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REGULARIZATION BY NOISE FOR DIFFERENTIAL EQUATIONS

Letb € Cg(]Rd) and consider
dxy = b(x;) dt, xy € RY.

» Uniqueness for b € Lip (or Osgood condition, or BV for some notion of solutions...)

» Non uniqueness when b is not regular enough. Peano example : d = 1, b(x) =

2sgn (x)+/|x(t)|, xo = 0. Solutions:

x:it €RY o (t—19)?Lisy,, Vo € (0, +o0).
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Letb € Cg(]Rd) and consider
dxy = b(x;) dt, xy € RY.

» Uniqueness for b € Lip (or Osgood condition, or BV for some notion of solutions...)

» Non uniqueness when b is not regular enough. Peano example : d = 1, b(x) =

2sgn (x)+/]x(t)], xo = 0. Solutions:
x:it €RY o (t—19)?Lisy,, Vo € (0, +o0).
An additive perturbation w may restore uniqueness (and even existence).
dxy = b(x¢) dt + dwy, xp € RA.

» Usual perturbations for such a phenomenon are stochastic processes

» One may also consider multiplicative perturbations

dx; = b(x) At + o(x;) dwy, xp € R%.

2/24



Introduction The additive case The multiplicative case

DAVIE’S PATH-BY-PATH TYPE UNIQUENESS

Let (2, F, P) be a probability space. Let xy € RY,b:RY— R?and o : RY — R%4 be
two functions and let w be a R” value stochastic process. Equation

t t
X = xo + / b(x;) dr + / o(xr) dw,
0 0

admits path-by-path uniqueness if there exists N' = N (xg,b,0) € F with P(N) =0
and for all w ¢ N, a unique x(w) : [0, T] — R exists such that

t t
) = 2 - /0 Bk /U ) (1)

» Conditions on b, 0 and w are needed for (1) to make sense.

» Path-by-path uniqueness and pathwise (strong) uniqueness are different, thanks to
examples due to [SW22, Anz22].
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PATH-BY-PATH TYPE UNIQUENESS : ADDITIVE CASE

The equation reads as

t
Xt :x0+/ b(xy) dr + wy.
0

v

Davie [Dav07] : w Brownian motion, b € L*°,

v

Catellier and Gubinelli [CG16]: w fractional Brownian motionand b € C*V (1= sz +e)
(orbecC 372 for semi-flow property),

Galeati and Gubinelli [GG21]: w almost all continuous pathand b € H¢,

Priola [Pri20]: w a Lévy process

vyy

And many others...
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THE YOUNG TRANSFORMATION IN THE ADDITIVE CASE

Set § = x — w. Then 0 solves

t
0 = 6y + / b(0; + wy) dr. 2)
0

We reinterpret this equation with the idea that ¢ oscillates slowly compared to w.
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THE YOUNG TRANSFORMATION IN THE ADDITIVE CASE

Set § = x — w. Then 0 solves

t
0 = 6y + / b(0, + w,) dr. @)
0

We reinterpret this equation with the idea that 6 oscillates slowly compared to w. In
particular, for b, § and w continuous, the integral is approximated as

#r—1 #r—1

t tk1
/ b dr = Tim 3 / b0+ dr = Tm S (TD) g, (0) dr
K ™
0 rem(0,t) k=0 i rer(,y) k=0

Well-posedness of Equation (2) is then linked to the space-time regularity of the aver-
aged field

t
(s,t,2) = (T¥D)st(z) = / b(z + wy) dr.

viz the following result :
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THEORY OF YOUNG DIFFERENTIAL EQUATIONS (YDE)
Using the space/time regularity of the averaged field and (non stochastic) sewing tech-
niques, one has the following result :

Cauchy problem for averaged-field SDE [CG16, HL17, Gal23]

Suppose that solutions of Equation

t
0 = 6y +/ b(@y —l—w,) dt
0

are a priori Lipschitz continuous in time.
Suppose furthermore that there exists v > %, and o > % such that

T € C7([0, T]; C2L (RY)).

Then the solutions are unique.
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Suppose furthermore that there exists v > %, and o > % such that

T € C7([0, T); Cie(RY)).
Then the solutions are unique.

» The previous Lipschitz continuity condition holds as soon as b € L>(R4).
» Using stochastic properties of w one can deduce the well-posedness for irregular b
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dx; = b(xt) dt + dwy.
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THEORY OF YOUNG DIFFERENTIAL EQUATIONS (YDE)
Using the space/time regularity of the averaged field and (non stochastic) sewing tech-
niques, one has the following result :

Cauchy problem for averaged-field SDE [CG16, HL17, Gal23]

Suppose that solutions of Equation

t
0 = 6y +/ b(@y +w,) dt
0

are a priori Lipschitz continuous in time.
Suppose furthermore that there exists v > %, and o > % such that

T € C7([0, T); Cie(RY)).
Then the solutions are unique.

» The previous Lipschitz continuity condition holds as soon as b € L™ (R).
» Using stochastic properties of w one can deduce the well-posedness for irregular b
of the following equation
dx; = b(xt) dt + dwy.

» Everything relate on the space-time regularity of the averaged field and of the pre-
vious Riemann sum approximation.
6/24
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PATH-BY-PATH TYPE UNIQUENESS : MULTIPLICATIVE CASE
t t
X =xo + / b(x;)dr + / o(xr) dw,
0 0

We need a pathwise meaning of the previous equation when w is a stochastic process,
which can be derived using rough paths theory.
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PATH-BY-PATH TYPE UNIQUENESS : MULTIPLICATIVE CASE

t t
X =xo + / b(x;)dr + / o(xr) dw,
0 0

We need a pathwise meaning of the previous equation when w is a stochastic process,
which can be derived using rough paths theory.

Definition (Davie/Friz-Victoir)

Let % <v< % A geometric rough path is a couple W = (W, W), with
W e ¢¥([0,T]; RY) and W € C?([0, T]; R¥*4) and

dr,

t dWE
W = lim (W,8 -W5)®
e—0 dr

where W¢ is a smooth ippr0x1mat10n of W.
A path x € C¥([0, T]; R?) is a solution of the rough differential equation

dx; = b(x¢) dt + o (x;) dW;, xg € RY
if two constants C > 0 and a > 1 exist such thatfor0 <s <t < T,

|xr — x5 + b(xs)(t — 8) + o (xs) (Ws — Ws) + Do (xs)o (xs)Ws ¢| < C|t —s|”.
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PATH-BY-PATH TYPE UNIQUENESS : MULTIPLICATIVE CASE

Theorem (Lyons, Davie, Gubinelli, Friz-Victoir...)

In the scope of the previous definition, when b € Lip and bounded and o € C3, There is a
unique solution to the previous RDE. Furthermore, it defines a flow which is continuous with
respect to the initial condition and to the driving signal W = (W, W).
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In the scope of the previous definition, when b € Lip and bounded and o € C3, There is a
unique solution to the previous RDE. Furthermore, it defines a flow which is continuous with
respect to the initial condition and to the driving signal W = (W, W).

» The process W is a data of the problem.

» When W = B is a standard Brownian motion, one can take v < % and B,; =

fst(Br — Bs) ® odB;, and we retrieve standard (Stratonovitch) solutions for SDEs.
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unique solution to the previous RDE. Furthermore, it defines a flow which is continuous with
respect to the initial condition and to the driving signal W = (W, W).

» The process W is a data of the problem.

» When W = B is a standard Brownian motion, one can take v < % and B,; =

j‘;(Br — Bs) ® odB;, and we retrieve standard (Stratonovitch) solutions for SDEs.
> One can also take W = B!l a standard fractional Brownian motion of Hurst pa-
rameter H € (%, %) (this is a centered continuous Gaussian process of covariance
s, t— %(tZH + 821 — |t — 5|2M)];), and one can take v < H.
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unique solution to the previous RDE. Furthermore, it defines a flow which is continuous with
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>

The process W is a data of the problem.

When W = B is a standard Brownian motion, one can take v < % and B,; =
j‘;(Br — Bs) ® odB;, and we retrieve standard (Stratonovitch) solutions for SDEs.

One can also take W = BH a standard fractional Brownian motion of Hurst pa-
rameter H € (%, %) (this is a centered continuous Gaussian process of covariance
s, t— %(tZH + 821 — |t — 5|2M)];), and one can take v < H.

It allows to have a pathwise (almost sure) meaning for the SDE.
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PATH-BY-PATH TYPE UNIQUENESS : MULTIPLICATIVE CASE

Theorem (Lyons, Davie, Gubinelli, Friz-Victoir...)

In the scope of the previous definition, when b € Lip and bounded and o € C3, There is a
unique solution to the previous RDE. Furthermore, it defines a flow which is continuous with
respect to the initial condition and to the driving signal W = (W, W).

>
>

The process W is a data of the problem.

When W = B is a standard Brownian motion, one can take v < % and B,; =
j‘;(Br — Bs) ® odB;, and we retrieve standard (Stratonovitch) solutions for SDEs.
One can also take W = BH a standard fractional Brownian motion of Hurst pa-
rameter H € (%, %) (this is a centered continuous Gaussian process of covariance
s, t— %(tZH + 821 — |t — 5|2M)];), and one can take v < H.

It allows to have a pathwise (almost sure) meaning for the SDE.

The whole theory would work for more general Gaussian rough paths (v > i).
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MULTIPLICATIVE ROUGH CASE : RESULTS

» Davie [Dav11].
» w geometric Brownian rough path,
» RDE in the sense of Davie/Friz-Victoir
> s cClandb e L™
» Tools : Girsanov transform and T(1) Theorem for Kolmogorov equations.

» Athreya Bhar Shekhar [ABS17]

w geometric fractional Brownian rough path, 1/2 > H > 1.

RDE in the sense of Davie/Friz-Victoir.

b € ¢" and bounded (or C* for semiflow)

o € Cj, is strictly elliptic and o ! is conservative. Namely there exists F : R’ — R*
such that

\AAAA/

VE=o0"1

» Tools : Results of [CG16] and rough Lamperti transform.
» Dareiotis and Gerenscer [DG22] (simultaneously as our work).
w geometric fractional Brownian rough path for H > %,
RDE in the sense of Gubinelli
o € C}and oo stricly elliptic
be Cgv(l—ﬁJrs)
Continuous semi-flow

Same techniques for Young and smooth cases
Tools : stochastic sewing lemma and additive translation of the solution.

VYVY VVY
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MAIN RESULT

Theorem (C., Duboscq)

Let % <H<Z %, (BH, BH) be the rough path associated to the fractional Brownian motion. Let
o € C(RY; RI*4) being strictly elliptic, namely a constant ¢ > 0 exists such that for all
Y,z € R4,

o)zl > clz.

Letb € c=V(G—am+e) (R%; RY). Then path-by-path existence and uniqueness holds for the

RDE (interpreted in the sense of Davie/Friz-Victoir)
dxy = b(x;) dt + o(x;) dBE.

Furthermore, the solution semi-flow is locally Lispchitz continuous with respect to the initial
condition. Finally, if b" — b, then so does the flow (almost surely).
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Theorem (C., Duboscq)

Let % <H<Z %, (BH, BH) be the rough path associated to the fractional Brownian motion. Let
o € C(RY; RI*4) being strictly elliptic, namely a constant ¢ > 0 exists such that for all
Y,z € R4,

o)zl > clz.
Letb € c=V(G—am+e) (R%; RY). Then path-by-path existence and uniqueness holds for the
RDE (interpreted in the sense of Davie/Friz-Victoir)

dxy = b(x;) dt + o(x;) dBE.

Furthermore, the solution semi-flow is locally Lispchitz continuous with respect to the initial
condition. Finally, if b" — b, then so does the flow (almost surely).

The result still holds for some more genereal Gaussian rough path under a local non-
determinism condition. Three main ideas for the proof:

» a flow transformation,

» Malliavin calculus,

» Besov spaces and a martingale decomposition.
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FLOW TRANSFORMATION

Ideas from Riedel and Scheutzow [RS17]. Let (¢¢(x))teo, 1) be the flow of the RDE
dpi(x) = o((x) dWi,  po(x) = .

where W is a geometric rough path for v € (%, %]

Theorem (C., Duboscq)

1
Let b be continuous and bounded. Let o € C,E w112 4 path (xt);cqo,1) i 4 solution (in the
sense of Davie) of the RDE

dx; = b(x[) dt + O’(xt) dW;

if and only if (xt)icjo,1) = (¢t(64))teo,1), where 0 is a solution of the ODE

t
01 = 0y + /0 (Vr(6)) " b(r(6,)) dr-

> Restriction : o € Clv1+2
» Strength : Averaging operator (along the flow), focus on "standard" ODE.
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REGULARIZATION PROPERTIES OF STOCHASTIC ROUGH FLOW

Let .
(Th)o(x) = / (Veor ()~ bior (1)) dr.

How can we obtain a regularization effect with ¢? Malliavin calculus!
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REGULARIZATION PROPERTIES OF STOCHASTIC ROUGH FLOW

Let .
(Th)o(x) = / (Veor ()~ bior (1)) dr.

How can we obtain a regularization effect with ¢? Malliavin calculus!

Isonormal Gaussian processes

An Isonormal Gaussian process is a set of
1. areal and separable Hilbert space H (whose scalar product is denoted (-, -)%),
2. a complete probability space (2, F,P),

3. a real-valued Gaussian process W : h € H — W(h), i.e. (W(h))pep is a family
of centered Gaussian random variables such that E[W(h)W(g)] = (h, g)#, for any
h,g € H.
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Let .
(Th)o(x) = / (Veor ()~ bior (1)) dr.

How can we obtain a regularization effect with ¢? Malliavin calculus!

Isonormal Gaussian processes

An Isonormal Gaussian process is a set of
1. areal and separable Hilbert space H (whose scalar product is denoted (-, -)%),
2. a complete probability space (2, F,P),

3. a real-valued Gaussian process W : h € H — W(h), i.e. (W(h))pep is a family
of centered Gaussian random variables such that E[W(h)W(g)] = (h, g)#, for any
h,g € H.

An example of such process is given by the Wiener process and defined by setting H =
L?(R*;R) and defining, for any i € H,

W) = /0 " h(s)dB.

We now assume that H = L2([0, 1]; R) and denote H (s, t) = H1[, g, forany [s, f] C [0,1].
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REGULARIZATION PROPERTIES OF STOCHASTIC ROUGH FLOW

Let S be the set of smooth cylindrical fields given by

S={F=fW(n), Wlh),..., W) : n€N*, f € CZ¥(R"), (hr<k<n € K"}

Malliavin derivative/Divergence operator

Let [s,#] C [0,1]. For any F € S, we define the operator D[; ,j : S +— (s, t), the
Malliavin derivative restricted to [s, t], as

n
Dis,nF =Y 0f (W), W(ha), . . ., W(la) Iyl s g
k=1

It is linear and closable from S to L (Q2; H(s, t)), with p > 1.
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S={F=fW(n), Wlh),..., W) : n€N*, f € CZ¥(R"), (hr<k<n € K"}

Malliavin derivative/Divergence operator

Let [s,#] C [0,1]. For any F € S, we define the operator D[; ,j : S +— (s, t), the
Malliavin derivative restricted to [s, t], as

n
Dis,nF =Y 0f (W), W(ha), . . ., W(la) Iyl s g
k=1

It is linear and closable from S to L? (2; H(s, t)), with p > 1. It admits an adjoint which
is called the divergence operator, denoted & [5,f] which satisfies, for any

u € L2(Q, H(s, t)), the integration by parts formula
E[(Dis,nF, ) 31(s,1) | Fs] = E[Fd[s 1y ()| Fs],

where Fs = o(W(h) : h € H(0,s)).

13/24



Introduction The additive case The multiplicative case

REGULARIZATION PROPERTIES OF STOCHASTIC ROUGH FLOW

We remark that, for a vector-valued F € S, we have

d

D5, (F(F)) = _ Of (F)Djs s

k=1
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REGULARIZATION PROPERTIES OF STOCHASTIC ROUGH FLOW

We remark that, for a vector-valued F € S, we have

d

D5, (F(F)) = _ Of (F)Djs s

k=1

so that

d
(D (F(F)), Dis g Fe) e (ps,) = D, Of (F)(Djs, 11 Fis Dis, i Fe) o (s1)
k=1

d
=Y f(F) Ve sk = (0, s, VA(E))es

k=1

where
V05, = ((Dps.Fie Dis 1 Fe)2(1s,1) 1 < 0<a

is the covariance matrix associated to F on [s, {] (which is symmetric).
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REGULARIZATION PROPERTIES OF STOCHASTIC ROUGH FLOW

In particular, this yields the relation

Okf (F) = (Dis,n (F(F)), Ris k) 24151 »

where we denote
Rigx = (('YF,[s,t])ilD[s,t]F)kv

the k-th row of (v s, ,])*1D[5’,]F . The integration by parts formula yields, for any G, €
LP(2) that is F;-measurable with r € [s, #],

E [0 (F)Gr|Fs] = E [f(F)d(s, (Ris 5 kGr) | Fs] -
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REGULARIZATION PROPERTIES OF STOCHASTIC ROUGH FLOW
Withf = b, F = ¢,(x) and G = (Vr(x)) "1, we obtain

Regularization by the flow (C., Duboscq)

There exists a positive adapted stochastic process (Zs)se[o,1), such that for all g > 2,

sup E[Z]] < +o0
s€[0,1]

and such that forall f € N4, f € S,0<s <r <1

E [ (Ver@) 10 f(or(0)| B] < (= )7 Z | fuoe,

with H = 1/2 in the Brownian case.
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REGULARIZATION PROPERTIES OF STOCHASTIC ROUGH FLOW
Withf = b, F = ¢,(x) and G = (Vr(x)) "1, we obtain
Regularization by the flow (C., Duboscq)

There exists a positive adapted stochastic process (Zs)se[o,1), such that for all g > 2,

sup E[Z]] < +o0
s€[0,1]

and such that forall f € N4, f € S,0<s <r <1
E [ (Ver(x) T10f(er(x)| B] < (r = 9)TPHZ |l 1ce,
with H = 1/2 in the Brownian case.

» Inversion of the Malliavin covariance matrix: strict ellipticity of o.

» Estimate on the multiplicative term [GOT20]: local non-determinism assumption
on the gaussian rough path

inf (t—s)Hvar (BF —BH
0<s<t<1

Flo,g Vv F[t,l]) >cw > 0.
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BESOV SPACES AND MARTINGALE DECOMPOSITION
We rely on the Paley-Littlewood blocks (4);> _1 which are such that, in some sense,

o0
b= > Apb
j=—1
and, for 8 € N%, p € [1, 00]
107 Ajbl|Lr ~ 2121 Ab]l - ®)

We use the Besov spaces BY, ., (Holder-Zygmund space: Holder for s € RT\N and
Zygmund otherwise) which are the f € S’ such that

Ifllzs, oo = Sup 25| Ajfllee < oo
=
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BESOV SPACES AND MARTINGALE DECOMPOSITION
We rely on the Paley-Littlewood blocks (4);> _1 which are such that, in some sense,

oo
b= > Apb
j=—1
and, for 8 € N%, p € [1, 00]
108 Ajbllr =~ 221 Ab] |- 3

We use the Besov spaces BY, ., (Holder-Zygmund space: Holder for s € RT\N and
Zygmund otherwise) which are the f € S’ such that

Ifllzs, oo = ‘S>111312]$||A;‘](||Loo < oo.
=

A lemma

Relation (3), the regularization property and some interpolation enables to deduce that

|2 [ (TerN T af ()] 7]

‘LOO ~ HE [(V‘P’('))71(8ﬁ)718ﬁA]f(90r(‘))‘ ]:s]

S (r = )~ =2 H Zy|Aflpoo,

o

forn € [0,1].
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BESOV SPACES AND MARTINGALE DECOMPOSITION

Recall that ,
T(A)r(0) = [ (Tir) ™ Ajbli ()

We remark that, forany —1 <j < ¢ :=min{j € N : 2-i/H < (t —s)}, we have, for any
n €10,1],

? It __1-n;
< (=) Al < (¢ —5) F 2 T | Ao

~

IT(Ajb)s Lo

The previous lemma yields, for any j > —1,

147 11
S(t—s) 2 273 Zg| A pee.

~

I [T(A0)s.t] 7] [ o
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BESOV SPACES AND MARTINGALE DECOMPOSITION

For N > 0and t, = k"Ws + s one can decompose

T(Ab)s,i(x) — BIT(Ab)s i ()| Fs] = Z E[T(AD)s,+(0)| Fiy ] — BIT(AD)s,1(x)| F]
martingale increment
N-1
T(AD) by (¥) = B[T(AD)1 ¢ (0)[Fr ] + E[T(AD)1y 4,6 () Fr 4]
k=0

BDG inequality, interpolation in Besov spaces, smart choice of the sequence (t), the
regularity lemma and Kolmogorov continuity theorem give the following result of reg-
ularity for the averaged field.
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REGULARIZATION PROPERTIES OF STOCHASTIC ROUGH FLOW

1
Forany g € [2,00), 3 > €, > €1 > 0and ¢ > d/q, we have, for any b € Boo*H, B

q 1
I(Th)s,ellcz !
Bl sw | ——pg | | S g
0<s<t<1 t—s| 2 "3 Boo 2

with x(x) = (1 + |x])¢.

We then have the existence/uniqueness of a solution 6 to

t
0 =00+ [ (a0,
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Thank you very much for your attention!
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