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Many thanks to the organisers for inviting me to present this work.
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What will I talk about?

In this talk I will be talking about a technique called cluster swapping. In many

ways, it is as old as early statistical physics, for instance, when phase transition

was proven by Peierls (1936).

The cluster swapping I will present is a (very) distant relative of the original

one and comes from a paper of Scott Sheffield (2003). I will present it in the

context of our recent work on the 3d dimer model with Catherine Wolfram and

Scott Sheffield (2023).

A lot of simulations and figures come from Scott Sheffield and Catherine

Wolfram. At least the prettier ones do!
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The model that I will talk about!

Dimers in 2D are dominoes, e.g. 1× 2 or 2× 1 blocks.

Dimers in 3D are bricks, e.g. 2× 1× 1 or 1× 2× 1 or 1× 1× 2 blocks.

A dimer tiling of a region R ⊂ Z2 or Z3 is a collection of dimer tiles such that

every square/cube is covered by exactly one tile such that the vertices of the

tiles are subsets of Z2/Z3.
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The dimer model

The space of tilings forms a compact space and on which Z2/Z3 acts on the

tiling by translations.

One could think of this as a shift space by placing symbols on various parts of

the dimer and setting up appropriate adjacency rules but we will ignore this for

the purpose of the talk.
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Why does one want to talk about cluster swapping?

Usually in the context of statistical physics, we are concerned with the

question: Does the model have a unique Gibbs measure?

There are many

reasons to try and prove this.

1. If it is unique it gives you a way of talking about “the natural probability

measure for your model” - the measure of maximal entropy/ equilibrium

state.

2. If it is not unique it gives you an opportunity to talk about multiple phases

and in the proper context about a possible phase transition.

However sometimes Gibbs measures are far from unique. You may have an

uncountably many of them for the same model varying according to a set

parameter. This can be very useful in establishing a kind of variational principle.
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Why does one want to talk about cluster swapping: Artic Circle Phenomena

The images are from simulations of a uniform dimer tilings of the Aztec diamond (Jockusch, Propp and Shor (1998) and later Cohn,

Kenyon and Propp(2001)) and the Aztecohedron (C. , Sheffield, Wolfram 2023). You can clearly see certain patterns appear. One of the

possible routes to explain such phenomena uses cluster swapping.

By the way, it is still an open question to completely explain the picture on the right.
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Why does one want to talk about cluster swapping: Artic Circle Phenomena

This is a general technique which applies to many different models (a lot of

which remains to be fully explored).

Figure 1: From the paper by Andrew Krieger, Georg Menz and Martin Tassy (2020)
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“The effect of boundary conditions is, however, not entirely trivial . . . ”-

Kastelyn, 1962.
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Outline

1. The basic toolbox

1.1 What are uniform Gibbs measures?

1.2 Lanford-Ruelle theorem.

1.3 Dimers, discrete vector fields and the Z3
even action

2. Mean-current and entropy maximisers

2.1 Mean-current for ergodic measures.

2.2 Concavity of the entropy function.

2.3 Statement of the main result.

2.4 The baby case: Entropy maximisers of a given mean-current are uniform

Gibbs measures.

3. The patching argument

3.1 Dobrushin’s theorem

3.2 Ergodic Gibbs measures of the same mean-current have the same entropy

4. Cluster Swapping

4.1 Swapping of paths in the double dimer model and its effect on

mean-current and entropy

4.2 The main result: Strict concavity of entropy as a function of the

mean-current
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The basic toolbox



Uniform Gibbs measures

A probability measure on the space of dimer tilings of Z3 is called a uniform

Gibbs measure if for all finite sets R ⊂ Z3, conditioned on the appearance of R,

the probability distribution is uniform on all possible extensions of the tiling to

R.

On the left is a region R with two possible tilings (as given on the right). Thus

for any uniform Gibbs measure on the space of dimer tilings, the conditional

probabilities of seeing the tilings given on right are 1/2 each (assuming that R

appears with positive probability).
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Lanford-Ruelle theorem

A probability measure on the space of dimer tilings of Z3 is called a uniform

Gibbs measure if for all finite sets R ⊂ Z3, conditioned on the appearance of

the region R, the probability distribution is uniform on all possible extensions of

the tiling to R.

Theorem (Lanford-Ruelle theorem, 1968)
If µ is a measure of maximal entropy for the space of dimer tilings of Z3 then it

is a shift-invariant uniform Gibbs measure.

Proof idea. (Burton and Steif, 1994).

Suppose that µ is not a uniform Gibbs measure. Then there is a region R such

that R appears with positive probability but conditioned on seeing it, the tilings

inside are not uniform. Now divide Zd into big boxes and on each of these

boxes if you see the region R resample the tiling inside R uniformly.
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Lanford-Ruelle theorem

Figure 2: Division into grids
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Lanford-Ruelle theorem

Figure 3: Resampling on translates of R in the grid regions
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Lanford-Ruelle theorem

A probability measure on the space of dimer tilings of Z3 is called a uniform

Gibbs measure if for all finite sets R ⊂ Z3, conditioned on the appearance of

the region R, the probability distribution is uniform on all possible extensions of

the tiling to R.

Theorem (Lanford-Ruelle theorem, 1968)
If µ is a measure of maximal entropy for the space of dimer tilings of Z3 then it

is a shift-invariant uniform Gibbs measure.

Proof idea. (Burton and Steif, 1994).

Suppose that µ is not a uniform Gibbs measure. Then there is a region R such

that R appears with positive probability but conditioned on seeing it, the tilings

inside are not uniform. Now divide Zd into big boxes and on each of these

boxes if you see the region R resample the tiling inside R uniformly.

Recall that the uniform probability measure on a finite set has maximum

entropy.

Argue that we have increased entropy on average. Take averages of

shifts of this new probability measure to get a measure with great entropy.
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Are uniform Gibbs measures measure of maximal entropy?

But does a shift-invariant Gibbs measure need to be a measure of maximal

entropy?

Dobrushin (1968) proved that this is true for certain models under a certain

mixing condition. In general this is not true.
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Are uniform Gibbs measures measure of maximal entropy?

Consider the measure which gives the following dimer tilings with probability

1/2 each.
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Are uniform Gibbs measures measure of maximal entropy?

Consider the measure which gives the following dimer tilings with probability

1/2 each.

If you look at any region R appearing in the support of the measure, there is a

unique way to fill it in.

Thus it is a uniform Gibbs measure. However it has

zero entropy. It is as far from being a measure of maximal entropy as you

would imagine.
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Are uniform Gibbs measures measure of maximal entropy?

Note that though both the tilings given here use only vertical tiles, there is a

clear difference between the two: The one on the left can be modified

significantly to get other tilings while the one on the right cannot be modified

at all.
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Discrete vector fields

One way to distinguish these two different tilings, is to introduce a notion of

parity. This can be done in various ways, we will associate a discrete vector

fields with the tilings.
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Discrete vector fields associated with dimer tilings

Label the even vertices of Z3 white and the odd ones black.
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Discrete vector fields associated with dimer tilings

Now consider the flow of unit strength from white to adjacent black vertices.
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Discrete vector fields associated with dimer tilings

For a given a domino tiling keep the flow along those edges which are part of

the tiling.
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Discrete vector fields associated with dimer tilings

This gives a correspondence between 1) a dimer tiling τ of Z3 and 2) a discrete

vector field vτ : For each edge e of Z3 oriented from white to black,

vτ (e) =

1 e ∈ τ

0 e ̸∈ τ.
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Making the discrete flow divergence free

This gives a correspondence between 1) a dimer tiling τ of Z3 and 2) a discrete

vector field vτ defined by: for each edge e of Z3 oriented from white to black,

vτ (e) =

1 e ∈ τ

0 e ̸∈ τ.

This flow is “essentially divergence free”.

Given a dimer tiling, any white vertex

has an outflow of one and any black vertex has an inflow of one. Thus if a

region R contain the same number of black and white vertices then the net

inflow equals the net outflow.

The take-away message is that the net flux through a box of even size is equal

to 0.
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The colours of the dimers

The colours of the dimers represent the direction of flow along the dimer.

Indeed in d = 3, we thereby get 6 different colours. We label the tiles

according to the direction of flow.
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Direction of flow
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The discrete vector field associated with the tilings: Zero flow and a lot of

flexibility

Note that this tiling is easy to modify.
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The discrete vector field associated with the tilings: Zero flow and a lot of

flexibility

Note that this tiling is easy to modify. Now consider the vector field associated

to the tiling. The net flux through the red hyperplane is equal to 0.
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The discrete vector field associated with the tilings: Maximum flow and lack

of flexibility

Here the tiling can’t be modified and it corresponds to the maximum possible

flow across the hyperplane.
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The parity

The only problem is that if by translating the tiling, we might swap the black

and white vertices.

This is why we restrict our attention to the action of the

group

Z3
even = {(i , j , k) ∈ Z3 : i + j + k is even}.
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So far

1. We associate a discrete vector field with the space of dimer tilings.

2. The new flux across the boundary of an even sized box is 0.

3. We will look at parity preserving translations and hence restrict ourselves

to the Z3
even subaction.
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Outline

1. The basic toolbox

1.1 What are uniform Gibbs measures?

1.2 Lanford-Ruelle theorem.

1.3 Dimers, discrete vector fields and the Z3
even action

2. Mean-current and entropy maximisers

2.1 Mean-current for ergodic measures.

2.2 Concavity of the entropy function.

2.3 Statement of the main result.

2.4 The baby case: Entropy maximisers of a given mean-current are uniform

Gibbs measures.

3. The patching argument

3.1 Dobrushin’s theorem

3.2 Ergodic Gibbs measures of the same mean-current have the same entropy

4. Cluster Swapping

4.1 Swapping of paths in the double dimer model and its effect on

mean-current and entropy

4.2 The main result: Strict concavity of entropy as a function of the

mean-current
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Mean-current and entropy maximisers



Mean-current

Now suppose µ is a Z3
even invariant ergodic measure on the space of dimer

tilings. Given any coordinate hyperplane, by applying the ergodic theorem

along the hyperplane, we can measure the average flow across the surface.
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Mean-current

Now suppose µ is a Z3
even invariant ergodic measure on the space of dimer tilings.

Given any coordinate hyperplane, by applying the ergodic theorem along the

hyperplane, we can measure the average flow across the surface.

Let us compare the flow through two hyperplanes separated by an even distance.

Since the total flux through the box that this forms equals 0, the flux through the

bottom hyperplane = the flux through the top hyperplane - the negligible amount we

loose through the sides.

Thus the average flux passing through the hyperplane does not depend on the choice

of the even translate of the hyperplane.
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Mean-current

Thus the average flux passing through a hyperplane is constant µ almost

surely. This is called mean-current through the hyperplane.

We write the mean-current through the three hyperplanes xy , yz and zx as a

vector s⃗(µ) = (s1(µ), s2(µ), s3(µ)) which we will call the mean-current. It

measures the average direction of the flow. There is another interpretation

though.

By the ergodic theorem

si (µ) = 1/2( µ(the dimer at the origin is in the e⃗i direction)

− µ(the dimer at the origin is in the − e⃗i direction) ).

Since the sum of the probabilities of each kind of dimer is 1, we have

|s1(µ)|+ |s2(µ)|+ |s3(µ)| ≤ 1/2.
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− µ(the dimer at the origin is in the − e⃗i direction) ).

Since the sum of the probabilities of each kind of dimer is 1, we have

|s1(µ)|+ |s2(µ)|+ |s3(µ)| ≤ 1/2.
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Properties of the mean-current function

si (µ) = 1/2( µ(the dimer at the origin is in the e⃗i direction)

− µ(the dimer at the origin is in the − e⃗i direction) ).

Since the sum of the probabilities of each kind of dimer is 1, we have

|s1(µ)|+ |s2(µ)|+ |s3(µ)| ≤ 1/2.

Denote by O = {(s1, s2, s3) : |s1|+ |s2|+ |s3| ≤ 1/2} the mean-current

octahedron.

Notice that the mean current is a continuous and affine function of the

probability measure. Indeed

s⃗
(µ1 + µ2

2

)
=

s⃗(µ1) + s⃗(µ2)

2
.
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The mean-current octahedron O

Figure 4: The mean-current octahedron and a tiling such that its mean current is a

corner in O

si (µ) = 1/2( µ(the dimer at the origin is in the e⃗i direction)

− µ(the dimer at the origin is in the − e⃗i direction) ).

If s⃗(µ) is one of the corners then only one kind of tile can be seen almost surely. We get only brick-work tilings.
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The mean-current octahedron O

Figure 5: The mean-current octahedron O and a tiling such that its mean current is

on an edge in O

si (µ) = 1/2( µ(the dimer at the origin is in the e⃗i direction)

− µ(the dimer at the origin is in the − e⃗i direction) ).

If s⃗(µ) is on one of the edges then only two kinds of tiles can be seen almost surely moving in perpendicular directions. These have

zero-entropy as well.
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The mean-current octahedron O

si (µ) = 1/2( µ(the dimer at the origin is in the e⃗i direction)

− µ(the dimer at the origin is in the − e⃗i direction) ).

The measure for which the mean-current is on one of the faces of O uses three

different kind of tiles and is much more interesting. It is related to lozenge

tilings.
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The entropy function

si (µ) = 1/2( µ(the dimer at the origin is in the e⃗i direction)

− µ(the dimer at the origin is in the − e⃗i direction) ).

Let P denote the space of Z3
even invariant probability measures on the space of

dimer tilings. Let Ps⃗ ⊂ P denote the measures with mean-current s⃗.

Since µ → s⃗(µ) is a continuous and affine function, Ps⃗ is a compact, convex

set.

Define ent : O → [0,∞) by

ent(s⃗) = sup
µ∈Ps⃗

hµ.

It is nothing but the maximal entropy with a given mean-current. Since entropy

is upper semicontinuous, the equation above has a maximiser.
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The entropy function

In fact, it is not difficult to see that ent is a concave, continuous function of

the mean-current s⃗.
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Main results

Let Ps⃗ denote the space of Z3
even invariant

probability measures µ with mean-current s⃗(µ) = s⃗.

Define ent : O → [0,∞) by

ent(s⃗) = sup
µ∈Ps⃗

hµ.

Theorem (C. , Sheffield, Wolfram, 2023)

1. The function ent : O → [0,∞) is zero on the edges and vertices of O.

2. The function ent is strictly concave on O except on the edges and vertices.

3. If (s1, s2, s3) ∈ ∂O, then ent(s⃗) equals the entropy of lozenge tilings with

slope (2|s1|, 2|s2|, 2|s3|).

4. If µs⃗ ∈ Ps⃗ is such that hµ⃗s
= ent(s⃗) then µs⃗ is a uniform Gibbs measure.

5. If in addition s⃗ ∈ Int(O), then each ergodic component of µs⃗ is a uniform

Gibbs measure with mean-current s⃗.

6. Finally if s⃗ ∈ Int(O) then all ergodic uniform Gibbs measures with

mean-current s⃗ are entropy maximisers on Ps⃗ .
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6. Finally if s⃗ ∈ Int(O) then all ergodic uniform Gibbs measures with mean-current s⃗ are entropy maximisers on Ps⃗ .

We prove a lot more. Our real main result establishes a

large deviation principle for the dimer model in 3 dimensions.

44 / 87



Main results

Theorem (C. , Sheffield, Wolfram, 2023)

1. The function ent : O → [0,∞) is zero on the edges and vertices of O.

2. The function ent is strictly concave on O except on the edges and vertices.

3. If (s1, s2, s3) ∈ ∂O, then ent(⃗s) equals the entropy of lozenge tilings with slope (2|s1|, 2|s2|, 2|s3|).

4. If µ⃗s ∈ Ps⃗ is such that hµ⃗s
= ent (⃗s) then µ⃗s is a uniform Gibbs measure.

5. If in addition s⃗ ∈ Int(O), then each ergodic component of µ⃗s is a uniform Gibbs measure with mean-current s⃗.

6. Finally if s⃗ ∈ Int(O) then all ergodic uniform Gibbs measures with mean-current s⃗ are entropy maximisers on Ps⃗ .

By Cohn, Kenyon and Propp (2001),

it follows from our result that if s⃗ ∈ ∂O then ent(s⃗) has

an explicit expression in terms of the Lobachevsky function.
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If s⃗ ∈ ∂O then

ent(s⃗) =
1

π
(L(2π|s1|) + L(2π|s2|) + L(2π|s3|))

where L(θ) = −
∫ θ

0
ln(2 sin(x))dx .
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Main results

Theorem (C. , Sheffield, Wolfram, 2023)
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4. If µ⃗s ∈ Ps⃗ is such that hµ⃗s
= ent (⃗s) then µ⃗s is a uniform Gibbs measure.

5. If in addition s⃗ ∈ Int(O), then each ergodic component of µ⃗s is a uniform Gibbs measure with mean-current s⃗.

6. Finally if s⃗ ∈ Int(O) then all ergodic uniform Gibbs measures with mean-current s⃗ are entropy maximisers on Ps⃗ .

By symmetry a Z3
even ergodic Gibbs measure

µ is a measure of maximal entropy if and only if s⃗(µ) = 0.

47 / 87



Entropy maximisers of a given mean-current are uniform Gibbs measures
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The baby case: Entropy maximisers of a given mean-current are uniform

Gibbs measures.

The proof of this fact follows the proof of Burton and Steif. Here is a proof

sketch:

Suppose that µ ∈ Ps⃗ is not a uniform Gibbs measure.

Then there is a region R

such that R appears with positive probability but conditioned on seeing it, the

tilings inside are not uniform. Now divide Z3 into big boxes
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these boxes if you see the region R far from the boundary of the boxes

resample the tiling inside R uniformly.

Recall that the uniform probability measure on a finite set has maximum

entropy.

Argue that we have increased entropy on average. Take averages of

shifts of this new probability measure to get a measure with great entropy.

All we are left to check is that the new measure has the same mean-current s⃗.
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The baby case: Entropy maximisers of a given mean-current are uniform

Gibbs measures.

All we are left to check is that the new measure has the same mean-current s⃗.

Notice that the flux along any hyperplane close to boundary of the boxes has

remain unchanged. Thus the mean-current has remained unchanged. This

completes the proof.
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All of this relates to the Arctic circle phenomena in the following way: If one

were to expand on that little white dot, one would find a sample of an ergodic

Gibbs measure of a certain mean-current.
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Outline

1. The basic toolbox

1.1 What are uniform Gibbs measures?

1.2 Lanford-Ruelle theorem.

1.3 Dimers, discrete vector fields and the Z3
even action

2. Mean-current and entropy maximisers

2.1 Mean-current for ergodic measures.

2.2 Concavity of the entropy function.

2.3 Statement of the main result.

2.4 The baby case: Entropy maximisers of a given mean-current are uniform

Gibbs measures.

3. The patching argument

3.1 Dobrushin’s theorem

3.2 Ergodic Gibbs measures of the same mean-current have the same entropy

4. Cluster Swapping

4.1 Swapping of paths in the double dimer model and its effect on

mean-current and entropy

4.2 The main result: Strict concavity of entropy as a function of the

mean-current
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The Patching Argument



Dobrushin’s theorem

Dobrushin (1968) showed that if dimer tilings satisfied a certain mixing

condition, then all Z3
even invariant Gibbs measures are measures of maximal

entropy. Ruelle calls it the D-condition.

Here is what is needed: Given two tilings τ1 and τ2 of Z3, can we patch in a

part of τ1 into τ2 (say a box of size n) without wasting too much space (at

most o(n))?
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Dobrushin’s theorem

The D-condition: Given two tilings τ1 and τ2 of Z3, can we patch in a part of τ1

into τ2 (say a box of size n) without wasting too much space (at most o(n))?

If we could do this for ‘most’ samples τ1, τ2 from uniform Z3
even ergodic Gibbs

measures µ1, µ2 and vice versa, we would have hµ1 = hµ2 .
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Patching theorem

Theorem (Patching theorem - C., Sheffield, Wolfram, 2023)

Let s⃗ ∈ int(O) and τ1, τ2 be samples from Z3
even ergodic measures µ1, µ2 ∈ Ps⃗ .

Then for all n there exists an integer bn = o(n) such that with a high

probability there is a tiling τ for which

τ =

τ1 outside [−n, n]3

τ2 in [−n + bn, n − bn]
3

This is the heart of our results and the most difficult step. It can be thought of as a

very complicated application of the Hall’s marriage lemma. We conjecture that such a

patching lemma should be true in much greater generality for flows.

Figure 6: If the average flux along line with the same colour are close to each other

then the two tilings can be patched.
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Figure 6: If the average flux along line with the same colour are close to each other

then the two tilings can be patched. 57 / 87



Ronnie’s talk

Recall that in Ronnie’s talk earlier he wanted to be able to patch any possible

pattern inside.
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Patching theorem and its corollary

Theorem (Patching theorem - C., Sheffield, Wolfram, 2023)

Let s⃗ ∈ int(O) and τ1, τ2 be samples from Z3
even ergodic measures µ1, µ2 ∈ Ps⃗ .

Then for all n there exists an integer bn = o(n) such that with a high

probability there is a tiling τ for which

τ =

τ1 outside [−n, n]3

τ2 in [−n + bn, n − bn]
3

As an immediate corollary we get the following conclusion:

Corollary

Let s⃗ ∈ int(O) and µ1, µ2 ∈ Ps⃗ be Z3
even ergodic Gibbs measures. Then

hµ1 = hµ2 .
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Outline

1. The basic toolbox

1.1 What are uniform Gibbs measures?

1.2 Lanford-Ruelle theorem.

1.3 Dimers, discrete vector fields and the Z3
even action

2. Mean-current and entropy maximisers

2.1 Mean-current for ergodic measures.

2.2 Concavity of the entropy function.

2.3 Statement of the main result.

2.4 The baby case: Entropy maximisers of a given mean-current are uniform

Gibbs measures.

3. The patching argument

3.1 Dobrushin’s theorem

3.2 Ergodic Gibbs measures of the same mean-current have the same entropy

4. Cluster Swapping

4.1 Swapping of paths in the double dimer model and its effect on

mean-current and entropy

4.2 The main result: Strict concavity of entropy as a function of the

mean-current
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So far

1. We showed that tilings are associate with ‘divergence’ free discrete vector

fields.

2. This shows that any Z3
even ergodic measure µ on the space of dimer tilings

has an associated mean-current s⃗(µ).

3. O = {(s1, s2, s3) : |s1|+ |s2|+ |s3| ≤ 1/2} is the space of all possible

mean-currents and Ps⃗ is the space of all Z3
even invariant Gibbs measures.

4. ent(s⃗) = maxµ∈Ps⃗
hµ is a concave continuous function on O.

5. The maximisers are Z3
even invariant Gibbs measures in Ps⃗ .

6. If s⃗ ∈ Int(O), then any two Z3
even ergodic Gibbs measures in Ps⃗ have the

same entropy.

We will now show that the function is strictly concave on O \ edges. This
requires cluster swapping.
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Cluster Swapping



Cluster swapping

We will prove that ent( s⃗1+s⃗2
2

) > ent (⃗s1)+ent (⃗s2)
2

. This done by

1. Superimposing samples from ergodic Gibbs measures with mean-current s⃗1

and s⃗2 respectively.

2. Swapping dimers between the two samples.

3. Realising that

3.1 We haven’t increased entropy in the process.

3.2 After the swaps the tilings each have mean-current s⃗1+s⃗2
2

.
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Superimposition of two dimer configurations: The double dimer model

If we superimpose two dimer configurations then the edges either match up,

form loops or infinite paths.
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van den Berg’s disagreement percolation (1993)

The starting point is van den Berg’s disagreement percolation.:

Theorem
Suppose that we sample τ1 and τ2 from Z3

even ergodic uniform Gibbs measures

µ1 and µ2 (with respect to some invariant uniform Gibbs joint distribution). If

only finite cycles are formed upon their superimposition, then µ1 = µ2.

The idea of the proof is the following:

1. The superimposition of τ1 and τ2 forms finite cycles.

2. Resample together on the places where they differ conditioned on the

places where they are the same. We can do this because µ1 and µ2 are

uniform Gibbs measures.

3. Conclude that the new tilings must be samples from the same measure to

start with.
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How will be prove strict concavity?

Let s⃗1 ̸= s⃗2 ∈ O such that s⃗1+s⃗2
2

∈ Int(O).

Let µ1 be an entropy maximiser for Ps⃗1 and µ2 be one for Ps⃗2 .

It is enough to show that ent( s⃗1+s⃗2
2

) >
hµ1

+hµ2
2

to prove that

ent( s⃗1+s⃗2
2

) > ent (⃗s1)+ent (⃗s2)
2

.

For this it is enough to produce µ̃ ∈ P s⃗1+⃗s2
2

such that it is not a Z3
even invariant

Gibbs measure and

hµ̃ =
hµ1 + hµ2

2

Since entropy maximisers are uniform Gibbs measures this is enough to

complete the proof.
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Cluster Swapping

Let µ1 be an entropy maximiser for Ps⃗1 and µ2 be one for Ps⃗2 .

We need to produce µ̃ ∈ P s⃗1+⃗s2
2

such that it is not a Z3
even invariant Gibbs

measure and

hµ̃ =
hµ1 + hµ2

2
.

Let τ1 and τ2 be independent samples from µ1 and µ2 respectively.
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Cluster Swapping
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Cluster Swapping

Let µ1 be an entropy maximiser for Ps⃗1
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Let τ1 and τ2 be independent samples from µ1 and µ2 respectively. Superimpose them. By van der Berg’s disagreement percolation

technique, we find that there must be many infinite lines in the superimposition. On each line independently with probability 1/2 choose

to either keep things unchanged or to switch between τ1 and τ2. This gives rise to new tilings τ′
1, τ

′
2 .
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The actual technique is a little more intricate.

In particular one has to worry

about whether the slope of the lines are non-zero or not. There are a few other

lies I have said but this is the rough idea.
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Cluster Swapping

Let µ1 be an entropy maximiser for Ps⃗1 and µ2 be one for Ps⃗2 .

We need to produce µ̃ ∈ P s⃗1+⃗s2
2

such that it is not a Z3
even invariant Gibbs measure and

hµ̃ =
hµ1 + hµ2

2
.

Let τ1 and τ2 be independent samples from µ1 and µ2 respectively. Superimpose

them. By van der Berg’s disagreement percolation technique, we find that there must

be many infinite lines in the superimposition. On each line independently with

probability 1/2 choose to either keep things unchanged or to switch between τ1 and

τ2. This gives rise to new tilings τ ′1, τ
′
2.

Suppose τ ′
1, τ

′
2 are samples from measures µ′

1 and µ′
2. Since we have switched

with equal probabilities between tiles in τ1 and tiles in τ2 one can conclude that

s⃗(µ′
1) = s⃗(µ′
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s⃗1 + s⃗2
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be many infinite lines in the superimposition. On each line independently with

probability 1/2 choose to either keep things unchanged or to switch between τ1 and

τ2. This gives rise to new tilings τ ′1, τ
′
2.

Further since (τ1, τ2) differ from (τ ′
1, τ

′
2) only on infinite lines one can conclude

that

hµ1 + hµ2 = h(µ1×µ2) = h(µ′
1, µ

′
2).
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Cluster Swapping: How does it effect slope and entropy?

Let µ1 be an entropy maximiser for Ps⃗1 and µ2 be one for Ps⃗2 .

We need to produce µ̃ ∈ P s⃗1+⃗s2
2

such that it is not a Z3
even invariant Gibbs

measure and

hµ̃ =
hµ1 + hµ2

2
.

Let τ1 and τ2 be independent samples from µ1 and µ2 respectively.

Superimpose them. By van der Berg’s disagreement percolation technique, we

find that there must be many infinite lines in the superimposition.

On each line independently with probability 1/2 choose to either keep things

unchanged or to switch between τ1 and τ2.

This gives rise to new tilings τ ′
1, τ

′
2. They correspond to measures µ′

1, µ
′
2 each

with slope s⃗1+s⃗2
2

and which have total entropy hµ1 + hµ2 .
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Cluster Swapping: Destroying the Gibbs property

This gives rise to new tilings τ ′
1, τ

′
2. They correspond to measures µ′

1, µ
′
2 each

with slope s⃗1+s⃗2
2

and which have total entropy hµ1 + hµ2 .

Now suppose for the sake of contradiction ent( s⃗1+s⃗2
2

) = ent (⃗s1)+ent (⃗s2)
2

. Then the

measures µ′
1 and µ′

2 must have ergodic components which are uniform Gibbs

measures with the same mean-current.

But then for any box [−n, n]3 we can patch a part of τ ′
1 into τ ′

2 leaving o(n)

from the boundary of the box to get a new pair of tilings τ ′
1 and τ ′′

2 .

When we superimpose τ ′
1 and τ ′′

2 we will get many infinite lines (about the size

of the boundary of the box) of disagreement outside [−n, n]3 and complete

agreement in [−n + o(n), n + o(n)]3.
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Cluster Swapping: Destroying the Gibbs property

These were the samples (τ ′
1, τ

′
2).
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Cluster Swapping: Destroying the Gibbs property

Here are (τ ′
1, τ

′′
2 ).

While there are many (proportional to the surface area of the

box) infinite lines, they cannot pass through the blue central block because the

tilings agree on them. Thus no such tilings can exist. Thus our assumption

ent(
s⃗1 + s⃗2

2
) =

ent(s⃗1) + ent(s⃗2)

2
was wrong. This completes the idea of the proof.
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This is one of the important steps in proving a large deviations principle for the

space of dimer tilings of Z3.
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Open question: Proper 4 colourings in 3 dimension

This question relates to the space of proper 4 colourings of the Z3 lattice.

Consider x ∈ {0, 1, . . . , 3}Z
3

given by

x⃗i =
k∑

k=1

kik mod 4.

One can check that the configuration x is ‘frozen’, that is, it cannot be locally

modified to obtain another proper 4-colouring (Alon, Briceño, Chandgotia,

Magazinov and Spinka, 2020).

Are there Gibbs measures on the space of proper 4-colourings which are of

positive entropy but not the measure of maximal entropy?

One cannot define a height function for this model (Schmidt, 1995) and neither

can one define a natural non-trivial vector field.
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Thanks for listening to the talk.
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