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Background

In many populations, individuals can enter a dormant state:

I Some mammals hibernate in the winter.

I Many plants produce seeds which germinate after a dormant period.

I Many bacteria can enter a dormant state.

Dormancy allows individuals to survive periods of unfavorable environmental
conditions.

It has been suggested that dormancy could contribute to speciation:

I Blath, Paul, Tóbiás, and Wilke-Berenguer (2024) found that dormancy
could increase evolutionary branching.

I Tellier, Laurent, Lanier, Pavlidis, and Stephan (2011) found that dormancy
may contribute to a high speciation rate among South American tomatoes.



Dormancy and Seasonal Changes

We consider a model of dormancy that is similar to Blath, González Casanova,
Kurt, and Wilke-Berenguer (2016), but includes seasonal changes.

Individuals can acquire mutations that are advantageous in the summer and
disadvantageous in the winter, or vice versa.

We see two waves of adaptation. Some individuals repeatedly acquire mutations
that benefit them in the summer. Others repeatedly acquire mutations that
benefit them in the winter.

Individuals can survive the season during which they are less fit by entering a
dormant state.

This may be a mechanism by which dormancy could lead to speciation.



The Model

In each generation, there are N active individuals and KN dormant individuals.

The environment alternates between summer and winter. Each year lasts UN

generations. Summer lasts VN generations, and winter lasts UN −VN generations.

Each individual has a type in Z. An individual of type k has fitness (1 + sN)k

during the summer and (1 + sN)−k during the winter.

To obtain the next generation:

I Randomly choose cN dormant individuals to become active, and cN active
individuals to become dormant.

I The other KN − cN dormant individuals remain dormant.

I The other N − cN active individuals choose their parent at random from the
previous generation, with probability proportional to fitness.

I If the parent has type k , the offspring has type k with probability 1− 2µN ,
type k + 1 with probability µN , and type k − 1 with probability µN .



Assumptions on the parameters

1. Strong selection:
lim

N→∞
sN = s ∈ (0,∞).

2. Winter and summer have comparable length:

lim
N→∞

VN

UN
= β ∈ (0, 1).

3. Seasons are not too short:
UN � logN .

4. Transitions from active to dormant are not too fast:

cN � N .

5. Mutation rate is not too slow:

µN � N−b for some b > 0.



The population after a beneficial mutation
Initially, all individuals have type 0. Suppose one individual mutates to type 1
during the summer.

In the next generation, each individual has type 1 with probability

1 + sN
(N − 1) + (1 + sN)

≈ 1 + sN
N

.

There are N − cN ≈ N new active individuals born in the next generation. The
number of type 1 in the next generation is approximately Poisson(1 + sN).

For a short time, the number of type 1 individuals is well approximated by a
branching process with a Poisson(1 + sN) offspring distribution.

Conditional on survival, most of the active population is type 1 after a time
which is O(logN). (Kimura and Ohta, 1969)

Conditional on extinction, there is not sufficient time for a type 1 individual to
become dormant because cN � N .



The population after a seasonal change

Suppose type 1 spreads to most of the active population, then winter arrives.

The dormant population will contain both type 0 individuals (which have been
dormant since early in the previous summer) and type 1 individuals (which
became dormant late in the summer).

Some type 0 individuals will move from the dormant to the active population.

Because type 0 is fitter, type 0 will quickly spread to most of the active
population, in a time which is O(logN). Recall that logN � UN .

Another mutation may cause type −1 to spread to most of the active population.
However, type 1 individuals will remain in the dormant population and quickly
take over the following summer.

The type 1 individuals will be overtaken again by type −1 individuals at the
beginning of the following winter, and the process continues.



A graph of the dominant type in the active population over time

× represents a positive mutation
◦ represents a negative mutation
Blue is summer, and red is winter



Some notation

Xk,N(m) = fraction of active individuals in generation m having type k .

Yk,N(m) = fraction of dormant individuals in generation m having type k .

Let ∆ be the space of sequences x = (. . . , x−2, x−1, x0, x1, x2) such that xk ≥ 0
for all k ∈ Z and

∑
k xk = 1. We call xk the kth coordinate of x for k ∈ Z.

Let XN(m) and YN(m) be the ∆-valued random variables whose kth coordinates
are Xk,N(m) and Yk,N(m) respectively:

XN(m) = (. . . ,X−2,N(m),X−1,N(m),X0,N(m),X1,N(m),X2,N(m), . . . ),

YN(m) = (. . . ,Y−2,N(m),Y−1,N(m),Y0,N(m),Y1,N(m),Y2,N(m), . . . ).



Three time scales

1. The length of a year is UN .

2. Let h(u) be the survival probability for a branching process with a
Poisson(1 + u) offspring distribution. Then ρN = NµNh(sN) is
approximately the probability of a successful mutation in a generation. The
expected number of generations until a successful mutation is ρ−1N .

3. Because a fraction cN/KN of the seed bank is replaced every generation, the
number of generations required for the dominant type in the active
population to spread to a substantial fraction of the seed bank is KN/cN .

We will scale time by ρN , so that one unit of time corresponds to ρ−1N generations.



Two parameter regimes

Regime 1: Suppose that

lim
N→∞

cN
KNρN

= α ∈ (0,∞), lim
N→∞

ρNUN = θ ∈ (0,∞).

In Regime 1, all three time scales are comparable.

Regime 2: Suppose that

UN �
KN

cN
� ρ−1N

and

lim
N→∞

c2NU
2
N

KN logN
=∞.

In Regime 2, it takes longer for active individuals to enter the dormant
population than it takes for the season to change, but the active and dormant
populations will reach equilibrium before the next mutation.



Convergence of the mutation times to a Poisson process
Recall in Regime 1, ρNUN → θ and ρNVN → βθ. Let

R(t) =

{
1 if jθ ≤ t < jθ + βθ for some nonnegative integer j
0 otherwise.

in Regime 1, and R(t) = β for all t in Regime 2.

Let (N+(t), t ≥ 0) and (N−(t), t ≥ 0) be independent inhomogeneous Poisson
processes whose intensities are given by R(t) and 1− R(t) respectively.

Let T0 = 0, and for positive integers k , define

Tk = inf{t : N+(t) = k}, T−k = inf{t : N−(t) = k}.

Theorem: Fix a ∈ (0, 1). Let Sk,N(a) = min{m : Xk,N(m) > a}. In both
regimes, for all positive integers K and all a ∈ (0, 1), we have(

ρNSk,N(a)
)K
k=−K ⇒ (Tk)Kk=−K as N →∞.



Composition of the active population

Recall that Sk,N(a) = min{m : Xk,N(m) > a}, for a ∈ (0, 1).

Typically one type dominates the active population, except for short periods
when a beneficial mutation is spreading or the season is changing.

For a ∈ (0, 1) and nonnegative integers m, let

DN,a(m) =

{
max{k : Sk,N(a) ≤ m} if m is in the summer
min{k : Sk,N(a) ≤ m} if m is in the winter

We expect DN,a(m) to be the dominant type in the active population in
generation m.

Theorem: Fix t0 > 0 and a ∈ (0, 1). In both regimes, for all k ∈ Z, we have

ρN

bρ−1
N t0c∑
m=0

∣∣Xk,N(m)− 1{DN,a(m)=k}
∣∣→p 0 as N →∞.



Convergence of stochastic processes in Regime 1

In Regime 1, let D(t) = N+(t)1{R(t)=1} − N−(t)1{R(t)=0}.

Let D(t) be the ∆-valued random variable whose kth coordinate is 1{D(t)=k}.

Theorem: In Regime 1, we have

(XN(bρ−1N tc), t ≥ 0)⇒ (D(t), t ≥ 0) as N →∞,

where ⇒ represents weak convergence of stochastic processes with respect to the
Meyer-Zheng topology.



The Meyer-Zheng topology (Meyer and Zheng, 1984)
Let (E , d) be a metric space. Càdlàg functions fn : [0,∞)→ E converge to f in
the Meyer-Zheng topology if for all T > 0 and ε > 0, the Lebesgue measure of
{x ∈ [0,T ] : d(fn(x)− f (x)) > ε} tends to zero as n→∞.

Let fn(t) =

{
0 if t < 1 + 1/n
1 if t ≥ 1 + 1/n

gn(t) =


0 if t ≤ 1
nt if 1 < t < 1 + 1/n
1 if t ≥ 1 + 1/n

�
�
�
��

fn gn

In the Skorohod J1 topology, fn → f∞ but gn 9 f∞.

In the Meyer-Zheng topology, fn → f∞ and gn → f∞.

See also Kurtz (1991), Gonzalez Casanova, Miró Pina, and Siri-Jégousse (2022).



Composition of the dormant population: Regime 1
Suppose Xk,N(m) = x and Yk,N(m) = y . Then

Yk,N(m + 1) ≈ xcN + y(KN − cN)

KN
= y + (x − y)

cN
KN

.

After scaling time by ρN , we obtain

dy

dt
≈ (x − y)

cN
KNρN

≈ α(x − y).

Theorem: Define a ∆-valued stochastic process (Y(t), t ≥ 0) such that Y(0) is
the sequence whose 0th term is 1 and whose other terms are zero, and

d

dt
Y(t) = α(D(t)− Y(t)).

In Regime 1, the processes (YN(bρ−1N tc), t ≥ 0) converge as N →∞ to
(Y(t), t ≥ 0), in the sense of weak convergence of stochastic processes with
respect to Skorohod’s J1 topology.



Composition of the dormant population: Regime 2

In Regime 2, seasons change rapidly. It is summer a fraction β of the time.

Because cN/(KNρN)→∞, the differential equation converges to an equilibrium
before the next beneficial mutation.

Theorem: For all k ∈ Z, define

Yk(t) =


β1{Tk≤t<Tk+1} if k ≥ 1
(1− β)1{Tk≤t<Tk−1} if k ≤ −1
β1{t<T1} + (1− β)1{t<T−1} if k = 0.

Let Y(t) be the ∆-valued random variable whose kth coordinate is Yk(t).
In Regime 2, the processes (YN(bρ−1N tc), t ≥ 0) converge as N →∞ to
(Y(t), t ≥ 0), in the sense of weak convergence of stochastic processes with
respect to the Meyer-Zheng topology.



Times when individuals enter dormant population
Label the dormant individuals 1, . . . ,KN .

Let Mi denote the number of generations in the past that the ith dormant
individual became dormant. Then Mi ∼ Geometric(cN/KN).

Let T be a finite subset of the positive integers. Let

ZT =

KN∑
i=1

1{Mi∈T}.

Then

E [ZT ] = KNP(M1 ∈ T ) = KN

∑
m∈T

cN
KN

(
1− cN

KN

)m−1

= cN
∑
m∈T

(
1− cN

KN

)m−1

.

The events {Mi ∈ T} are negatively correlated by Harris’ Inequality, so

P(|ZT − E [ZT ]| > εE [ZT ]) ≤ 2e−(ε
2∧ε)E [ZT ]/3

and we have good control on when individuals entered the dormant population.



Simulation Results for the Active Population
N = KN = 10000, cN = 10,UN = 500,VN = 250, sN = 0.1, µN = 0.000002



Simulation Results for the Dormant Population


