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Spread of an infection with host resistance

• Consider a host population distributed on Z.
• Each site is initially occupied by a single host
• The infection process starts in the origin 0 ∈ Z.
A pathogen infects the host at the origin

• The first infection is successful, in the sense that the host dies
and offspring pathogens are generated

• Pathogens perform independent symmetric random walks
with step size ±1.

• Whenever they hit a site occupied with a host they try to
infect the host.
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Spread of an infection with host resistance

• A host can resist against the infection at some strength ∈ N.
If the resistance of a host is larger than 1, the host stays alive,
the pathogen dies and the resistance reduces by one.
Otherwise the host dies and the pathogen particle reproduces.

• Sites free of hosts can be occupied by several pathogens.

• Hosts do not move and do not reproduce.
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Under which conditions and how fast
pathogen populations spread in such a scenario?



Related work

• Sascha’s poster!

• For host resistances of 1 the model is known as
the frog model
Each site of Z is interpreted as a stone. Initially on all stones
frogs are sleeping (in our case the pathogens that potentially
be generated at host infection). On the origin the frogs are
waken up. They jump around according to symmetric,
independent random walk. While jumping they wake up frogs
on stones, where they are jumping on. Frogs do not die!

Modified figure: original figure by Felicitas Weidner



Related work

• For the frog model in Zd a shape theorem is known, see
Ramirez and Sidoravicius (2004), Comets, Quastel and
Ramirez (2009).

• In the frog model with death frogs die after exponentially
distributed time.

• Hoffmann, Johnson and Junge (2017) consider an infection
model with host resistances. In this model pathogens do not
die when infecting a resistant host, but just move further.



Assumptions



Initial pathogen distributions

• ω−∞,1: infinite supply of pathogens left to the origin,
hosts right to the origin

• on each site x with x ≤ 0 there are Ox pathogens, with
(Ox)x≤0 iid N0-valued, Ox ∼ O ≤ o for some o ∈ N.

• one host on each site x with resistance Rx for x ≥ 1 with
(Rx)x≥1 iid N-valued



Initial pathogen distributions

• ωδ0,1: pathogens on site 0 seed the infection,
hosts right to the origin

• A0 pathogens on site 0
• no pathogens anywhere else
• 1 host on each site x for x ≥ 1 with resistance Rx for x ≥ 1

with (Rx)x≥0 iid N-valued



Initial pathogen distributions

• ωδ0,2: pathogens on site 0 seed the infection,
hosts on both sides of the origin

• A0 pathogens on site 0
• no pathogens anywhere else
• 1 host on each site x for x ≥ 1 with resistance Rx for x ̸= 0

with (Rx)x ̸=0 iid N-valued



Offspring pathogens

On sites k which are initially occupied by hosts pathogens can be
generated.

• The offspring numbers Ok ∼ O are iid N0-valued.
We assume O ≤ o for some o ∈ N. In this case the process is
well-defined and some calculations are simplified.



Interpretation of resistances

• R ∼ Geo(p) for some p ∈ (0, 1). Infection history of a host
does not influence susceptibility to the infection

• R = c : Certain resistance needs to be broken in a host

• R heavy-tailed distribution: Some hosts have a very high
resistance to the infection

• In our model time between infection trials of a host does not
influence the probability to be infected



Survival of pathogens

Under the initial condition

• ω−∞,1 pathogens survive a.s.

• ωδ0,1 the survival probability is positive,
if E[R] < E[O].

• ωδ0,2 the survival probability is positive,
if E[R] < E[O] and P(R−1 + R1 ≤ O0) > 0
(or if E[R] < E[O] and E[R2α] < ∞ for some α > 3).



Proof sketch for ωδ0,1

Assume E[R] < E[O].

• Since random walks are recurrent on Z,
for survival hosts need to be infected one after the other.

• Since pathogens perform symmetric random walks and only
the sites to the right need to be infected,
survival is equivalent to the event

∞⋂
n=1

{
n∑

k=1

Rk ≤
n∑

k=1

Ok−1

}
.

This event can be interpreted as the event that a random walk
with step size distributed as O − R stays non-negative.
Since we assumed E[O] > E[R], the random walk is transient
with a drift towards ∞ and
hence the survival probability is positive.



Proof sketch for ωδ0,2

under the assumption that
E[R] < E[O] and P(R−1 + R1 ≤ O0) > 0

• Consider a realisation with R−1 + R1 ≤ O0. There are enough
pathogens to infected the hosts on -1 and 1.

• Reenumerate the offspring numbers and the strengths of
resistances generated at subsequent infection events according
to the order they are occuring (and not by the site at which
the correspondings hosts are located).
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Proof sketch for ωδ0,2

under the assumption that
E[R] < E[O] and P(R−1 + R1 ≤ O0) > 0

• Consider a realisation with R−1 + R1 ≤ O0.

• Reenumerate the offspring numbers and the strengths of
resistances generated at subsequent infection events according
to the order they are occuring (and not by the site at which
the correspondings hosts are located). Then the pathogens
survives, if

A = ∩∞
n=1

{
n∑

k=1

R(k) ≤
n∑

k=1

O(k)

}

happens. Since E[R] < E[O], this event occurs with positive
probability. As the event A is independent of the event
{R−1 + R1 ≤ O0}.



Spread of infection (weak conditions)

Consider the initial conditions ω−∞,1 and ωδ0,1.
Let rt be the rightmost infected site at time t.
Assume E[R2α] < ∞ for some α > 1, then there exist
C1,C2 ∈ (0,∞), such that conditioned on survival

C1 ≤ lim inf
t→∞

rt
t
≤ lim sup

t→∞

rt
t
≤ C2 a.s.



Spread of infection (strong conditions)

Assume one of the following conditions is fulfilled:

• E[R2α] < ∞ for some α > 5 and P(O − R ≥ 4) > 0

• E[R2α] < ∞ for some α ∈ (2 +
√
5, 5] and P(O −R ≥ 5) > 0.

Then there exists a γ ∈ (0,∞) such that conditioned on survival
almost surely under the initial conditions ω−∞,1, ωδ0,1 and ωδ0,2

lim
t→∞

rt
t
= γ

and under ωδ0,2 in addition for the leftmost site ℓt it holds a.s.

lim
t→∞

ℓt
t

= −γ.

These conditions are only sufficient, but not necessary, because e.g
for the frog model with O ≡ 2 and R ≡ 1 and the spread is also
linear.



Spread of infection (strong conditions)

Assume one of the following conditions is fulfilled:

• E[R2α] < ∞ for some α > 5 and P(O − R ≥ 4) > 0

• E[R2α] < ∞ for some α ∈ (2 +
√
5, 5] and P(O −R ≥ 5) > 0.

Then there exists a γ ∈ (0,∞) such that conditioned on survival
almost surely under the initial conditions ω−∞,1, ωδ0,1 and ωδ0,2

lim
t→∞

rt
t
= γ

and under ωδ0,2 in addition for the leftmost site ℓt it holds a.s.

lim
t→∞

ℓt
t

= −γ.

These conditions are only sufficient, but not necessary, because e.g
for the frog model with O ≡ 2 and R ≡ 1 and the spread is also
linear.



Proof sketches



Spread of infection (weak conditions)

Consider the initial conditions ω−∞,1 and ωδ0,1 and.
Let rt be the rightmost infected site at time t.
Assume E[Rc ] < ∞ for some c > 2, then there exist
C1,C2 ∈ (0,∞), such that conditioned on survival

C1 ≤ lim inf
t→∞

rt
t
≤ lim sup

t→∞

rt
t
≤ C2 a.s.

Consider first the initial condition ω−∞,1



Spread of infection (weak conditions)

Consider the initial conditions ω−∞,1 and ωδ0,1 and.
Let rt be the rightmost infected site at time t.
Assume E[Rc ] < ∞ for some c > 2, then there exist
C1,C2 ∈ (0,∞), such that conditioned on survival

C1 ≤ lim inf
t→∞

rt
t
≤ lim sup

t→∞

rt
t
≤ C2 a.s.

Consider first the initial condition ω−∞,1



Upper bound

• E[O] > E[R]: Supercritical regime

• Coupling with a branching random walk where hosts do not
resist yields an upper bound



Lower bound

• Controll resistances to construct an auxiliary process which
moves not faster than the original process



Lower bound: Controlling resistances

• Finding regions of “good resistances and good offspring
numbers” with hosts having enough offspring to compensate
for the loss at host resistance and to push the front forward
fast enough
Moment conditions on resistances guarantee, that for each
site with high enough probability we do not need to consider a
too large region next to the site
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Lower bound: Controlling resistances

• Finding regions of “good resistances and good offspring
numbers” with hosts having enough offspring to compensate
for the loss at host resistance and to push the front forward
fast enough
Moment conditions on resistances guarantee, that for each
site with high enough probability we do not need to consider a
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Lower bound: Controlling resistances

• Finding regions of “good resistances and good offspring
numbers” with hosts having enough offspring to compensate
for the loss at host resistance and to push the front forward
fast enough
Moment conditions on resistances guarantee, that for each
site with high enough probability we do not need to consider a
too large region next to the site.

• Using these regions we construct a sequence of waiting times
(νn)n∈N with

• νn upper bounds the time to move from n − 1 to n
consider only viral particles born in the good region

• νn identically distributed
• νn ∈ Lq for all 1 ≤ q < α+1

2
• (νn)n∈N is stationary and a ϕ-mixing sequence with

ϕ(n) = O(n−
1
2+ε), because the size of good regions is not too

large

• Birkhoffs pointwise ergodic theorem yields the lower bound.



Extending the technique for the initial condition ωδ0,1

Need to cope with

• conditioning on survival: Controll influence on particle
movement

• no supply of viral particles left to the origin



Extending the technique for the initial condition ωδ0,1

• Find a site L (with finite distance to the origin) from which on
offspring numbers can well compensate resistances,
more precisely for all n ≥ L∑n

k=1 RL+k−1 ≤ βRn and
∑n

k=1OL+k ≥ βOn
for appropriate βR < βO

• Show conditioned on surival L < ∞ a.s. and the time to reach
site L is a.s. finite

• Starting from L on we build waiting times (ν̃n)n≥L which give
a lower bound on the times to move the front from n− 1 to n
similar as the waiting time (νn)n∈N for ω−∞,1

• Show that ν̃n ∈ Lq and (ν̃n)n≥L are ϕ-mixing with
ϕ(n) ∈ O(n−c/2+ε)

• Furthermore (ν̃n)n≥L is asymptotically distributed as (νn)n≥1

• SLLN for Lq-mixingales yields the claim, see Serfling (1968).



Spread of infection (strong conditions)

Assume one of the following conditions is fulfilled:

• E[Rc ] < ∞ for some c > 10 and P(O − R ≥ 4) > 0

• E[Rc ] < ∞ for some c ∈ (2 +
√
5, 5] and P(O − R ≥ 5) > 0.

Then there exists a γ ∈ (0,∞) such that conditioned on survival
almost surely under the initial conditions ωδ0,1 and ωδ0,2

lim
t→∞

rt
t
= γ

and under ωδ0,2 in addition for the leftmost site ℓt it holds a.s.

lim
t→∞

ℓt
t

= −γ.



Proof sketch

• The conditions guarantee a positive survival probability also
for ωδ0,2. Use similar techniques as in the previous proof to
show that with positive probability pathogens on the left do
not help pathogens to spread on the right and vice-versa.

• Use subadditivity arguments to show almost sure convergence

• Identify a sequence of subsequent sites (M i )i≥0 from each of
which on offspring numbers can well compensate for
resistances.

• Show that subsequent sites are not too far from each other
and the distance M i −M i−1 are identically distributed for
i ≥ 1.

• Let Ti be the time to reach site M i

• Show that the distribution functions of the times Ti − T0

fulfill a subadditivity property, have second moments and
T0 < ∞ a.s.

• The claimed result follows then by subadditivity, see Smythe,
Wierman (1987) based on a result by Hammersley (1974).



Thank you!

Literature

• J. Quastel, F. Comets, A. F. Ramirez. Fluctuations of the front in a one dimensional Model of X + Y →
2X , Trans. American Math. Society, 2009.
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