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(Wright-)Malécot formula (S. Wright 1943, G. Malécot 1948)

Assume:
• a population lives, reproduces and evolves in a two-dimensional

space, offspring disperse (only) locally around parent’s location
• habitat ≈ homogeneous in space and time,

population “in equilibrium”
• neutral genetic variation (according to infinite alleles)

Sample two individuals: one from 0, one from x (∈ R2, say)

ϕ(x) := P(the two sampled individuals have the same type)
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(Wright-)Malécot formula

ϕ(x) := P(two sampled individuals with separation x have same type)

ϕ(x) ≈ 1
2πσ2δ + K0(

√
2µκ/σ)

K0
(√

2µ ∥x∥/σ
)

for ∥x∥ ≥ κ

with
δ > 0 . . . local population density (i.e., in a region A one should find on

average δ|A| many individuals)
σ > 0 . . . standard deviation of the spatial displacement between

a typical individual and its parent (viewed backwards in time)
µ > 0 . . . mutation probability per generation
κ > 0 . . . a “local scale” parameter

(approximation breaks down for distances < κ)

K0(·) modified Bessel function of the second kind of order 0

K0 solves t2 d2

dt2 K0(t) + t d
dt K0(t)− t2K0(t) = 0, t > 0

with boundary behaviour K0(t) ∼
√

π
2t exp(−t) for t → ∞,

K0(0) ∼ log(1/t) for t → 0.
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G. Malécot originally derived this formula by proposing a recursion
formula (‘backwards analysis’)

ϕ(y) = (1 − µ)2
(

1 − ϕ(0)
δ

∫
R2

g1(y − z)g1(z)dz

+

∫
R2×R2

g1(z)g1(z′)ϕ(y + z − z′)dzdz′
)

(g1(·) is the 2d standard normal density), then taking the Fourier
transform and (formally) inverting it

Very nice explanations and discussion e.g. in
• N. H. Barton, F. Depaulis, A. M. Etheridge, Neutral evolution in

spatially continuous populations, Theor. Pop. Biol. 61(1):31–48, (2002).
• A. M. Etheridge, Evolution in fluctuating populations, Mathematical

statistical physics, Elsevier B. V., 2006, pp. 489–545.
• A. M. Etheridge, Spatial population models, 23rd Brazilian school of

probability, Sociedade Brasileira de Matemática, 2019, pp. 75–186.
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An alternative view on Malécot’s formula
Assume:
Two ancestral lineages cannot merge when separated by more than κ,
the difference of their spatial embeddings is a 2d Brownian motion
(Bt)t≥0 (variance 2σ2).
τ := inf{t ≥ 0 : ∥Bt∥ ≤ κ}.
For µ ≥ 0 put

fµ(x) = Ex[exp(−2µτ)ϕ(κ)], x ∈ R2.

We have
σ2∆fµ(x)− 2µfµ(x) = 0, ∥x∥ > κ,

fµ(x) = ϕ(κ), ∥x∥ ≤ κ.

By radial symmetry, fµ(x) = gµ(∥x∥).
gµ solves (using the Laplace operator in polar coordinates)

g′′
λ(x) +

1
r g′

λ(r)−
2µ
σ2 gλ(r) = 0, r ≥ κ

and gλ(κ) = ϕ(κ), gλ(∞) = 0.
Hence fµ(x) = ϕ(x).
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Known problems with Malécot’s formula
(1) No explicit underlying forwards model:

critical branching Brownian motions die out in d = 2
(J. Felsenstein’s ‘pain in the torus’ 1975, O. Kallenberg 1977)

(2) No consistent way of extending to larger sample sizes

Possible remedies:
(a) discretise space and enforce constant local population sizes (stepping
stone model):
elegant sampling formulas via duality with coalescing random walks, but
deterministic size restriction seems artificial (and removes ‘ecology’)

(b) consider branching random walks with local regulation or relatives
(either in continuous space or in discrete space):
however, little hope for explicit sampling formulas

(c) Spatial-Λ-Fleming Viot processes: in principle elegant sampling
formulas, very versatile approach, arguably implicitly takes a large (local)
population density limit
N. H. Barton, A. M. Etheridge, A. Véber 2010 and ...

(d) consider a compact space
[cf. P. Koepernik, The Brownian spatial coalescent, arxiv:2401.08557]
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Remark (Remedy (a) is not “too bad”). Malécot’s formula fits well also to
2-dim. stepping stone models (with suitably adjusted parameters)
already for quite modest distances, as observed e.g. in Barton, Depaulis,
Etheridge 2002.
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Comparison with IBD probability in a stepping stone model on Zd:
N = 10, symmetric nearest neighbour migration at rate m = 0.05 (= 2σ2),
µ = 10−6 (with choice κ = 0.33)
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Remedy (b): Branching random walk with local density-dependent
feedback

• Offspring distribution supercritical when there are few neighbours,
subcritical when there are many neighbours

• Possible and natural extension of the stepping stone model
(and of branching random walks and of the contact process)

e.g. Bolker & Pacala (1997), Murrell & Law (2003), Etheridge (2004),
Fournier & Méléard (2004), Hutzenthaler & Wakolbinger (2007)
Blath, Etheridge & Meredith (2007), B. & Depperschmidt (2007),
Pardoux & Wakolbinger (2011), Greven, Sturm, Winter, Zähle (2015), Maillard &
Penington (2022), ...

Rest of this talk: Focus on (b) in the ‘flavour’ considered in
B. & Depperschmidt (2007), recover an asymptotic version of Malécot’s
formula in that framework
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Large sampling distance, small mutation rate: limits

Observation.
Assume

x = Ny with y ∈ R2 \ {0} and µ = µN = mN−2γ

with m ∈ (0,∞) and γ ≥ 1 (all other parameters fixed).

Malécot’s formula yields

ϕ(x) =
K0
(√

2m∥y∥N1−γ/σ
)

2πσ2δ + K0
(√

2mκN−γ/σ
)

∼
− log

(√
2m∥y∥N1−γ/σ

)
− log

(√
2mκN−γ/σ

) −→
N→∞

1 − 1
γ

(using K0(t) ∼ log(1/t) for t ↓ 0)
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(Our version of) Logistic branching random walks

Particles ‘live’ in Zd in discrete generations,
ηn(x) = # particles at x ∈ Zd in generation n.

Given ηn,
each particle at x has Poisson

((
m −

∑
z λz−xηn(z)

)+) offspring,
m > 1, λz ≥ 0, λ0 > 0, symmetric, finite range.
(Local competition: Ind. at z reduces average reproductive success of
focal ind. at x by λz−x)

Children take an independent random walk step to y with probability
py−x, pxy = py−x symmetric, aperiodic finite range random walk kernel on
Zd.

Given ηn,

ηn+1(y) ∼ Poi
(∑

x
py−xηn(x)

(
m −

∑
z λz−xηn(z)

)+)
, independent
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Remarks

ηn+1(y) ∼ Poi
(∑

x
py−xηn(x)

(
m −

∑
z λz−xηn(z)

)+)
, independent

• For λ ≡ 0, (ηn) is a branching random walk.

• (ηn) is a spatial population model with local density-dependent
feedback:
Offspring distribution supercritical when there are few neighbours,
subcritical when there are many neighbours

• System is in general not attractive.

• Conditioning1 on ηn(·) ≡ N for some N ∈ N (“effective local
population size”) yields a discrete version of the stepping stone
model

• Dynamics can be generalised (e.g. form of feed-back function or
offspring distribution)

1and considering types and/or ancestral relationships 10/22



Survival, complete convergence, stationary regime

Theorem (B. & Depperschmidt, 2007).
Assume m ∈ (1,3), 0 < λ0 ≪ 1, λz ≪ λ0 for z ̸= 0.
(ηn) survives for all time globally and locally with positive probability for
any non-trivial initial condition η0. Given survival, ηn converges in
distribution to its unique non-trivial equilibrium ν.

Consider the stationary process (ηstatn )n∈Z with L(ηstatn ) = ν for all n ∈ Z,
enriched with “enough book-keeping” to follow ancestries of particles.

Let x ∈ Zd, x ̸= 0, sample one individual from ηstat0 at 0 and one from x
X = (Xk)k∈N0 , Xk = position of ancestor k generations into the

past of particle sampled at 0
X ′ = (X ′

k)k∈N0 , X ′
k = position of ancestor k generations into the

past of particle sampled at x
τcoal = time (in generations) to MRCA of the two sampled particles
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Theorem (B., Depperschmidt, Schlüter 2024).
Let d = 2, assume m ∈ (1,3), 0 < λ0 ≪ 1, λz ≪ λ0 for z ̸= 0.

lim
N→∞

PNx
(
τcoal > N2γ) =

1
γ

for γ ≥ 1.

(PNx refers to sampling at separation Nx, x ̸= 0)

Corollary. (“asymptotic analogue of Malécot’s formula”)
This implies for µN = mN−2γ (γ ≥ 1, m ∈ (0,∞))

ϕN(Nx) = ENx
[
(1 − µN)

2τcoal
]
−→

N→∞
1 − 1

γ
.

Proof of corollary: ENx
[
(1 − µN)

2τcoal
]
∼ ENx

[
exp(−2mN−2γτcoal)

]
For ε > 0 small and N large

exp(−2mN−ε)PNx
(
τcoal ≤ N2γ−ε)

≤ ENx
[
exp(−2mN−2γτcoal)

]
≤ PNx

(
τcoal ≤ N2γ+ε)+ exp(−2mNε)

hence(
1 − 1

γ − ε
2

)(
1 − o(1)

)
≤ ENx

[
(1 − µN)

2τcoal
]
≤

(
1 − 1

γ + ε
2

)(
1 + o(1)

)
then take ε ↓ 0
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Let d = 2, assume m ∈ (1,3), 0 < λ0 ≪ 1, λz ≪ λ0 for z ̸= 0.

lim
N→∞

PNx
(
τcoal > N2γ) =

1
γ

for γ ≥ 1.

(PNx refers to sampling at separation Nx, x ̸= 0)

Corollary. (“asymptotic analogue of Malécot’s formula”)
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Remark (Hitting times for two-dimensional random walk, Erdős-Taylor
1960).
Let S = (Sk)k∈N0 be 2d (say, symmetric simple) random walk,
τ0 := inf{k : ∥Sk∥ = 1} the hitting time of (neighbourhood of) the origin.
For ∥x∥ = N and γ ≥ 1,

Px
(
inf{k : ∥Sk∥ = 1} > N2γ) =

1 + o(1)
γ

as N = ∥x∥ → ∞.

Idea:
inf{k : ∥Sk∥ = 1} ≍ N2γ “⇐⇒” ∥S∥ hits Nγ before 1,

Z2 ∋ x 7→ log(∥x∥) is ‘almost’ harmonic for S in Z2 \ {0}
(literally harmonic for 2d BM), thus

PN
(
∥S∥ hits Nγ before 1

)
≈ log(N)− log(1)

log(Nγ)− log(1) =
1
γ
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Ancestral lines as random walks in dynamic random environment

Xk = position of ancestor k generations into the past of par-
ticle sampled at 0

X ′
k = position of ancestor k generations into the past of par-

ticle sampled at x

X and X ′ are random walks in the dynamic random environment
generated by (the time reversal of) ηstat

Given ηstat and Xk = x, Xk+1 = y w. prob.

px−yη
stat
−k−1(y)

(
m −

∑
z λz−yη

stat
−k−1(z)

)+∑
y′ px−y′η

stat
−k−1(y′)

(
m −

∑
z λz−y′η

stat
−k−1(z)

)+
(note: a Poisson vector conditioned on its total sum is multinomial)

and analogously for X ′

Note: even conditioned on ηstat, X and X ′ are correlated when closer than
interaction range
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Tools and proof ideas
• Joint regeneration construction for X and X ′ under the ‘annealed’ law

(averaging over ηstat and the dynamics of the two ancestral lineages at the
same time)
such that

P(more than ℓ steps until regeneration) ≤ const. × ℓ−β

uniformly in the initial separation x and

total variation distance between
L
(
(X, X ′) until next regeneration

∣∣ initial separation x
)

and
L
(
(X, X ′′) until next regeneration

∣∣ initial separation x
)

is ≤ const. × ∥x∥−β for some (large) β > 2,
where X ′′ moves in an independent copy of ηstat.
(Extending B., Černý, Depperschmidt 2016, where a single lineage is studied.)

• X − X ′′, observed along regeneration times, has i.i.d. increments
(with suff. high moments), thus X − X ′′ behaves like 2d Brownian
motion over large space-time scales.

• Couple (X, X ′) and (X, X ′′) with controlled error to transfer
asymptotics 15/22



Tools and proof ideas, 2

Proof of survival and complete convergence of (ηn) and also the (joint)
regeneration construction of two ancestral lineages uses

• corresponding deterministic system

ζn+1(y) =
∑

x
py−xζn(x)

(
m −

∑
z λz−xζn(z)

)+

has unique (and globally attracting) non-triv. fixed point

• strong coupling properties of η

• coarse-graining and
(lots of) comparisons with supercritical directed percolation.

Ls

Lt
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Coupling: An essential proof ingredient

m = 1.5, p = (1/3, 1/3, 1/3), λ = (0.01, 0.02, 0.01)

Starting from any two initial conditions η0, η′
0, copies (ηn), (η′

n) can be
coupled such that if both survive, ηn(x) = η′

n(x) in a space-time cone.
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Supercritical oriented percolation

“Eventually, everything is caught by the cluster started at the
(space-time) origin.”
(No information comes from outside at late times when p sufficiently large)

−40 −20 0 20 40

0
20

40
60

(Here, p = 0.77, U = {−1, 0, 1}, Ũ = {−2,−1, 0, 1, 2})
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Idea for constructing regeneration times

Find time points along the path such that:
• a cone (with fixed suitable base diameter

and slope)
centred at the current space-time
position of the walk covers the path
and everything it has explored so far
(since the last regeneration)

• configuration ηstat at the base of the
cone is “good”

• “strong” coupling for ηstat occurs inside
the cone

t0

t1

t2

t3

Then, the conditional law of future path increments is completely
determined by the configuration ηstat at the base of the cone
(= a finite window around the current position)

• For joint regeneration of two lineages, we use corresponding
double cones.
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Outlook

• Results “conceptual” rather than practical:
Can you get numbers out of it??
(e.g. variance of lineages from parameters of forwards model?
“in principle”-answer from regeneration construction,
in practice: simulations)

• ‘Abstract’ regeneration construction can cover more general
forwards models.
Include continuous space models with discrete particles?

• Larger sample sizes?
(note B., Gantert, Steiber 2019 for Brownian web limit in d = 1)

• Adding selection?
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Thank you!

M.B., Andrej Depperschmidt, Timo Schlüter, Quenched CLT for ancestral lineages of logistic
branching random walks, arXiv:2403.08567 (2024)

M.B., Andrej Depperschmidt, Timo Schlüter, Pair coalescence times of ancestral lineages of two-
dimensional logistic branching random walks, arXiv:2405.02090 (2024)

22/22


	Introduction
	Logistic branching random walks and pair coalescence times
	Tools and proof ideas

