Spectral asymptotics of the one-particle density matrix for the Coulombic multi-particle systems

Alexander Sobolev
University College London
Luminy 15.01.24

Multi-particle system

Begin with the Schrödinger operator

$$
H=\sum_{k=1}^{N}\left(-\Delta_{k}-\frac{Z}{\left|x_{k}\right|}\right)+\sum_{1 \leq j<k \leq N} \frac{1}{\left|x_{j}-x_{k}\right|} .
$$

Here $X=\left(x_{1}, x_{2}, \ldots, x_{N}\right)$,
$x_{j} \in \mathbb{R}^{3}, j=1,2, \ldots, N$, are coordinates of "electrons",
$X=(\hat{X}, x), \hat{X}=\left(x_{1}, x_{2}, \ldots, x_{N-1}\right)$,

Multi-particle system

Begin with the Schrödinger operator

$$
H=\sum_{k=1}^{N}\left(-\Delta_{k}-\frac{Z}{\left|x_{k}\right|}\right)+\sum_{1 \leq j<k \leq N} \frac{1}{\left|x_{j}-x_{k}\right|} .
$$

Here $X=\left(x_{1}, x_{2}, \ldots, x_{N}\right)$,
$x_{j} \in \mathbb{R}^{3}, j=1,2, \ldots, N$, are coordinates of "electrons",
$X=(\hat{X}, x), \hat{X}=\left(x_{1}, x_{2}, \ldots, x_{N-1}\right)$,
$Z>0$ is the "nuclear" charge.
The underlying space is $L^{2}\left(\mathbb{R}^{3 N}\right)$,
H is self-adjoint on $H^{2}\left(\mathbb{R}^{3 N}\right)$.

Multi-particle system

Begin with the Schrödinger operator

$$
H=\sum_{k=1}^{N}\left(-\Delta_{k}-\frac{Z}{\left|x_{k}\right|}\right)+\sum_{1 \leq j<k \leq N} \frac{1}{\left|x_{j}-x_{k}\right|} .
$$

Here $X=\left(x_{1}, x_{2}, \ldots, x_{N}\right)$,
$x_{j} \in \mathbb{R}^{3}, j=1,2, \ldots, N$, are coordinates of "electrons",
$X=(\hat{X}, x), \hat{X}=\left(x_{1}, x_{2}, \ldots, x_{N-1}\right)$,
$Z>0$ is the "nuclear" charge.
The underlying space is $L^{2}\left(\mathbb{R}^{3 N}\right)$,
H is self-adjoint on $\mathrm{H}^{2}\left(\mathbb{R}^{3 N}\right)$.
Let $\psi \in \mathrm{L}^{2}\left(\mathbb{R}^{3 N}\right)$ be an eigenfunction of H :

$$
H \psi=E \psi,
$$

with some $E \in \mathbb{R}$.

Density matrix

Define the one-particle density matrix:

$$
\gamma(x, y)=\int \overline{\psi(\hat{X}, x)} \psi(\hat{X}, y) d \hat{X}
$$

and the one-particle kinetic energy density matrix:

$$
\tau(x, y)=\int_{\mathbb{R}^{3 N-3}} \overline{\nabla_{x} \psi(\hat{X}, x)} \cdot \nabla_{y} \psi(\hat{X}, y) d \hat{X}
$$

Density matrix

Define the one-particle density matrix:

$$
\gamma(x, y)=\int \overline{\psi(\hat{X}, x)} \psi(\hat{X}, y) d \hat{X}
$$

and the one-particle kinetic energy density matrix:

$$
\tau(x, y)=\int_{\mathbb{R}^{3 N-3}} \overline{\nabla_{x} \psi(\hat{X}, x)} \cdot \nabla_{y} \psi(\hat{X}, y) d \hat{X}
$$

Let $\boldsymbol{\Gamma}$, \boldsymbol{T} be the operators with kernel $\gamma(x, y)$.
Represent: $\Gamma=\Psi^{*} \Psi$, where $\Psi: L^{2}\left(\mathbb{R}^{3}\right) \mapsto L^{2}\left(\mathbb{R}^{3 N-3}\right)$ is given by

$$
(\Psi u)(\hat{X})=\int_{\mathbb{R}^{3}} \psi(\hat{X}, x) u(x) d x,
$$

Density matrix

Define the one-particle density matrix:

$$
\gamma(x, y)=\int \overline{\psi(\hat{X}, x)} \psi(\hat{X}, y) d \hat{X}
$$

and the one-particle kinetic energy density matrix:

$$
\tau(x, y)=\int_{\mathbb{R}^{3 N-3}} \overline{\nabla_{x} \psi(\hat{X}, x)} \cdot \nabla_{y} \psi(\hat{X}, y) d \hat{X}
$$

Let $\boldsymbol{\Gamma}, \mathbf{T}$ be the operators with kernel $\gamma(x, y)$.
Represent: $\Gamma=\Psi^{*} \Psi$, where $\Psi: L^{2}\left(\mathbb{R}^{3}\right) \mapsto L^{2}\left(\mathbb{R}^{3 N-3}\right)$ is given by

$$
(\Psi u)(\hat{X})=\int_{\mathbb{R}^{3}} \psi(\hat{X}, x) u(x) d x,
$$

and $T=V^{*} V$, where $V: L^{2}\left(\mathbb{R}^{3}\right) \mapsto L^{2}\left(\mathbb{R}^{3 N-3}, \mathbb{C}^{3}\right)$ is given by

$$
(\mathrm{V} u)(\hat{X})=\int_{\mathbb{R}^{3}} \nabla_{x} \psi(\hat{X}, x) u(x) d x
$$

Since $\psi, \nabla_{x} \psi \in \mathrm{~L}^{2}\left(\mathbb{R}^{3 N}\right)$, the operators ψ, V are Hilbert-Schmidt, and hence Γ and T are trace class: $\|\Gamma\|_{1}=\|\Psi\|_{2}^{2},\|\mathrm{~T}\|_{1}=\|\mathrm{V}\|_{2}^{2}$.

What was known: Friesecke (2003): 「 has infinite rank, Cioslowski(2020) for $N=2: \lambda_{k}(\Gamma) \sim k^{-8 / 3}$?

What was known: Friesecke (2003): 「 has infinite rank, Cioslowski(2020) for $N=2: \lambda_{k}(\Gamma) \sim k^{-8 / 3}$?

Plan:

1. Spectral estimates for the operator Γ
2. Spectral asymptotics for Γ.

Asymptotics

Suppose that $|\psi(X)| \lesssim e^{-\varkappa|X|}, \quad \varkappa>0, X \in \mathbb{R}^{3 N}:$ Agmon(1982), Froese-Herbst(1982) and many others.

Asymptotics

Suppose that $|\psi(X)| \lesssim e^{-\varkappa|X|}, \varkappa>0, X \in \mathbb{R}^{3 N}:$ Agmon(1982), Froese-Herbst(1982) and many others.
Let $\tilde{X}_{j}=\left(x_{1}, x_{2}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{N-1}\right), j=1,2, \ldots, N-1$, so $\hat{X}=\left(\tilde{X}_{j}, x_{j}\right)$, $X=\left(\tilde{X}_{j}, x_{j}, x\right)$.
Theorem. Let $H(x)=\frac{1}{4} \psi(x, x)$, for $N=2$, and

$$
H(x)=\frac{1}{4}\left[\sum_{j=1}^{N-1} \int_{\mathbb{R}^{3 N-6}}\left|\psi\left(\tilde{X}_{j}, x, x\right)\right|^{2} d \tilde{X}_{j}\right]^{\frac{1}{2}}, \quad \text { for } \quad N \geq 3 .
$$

Asymptotics

Suppose that $|\psi(X)| \lesssim e^{-\varkappa|X|}, \varkappa>0, X \in \mathbb{R}^{3 N}:$ Agmon(1982),
Froese-Herbst(1982) and many others.
Let $\tilde{X}_{j}=\left(x_{1}, x_{2}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{N-1}\right), j=1,2, \ldots, N-1$, so $\hat{X}=\left(\tilde{X}_{j}, x_{j}\right)$, $X=\left(\tilde{X}_{j}, x_{j}, x\right)$.
Theorem. Let $H(x)=\frac{1}{4} \psi(x, x)$, for $N=2$, and

$$
H(x)=\frac{1}{4}\left[\sum_{j=1}^{N-1} \int_{\mathbb{R}^{3 N-6}}\left|\psi\left(\tilde{X}_{j}, x, x\right)\right|^{2} d \tilde{X}_{j}\right]^{\frac{1}{2}}, \quad \text { for } \quad N \geq 3 .
$$

Define

$$
A=\frac{1}{3}\left(\frac{2}{\pi}\right)^{5 / 4} \int_{\mathbb{R}^{3}}|H(x)|^{\frac{3}{4}} d x, \quad B=\frac{4}{3 \pi} \int_{\mathbb{R}^{3}} H(x) d x .
$$

Then

$$
\lim _{k \rightarrow \infty} k^{8 / 3} \lambda_{k}(\Gamma)=A^{8 / 3}, \quad \lim _{k \rightarrow \infty} k^{2} \lambda_{k}(\mathrm{~T})=\mathrm{B}^{2}
$$

Remark

If ψ is antisymmetric (i.e. for spinless fermions), then $A=0$.
If spin is present, consider $N=2$. There are two possible pair configurations: singlet and triplet.
Singlet: ψ is symmetric, thus $A \neq 0$.
Triplet: ψ is antisymmetric and then $A=0$. In this case $\lambda_{k} \lesssim k^{-\frac{10}{3}}$.

Asymptotics

Since $\Gamma=\Psi^{*} \Psi, \mathrm{~T}=\mathrm{V}^{*} \mathrm{~V}$, we have $\lambda_{k}(\Gamma)=s_{k}(\Psi)^{2}, \lambda_{k}(\mathrm{~T})=s_{k}(\mathrm{~V})^{2}$ where $s_{k}(G)=\sqrt{\lambda_{k}\left(G^{*} G\right)}$ are singular values (or s-values) of G. Thus:

$$
\lim _{k \rightarrow \infty} k^{4 / 3} s_{k}(\Psi)=A^{4 / 3}, \quad \lim _{k \rightarrow \infty} k s_{k}(\mathrm{~V})=B
$$

The key fact: the decay rate of s_{k} depends on the smoothness of ψ. We focus on the operator Ψ only.

Asymptotics

Since $\Gamma=\Psi^{*} \Psi, T=V^{*} \mathrm{~V}$, we have $\lambda_{k}(\Gamma)=s_{k}(\Psi)^{2}, \lambda_{k}(\mathrm{~T})=s_{k}(\mathrm{~V})^{2}$ where $s_{k}(G)=\sqrt{\lambda_{k}\left(G^{*} G\right)}$ are singular values (or s-values) of G. Thus:

$$
\lim _{k \rightarrow \infty} k^{4 / 3} s_{k}(\Psi)=A^{4 / 3}, \quad \lim _{k \rightarrow \infty} k s_{k}(\mathrm{~V})=B
$$

The key fact: the decay rate of s_{k} depends on the smoothness of ψ. We focus on the operator Ψ only.
For simplicity: $N=2$. Then if x, t are away from 0 , then

$$
\psi(t, x) \sim \tilde{\phi}(t, x)+|x-t| \phi(t, x), \quad \text { with smooth } \quad \phi, \tilde{\phi} .
$$

Proposition (M.Birman-M.Solomyak 1970-1977)

Let $X, Y \subset \mathbb{R}^{d}, d \geq 1$, be bounded Borel sets. Let $T: \mathrm{L}^{2}(Y) \rightarrow \mathrm{L}^{2}(X)$ be the operator with kernel

$$
T(x, y)=\rho_{1}(x)|x-y|^{\alpha} \phi(x, y) \rho_{2}(y),
$$

where $\alpha>-d, \rho_{1} \in \mathrm{~L}^{\infty}(X), \rho_{2} \in \mathrm{~L}^{\infty}(Y)$, and $\phi \in \mathrm{C}^{\infty}(\bar{X} \times \bar{Y})$. Then for $p^{-1}=1+\alpha d^{-1}$ we have

$$
\lim _{k \rightarrow \infty}\left(k^{1 / p} s_{k}(T)\right)^{p}=\mu_{\alpha, d} \int_{x \cap Y}\left|\rho_{1}(x) \phi(x, x) \rho_{2}(x)\right|^{p} d x,
$$

with

$$
\mu_{\alpha, d}=\frac{1}{\Gamma(d / 2+1)}\left[\frac{\Gamma((d+\alpha) / 2)}{\pi^{\alpha / 2}|\Gamma(-\alpha / 2)|}\right]^{p}, \quad \alpha \neq 0,2,4, \ldots,
$$

and $\mu_{\alpha, d}=0, \quad \alpha=0,2,4, \ldots$.

Proposition (M.Birman-M.Solomyak 1970-1977)

Let $X, Y \subset \mathbb{R}^{d}, d \geq 1$, be bounded Borel sets. Let $T: \mathrm{L}^{2}(Y) \rightarrow \mathrm{L}^{2}(X)$ be the operator with kernel

$$
T(x, y)=\rho_{1}(x)|x-y|^{\alpha} \phi(x, y) \rho_{2}(y),
$$

where $\alpha>-d, \rho_{1} \in \mathrm{~L}^{\infty}(X), \rho_{2} \in \mathrm{~L}^{\infty}(Y)$, and $\phi \in \mathrm{C}^{\infty}(\bar{X} \times \bar{Y})$. Then for $p^{-1}=1+\alpha d^{-1}$ we have

$$
\lim _{k \rightarrow \infty}\left(k^{1 / p} s_{k}(T)\right)^{p}=\mu_{\alpha, d} \int_{x \cap Y}\left|\rho_{1}(x) \phi(x, x) \rho_{2}(x)\right|^{p} d x,
$$

with

$$
\mu_{\alpha, d}=\frac{1}{\Gamma(d / 2+1)}\left[\frac{\Gamma((d+\alpha) / 2)}{\pi^{\alpha / 2}|\Gamma(-\alpha / 2)|}\right]^{p}, \quad \alpha \neq 0,2,4, \ldots,
$$

and $\mu_{\alpha, d}=0, \quad \alpha=0,2,4, \ldots$.
Remark: for $\alpha=1, d=3$, we have $1 / p=4 / 3$, as required:
$\lim _{k \rightarrow \infty} k^{4 / 3} s_{k}(\Psi)=A^{4 / 3}$.

Intuition

Consider the operator T on $L^{2}(\mathbb{T}), \mathbb{T}=\mathbb{R}^{d} /(2 \pi \mathbb{Z})^{d}$, with the kernel $\mathcal{T}(\mathbf{x}-\mathbf{y})$, where \mathcal{T} is $(2 \pi \mathbb{Z})^{d}$-periodic. Then the equation $T u=\lambda u$ transforms into $\hat{\mathcal{T}}_{\mathbf{n}} \hat{u}_{\mathbf{n}}=\lambda \hat{u}_{\mathbf{n}}, \mathbf{n} \in \mathbb{Z}^{d}$. If $\mathcal{T}(\mathbf{x})=|\mathbf{x}|^{\alpha} \phi(\mathbf{x}), \mathbf{x} \in[0,2 \pi)^{d}$, then $\hat{\mathscr{T}}_{\mathbf{n}} \sim|\mathbf{n}|^{-\alpha-d}$, so $\lambda_{k} \sim k^{-1-\alpha d^{-1}}$.

Intuition

Consider the operator T on $L^{2}(\mathbb{T}), \mathbb{T}=\mathbb{R}^{d} /(2 \pi \mathbb{Z})^{d}$, with the kernel $\mathcal{T}(\mathbf{x}-\mathbf{y})$, where \mathcal{T} is $(2 \pi \mathbb{Z})^{d}$-periodic. Then the equation $T u=\lambda u$ transforms into $\hat{\mathcal{T}}_{\mathbf{n}} \hat{u}_{\mathbf{n}}=\lambda \hat{u}_{\mathbf{n}}, \mathbf{n} \in \mathbb{Z}^{d}$. If $\mathcal{T}(\mathbf{x})=|\mathbf{x}|^{\alpha} \phi(\mathbf{x}), \mathbf{x} \in[0,2 \pi)^{d}$, then $\hat{\mathcal{T}}_{\mathbf{n}} \sim|\mathbf{n}|^{-\alpha-d}$, so $\lambda_{k} \sim k^{-1-\alpha d^{-1}}$.
For $\alpha=1$ we have $\lambda_{k}(T) \sim k^{-1-d^{-1}}$, and $\lambda_{k}(T) \sim k^{-4 / 3}$ if $d=3$.

Intuition

Consider the operator T on $L^{2}(\mathbb{T}), \mathbb{T}=\mathbb{R}^{d} /(2 \pi \mathbb{Z})^{d}$, with the kernel $\mathcal{T}(\mathbf{x}-\mathbf{y})$, where \mathcal{T} is $(2 \pi \mathbb{Z})^{d}$-periodic. Then the equation $T u=\lambda u$ transforms into $\hat{\mathcal{T}}_{\mathbf{n}} \hat{u}_{\mathbf{n}}=\lambda \hat{u}_{\mathbf{n}}, \mathbf{n} \in \mathbb{Z}^{d}$. If $\mathcal{T}(\mathbf{x})=|\mathbf{x}|^{\alpha} \phi(\mathbf{x}), \mathbf{x} \in[0,2 \pi)^{d}$, then $\hat{\mathcal{T}}_{\mathbf{n}} \sim|\mathbf{n}|^{-\alpha-d}$, so $\lambda_{k} \sim k^{-1-\alpha d^{-1}}$.
For $\alpha=1$ we have $\lambda_{k}(T) \sim k^{-1-d^{-1}}$, and $\lambda_{k}(T) \sim k^{-4 / 3}$ if $d=3$.

Pathway to the estimates:

- Study regularity of ψ.
- Estimates for s-values of integral operators via regularity of their kernels.

Regularity of the eigenfunctions

- Since $|x|^{-1}$ is real analytic away from $x=0$, the function ψ is real analytic away from the coalescence points.
- T. Kato (1957): ψ is Lipschitz.
- Fournais, T. and M. Hoffmann-Ostenhof, Sørensen: 2006-2020.

Regularity

Represent the solution ψ of the equation $-\Delta \psi+(V-E) \psi=0$: $\psi(X)=e^{F_{0}(X)} \phi(X)$, where

$$
F_{0}(X)=-\frac{Z}{2} \sum_{j=1}^{N}\left|x_{j}\right|+\frac{1}{4} \sum_{1 \leq j<k \leq N}\left|x_{j}-x_{k}\right|,
$$

The function $e^{F_{0}}$ is called the Jastrow factor. Important: $V=\Delta F_{0}$ and $\nabla F_{0} \in \mathrm{~L}^{\infty}\left(\mathbb{R}^{3 N}\right):$

$$
-\Delta \phi-2 \nabla F_{0} \cdot \nabla \phi-\left(\left|\nabla F_{0}\right|^{2}+E\right) \phi=0 .
$$

Then ϕ is "smoother" than ψ.

Let

$$
F(X)=-\frac{Z}{2} \sum_{j=1}^{N}\left|x_{j}\right| \zeta\left(x_{j}\right)+\frac{1}{4} \sum_{1 \leq j<k \leq N}\left|x_{j}-x_{k}\right| \zeta\left(x_{j}-x_{k}\right),
$$

and $\zeta \in \mathrm{C}_{0}^{\infty}\left(\mathbb{R}^{3}\right), \zeta(t)=1,|t| \leq 1$. Then

$$
-\Delta \phi-2 \nabla F \cdot \nabla \phi+\left(V-\Delta F-|\nabla F|^{2}-E\right) \phi=0 .
$$

Observe: $\nabla^{k}(V-\Delta F) \in \mathrm{L}^{\infty}\left(\mathbb{R}^{3 N}\right), k=0,1, \ldots$, and $F, \nabla F \in \mathrm{~L}^{\infty}\left(\mathbb{R}^{3 N}\right)$.
Thus for any $R>0$:

$$
|\psi(X)|+|\nabla \psi(X)| \lesssim|\phi(X)|+|\nabla \phi(X)| \lesssim\|\phi\|_{L^{2}(B(X, R))} \lesssim\|\psi\|_{L^{2}(B(X, R))} .
$$

Fournais, T. and M. Hoffmann-Ostenhof, Sørensen.

The coalescence set:

$$
\Sigma=\left\{X=(\hat{X}, x) \in \mathbb{R}^{3 N}:|x| \prod_{k=1}^{N-1}\left|x-x_{k}\right|=0\right\}
$$

The distance to Σ :

$$
\begin{aligned}
& d(\hat{X}, x):=\min \left\{|x|, \frac{1}{\sqrt{2}}\left|x-x_{j}\right|, j=1,2, \ldots, N-1\right\}, \\
& \delta(\hat{X}, x):=d(\hat{X}, x) \wedge 1
\end{aligned}
$$

The coalescence set:

$$
\Sigma=\left\{X=(\hat{X}, x) \in \mathbb{R}^{3 N}:|x| \prod_{k=1}^{N-1}\left|x-x_{k}\right|=0\right\}
$$

The distance to Σ :

$$
\begin{aligned}
& d(\hat{X}, x):=\min \left\{|x|, \frac{1}{\sqrt{2}}\left|x-x_{j}\right|, j=1,2, \ldots, N-1\right\} \\
& \delta(\hat{X}, x):=d(\hat{X}, x) \wedge 1
\end{aligned}
$$

Theorem. (Fournais-Sørensen 2018) For all $X \in \mathbb{R}^{3 N} \backslash \Sigma$ and any $R>0$:

$$
\left|\partial_{x}^{m} \phi(\hat{X}, x)\right| \lesssim \delta(\hat{X}, x)^{1-|m|}\|\psi\|_{L^{2}(B(X, R))}, \quad|m| \geq 1
$$

and hence,

$$
\left|\partial_{x}^{m} \psi(\hat{X}, x)\right| \lesssim \delta(\hat{X}, x)^{1-|m|}\|\psi\|_{L^{2}(B(X, R))}, \quad|m| \geq 1
$$

The coalescence set:

$$
\Sigma=\left\{X=(\hat{X}, x) \in \mathbb{R}^{3 N}:|x| \prod_{k=1}^{N-1}\left|x-x_{k}\right|=0\right\}
$$

The distance to Σ :

$$
\begin{aligned}
& d(\hat{X}, x):=\min \left\{|x|, \frac{1}{\sqrt{2}}\left|x-x_{j}\right|, j=1,2, \ldots, N-1\right\} \\
& \delta(\hat{X}, x):=d(\hat{X}, x) \wedge 1
\end{aligned}
$$

Theorem. (Fournais-Sørensen 2018) For all $X \in \mathbb{R}^{3 N} \backslash \Sigma$ and any $R>0$:

$$
\left|\partial_{x}^{m} \phi(\hat{X}, x)\right| \lesssim \delta(\hat{X}, x)^{1-|m|}\|\psi\|_{L^{2}(B(X, R))}, \quad|m| \geq 1
$$

and hence,

$$
\left|\partial_{x}^{m} \psi(\hat{X}, x)\right| \lesssim \delta(\hat{X}, x)^{1-|m|}\|\psi\|_{L^{2}(B(X, R))}, \quad|m| \geq 1
$$

Need more smoothness!

Indeeed, assume again $N=2$ and represent

$$
\psi(t, x)=e^{-z / 2(|t|+|x|) \zeta(t) \zeta(x)}\left(\phi(t, x)+\frac{1}{4}|t-x| \phi(t, x)+\ldots\right) .
$$

Indeeed, assume again $N=2$ and represent

$$
\psi(t, x)=e^{-z / 2(|t|+|x|) \zeta(t) \zeta(x)}\left(\phi(t, x)+\frac{1}{4}|t-x| \phi(t, x)+\ldots\right) .
$$

Recall from general theory: $\phi \in \mathrm{W}^{2, p}$, where $p<\infty$ is arbitrary. Represent $\phi=e^{F_{3}} \tilde{\phi}$ where

$$
F_{3}(X)=Z \frac{2-\pi}{12 \pi} \sum_{1 \leq j<k \leq N}\left(x_{j} \cdot x_{k}\right) \ln \left(\left|x_{j}\right|^{2}+\left|x_{k}\right|^{2}\right) \zeta\left(x_{k}\right) \zeta\left(x_{j}\right) .
$$

Indeeed, assume again $N=2$ and represent

$$
\psi(t, x)=e^{-z / 2(|t|+|x|) \zeta(t) \zeta(x)}\left(\phi(t, x)+\frac{1}{4}|t-x| \phi(t, x)+\ldots\right) .
$$

Recall from general theory: $\phi \in \mathrm{W}^{2, p}$, where $p<\infty$ is arbitrary.
Represent $\phi=e^{F_{3}} \tilde{\phi}$ where

$$
F_{3}(X)=Z \frac{2-\pi}{12 \pi} \sum_{1 \leq j<k \leq N}\left(x_{j} \cdot x_{k}\right) \ln \left(\left|x_{j}\right|^{2}+\left|x_{k}\right|^{2}\right) \zeta\left(x_{k}\right) \zeta\left(x_{j}\right) .
$$

Proposition. [FHOS2005] $\tilde{\phi} \in \mathrm{W}^{2, \infty}\left(\mathbb{R}^{3 N}\right)$ and for any $R>0$ and $r \in(0, R)$:

$$
\|\tilde{\phi}\|_{W^{2}, \infty(B(X, r))} \lesssim\|\psi\|_{L^{2}(B(X, R))} .
$$

Observing that $\left|\partial_{x}^{m} F_{3}(\hat{X}, x)\right| \lesssim 1$ for $|m| \leq 2$, we conclude that

$$
\left|\partial_{x}^{m} \phi(\hat{X}, x)\right| \lesssim\|\psi\|_{L^{2}(B(X, R))}, \quad|m|=2
$$

Theorem. For all $X \in \mathbb{R}^{3 N} \backslash \Sigma$ and any $R>0$:

$$
\left|\partial_{x}^{m} \phi(\hat{X}, x)\right| \lesssim \delta(\hat{X}, x)^{2-|m|}\|\psi\|_{L^{2}(B(X, R))}, \quad|m| \geq 2
$$

Observing that $\left|\partial_{x}^{m} F_{3}(\hat{X}, x)\right| \lesssim 1$ for $|m| \leq 2$, we conclude that

$$
\left|\partial_{x}^{m} \phi(\hat{X}, x)\right| \lesssim\|\psi\|_{L^{2}(B(X, R))}, \quad|m|=2
$$

Theorem. For all $X \in \mathbb{R}^{3 N} \backslash \Sigma$ and any $R>0$:

$$
\left|\partial_{x}^{m} \phi(\hat{X}, x)\right| \lesssim \delta(\hat{X}, x)^{2-|m|}\|\psi\|_{L^{2}(B(X, R))}, \quad|m| \geq 2
$$

Having obtained bounds for the derivatives of ψ and ϕ can now proceed to estimating singular values of the corresponding integral operators.

The Besov and Nikol'skii spaces

For a function $u=u(x), x \in \mathbb{R}^{d}$, and arbitrary $I=0,1,2, \ldots$, define the finite difference

$$
\Delta_{h}^{(l)} u(x)=\sum_{j=0}^{l}(-1)^{j+1}\binom{l}{j} u(x+j h),
$$

and the L^{q}-modulus of smoothness of order I:

$$
\omega_{q}^{(I)}(u ; t)=\sup _{|h| \leq t}\left\|\Delta_{h}^{(I)} u\right\|_{L^{q}}, \quad t>0
$$

We say that u belongs to the Besov space $B_{q, \infty}^{s}\left(\mathbb{R}^{d}\right), s>0, q \in[1, \infty]$, if for some $I>s$ we have

$$
\|u\|_{\mathrm{B}_{q, \infty}^{s}}:=\|u\|_{\mathrm{L}^{q}}+\sup _{t>0} t^{-s} \omega_{q}^{(I)}(u ; t)<\infty .
$$

Notation $\mathrm{N}_{q}^{s}\left(\mathbb{R}^{d}\right)=\mathrm{B}_{q, \infty}^{s}\left(\mathbb{R}^{d}\right)$, the Nikol'skii space.
Scale of spaces: $\mathrm{B}_{q, r}^{s}\left(\mathbb{R}^{d}\right), 0<r \leq \infty$.

The Besov spaces

For a domain $\Omega \subset \mathbb{R}^{d}$ the space $\mathrm{N}_{q}^{s}(\Omega)$ is defined as the restriction of $\mathrm{N}_{q}^{s}\left(\mathbb{R}^{d}\right)$ to Ω. The corresponding norm of the function $u \in \mathrm{~N}_{q}^{s}(\Omega)$ is defined as

$$
\|u\|_{N_{q}^{s}(\Omega)}=\inf \|g\|_{N_{q}^{s}\left(\mathbb{R}^{d}\right)}
$$

where the infimum is taken over all functions $g \in \mathrm{~N}_{q}^{s}\left(\mathbb{R}^{d}\right)$ such that $u=g$ for a.e. $x \in \Omega$. In other words, a function u belongs to $\mathrm{N}_{q}^{S}(\Omega)$ if it has an extension $g \in \mathrm{~N}_{q}^{s}\left(\mathbb{R}^{d}\right)$.

An example

Let $u(x)=|x|^{\alpha}$. If $\alpha>-d / q$, then $\omega_{q}^{(l)}(u ; t) \lesssim t^{s}, s=\alpha+d / q$, see Birman-Solomyak(1977).

An example

Let $u(x)=|x|^{\alpha}$. If $\alpha>-d / q$, then $\omega_{q}^{(I)}(u ; t) \lesssim t^{s}, s=\alpha+d / q$, see Birman-Solomyak(1977).
Let $u \in C^{\infty}\left(\mathbb{R}^{d} \backslash \equiv\right)$, where $\equiv=\left\{a_{1}, a_{2}, \ldots, a_{N}\right\}, a_{k} \in \mathbb{R}^{d}, k=1,2, \ldots, N$.
Denote

$$
\delta(x)=\operatorname{dist}(x, \bar{\equiv}) \wedge 1
$$

and assume that for some $\alpha \in \mathbb{R}$ and some $A \geq 0$ we have

$$
\left|\partial_{x}^{j} u(x)\right| \lesssim A\left(1+\delta(x)^{\alpha-|j|}\right), \quad \text { for all } \quad x \notin \equiv \quad \text { and } \quad|j|=0,1, \ldots
$$

Lemma

Suppose that $d \geq 2$. If $\alpha>-d / q$ with some $1 \leq q \leq d$, then for all $x_{0} \in \mathbb{R}^{d}$ and $R>0$ the function u belongs to $\mathrm{N}_{q}^{s}(B), B=B\left(x_{0}, R\right)$, with $s=\alpha+d / q$. Moreover, $\|u\|_{N_{q}^{s}(B)} \lesssim A$ where the implicit constant does not depend on x_{0} and the set $\overline{\text {, }}$, but may depend on the radius R.

Bounds for singular values of integral operators

Birman - Solomyak (1977). Let $\mathcal{C}=(0,1)^{d}$.
Proposition
Assume that the kernel $T(t, x), t \in \mathbb{R}^{\prime}, x \in X$, is such that $T(t, \cdot) \in \mathrm{N}_{2}^{s}(\mathrm{C})$ with some $s>0$, for a.e. $t \in \mathbb{R}^{\prime}$. Assume that $b \in \mathrm{~L}_{\text {loc }}^{2}\left(\mathbb{R}^{\prime}\right)$ and that $a \in \mathrm{~L}^{r}(\mathbb{C})$, where

$$
\begin{cases}r=2, & \text { if } 2 s>d, \\ r>2, & \text { if } 2 s=d, \\ r>d s^{-1}, & \text { if } 2 s<d .\end{cases}
$$

Then the operator $T_{b a}$ with kernel $b(t) T(t, x) a(x)$ satisfies the bound

$$
s_{k}\left(T_{b a}\right) \lesssim k^{-\frac{1}{2}-\frac{s}{d}}\left[\int_{\mathbb{R}^{\prime}}\|T(t, \cdot)\|_{N_{2}^{s}(\mathcal{C})}^{2}|b(t)|^{2} d t\right]^{\frac{1}{2}}\|a\|_{L^{r}(\mathcal{C})},
$$

under the assumption that the right-hand side is finite.

Estimate for singular values of Ψ

Study the singular values of $b \Psi a$, where $a=a(x), b=b(\hat{X}), x \in \mathbb{R}^{3}, \hat{X} \in \mathbb{R}^{3 N-3}$. Let $\mathcal{C}_{n}=[0,1)^{3}+n, n \in \mathbb{Z}^{3}$. Assume

$$
S(a)=\left[\sum_{n \in \mathbb{Z}^{3}} e^{-q \varkappa|n|}\|a\|_{L^{2}\left(\mathbb{C}_{n}\right)}^{q}\right]^{\frac{1}{q}}<\infty, \quad q=\frac{3}{4} .
$$

Assume that $b \in \mathrm{~L}_{\text {loc }}^{2}\left(\mathbb{R}^{3 N-3}\right)$, so that

$$
M(b)=\left[\int_{\mathbb{R}^{3 N-3}}|b(\hat{X})|^{2} e^{-2 \varkappa|\hat{X}|} d \hat{X}\right]^{\frac{1}{2}}<\infty .
$$

Estimate for singular values of Ψ

Study the singular values of $b \Psi a$, where $a=a(x), b=b(\hat{X}), x \in \mathbb{R}^{3}, \hat{X} \in \mathbb{R}^{3 N-3}$. Let $\mathcal{C}_{n}=[0,1)^{3}+n, n \in \mathbb{Z}^{3}$. Assume

$$
S(a)=\left[\sum_{n \in \mathbb{Z}^{3}} e^{-q \varkappa|n|}\|a\|_{L^{2}\left(\mathcal{C}_{n}\right)}^{q}\right]^{\frac{1}{q}}<\infty, \quad q=\frac{3}{4} .
$$

Assume that $b \in \mathrm{~L}_{\text {loc }}^{2}\left(\mathbb{R}^{3 N-3}\right)$, so that

$$
M(b)=\left[\int_{\mathbb{R}^{3 N-3}}|b(\hat{X})|^{2} e^{-2 \varkappa|\hat{X}|} d \hat{X}\right]^{\frac{1}{2}}<\infty
$$

Theorem.

$$
s_{k}(b \Psi a) \lesssim k^{-4 / 3} M(b) S(a), k=1,2, \ldots
$$

