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The Model

Population size: N.

Mutation

Rate: µN per individual.
All mutations are beneficial.
The population starts without
any mutations.

Selection

Fitness of an individual:
(1 + sN)

k where k is the
number of mutations that the
individual has.
Death rate: 1 per individual.
Replacement of the death is
randomly chosen proportional
to the fitness.
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The Case of a Single Mutation

Consider the case that one individual acquires a mutation, and no further
mutations occur. Let X0,N(t) and X1,N(t) be the number of individuals at
time t with no mutations and with one mutation, respectively.

The process X1 jumps up by 1 at rate X0,N(t) ·
(1+sN)X1,N

X0,N(t)+(1+sN)X1,N(t)
.

The process X1 jumps down by 1 at rate X1,N(t) ·
X0,N

X0,N(t)+(1+sN)X1,N(t)
.

The ratio of the jump-up rate to the jump-down rate is 1 + sN .

Standard results on asymmetric random walks yield that X1 hits N
before 0 with probability

sN
(1 + sN)(1− (1 + sN)−N)

,

which is approximately sN
1+sN

if (1 + sN)
N → 0 as N → ∞.

Given that the selective sweep occurs, the duration of the selective
sweep is approximately 2

sN
logN.
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Assumptions on the Parameters

1 µN ≪ 1
N logN .

2 sN ∼ N−η where η ∈ (0, 1) is a constant.

Reasons for the assumptions:

Total mutation rate is NµN .

The probability that a mutation triggers a selective sweep is
approximately sN

1+sN
≈ sN , provided that sN ≪ 1.

Mutation that triggers a selective sweep occurs at rate NµNsN .

The duration of a selective sweep is approximately 2
sN

logN.

The assumption µN ≪ 1
N logN implies that the waiting time for a

mutation that triggers a selective sweep is much longer than the the
duration of a selective sweep.
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Notations

Let Xk,N(t) be the number of individuals with exactly k mutations at
time t for all nonnegative integers k and all t ≥ 0.

Let Tk,N = inf{t ≥ 0 : Xk,N(t) >
logN
sN

} for all positive integers k,
and let T0,N = 0.

An individual with exactly k mutations will be called type k for all
nonnegative integers k.
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The Main Result

Theorem (Part 1)

Let η ∈ (0, 1). Assume that µN ≪ 1
N logN and sN ∼ N−η. Let (ξk)

∞
k=1 be

a sequence of independent random variables having the exponential
distribution with mean one. Then for each fixed positive integer K , as
N → ∞ we have the convergence in distribution(

NµNsN(Tk,N − Tk−1,N)
)K
k=1

⇒ (ξk)
K
k=1. (1)
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The Main Result

Theorem (Part 2)

Furthermore, there exist positive constants C1 and C2 and a positive
integer ∆, all depending on η, such that for all nonnegative integers k , we
have

lim
N→∞

P

(
Xk,N(t) ≥ N − C2 logN

sN
for all t ∈

[
Tk,N +

C1 logN

sN
,Tk+1,N

))
= 1 (2)

and

lim
N→∞

P

( k+∆∑
j=k

Xj ,N(t) = N for all t ∈
[
Tk,N +

C1 logN

sN
,Tk+1,N

))
= 1.

(3)

Nantawat Udomchatpitak (Mahidol University, Thailand Joint work with Jason Schweinsberg from University of California San Diego, USA.)The Accumulation of Beneficial Mutations and Convergence to a Poisson ProcessMay 20, 2024 9 / 28



The Main Result

Nantawat Udomchatpitak (Mahidol University, Thailand Joint work with Jason Schweinsberg from University of California San Diego, USA.)The Accumulation of Beneficial Mutations and Convergence to a Poisson ProcessMay 20, 2024 10 / 28



The Main Result

Corollary

For all t ≥ 0, let

XN(t) =
1

N

∞∑
k=0

kXk(t).

Then, the finite-dimensional distributions of the processes
(XN(t/(NµNsN)), t ≥ 0) converge as N → ∞ to the finite-dimensional
distributions of a homogeneous rate one Poisson process.
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Related Works

Lenski’s long-term evolution experiment (LTEE)

Every day, a sample of the populations of Escherichia coli is chosen to
populate the next generation.
Observe that the mean fitness over time is a concave function.

Casanova, Kurt, Wakolbinger, and Yuan (2016) presented a model
that explains the Lenski’s experiment. They assume that
µN ∼ N−(1+a) and sN ∼ N−b where 0 < b < 1 and a > 3b.

Our work suggests that the same results may still hold under the
weaker assumption that a > 0.
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Related Works (Different Values of µN and sN)

1 Case: µN ∼ C
N logN where C is a positive constant.

See overlaps between selective sweeps.
Studied by Gerrish and Lenski (1998).
Recent rigorous study by Casanova, Hermann, dos Santos, Tobias, and
Wakolbinger. (The manuscript is in preparation.)

2 Case: µN ∼ N−a for some a ∈ (0, 1) and sN = s is a constant.

Durrett and Mayberry (2011) studied the same model as ours. They
showed that if Tk is the first time that an individual has k mutations,
then there is a constant tk such that as N → ∞,

sTk

log(1/µN)
→P tk .
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Related Works (Different Values of µN and sN)

3 Case: N−a ≪ µN ≪ sbN for all a > 0 and b > 0.

Schweinsberg (2017) studied a similar model and made the results of
Desai and Fisher (2007), and Desai, Walczak, and Fisher (2013)
rigorous.

4 Case: µN = µ and sN = s are both positive constants.

Yu, Etheridge, and Cuthbertson (2010) studied a different model and
showed that the mean fitness increases at rate, on average, bounded
below by O(log1−δ N).
Kelly (2013) showed that the rate that the mean fitness increases is
bounded above by O(logN/(log logN)2).

5 Case: µN and sN are of order 1
N .

Study by using diffusion approximation. (See section 8.1 in Durrett’s
Probability Models for DNA Sequence Evolution).
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The Main Ideas of the Proof

**We shall omit writing the subscript N.

1 Up to time T1, couple the process X1 with two processes that bound
X1 from above and from below such that after a time scaling, both
processes become branching processes with immigration.

2 For k = 2, 3, ..., define Mk(t) to be the number of type k individuals
who mutate from being type k − 1 until time t. Then, show that all
Mk(T1) are small that they cannot prevent type 1 from almost
fixation.

3 Show that there is a constant ∆ such that M∆+1(T1) ≪ 1.

4 After T1, type 1 quickly reaches the point of almost fixation.
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Rates

Define S(t) =
∑∞

k=0(1 + s)kXk(t), which is the total fitness at time t.

For k ≥ 1, the process Xk is a birth-death process with immigration.

Birth: a non-type k individual dies and is replaced by a type k . The
birth rate is

(N − Xk(t))
(1 + s)kXk(t)

S(t)
=: bk(t)Xk(t).

Death:
a non-type k individual dies and is replaced by a type k, or
a type k individual becomes type k + 1.

The death rate is

Xk(t)

(
1− (1 + s)kXk(t)

S(t)

)
+ µXk(t) =: dk(t)Xk(t).

Immigration: a type k − 1 individual becomes type k . The
immigration rate is

mk(t) := µXk−1(t).
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Bound X1 from Above

Before time T1, the majority of the population should be type 0. Then, if
0 ≤ t < T1,

b1(t) =
(1+s)(N−X1(t))

S(t) ≈ 1 + s,

d1(t) = 1− (1+s)X1(t)
S(t) + µ ≈ 1,

m1(t) = µX0(t) ≈ µN.

Note that b1(t) < (1 + s)d1(t). Also, for every constant a, and for
sufficiently large N depending on a,

m1(t) ≤ µN(1 + a)d1(t).
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Bound X1 from Above

We can construct a new birth-death process with immigration Y1 such
that

birth rate per individual is (1 + s)d1(t),

death rate per individual is d1(t),

immigration rate is µN(1 + a)d1(t),

X1(t) ≤ Y1(t) for all 0 ≤ t ≤ T1.

After a time scaling, the process Y1 becomes a process Ỹ1 in which

birth rate per individual is 1 + s,

death rate per individual is 1,

immigration rate is µN(1 + a).

In Ỹ1, the extinction probability of the family of each immigrant is 1
1+s .

Hence, the immigrant whose family survives appears at rate (1+a)Nµs
1+s .
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Bound X1 from Below

Let γ, ζ ∈ (0, 1). By pruning some births and deaths in the process X1, we
can construct a process Z1 such that

birth rate per individual is (1 + γs)d1(t),

death rate per individual is d1(t),

immigration rate is µN(1− ζ)d1(t),

X1(t) ≥ Z1(t) for all 0 ≤ t ≤ T1.

After a time scaling, the immigrant whose family survives appears at rate
(1−ζ)γNµs

1+γs .

**In the construction, we need a good lower bound of the total fitness∑∞
k=0(1 + s)kXk(t). Hence, we need to show that

1 T1 < Tk for all k = 2, 3, 4, ....

2 There is a positive integer ∆ such that no type ∆ appears before T1.
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An Upper Bound on Mk

Let C > 0 be a constant. Given that T1 <
C

Nµs ,∫ T1

0
X1(t)dt ≤

logN

s
· C

Nµs
=

C logN

Nµs2
.

Hence,

E

[
M2(T1)|T1 <

C

Nµs

]
≤ C logN

Nµs2
· µ =

C logN

Ns2
.
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An Upper Bound on Mk

If we consider the branching process that start with 1 individual, and each
individual gives birth and dies at rate (1 + s)k and 1, respectively,

1 the extinction probability is 1/(1 + s)k , and

2 given that the process goes extinct, the process becomes a branching
process in which each individual gives birth and dies at rate 1 and
(1 + s)k , respectively. Hence, the expected number of individuals that
live before the extinction is∫ ∞

0
e(1−(1+s)k )tdt =

1

(1 + s)k − 1
≤ 1

ks
.
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An Upper Bound on Mk

The probability that the families of all type 2 immigrants that appear
before T1 go extinct is approximately

(1 + s)−k· log N

Ns2 → 1

as N → ∞.

From M2(T1) ≤ O( logN
Ns2

), the expected number of type 2 individuals that
live before the T1 is bounded above by

O

(
logN

Ns2

)
· 1

2s
= O

(
logN

Ns3

)
.

Each type 2 individuals mutates to type 3 at rate µ. Then,

M3(T1) ≤ O

(
logN

Ns3

)
· µ = O

(
µ logN

Ns3

)
.
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An Upper Bound on Mk

Inductively, for k ≥ 2, we have

Mk(T1) ≤ O

(
µk−2 logN

skN

)
.

It follows from the assumptions on µ and s that

µk−2 logN

skN
≪ 1

N(1−η)k−1(logN)k−3
.

Hence, there is a constant ∆ that M∆+1(T1) ≪ 1.
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