure for MD
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Graphs of two dimensional density entropy for MD

0.04< 1 0

Figure 1: The graph of an approximation of ha((p1,p2) for angles 6 = 45°,¢ = 45° and
0 =—153%,¢ =T8°
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