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Leveraging genealogies to understand 
evolutionary processes

genome

For humans, we can 
learn about events 
from present day to 
>3M years ago

We are genetically related through a sequence of genealogical trees, varying along the genome



The coalescent (Kingman 1982)
is perhaps the simplest genealogical model

• Consider a single position in the genome
• The simplest model: parents in previous 

generations are chosen uniformly at random
• Ancestral lineages can share ancestors 

further back in time, so coalesce
• Population size N(t) chromosomes a time t ago, 

coalescence probability 1/#(%) per pair
• Provided # % is large, coalesce while j ancestors

rate '
2 /#(%)

(after suitable scalings) 
• NB: by simple symmetry, all lineages are equally 

likely to split, forward in time (discussed later)
• Mutations on tree edges (rate )/2)

• Best inference methods still use this model
• # % estimated from the data itself (Relate)

• Genealogies then vary along the genome

N(t), population size

tim
e



Why do trees change along the genome?
• In us, and our ancestors, a process of recombination occurs (we will 

discuss this a bit more later)
My mother

from grandmother
from grandfather

my maternal chromosome

Recombination site
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• Back in time, in a particular region each of our ancestors has some 
probability of being formed via recombination

Modelling recombination in the coalescent

Ancestor to left
Ancestor to right

D’s ancestor

• History becomes a graph (ARG): other events occur as 
before 

• Generates a sequence of correlated trees along the 
genome 

• Recombination added to model: constant rate !/2
through time in all ancestors (see later)

• The coalescent with recombination (Hudson et al. 
1983, Griffiths and Marjoram 1997)

To L of breakpoint To R of breakpoint



Demographic history
Splits and speciation
Genetic structure
Mutation, recombination, 
Natural selection, etc.

Invent informative statistics, simplify, 
"integrate out all possible histories“
(machine learning methods typically 
learn these statistics from the data)

Many canonical approaches only consider trees indirectly

In principle, trees capture all the information available, allowing self-consistent 
inference

Challenges: computationally very challenging to sample trees from the data. 
Modern datasets can contain >50,000 individuals and >100,000,000 mutations



Old problem, lots of methods……
……but only recently have methods been developed that can scale

• ARGweaver (Rasmussen et al. 2014)

• Rent+ (Mirzaei et al. 2017)

• Tsinfer+tsdate (Kelleher et al. 2019)

• Relate (Speidel et al. 2019)

• ARG-Needle (Zhang et al. 2023)

We will focus on Relate today….key ideas largely method-agnostic

Inferring genealogies

Published since 2019, scale to large 
sample sizes of thousands+

Infers Ancestral Recombination Graphs
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Applied to hundreds of studies on 
humans, apes, dogs, birds, fish, plants, bacteria etc!

Relate Speidel, Forest, Shi, Myers. Nature Genetics 2019
Speidel, Cassidy, Davies, Hellenthal, Skoglund, Myers, MBE, 2021 

Key features:
- Patterns of mutation sharing          trees genome-wide
- Mutations mapped to edge; branch lengths, N(t) estimated
- Fast & accurate, robust to errors and repeat mutations
- Modern samples and ancient DNA
- Add-on tools for various types of analyses exist



Example: 1000 
Genomes Project data: 

• 4956 haplotypes from 26 
populations

• ~71,000,000 biallelic  SNPs
• ~93% of SNPs map uniquely to a 

tree (80% for CpG mutations due 

to repeat mutations)
Run time: ~4 days on 300 cores

Key ideas

1) We can now analyse many (and in principle, almost all) phenomena relating to population 
histories by studying real-world trees genome-wide, for thousands of individuals

2) Modelling appropriate departures from expectations under the simple coalescent model 
used to build the trees is key, for many of the most interesting questions



• How much has a mutation out-competed other mutations?
• Robust to population size history

• Very well calibrated in simulated data, and more powerful 
than all current non-genealogical approaches

• CLUES: improved sophistication (though slower), Stern et al.
PLOS Genetics, 2019

• SIA (Hejase et al. MBE 2022: Machine Learning)

Simple example: P-values for evidence of positive selection

fN mutation carriers



Non-synonymous change associated in GWAS with thicker, straighter scalp hair, along with other traits such as 
shovelling of incisors, altered ear and chin shape, and increased fingertip sweat gland density

An example of a mutation showing tree-based evidence of 
positive selection



Genome-wide selection p-values

Given most traits are highly polygenic, expect mainly weak, polygenic selection

Evidence for selection on many traits, e.g. Lighter hair colour in European 
populations, Body composition in African ancestry groups, …..

Nominal significance
(p=0.05)



Modelling of departures 2: identifying 
suppression of recombination using DoLoReS
(Ana Ignatieva)

Our trees are built under a model that all lineages have undergone recombination at the 
same rate

But might different lineages have different recombination rates?

A variety of processes might cause this to happen, including e.g. variable expression during 
sexual reproduction, presence of inversions



Inversions likely suppress recombination in heterozygous individuals
In heterozygotes for an inversion, any recombination in 
the inverted region produces non-viable gametes

In the ARG, if inversion has a unique origin, inversion 
carriers form a clade

Recombination is suppressed between this clade and 
others

“Inversion” clade has longer-than-expected genomic 
span, compared with other clades

Figure from Kirkpatrick, PLOS Biology, 2010

63 7 81 5420 9 63 7 81 5420 9 63 7 81 5420 9



• These are local trees at four positions on human chromosome 17 (1000GP EUR ARG)

• Clade of 242 samples (blue) has a genomic span of around 700kb before it is 
eventually broken up by recombination

• Perhaps this is longer than expected? 
• Obtain survival times of clades under the SMC’

In reconstructed ARGs, do we see this phenomenon?
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SMC’: Marjoram and Wall (BMC Genetics, 2006) 

• We leverage SMC’: widely used approximation to the coalescent with 
recombination (accurate, and more tractable for calculations) 

• Markov changes in local trees along the genome
• Define

- !: population-scaled recombination rate (varies along genome)
- ℒ # : total branch length of tree #

Local trees change along the genome due to recombination

Model
• Waiting distance along genome to next 

recombination event: exponential, rate 
!ℒ # /2

• Recombining ancestor then chosen uniformly 
at random among tree branches

• Re-coalesce the recombinant branch to 
generate the next tree along; redefine ℒ #

• Repeat
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Local trees change along the genome due to recombination

SMC’: Marjoram and Wall (BMC Genetics, 2006) 

Model
• Waiting distance along genome to next 

recombination event: exponential, rate 
!ℒ # /2

• Recombining ancestor then chosen uniformly 
at random among tree branches

• Re-coalesce the recombinant branch to 
generate the next tree along; redefine ℒ #

• Repeat

• We leverage SMC’: widely used approximation to the coalescent with 
recombination (accurate, and more tractable for calculations) 

• Markov changes in local trees along the genome
• Define

- !: population-scaled recombination rate (varies along genome)
- ℒ # : total branch length of tree #
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Local trees change along the genome due to recombination

SMC’: Marjoram and Wall (BMC Genetics, 2006) 

Model
• Waiting distance along genome to next 

recombination event: exponential, rate 
!ℒ # /2

• Recombining ancestor then chosen uniformly 
at random among tree branches

• Re-coalesce the recombinant branch to 
generate the next tree along; redefine ℒ #

• Repeat

• We leverage SMC’: widely used approximation to the coalescent with 
recombination (accurate, and more tractable for calculations) 

• Markov changes in local trees along the genome
• Define

- !: population-scaled recombination rate (varies along genome)
- ℒ # : total branch length of tree #



Probability that a clade is broken up by next recombination event 
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• Clade ! contains samples 0, 2, 9
• Subtended by branch "

• x = recombination point, #
• o = coalescence point, $

• green o = ! not broken up
• red ⊚ = ! is broken up

Recombination within clade Recombination on 
subtending branch

Recombination elsewhere
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• Can calculate each term

• The expected instantaneous rate at which ! is broken up at position " is
# ! broken *) , -ℒ * /2

• Genomic span of ! is then waiting time in an inhomogeneous Poisson process whose 
rate changes along the genome with the local trees *

• For a tree * , let 1 be span of clade ! in recombination (-) units
Test 1: p-value: the probability of observing a clade span greater than 1, 3 = 567
Test 2: p-value for number of clade changes (i.e. recombination events) elsewhere on the 
tree that each clade "survives“ (differing false positives in real-world data)

Adjustments to allow for: homogeneous process approximation, varying recombination 
rates, ARG reconstruction artefacts (use SNP span and “smooth” clades), phasing errors, 
population structure

Probability that a clade is broken up by next recombination event 
# ! broken *) = # 8 ∈ ! , # : ∉ ! ∪ = 8 ∈ ! + # 8 ∉ ! ∪ = , # : ∈ ! 8 ∉ ! ∪ =



• Simulated ARGs under the null of 
homogenous recombination rates with 
stdpopsim (n=100, chromosome 21 
recombination map, constant 
population size: variable size is 
similar)

• p-values using true ARGs are 
uniformly distributed (light blue points 
lie on the diagonal), so SMC’ 
approximation works well 

• Distribution of genomic spans of 
clades in reconstructed ARGs depart 
strongly from null expectations (all
methods) 

• However, for Relate, adjustments
largely fix this; green line

Simulation results show imperfect reconstructed genealogies, but for 
Relate, adjustments fix!



Application to the 1000 Genomes Project ARGs

Test 1
Test 2

• Testing all common clades, for all trees in the genome – each point = one test, using Test 1 (above 0 line) 
and Test 2 (below 0 line)

• Dotted black line = Bonferroni-corrected significance threshold
• Points significant using both tests: coloured by corresponding population



Test 1
Test 2

The top hit in the genome is a well-known inversion

This is a known (large) chromosomal inversion on 17q21.31
(Stefansson et al., Nature Genetics, 2005)
We can estimate the age of the inversion, at >4MY old!



Some of the other hits correspond to known inversions or SVs….

Test 1
Test 2

Known region of complex structural variation
(Antonacci et al., Nature Genetics, 2010)
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…..but many others novel, and several appear to be new inversions

Test 1
Test 2

Known region of complex structural variation
(Antonacci et al., Nature Genetics, 2010)
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(still investigating many hits)



A novel signal on 10q22.3 is likely explained by an inversion 



Departures part 3: Ghostbuster identifies 
admixture (Hrushi Loya, Leo Speidel)

Our trees are built under a model where all pairs of lineages coalesce at the same rate, the 
inverse population size

Can we detect different coalescence rates between more closely related groups, or groups 
with smaller population sizes, within the trees?

GHOSTBUSTER aims to find e.g. Hunter-gatherer or Neanderthal segments within in our 
genomes due to admixture, as well as ghost populations never directly sampled, “hidden” in 
the trees



GHOSTBUSTER identifies ancestry segments by 

detecting varying coalescence rates along the genome

After building trees, for any pair of labelled samples we can infer their (inverse) rate of coalescence through time, averaged 
genome-wide
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Neanderthal-like admixture:

• 4 populations “Han”, “Sardinian”, 

“Neanderthal”, “Mbuti”

• “Han” & Sardinian have 3% 

Neanderthal DNA

• “Mbuti” has 0%

• Ran Relate on all samples 
together

Given a genealogy: GHOSTBUSTER calculates the likelihood for any lineage it comes from the Neanderthal vs. Han 

population…….infer the Neanderthal segments within a Han individual’s genome!  

Neanderthal segments (hidden)

GHOSTBUSTER inference



Old mixture events in Africa
i) Old Africa-wide back-migration
ii) Deep structure within and outside Africa



97.6% 2.4%

Decomposing San Individuals

Segments closer 
to other Africans

Segments closer 
to Eurasians

Proportion of Eurasian segments 
varies across groups

We identify 1-8% Eurasian ancestry in all African groups from 
HGDP – other analyses imply 8-20KY old



Llorente et al. 2015, Schlebusch et al. 2017, Lipson et al. 2020

Decomposing Cameroon_SMA Individuals

97.5% 2.5%

Comp 1 closer 
to Africans

Comp 2 closer 
to Eurasians

Proportion of Eurasian segments 
varies across groups

… and even in some ancient DNA individuals !



Ø Comparing the local ancestry, we found ~9x enrichment for Neanderthal in 
Eurasian segments in Africa

!" = 0.49
Slope = 1.1%

Intercept = −0.1%

Inferred dates for various 
African groups

The Eurasian ancestry explains the Neanderthal ancestry in 
Africa & is 5000-20000 years old 

Older than previously suggested?
Pickrell+ PNAS 2014, Chen+ Cell 2020
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TCC>TTC mutations are enriched in 
EUR and SAS

TCC>TTC mutations also enriched in 
Eurasian segments in Africans

Kelley Harris 2015, Harris & Pritchard 2017, Speidel et al. 2019

Enrichment for TCC>TTC mutations in Eurasian segments



Comp2 Posterior

100kya

500kya

1mya

50kya

… and still exploring 

Removing the Eurasian segments and looking at deeper times 
reveals a potential older event, between “ghost” populations 
diverging ~500,000 years ago



Credit: Aina Colomer

Summary

• We can now infer joint genealogical trees for modern and ancient people, and other species too 
• These are built under (approximations to) the simplest coalescent models
• Departures from these models are hidden within the trees, can themselves be modelled, and 

offer insights into many phenomena, including
• Natural selection
• Evolution of mutation rates
• Evolution of recombination rates and recombination suppression
• Fine-scale population history, and modern or ancient admixture events
• Ghost populations we have not observed
• Evolution of traits/diseases
• …..

• Lots of open questions on the formation of present-day genetic structure, the deeper human 
past, trait evolution & similar stories around the world
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Thank you!

Stockholm
Martina Favero

University of Warwick
Jere Koskela
Martina Favero University of Newcastle

Jere Koskela



54,000 years ago

72,036 years ago

656,908 years ago

Mbuti Papuan

DENI
5%

0 years ago
(50) (50)

(0)

Simulations: Skov et al. 2018

Simulation: Finding Denisova-like ancestry in Papuans 
without any Denisovans



GhostBuster post.

Ground-truth
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Simulation: Method finds Denisova-like segments without 
using a Denisovan reference genome



Farmers, WHG and Yamnaya reference populations Farmers and WHG reference populations only

In
ve

rs
e 

Co
al

es
ce

nc
e 

Ra
te

s

Reconstruct Steppe genome even w/o Yamnaya reference 
population

Component 1 is close to Yamnaya
Component 2 is close to WHG
Component 3 is close to farmers

Neolithic farmer WHG Yamnaya Neolithic farmer WHG

Target: Ireland_BA (Cassidy et al, PNAS 2016)

Haak et al, Nature 2015



Use trees to assign local ancestry of the target 
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We can also measure genome-wide inverse 

coalescence rates between groups

After building trees, the population size is estimated as simply the inverse of observed coalescence rate through time
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Simulation with 

Neanderthal-like admixture:

• “Han” & Sardinian have 3%

• “Mbuti” has 0%

Given a genealogy, our approach GHOSTBUSTER then can calculate the likelihood for any lineage it comes from the 

Neanderthal or Han population…….and use this to identify the Neanderthal segments within a Han individual’s 

genome!  
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We approximate the distribution of the genomic span of a clade
We find that in practice the rate of clade-breaking events does not vary hugely

! " broken )) + ℒ ) ≈ ! " broken ).) + ℒ ).

• So we can calculate once per clade, i.e. approximate as homogeneous process

• For a given ARG, let /0 be span of clade "0 in tree )0 in recombination (2) units, then if 
30 = ! "0 broken )0) + /0ℒ )0 /2 ,

30 has an approximate Exp(1) distribution

Test 1: p-value: the probability of observing a clade span greater than /0, 80 = 90
:;<

Test 2: p-values for number of clade changes (i.e. recombination events) elsewhere on the 
tree that each clade "survives“ (differing false positives in real-world data)

Adjustments to allow for varying recombination rates, ARG reconstruction artefacts (use 
SNP span and “smooth” clades), phasing errors, population structure



Genealogy-based analysis of 17q21.31 inversion

• Ancient origin; even older than other estimates of 2-3m 
years (Stefansson et al., Nature Genetics, 2005; Steinberg et al., Nature Genetics, 
2012)

• Frequency in EUR: 24%, AMR: 15%, SAS: 6%, AFR: 2%, agrees with prior estimates 
(Donnelly et al., AJHG, 2010) 

• Region where MRCA time is much more recent supportive of a possible historic 
double crossover event between the inverted and non-inverted haplotypes
(Steinberg et al., Nature Genetics, 2012)



Relate-based population size 
estimates differ across groups
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After (jointly) building trees, the population size is estimated as simply the 
inverse of mean observed coalescence rate through time

Split of ancestors of 
Neanderthals and 
modern humans

Neanderthals had a 
very small effective 
population sizePopulation bottleneck of out-of-

Africa migrations


