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Introduction The additive case The multiplicative case

REGULARIZATION BY NOISE FOR DIFFERENTIAL EQUATIONS

Let b ∈ C0
b(Rd) and consider

dxt = b(xt) dt, x0 ∈ Rd.

I Uniqueness for b ∈ Lip (or Osgood condition, or BV for some notion of solutions...)
I Non uniqueness when b is not regular enough. Peano example : d = 1, b(x) =

2sgn (x)
√
|x(t)|, x0 = 0. Solutions:

x : t ∈ R+ 7→ (t− t0)2
1t≥t0 , ∀t0 ∈ (0,+∞].

An additive perturbation w may restore uniqueness (and even existence).

dxt = b(xt) dt + dwt, x0 ∈ Rd.

I Usual perturbations for such a phenomenon are stochastic processes
I One may also consider multiplicative perturbations

dxt = b(xt) dt + σ(xt) dwt, x0 ∈ Rd.
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DAVIE’S PATH-BY-PATH TYPE UNIQUENESS

Definition
Let (Ω,F ,P) be a probability space. Let x0 ∈ Rd, b : Rd 7→ R

d and σ : Rd 7→ R
d×d be

two functions and let w be aRd value stochastic process. Equation

xt = x0 +

∫ t

0
b(xr) dr +

∫ t

0
σ(xr) dwr

admits path-by-path uniqueness if there existsN = N (x0, b, σ) ∈ F with P(N ) = 0
and for all ω /∈ N , a unique x(ω) : [0,T] 7→ R

d exists such that

xt(ω) = x0 +

∫ t

0
b(xr(ω)) dr +

∫ t

0
σ(xr(ω)) dwr(ω) (1)

I Conditions on b, σ and w are needed for (1) to make sense.
I Path-by-path uniqueness and pathwise (strong) uniqueness are different, thanks to

examples due to [SW22, Anz22].
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PATH-BY-PATH TYPE UNIQUENESS : ADDITIVE CASE

The equation reads as

xt = x0 +

∫ t

0
b(xr) dr + wt.

I Davie [Dav07] : w Brownian motion, b ∈ L∞,

I Catellier and Gubinelli [CG16]: w fractional Brownian motion and b ∈ Cε∨(1− 1
2H +ε)

(or b ∈ C
3
2−

1
2H for semi-flow property),

I Galeati and Gubinelli [GG21]: w almost all continuous path and b ∈ H−ε,
I Priola [Pri20]: w a Lévy process
I And many others...
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THE YOUNG TRANSFORMATION IN THE ADDITIVE CASE

Set θ = x− w. Then θ solves

θt = θ0 +

∫ t

0
b(θr + wr) dr. (2)

We reinterpret this equation with the idea that θ oscillates slowly compared to w.

In
particular, for b, θ and w continuous, the integral is approximated as

∫ t

0
b(θr+wr) dr = lim

|π|→0
π∈Π(0,t)

#π−1∑
k=0

∫ tk+1

tk

b(θtk +wr) dr = lim
|π|→0
π∈Π(0,t)

#π−1∑
k=0

(Twb)tk,tk+1 (θtk ) dr

Well-posedness of Equation (2) is then linked to the space-time regularity of the aver-
aged field

(s, t, z) 7→ (Twb)s,t(z) =

∫ t

s
b(z + wr) dr.

viz the following result :
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THEORY OF YOUNG DIFFERENTIAL EQUATIONS (YDE)
Using the space/time regularity of the averaged field and (non stochastic) sewing tech-
niques, one has the following result :

Cauchy problem for averaged-field SDE [CG16, HL17, Gal23]
Suppose that solutions of Equation

θt = θ0 +

∫ t

0
b(θr + wr) dt

are a priori Lipschitz continuous in time.
Suppose furthermore that there exists γ > 1

2 , and α > 3
2 such that

Twb ∈ Cγ([0,T]; Cαloc(R
d)).

Then the solutions are unique.

I The previous Lipschitz continuity condition holds as soon as b ∈ L∞(Rd).
I Using stochastic properties of w one can deduce the well-posedness for irregular b

of the following equation
dxt = b(xt) dt + dwt.

I Everything relate on the space-time regularity of the averaged field and of the pre-
vious Riemann sum approximation.
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PATH-BY-PATH TYPE UNIQUENESS : MULTIPLICATIVE CASE

xt = x0 +

∫ t

0
b(xr) dr +

∫ t

0
σ(xr) dwr

We need a pathwise meaning of the previous equation when w is a stochastic process,
which can be derived using rough paths theory.

Definition (Davie/Friz-Victoir)

Let 1
3 < ν ≤ 1

2 . A geometric rough path is a couple W = (W,W), with
W ∈ Cν([0,T];Rd) andW ∈ C2ν([0,T];Rd×d) and

Ws,t = lim
ε→0

∫ t

s
(Wε

r −Wε
s )⊗

dWε
r

dr
dr,

where Wε is a smooth approximation of W.
A path x ∈ Cν([0,T];Rd) is a solution of the rough differential equation

dxt = b(xt) dt + σ(xt) dWt, x0 ∈ Rd

if two constants C > 0 and a > 1 exist such that for 0 ≤ s ≤ t ≤ T,

|xt − xs + b(xs)(t− s) + σ(xs)(Wt −Ws) + Dσ(xs)σ(xs)Ws,t| ≤ C|t− s|a.

7 / 24



Introduction The additive case The multiplicative case

PATH-BY-PATH TYPE UNIQUENESS : MULTIPLICATIVE CASE

xt = x0 +

∫ t

0
b(xr) dr +

∫ t

0
σ(xr) dwr

We need a pathwise meaning of the previous equation when w is a stochastic process,
which can be derived using rough paths theory.

Definition (Davie/Friz-Victoir)

Let 1
3 < ν ≤ 1

2 . A geometric rough path is a couple W = (W,W), with
W ∈ Cν([0,T];Rd) andW ∈ C2ν([0,T];Rd×d) and

Ws,t = lim
ε→0

∫ t

s
(Wε

r −Wε
s )⊗

dWε
r

dr
dr,

where Wε is a smooth approximation of W.
A path x ∈ Cν([0,T];Rd) is a solution of the rough differential equation

dxt = b(xt) dt + σ(xt) dWt, x0 ∈ Rd

if two constants C > 0 and a > 1 exist such that for 0 ≤ s ≤ t ≤ T,

|xt − xs + b(xs)(t− s) + σ(xs)(Wt −Ws) + Dσ(xs)σ(xs)Ws,t| ≤ C|t− s|a.

7 / 24



Introduction The additive case The multiplicative case

PATH-BY-PATH TYPE UNIQUENESS : MULTIPLICATIVE CASE

Theorem (Lyons, Davie, Gubinelli, Friz-Victoir...)

In the scope of the previous definition, when b ∈ Lip and bounded and σ ∈ C3
b , There is a

unique solution to the previous RDE. Furthermore, it defines a flow which is continuous with
respect to the initial condition and to the driving signal W = (W,W).

I The processW is a data of the problem.

I When W = B is a standard Brownian motion, one can take ν < 1
2 and Bs,t =∫ t

s (Br − Bs)⊗ ◦dBr, and we retrieve standard (Stratonovitch) solutions for SDEs.

I One can also take W = BH a standard fractional Brownian motion of Hurst pa-
rameter H ∈ ( 1

3 ,
1
2 ) (this is a centered continuous Gaussian process of covariance

s, t→ 1
2 (t2H + s2H − |t− s|2H)Id), and one can take ν < H.

I It allows to have a pathwise (almost sure) meaning for the SDE.

I The whole theory would work for more general Gaussian rough paths (ν > 1
4 ).
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MULTIPLICATIVE ROUGH CASE : RESULTS

I Davie [Dav11].
I w geometric Brownian rough path,
I RDE in the sense of Davie/Friz-Victoir
I σ ∈ C3

b and b ∈ L∞
I Tools : Girsanov transform and T(1) Theorem for Kolmogorov equations.

I Athreya Bhar Shekhar [ABS17]
I w geometric fractional Brownian rough path, 1/2 ≥ H > 1

3 .
I RDE in the sense of Davie/Friz-Victoir.
I b ∈ C0 and bounded (or Cε for semiflow)
I σ ∈ C3

b , is strictly elliptic and σ−1 is conservative. Namely there exists F : Rd 7→ R
d

such that
∇F = σ

−1
.

I Tools : Results of [CG16] and rough Lamperti transform.
I Dareiotis and Gerenscer [DG22] (simultaneously as our work).

I w geometric fractional Brownian rough path for H > 1
3 ,

I RDE in the sense of Gubinelli
I σ ∈ C3

b and σσT stricly elliptic

I b ∈ Cε∨
(

1− 1
2H +ε

)
I Continuous semi-flow
I Same techniques for Young and smooth cases
I Tools : stochastic sewing lemma and additive translation of the solution.
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MAIN RESULT

Theorem (C., Duboscq)

Let 1
4 < H ≤ 1

2 , (BH,BH) be the rough path associated to the fractional Brownian motion. Let
σ ∈ C∞(Rd;Rd×d) being strictly elliptic, namely a constant c > 0 exists such that for all
y, z ∈ Rd,

|σ(y)z|2 ≥ c|z|2.

Let b ∈ Cε∨( 3
2−

1
2H +ε)(Rd;Rd). Then path-by-path existence and uniqueness holds for the

RDE (interpreted in the sense of Davie/Friz-Victoir)

dxt = b(xt) dt + σ(xt) dBH
t .

Furthermore, the solution semi-flow is locally Lispchitz continuous with respect to the initial
condition. Finally, if bn → b, then so does the flow (almost surely).

The result still holds for some more genereal Gaussian rough path under a local non-
determinism condition. Three main ideas for the proof:
I a flow transformation,
I Malliavin calculus,
I Besov spaces and a martingale decomposition.
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FLOW TRANSFORMATION

Ideas from Riedel and Scheutzow [RS17]. Let (ϕt(x))t∈[0,T] be the flow of the RDE

dϕt(x) = σ(ϕt(x)) dWt, ϕ0(x) = x.

where W is a geometric rough path for ν ∈ ( 1
4 ,

1
2 ].

Theorem (C., Duboscq)

Let b be continuous and bounded. Let σ ∈ C
b 1
ν
c+2

b . A path (xt)t∈[0,T] is a solution (in the
sense of Davie) of the RDE

dxt = b(xt) dt + σ(xt) dWt

if and only if (xt)t∈[0,T] = (ϕt(θt))t∈[0,T], where θ is a solution of the ODE

θt = θ0 +

∫ t

0
(∇ϕr(θr))

−1 b(ϕr(θr)) dr.

I Restriction : σ ∈ Cb
1
ν
c+2

I Strength : Averaging operator (along the flow), focus on "standard" ODE.
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REGULARIZATION PROPERTIES OF STOCHASTIC ROUGH FLOW

Let

(Tb)s,t(x) =

∫ t

s
(∇ϕr(x))−1 b(ϕr(x)) dr.

How can we obtain a regularization effect with ϕ? Malliavin calculus!

Isonormal Gaussian processes
An Isonormal Gaussian process is a set of

1. a real and separable Hilbert spaceH (whose scalar product is denoted 〈·, ·〉H),

2. a complete probability space (Ω,F ,P),

3. a real-valued Gaussian process W : h ∈ H 7→ W(h), i.e. (W(h))h∈H is a family
of centered Gaussian random variables such that E[W(h)W(g)] = 〈h, g〉H, for any
h, g ∈ H.

An example of such process is given by the Wiener process and defined by settingH =
L2(R+;R) and defining, for any h ∈ H,

W(h) =

∫ +∞

0
h(s)dBs.

We now assume thatH = L2([0, 1];R) and denoteH(s, t) = H1[s,t], for any [s, t] ⊂ [0, 1].

12 / 24
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REGULARIZATION PROPERTIES OF STOCHASTIC ROUGH FLOW

Let S be the set of smooth cylindrical fields given by

S =
{

F = f (W(h1),W(h2), . . . ,W(hn)) : n ∈ N∗, f ∈ C∞p (Rn), (hk)1≤k≤n ∈ Hn
}

Malliavin derivative/Divergence operator
Let [s, t] ⊂ [0, 1]. For any F ∈ S, we define the operator D[s,t] : S 7→ H(s, t), the
Malliavin derivative restricted to [s, t], as

D[s,t]F =
n∑

k=1

∂kf (W(h1),W(h2), . . . ,W(hn))hk1[s,t].

It is linear and closable from S to Lp(Ω;H(s, t)), with p ≥ 1.

It admits an adjoint which
is called the divergence operator, denoted δ[s,t], which satisfies, for any
u ∈ L2(Ω,H(s, t)), the integration by parts formula

E[〈D[s,t]F, u〉H(s,t)|Fs] = E[Fδ[s,t](u)|Fs],

where Fs = σ(W(h) : h ∈ H(0, s)).
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S =
{

F = f (W(h1),W(h2), . . . ,W(hn)) : n ∈ N∗, f ∈ C∞p (Rn), (hk)1≤k≤n ∈ Hn
}

Malliavin derivative/Divergence operator
Let [s, t] ⊂ [0, 1]. For any F ∈ S, we define the operator D[s,t] : S 7→ H(s, t), the
Malliavin derivative restricted to [s, t], as

D[s,t]F =
n∑

k=1

∂kf (W(h1),W(h2), . . . ,W(hn))hk1[s,t].

It is linear and closable from S to Lp(Ω;H(s, t)), with p ≥ 1. It admits an adjoint which
is called the divergence operator, denoted δ[s,t], which satisfies, for any
u ∈ L2(Ω,H(s, t)), the integration by parts formula
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REGULARIZATION PROPERTIES OF STOCHASTIC ROUGH FLOW

We remark that, for a vector-valued F ∈ S, we have

D[s,t](f (F)) =
d∑

k=1

∂kf (F)D[s,t]Fk,

so that

〈D[s,t](f (F)),D[s,t]F`〉H([s,t]) =

d∑
k=1

∂kf (F)〈D[s,t]Fk,D[s,t]F`〉H([s,t])

=
d∑

k=1

∂kf (F)(γF,[s,t])k,` = (γF,[s,t]∇f (F))`,

where
γF,[s,t] =

(
〈D[s,t]Fk,D[s,t]F`〉H([s,t]

)
1≤k,`≤d

,

is the covariance matrix associated to F on [s, t] (which is symmetric).

14 / 24



Introduction The additive case The multiplicative case

REGULARIZATION PROPERTIES OF STOCHASTIC ROUGH FLOW

We remark that, for a vector-valued F ∈ S, we have

D[s,t](f (F)) =
d∑

k=1

∂kf (F)D[s,t]Fk,

so that

〈D[s,t](f (F)),D[s,t]F`〉H([s,t]) =
d∑

k=1

∂kf (F)〈D[s,t]Fk,D[s,t]F`〉H([s,t])

=
d∑

k=1

∂kf (F)(γF,[s,t])k,` = (γF,[s,t]∇f (F))`,

where
γF,[s,t] =

(
〈D[s,t]Fk,D[s,t]F`〉H([s,t]

)
1≤k,`≤d

,

is the covariance matrix associated to F on [s, t] (which is symmetric).

14 / 24



Introduction The additive case The multiplicative case

REGULARIZATION PROPERTIES OF STOCHASTIC ROUGH FLOW

In particular, this yields the relation

∂kf (F) = 〈D[s,t](f (F)),R[s,t],k〉H([s,t]),

where we denote
R[s,t],k =

(
(γF,[s,t])

−1D[s,t]F
)

k
,

the k-th row of (γF,[s,t])
−1D[s,t]F. The integration by parts formula yields, for any Gr ∈

Lp(Ω) that is Fr-measurable with r ∈ [s, t],

E [∂kf (F)Gr|Fs] = E
[
f (F)δ[s,t]

(
R[s,t],kGr

)∣∣Fs
]
.
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REGULARIZATION PROPERTIES OF STOCHASTIC ROUGH FLOW

With f = b, F = ϕr(x) and Gr = (∇ϕr(x))−1, we obtain

Regularization by the flow (C., Duboscq)
There exists a positive adapted stochastic process (Zs)s∈[0,1], such that for all q ≥ 2,

sup
s∈[0,1]

E[Zq
s ] < +∞

and such that for all β ∈ Nd, f ∈ S, 0 ≤ s ≤ r ≤ 1

E

[
(∇ϕr(x))−1∂β f (ϕr(x))

∣∣∣Fs

]
≤ (r− s)−|β|HZs‖f‖L∞ ,

with H = 1/2 in the Brownian case.

I Inversion of the Malliavin covariance matrix: strict ellipticity of σ.
I Estimate on the multiplicative term [GOT20]: local non-determinism assumption

on the gaussian rough path

inf
0≤s<t≤1

(t− s)HVar
(

BH
t − BH

s

∣∣∣F[0,s] ∨ F[t,1]

)
≥ cW > 0.
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BESOV SPACES AND MARTINGALE DECOMPOSITION
We rely on the Paley-Littlewood blocks (∆j)j≥−1 which are such that, in some sense,

b =
∞∑

j=−1

∆ib

and, for β ∈ Nd, p ∈ [1,∞]

‖∂β∆jb‖Lp ≈ 2j|β|‖∆jb‖Lp . (3)

We use the Besov spaces Bs
∞,∞ (Hölder-Zygmund space: Hölder for s ∈ R+\N and

Zygmund otherwise) which are the f ∈ S′ such that

‖f‖Bs
∞,∞

= sup
j≥−1

2js‖∆jf‖L∞ <∞.

A lemma
Relation (3), the regularization property and some interpolation enables to deduce that∥∥∥E [ (∇ϕr(·))−1∆jf (ϕr(·))

∣∣∣Fs

]∥∥∥
L∞
≈
∥∥∥E [ (∇ϕr(·))−1(∂β)−1∂β∆jf (ϕr(·))

∣∣∣Fs

]∥∥∥
L∞

. (r− s)−(1−η)2−j 1−η
H Zs‖∆jf‖L∞ ,

for η ∈ [0, 1].
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BESOV SPACES AND MARTINGALE DECOMPOSITION

Recall that

T(∆jb)s,t(x) =

∫ t

s
(∇ϕr(x))−1 ∆jb(ϕr(x)) dr.

We remark that, for any −1 ≤ j ≤ ` := min{j ∈ N : 2−j/H ≤ (t− s)}, we have, for any
η ∈ [0, 1],

‖T(∆jb)s,t‖L∞ . (t− s)‖∆jb‖L∞
?
≤ (t− s)

1+η
2 2−

1−η
2H j‖∆jb‖L∞ .

The previous lemma yields, for any j ≥ −1,∥∥E [T(∆jb)s,t
∣∣Fs
]∥∥

L∞ . (t− s)
1+η

2 2−j 1−η
2H Zs‖∆jb‖L∞ .
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BESOV SPACES AND MARTINGALE DECOMPOSITION

For N ≥ 0 and tk = k t−s
N + s one can decompose

T(∆jb)s,t(x)−E[T(∆jb)s,t(x)|Fs] =

N−1∑
k=0

E[T(∆jb)s,t(x)|Ftk+1 ]−E[T(∆jb)s,t(x)|Ftk ]︸ ︷︷ ︸
martingale increment

=

N−1∑
k=0

T(∆jb)tk,tk+1 (x)−E[T(∆jb)tk,t(x)|Ftk ] +E[T(∆jb)tk+1,t(x)|Ftk+1 ]

BDG inequality, interpolation in Besov spaces, smart choice of the sequence (tk), the
regularity lemma and Kolmogorov continuity theorem give the following result of reg-
ularity for the averaged field.

19 / 24



Introduction The additive case The multiplicative case

REGULARIZATION PROPERTIES OF STOCHASTIC ROUGH FLOW

Theorem

For any q ∈ [2,∞), ε3 > ε2 > ε1 > 0 and ζ > d/q, we have, for any b ∈ B
− 1

2H−ε2
∞,∞ ,

E

 sup
0≤s<t≤1

 ‖(Tb)s,t‖Cκχ

|t− s|
1+ε1

2 −
1
q

q
1
q

. ‖b‖
B
κ− 1

2H−ε3
∞,∞

,

with χ(x) = (1 + |x|)ζ .

We then have the existence/uniqueness of a solution θ to

θt = θ0 +

∫ t

0
(Tb)dr(θr).
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Thank you very much for your attention!
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