AN INTRODUCTION TO QUANTITATIVE TYPES

Delia KESNER kesner@irif.fr

Université Paris Cité

Differential *λ*-Calculus and Differential Linear Logic, 20 Years Later Luminy, 13 May 2024

Motivations

- Quantitative information in computer science:
 - ▷ Time, space, probability, cost, ...
- Emerging in different areas:
 - ▷ Automata, graphs, logics, algorithms, ...
 - ▷ Verification, model-checking, programming, theorem proving, ...
 - ▷ Performance measurement, network analysis, data mining, ...
- Theory of programming languages:
 - Quantitative information about programs can be captured by type systems/relational models
- Quantitative Type Systems:
 - ▷ **Principles**, **Properties**, and **Applications**.

Outline

- Quantitative Types for Lambda Calculus
- Quantitative Types and Inhabitation
- Quantitative Types for Measuring
- Quantitative Types and Observational Equivalence

Outline

Some Principles of Quantitative Types

- 2 Quantitative Types for Lambda Calculus
- Quantitative Types and Inhabitation
- Quantitative Types for Measuring
- Ouantitative Types and Observational Equivalence
- Conclusion

From Simple Types to Quantitative Types

- **Grammar**: $A, B ::= \iota | A \rightarrow B$
- Typing rules:

	$\Gamma, x : \mathbf{A} \vdash t : \mathbf{B}$	$\Gamma \vdash t : \mathbf{A} \to \mathbf{B}$	$\Gamma \vdash u : \mathbf{A}$
$\overline{\Gamma, x : \mathbf{A} \vdash x : \mathbf{A}}$	$\Gamma \vdash \lambda x.t : \mathbf{A} \to \mathbf{B}$	$\Gamma \vdash tu$: B

- **Grammar**: $A, B ::= \iota | A \rightarrow B$
- Typing rules:

	$\Gamma, x : \mathbf{A} \vdash t : \mathbf{B}$	$\Gamma \vdash t : \mathbf{A} \to \mathbf{B}$	$\Gamma \vdash u : \mathbf{A}$
$\overline{\Gamma, x : \mathbf{A} \vdash x : \mathbf{A}}$	$\Gamma \vdash \lambda x.t : \mathbf{A} \to \mathbf{B}$	$\Gamma \vdash tu$: B

• Logical (Curry-Howard) interpretation.

- **Grammar**: $A, B ::= \iota \mid A \to B$
- Typing rules:

	$\Gamma, x : \mathbf{A} \vdash t : \mathbf{B}$	$\Gamma \vdash t : \mathbf{A} \to \mathbf{B}$	$\Gamma \vdash u : \mathbf{A}$
$\overline{\Gamma, x : \mathbf{A} \vdash x : \mathbf{A}}$	$\Gamma \vdash \lambda x.t : \mathbf{A} \to \mathbf{B}$	$\Gamma \vdash tu$: B

- Logical (Curry-Howard) interpretation.
- Monomorphic information.

- **Grammar**: $A, B ::= \iota \mid A \to B$
- Typing rules:

	$\Gamma, x : \mathbf{A} \vdash t : \mathbf{B}$	$\Gamma \vdash t : \mathbf{A} \to \mathbf{B}$	$\Gamma \vdash u : \mathbf{A}$
$\overline{\Gamma, x : \mathbf{A} \vdash x : \mathbf{A}}$	$\Gamma \vdash \lambda x.t : \mathbf{A} \to \mathbf{B}$	$\Gamma \vdash tu$: B

- Logical (Curry-Howard) interpretation.
- Monomorphic information.
- Lack expressivity power but typability is decidable.

- **Grammar**: $A, B ::= \iota | A \rightarrow B$
- Typing rules:

	$\Gamma, x : \mathbf{A} \vdash t : \mathbf{B}$	$\Gamma \vdash t : \mathbf{A} \to \mathbf{B}$	$\Gamma \vdash u : \mathbf{A}$
$\overline{\Gamma, x : \mathbf{A} \vdash x : \mathbf{A}}$	$\Gamma \vdash \lambda x.t : \mathbf{A} \to \mathbf{B}$	$\Gamma \vdash tu$: B

- Logical (Curry-Howard) interpretation.
- Monomorphic information.
- Lack expressivity power but typability is decidable.
- Admits powerful polymorphic extensions that are still decidable.

- Grammar : A, B ::= $\iota \mid A \rightarrow B \mid A \cap B$
- Key typing rule:

- **Grammar** : $A, B ::= \iota \mid A \to B \mid \underline{A \cap B}$
- Key typing rule:

• Finite polymorphism:

 $(\mathbf{A} \to \mathbf{A}) \cap ((\mathbf{A} \to \mathbf{B}) \to (\mathbf{A} \to \mathbf{B}))$

represent two different instances of the polymorphic type

 $\forall X.X \to X.$

- **Grammar** : $A, B ::= \iota \mid A \to B \mid \underline{A \cap B}$
- Key typing rule:

• Finite polymorphism:

 $(A \rightarrow A) \cap ((A \rightarrow B) \rightarrow (A \rightarrow B))$ represent two different instances of the polymorphic type $\forall X.X \rightarrow X.$

• But more expressive:

 $A \cap (A \to B) \cap ((A \to B) \to B)$

- **Grammar** : $A, B ::= \iota \mid A \to B \mid \underline{A \cap B}$
- Key typing rule:

• Finite polymorphism:

 $(A \rightarrow A) \cap ((A \rightarrow B) \rightarrow (A \rightarrow B))$ represent two different instances of the polymorphic type $\forall X.X \rightarrow X.$

• But more expressive:

 $\mathtt{A} \cap (\mathtt{A} \to \mathtt{B}) \cap ((\mathtt{A} \to \mathtt{B}) \to \mathtt{B})$

is perfectly admissible.

• Typability becomes undecidable

- **Grammar** : $A, B ::= \iota \mid A \to B \mid A \cap B$
- Key typing rule:

• Finite polymorphism:

 $(A\to A)\cap ((A\to B)\to (A\to B))$ represent two different instances of the polymorphic type

 $\forall X.X \to X.$

• But more expressive:

 $\mathbb{A} \cap (\mathbb{A} \to \mathbb{B}) \cap ((\mathbb{A} \to \mathbb{B}) \to \mathbb{B})$

- Typability becomes undecidable
- · Are flexible and can be adapted to different frameworks

- Grammar : A, B ::= $\iota \mid A \rightarrow B \mid A \cap B$
- Key typing rule:

• Finite polymorphism:

 $(A \rightarrow A) \cap ((A \rightarrow B) \rightarrow (A \rightarrow B))$

represent two different instances of the polymorphic type

 $\forall X.X \to X.$

• But more expressive:

 $\mathtt{A} \cap (\mathtt{A} \to \mathtt{B}) \cap ((\mathtt{A} \to \mathtt{B}) \to \mathtt{B})$

- Typability becomes undecidable
- Are flexible and can be adapted to different frameworks
- Provide models for different languages

- Grammar : A, B ::= $\iota \mid A \rightarrow B \mid A \cap B$
- Key typing rule:

• Finite polymorphism:

 $(\mathtt{A}\to \mathtt{A})\cap ((\mathtt{A}\to \mathtt{B})\to (\mathtt{A}\to \mathtt{B}))$

represent two different instances of the polymorphic type

 $\forall X.X \to X.$

• But more expressive:

 $\mathtt{A} \cap (\mathtt{A} \to \mathtt{B}) \cap ((\mathtt{A} \to \mathtt{B}) \to \mathtt{B})$

- Typability becomes undecidable
- Are flexible and can be adapted to different frameworks
- Provide models for different languages
- Very powerful tool to reason about properties of higher-order languages

Simple vs Intersection Types

Simple vs Intersection Types

Simple vs Intersection Types

Idempotent	versus	Non-idem	pote	nt
$A \cap A \sim A$		$\mathbf{A} \cap \mathbf{A}$	4	A

Associativity $(A \cap B) \cap C \sim A \cap (B \cap C)$ Commutativity $A \cap B \sim B \cap A$

 $\begin{array}{rcl} \text{Idempotent} & \text{versus} \\ \textbf{A} & \cap \textbf{A} & \sim \textbf{A} \end{array}$

Non-idempotent

Unbounded Resources

Finite Resources

Idempotent	Non-idempotent
Coppo & Dezani in the eighties	Gardner and Kfoury in the nineties
	(Girard's Linear Logic flavour)

Idempotent	Non-idempotent
Coppo & Dezani in the eighties	Gardner and Kfoury in the nineties
	(Girard's Linear Logic flavour)
Sets : A ∩ A ∩ C is {A, C}	Multi-sets: A ∩ A ∩ C is [A, A, C]

Idempotent	Non-idempotent
Coppo & Dezani in the eighties	Gardner and Kfoury in the nineties
	(Girard's Linear Logic flavour)
Sets : A ∩ A ∩ C is {A, C}	Multi-sets: $A \cap A \cap C$ is $[A, A, C]$
Qualitative properties: Yes or No	Quantitative properties: bound and measure De Carvalho

Outline

Quantitative Types for Lambda Calculus

3 Quantitative Types and Inhabitation

- 4 Quantitative Types for Measuring
- Ouantitative Types and Observational Equivalence

Conclusion

Grammar:

Grammar:

Judgements:

$$\frac{1}{x: [A] \vdash x : A} (ax)$$

Relevant axiom (no weakening).

$$\frac{\Gamma \vdash t : \mathbf{A}}{\Gamma \setminus x \vdash \lambda x.t : \Gamma(x) \to \mathbf{A}}$$
(fun)

- Notation $\Gamma(x)$ represents the type of x in the environment Γ .
- **Operation** $\Gamma \setminus x$ yields the environment Γ deprived from *x*.
- **Erasing** abstractions are typed with [] \rightarrow A (thus $(\lambda x.y)\Omega$ is typable).

$$\frac{(\Gamma_i \vdash t : \mathbf{A}_i)_{i \in I}}{\bigsqcup_{i \in I} \Gamma_i \vdash t : [\mathbf{A}_i]_{i \in I}}$$
(many)

- Multiplicative rule.
- Notation $[A_i]_{i=1..n}$ represents a non-idempotent intersection $A_1 \cap \ldots \cap A_n$.
- **Operation** $x : A \sqcup x : B$ yields multiset **union** for multi-types $x : A \sqcup B$.
- Special case: any term *t* can be "artificially typed" with the empty multi-type []: then *t* is said to be untyped.
The Typing Rules:

$$\frac{\Gamma \vdash t : \mathbb{M} \to \mathbb{B} \quad \Delta \vdash u : \mathbb{M}}{\Gamma \sqcup \Delta \vdash tu : \mathbb{B}}$$
(app)

- Multiplicative rule.
- **Typed** terms may contain **untyped** subterms (case $M = \emptyset$).

Type System \mathcal{H} (\mathcal{H} for \mathcal{H} ead)

$$\frac{\Gamma \vdash t : \mathbf{A}}{x : [\mathbf{A}] \vdash x : \mathbf{A}} (\mathbf{a}\mathbf{x}) \qquad \frac{\Gamma \vdash t : \mathbf{A}}{\Gamma \setminus x \vdash \lambda x.t : \Gamma(x) \to \mathbf{A}} (\to_{\mathbf{i}})$$
$$\frac{(\Gamma_i \vdash t : \mathbf{A}_i)_{i \in I}}{\sqcup_{i \in I} \Gamma_i \vdash t : [\mathbf{A}_i]_{i \in I}} (\text{many}) \qquad \frac{\Gamma \vdash t : \mathbf{M} \to \mathbf{B} \quad \Delta \vdash u : \mathbf{M}}{\Gamma \sqcup \Delta \vdash tu : \mathbf{B}} (\to_{\mathbf{e}})$$

• Syntax Directed system.

Type System \mathcal{H} with a Single Counter $\overline{x: [A] \vdash^{(1)} x: A}$ (ax) $\Gamma \vdash^{(C)} t: A$ $\overline{r \mid L^{(C_1)} t: A_i)_{i \in I}}$ $\overline{r \mid L^{(C_1)} t: M \to B}$ $(\Gamma_i \vdash^{(C_1)} t: A_i)_{i \in I}$ $\Gamma \sqcup \Delta \vdash^{(C_1 + C_2 + 1)} tu: B$

- The single counter computes the number of typing rules different from (many).
- Other kind of counters will be used later.
- **Counters** can be also added to idempotent systems, but they result useless (as we will see).

Notation

(Standard) Notation for Type Derivability

$$\Pi \triangleright_{\mathcal{S}} \Gamma \vdash^{(\mathsf{C}_1, \dots, \mathsf{C}_n)} \mathbf{t} : \mathbf{A}$$

- II is a (tree) derivation,
- S is a type system,
- Γ is a set of type declarations,
- (C_1, \ldots, C_n) are counters.
- t is a program/term,
- A is a type.

Notation

(Standard) Notation for Type Derivability

$$\mathbf{\Pi} \triangleright_{\mathcal{S}} \mathbf{\Gamma} \vdash^{(\mathsf{C}_1, \dots, \mathsf{C}_n)} \mathbf{t} : \mathbf{A}$$

- II is a (tree) derivation,
- S is a type system,
- Γ is a set of type declarations,
- (C_1, \ldots, C_n) are counters.
- t is a program/term,
- A is a type.

(sometimes omitted) (sometimes omitted)

(sometimes omitted)

Let $\Omega := (\lambda x.xx)(\lambda x.xx)$. Let $A := [] \rightarrow [\iota_0] \rightarrow \iota_1$. Then,

$$\frac{\overline{x: [A] \vdash x: A} (ax)}{x: [A] \vdash x\Omega: [\iota_0] \rightarrow \iota_1} (app) \qquad \overline{\frac{x: [\iota_0] \vdash x: \iota_0}{x: [\iota_0] \vdash x: [\iota_0]}} (any) (app) \\
\frac{\overline{x: [A, \iota_0] \vdash x\Omega x: \iota_1}}{x: [\lambda, \iota_0] \vdash x\Omega x: \iota_1} (app) (app) \\
\frac{x: [A, \iota_0] \vdash x\Omega x: [\lambda, \iota_0] \rightarrow \iota_1}{x: [\lambda, \iota_0] \rightarrow \iota_1} (app) \\
\frac{x: [A, \iota_0] \vdash x\Omega x: [\lambda, \iota_0] \rightarrow \iota_1}{x: [\lambda, \iota_0] \rightarrow \iota_1} (app) \\
\frac{x: [A, \iota_0] \vdash x\Omega x: [\lambda, \iota_0] \rightarrow \iota_1}{x: [\lambda, \iota_0] \rightarrow \iota_1} (app) \\
\frac{x: [A, \iota_0] \vdash x\Omega x: [\lambda, \iota_0] \rightarrow \iota_1}{x: [\lambda, \iota_0] \rightarrow \iota_1} (app) \\
\frac{x: [A, \iota_0] \vdash x\Omega x: [\lambda, \iota_0] \rightarrow \iota_1}{x: [\lambda, \iota_0] \rightarrow \iota_1} (app) \\
\frac{x: [A, \iota_0] \vdash x\Omega x: [\lambda, \iota_0] \rightarrow \iota_1}{x: [\lambda, \iota_0] \rightarrow \iota_1} (app) \\
\frac{x: [A, \iota_0] \vdash x\Omega x: [\lambda, \iota_0] \rightarrow \iota_1}{x: [\lambda, \iota_0] \rightarrow \iota_1} (app) \\
\frac{x: [A, \iota_0] \vdash x\Omega x: \iota_0}{x: [\lambda, \iota_0] \rightarrow \iota_1} (app) \\
\frac{x: [A, \iota_0] \vdash x\Omega x: \iota_0}{x: [\lambda, \iota_0] \rightarrow \iota_1} (app) \\
\frac{x: [A, \iota_0] \vdash x\Omega x: \iota_0}{x: [\lambda, \iota_0] \rightarrow \iota_1} (app) \\
\frac{x: [A, \iota_0] \vdash x\Omega x: \iota_0}{x: [\lambda, \iota_0] \rightarrow \iota_1} (app) \\
\frac{x: [A, \iota_0] \vdash x\Omega x: \iota_0}{x: [\lambda, \iota_0] \rightarrow \iota_1} (app) \\
\frac{x: [A, \iota_0] \vdash x\Omega x: \iota_0}{x: [\lambda, \iota_0] \rightarrow \iota_1} (app) \\
\frac{x: [A, \iota_0] \vdash x\Omega x: \iota_0}{x: [\lambda, \iota_0] \rightarrow \iota_1} (app) \\
\frac{x: [A, \iota_0] \vdash x\Omega x: \iota_0}{x: [\lambda, \iota_0] \rightarrow \iota_1} (app) \\
\frac{x: [A, \iota_0] \vdash x\Omega x: \iota_0}{x: [\lambda, \iota_0] \rightarrow \iota_1} (app) \\
\frac{x: [A, \iota_0] \vdash x\Omega x: \iota_0}{x: [\lambda, \iota_0] \rightarrow \iota_1} (app) \\
\frac{x: [A, \iota_0] \vdash x\Omega x: \iota_0}{x: [\lambda, \iota_0] \rightarrow \iota_1} (app) \\
\frac{x: [A, \iota_0] \vdash x\Omega x: \iota_0}{x: [\lambda, \iota_0] \rightarrow \iota_1} (app) \\
\frac{x: [A, \iota_0] \vdash x\Omega x: \iota_0}{x: [\lambda, \iota_0] \rightarrow \iota_1} (app) \\
\frac{x: [A, \iota_0] \vdash x\Omega x: \iota_0}{x: [\lambda, \iota_0] \rightarrow \iota_1} (app) \\
\frac{x: [A, \iota_0] \vdash x\Omega x: \iota_0}{x: [\lambda, \iota_0] \rightarrow \iota_1} (app) \\
\frac{x: [A, \iota_0] \vdash x\Omega x: \iota_0}{x: [\lambda, \iota_0] \rightarrow \iota_1} (app) \\
\frac{x: [A, \iota_0] \vdash x\Omega x: \iota_0}{x: [\lambda, \iota_0] \rightarrow \iota_1} (app) \\
\frac{x: [A, \iota_0] \vdash x\Omega x: \iota_0}{x: [\lambda, \iota_0] \rightarrow \iota_1} (app) \\
\frac{x: [A, \iota_0] \vdash x\Omega x: \iota_0}{x: [\lambda, \iota_0] \rightarrow \iota_1} (app) \\
\frac{x: [A, \iota_0] \vdash x\Omega x: \iota_0}{x: [\lambda, \iota_0] \rightarrow \iota_1} (app) \\
\frac{x: [A, \iota_0] \vdash x\Omega x: \iota_0}{x: [\lambda, \iota_0] \rightarrow \iota_1} (app) \\
\frac{x: [A, \iota_0] \vdash x\Omega x: \iota_0}{x: [\lambda, \iota_0] \rightarrow \iota_0} (app) \\
\frac{x: [A, \iota_0] \vdash x\Omega x: \iota_0}{x: [\lambda, \iota_0] \rightarrow \iota_0} (app) \\
\frac{x: [A, \iota_0] \vdash x\Omega x: \iota_0}{x: [\lambda, \iota_0] \rightarrow \iota_0} (app) \\
\frac{x: [A, \iota_0] \vdash x\Omega x: \iota_0}{x: [\lambda, \iota_0] \rightarrow \iota_0} (app) \\
\frac{x: [A, \iota_0] \vdash x\Omega x: \iota_0}{x: [\lambda, \iota_0] \rightarrow \iota_0} (app)$$

- The subterm Ω is untyped
- The bound variable x is typed with an intersection type [A, ι_0].

Let $\underline{3} := \lambda f \cdot \lambda x \cdot f(f(fx)))$ and let $\underline{B} := [\underline{A}] \to \underline{A}$.

 $x : [A] \vdash x : A$ $f: \mathbf{B} \vdash f: [\mathbf{A}] \rightarrow \mathbf{A}$ $x: [\mathbf{A}] \vdash x: [\mathbf{A}]$ $f: [\mathbf{B}], x: [\mathbf{A}] \vdash f x: \mathbf{A}$ $f: \mathbf{B} \vdash f: [\mathbf{A}] \rightarrow \mathbf{A}$ $f: [\mathbf{B}], x: [\mathbf{A}] \vdash fx: [\mathbf{A}]$ $f: [\mathbf{B}, \mathbf{B}], x: [\mathbf{A}] \vdash f(fx)) : \mathbf{A}$ $f: \mathbf{B} \vdash f: [\mathbf{A}] \rightarrow \mathbf{A}$ $f : [B, B], x : [A] \vdash f(fx)) : [A]$ $f : [B, B, B], x : [A] \vdash f(f(fx))) : A$ $f: [\mathbf{B}, \mathbf{B}, \mathbf{B}] \vdash \lambda x. f(f(fx))) : [\mathbf{A}] \rightarrow \mathbf{A}$ $+3:[B, B, B] \rightarrow [A] \rightarrow A$

Let $\underline{\mathbf{3}} := \lambda f \cdot \lambda x \cdot f(f(fx)))$ and let $\mathbf{B} := [\mathbf{A}] \to \mathbf{A}$

Non-Idempotent/Quantitative Typing with Multi-Sets

$$\vdash \underline{\mathbf{3}} : [\mathbf{B}, \mathbf{B}, \mathbf{B}] \to [\mathbf{A}] \to \mathbf{A}$$

Let $\underline{\mathbf{3}} := \lambda f . \lambda x . f(f(fx)))$ and let $\mathbf{B} := [\mathbf{A}] \to \mathbf{A}$

Non-Idempotent/Quantitative Typing with Multi-Sets

$$\vdash \underline{\mathbf{3}} : [\mathbf{B}, \mathbf{B}, \mathbf{B}] \to [\mathbf{A}] \to \mathbf{A}$$

Idempotent/Qualitative Typing with Sets

$$\vdash \underline{\mathbf{3}}: \{\mathbf{B}\} \to \{\mathbf{A}\} \to \mathbf{A}$$

Outline

- Quantitative Types for Lambda Calculus
- Quantitative Types and Inhabitation
- 4 Quantitative Types for Measuring
- Ouantitative Types and Observational Equivalence
- Conclusion

Typing Problem Γ ? \vdash t : A?

Duality between Typing and Inhabitation

Inhabitation Problem $\Gamma \vdash t$? : A

Inhabitation

Proof Search

Program Synthesis

Call-by-Name		Inhabitation
Lambda-Calculus	· - L . ·	

Call-by-Name	Typing	Inhabitation
Lambda-Calculus	$? \vdash \mathbf{t} : ?$	$\Gamma \vdash ?: A$
Simple Types	Decidable	Decidable

Call-by-Name	Typing	Inhabitation
Lambda-Calculus	$? \vdash \mathbf{t} : ?$	$\Gamma \vdash ? : A$
Simple Types	Decidable	Decidable
Unrestricted	Undecidable	Undecidable
Idempotent Types		Urzyczyn
		(Infinite Resources)

Call-by-Name	Typing	Inhabitation
Lambda-Calculus	? ⊢ t : ?	$\Gamma \vdash ? : A$
Simple Types	Decidable	Decidable
Unrestricted	Undecidable	Undecidable
Idempotent Types		Urzyczyn
		(Infinite Resources)
Restricted	Undecidable	Decidable
Idempotent Types		Rehof, Dudenhefner, etc
		(Finite Search on Infinite Resources)

Call-by-Name	Typing	Inhabitation
Lambda-Calculus	? ⊢ t : ?	$\Gamma \vdash ? : A$
Simple Types	Decidable	Decidable
Unrestricted	Undecidable	Undecidable
Idempotent Types		Urzyczyn
		(Infinite Resources)
Restricted	Undecidable	Decidable
Idempotent Types		Rehof, Dudenhefner, etc
		(Finite Search on Infinite Resources)
Unrestricted	Undecidable	Decidable
Non-Idempotent Types		Bucciarelli&K.&RonchiDellaRocca
		(Finite Resources)

Call-by-Name	Typing	Inhabitation
Lambda-Calculus	? ⊢ t : ?	$\Gamma \vdash ? : A$
Simple Types	Decidable	Decidable
Unrestricted	Undecidable	Undecidable
Idempotent Types		Urzyczyn
		(Infinite Resources)
Restricted	Undecidable	Decidable
Idempotent Types		Rehof, Dudenhefner, etc
		(Finite Search on Infinite Resources)
Unrestricted	Undecidable	Decidable
Non-Idempotent Types		Bucciarelli&K.&RonchiDellaRocca
		(Finite Resources)

 \Rightarrow

on Infinite Resources

on Finite Resources

Non-deterministic algorithm

Theorem

Non-deterministic algorithm

Theorem

The algorithm terminates:

Every call on (Γ, σ) generates a finite set of recursive calls.

Non-deterministic algorithm

Theorem

```
The algorithm terminates:
```

Every call on (Γ, σ) generates a finite set of recursive calls.

The algorithm is **sound**:

```
If a call on (\Gamma, \sigma) computes T, then \Gamma \vdash \mathbf{T} : \sigma.
```

Non-deterministic algorithm

Theorem

The algorithm terminates:

Every call on (Γ, σ) generates a finite set of recursive calls.

The algorithm is **sound**:

If a call on (Γ, σ) computes **T**, then $\Gamma \vdash \mathbf{T} : \sigma$.

The algorithm is **complete**:

If $\Gamma \vdash \mathbf{T}$: σ , then there exists an answer of the algorithm which generates **T**.

Non-deterministic algorithm

Theorem

The algorithm terminates:

Every call on (Γ, σ) generates a finite set of recursive calls.

The algorithm is **sound**:

If a call on (Γ, σ) computes **T**, then $\Gamma \vdash \mathbf{T} : \sigma$.

The algorithm is **complete**:

If $\Gamma \vdash \mathbf{T} : \sigma$, then there exists an answer of the algorithm which generates **T**.

- First inhabitation results for CBN: Bucciarelli&K.&Ronchi Della Rocca'{14,18,21}
- Similar results for CBV and dBang: Arrial&Guerrieri&K.'23
- Implementation by Arrial in Ocaml.

Outline

- 2 Quantitative Types for Lambda Calculus
- 3 Quantitative Types and Inhabitation
- Quantitative Types for Measuring
- Quantitative Types and Observational Equivalence

Conclusion

• Intersection type systems provide a mathematical meaning of programs:

 $\llbracket t \rrbracket := \{ (\Gamma, A) \mid \triangleright \Gamma \vdash t : A \}$

Intersection Types and Quantitative Analysis

• Intersection type systems provide a mathematical meaning of programs:

 $\llbracket t \rrbracket := \{ (\Gamma, A) \mid \triangleright \Gamma \vdash t : A \}$

This gives relational models where equivalent programs have the same meaning :

If $t \rightarrow_{\text{operational}} u$, then [t] = [u]

Intersection Types and Quantitative Analysis

• Intersection type systems provide a mathematical meaning of programs:

 $\llbracket t \rrbracket := \{ (\Gamma, A) \mid \triangleright \Gamma \vdash t : A \}$

• This gives relational models where equivalent programs have the same meaning :

If $t \rightarrow_{\text{operational}} u$, then [t] = [u]

i.e.
$$\triangleright \Gamma \vdash^{(C)} t : A \Leftrightarrow \triangleright \Gamma \vdash^{(C')} u : A$$

• Intersection type systems provide a mathematical meaning of programs:

 $\llbracket t \rrbracket := \{ (\Gamma, A) \mid \triangleright \Gamma \vdash t : A \}$

• This gives relational models where equivalent programs have the same meaning :

If $\mathbf{t} \rightarrow_{\text{operational}} \mathbf{u}$, then $[[\mathbf{t}]] = [[\mathbf{u}]]$

i.e.
$$\mathbf{P} \vdash^{(C)} \mathbf{t} : \mathbf{A} \Leftrightarrow \mathbf{P} \vdash^{(C')} \mathbf{u} : \mathbf{A}$$

called Subject Reduction and Expansion

Intersection Types and Quantitative Analysis

• Intersection type systems provide a mathematical meaning of programs:

 $\llbracket t \rrbracket := \{ (\Gamma, A) \mid \triangleright \Gamma \vdash t : A \}$

• This gives relational models where equivalent programs have the same meaning :

If $\mathbf{t} \rightarrow_{\text{operational}} \mathbf{u}$, then $[[\mathbf{t}]] = [[\mathbf{u}]]$

i.e. $\triangleright \Gamma \vdash^{(C)} t : A \Leftrightarrow \triangleright \Gamma \vdash^{(C')} u : A$

called Subject Reduction and Expansion

Qualitative

analysis (Idempotent types)

Quantitative

analysis (Non-idempotent types)

C # C′

C > C'

t is a typable term \iff $t \rightarrow \ldots \rightarrow$ result

Characterizing Evaluation by Means of Qualitative/Quantitative Types

$$\triangleright_{\mathcal{S}} \Gamma \vdash^{(\mathbb{C})} t : \mathbb{A} \qquad \Longleftrightarrow \qquad t \underbrace{\rightarrow \ldots \rightarrow}_{length} \underbrace{result}_{size}$$

$$\triangleright_{\mathcal{S}} \Gamma \vdash^{(C)} t : \mathbb{A} \qquad \Longleftrightarrow \qquad t \underbrace{\rightarrow \ldots \rightarrow}_{\substack{ \mathsf{length} \\ \mathsf{size} }} \underbrace{\mathsf{result}}_{\mathsf{size}}$$

S = **Non-Idempotent Types** with **UPPER BOUNDS** (e.g. Gardner's System H)

t $\mathcal N\text{-normalizes}$ to a result and $length+size \leq C$

$$\triangleright_{\mathcal{S}} \Gamma \vdash^{(\mathbb{C})} t : \mathbb{A} \qquad \Longleftrightarrow \qquad t \underbrace{\rightarrow \ldots \rightarrow}_{\substack{ \text{length} \\ \text{size} }}$$

S = **Non-Idempotent Types** with **UPPER BOUNDS** (e.g. Gardner's System H)

t $\mathcal N\text{-normalizes to a result and <math display="inline">length+size \leq C$

S = Non-Idempotent Types with EXACT MEASURES

t N-normalizes to a result and length + size = C

$$\triangleright_{\mathcal{S}} \Gamma \vdash^{(\mathbb{C})} t : \mathbb{A} \qquad \Longleftrightarrow \qquad t \underbrace{\rightarrow \ldots \rightarrow}_{\substack{ \text{length} \\ \text{size} }}$$

S = **Non-Idempotent Types** with **UPPER BOUNDS** (e.g. Gardner's System H)

t $\mathcal N\text{-normalizes}$ to a result and $\underline{length} + \underline{size} \leq C$

S = Non-Idempotent Types with EXACT MEASURES

t N-normalizes to a result and length + size = C

A possible exponential gap between length and size

$$\triangleright_{\mathcal{S}} \Gamma \vdash^{(\mathbf{L},\mathbf{S})} t : \mathbf{A} \qquad \Longleftrightarrow \qquad t \underbrace{\rightarrow \ldots \rightarrow}_{\substack{\mathsf{length} \\ \mathsf{size}}} \mathsf{result}$$

S = **Non-Idempotent Types** with **UPPER BOUNDS** (e.g. Gardner's System H)

t $\mathcal N\text{-normalizes}$ to a result and $length+size \leq C$

S = Non-Idempotent Types with EXACT MEASURES

t N-normalizes to a result and length + size = C

A possible exponential gap between length and size

S = Non-Idempotent Types with SPLIT MEASURES

t N-normalizes to a result and length = L and size = S

Non-Idempotent Types with Upper Bounds

Non-Idempotent Types with Upper Bounds

Non-Idempotent Types with Exact Measures

Non-Idempotent Types with Upper Bounds

Non-Idempotent Types with Exact Measures

with Split Measures

This scheme applies to

This scheme applies to

- Different normalization notions:
 - Head normalization
 - Linear head normalization
 - Leftmost normalization
 - Strong normalization

This scheme applies to

- Different normalization notions:
 - Head normalization
 - Linear head normalization
 - Leftmost normalization
 - Strong normalization
- Different models of computation:
 - ▷ Call-by-Name, Call-by-Value, Call-by-Need
 - ▷ Unifying models (*e.g.* Call-by-Push-Value, Bang Calculus)
 - ▷ Resource and explicit substitution calculi, proof-nets
 - Pattern matching features
 - Classical Calculi
 - Non-deterministic languages
 - Probabilistic languages, Bayesian inference

Head Normal Forms (HNF) : terms of the form $\lambda x_1 \dots \lambda x_n . yt_1 \dots t_m (n, m \ge 0)$

valuation : No reduction inside arguments of applications.

Head Normalization : if there exists a HNF *u* such that $t \rightarrow_{hd} \ldots \rightarrow_{hd} u$.

Example:

Let $I := \lambda y.y$ and $\Omega := (\lambda y.yy)(\lambda y.yy)$. Then $\lambda x.Ix\Omega$ is head normalizing, while Ω is not.

Head Normal Forms (HNF) : te	terms of the form $\lambda x_1 \dots \lambda x_n . y t_1 \dots t_m \ (n, m \ge 0)$
------------------------------	--

Head Evaluation : No reduction inside arguments of applications.

	$t \rightarrow_{hd} u$	$t \rightarrow_{hd} u t \neq \lambda$
$(\lambda x.t)u \to_{hd} t\{x \setminus u\}$	$\overline{\lambda x.t} \to_{hd} \lambda x.u$	$tv \rightarrow_{hd} uv$

Head Normalization : if there exists a HNF *u* such that $t \rightarrow_{hd} \ldots \rightarrow_{hd} u$.

Example:

Let $I := \lambda y.y$ and $\Omega := (\lambda y.yy)(\lambda y.yy)$. Then $\lambda x.Ix\Omega$ is head normalizing, while Ω is not.

Head Normal Forms (HNF)

t terms of the form
$$\lambda x_1 \dots \lambda x_n . y t_1 \dots t_m \ (n, m \ge 0)$$

Head Evaluation : No reduction inside arguments of applications.

	$t \rightarrow_{hd} u$	$t \to_{hd} u t \neq \lambda$
$(\lambda x.t)u \to_{hd} t\{x \setminus u\}$	$\overline{\lambda x.t} \to_{hd} \lambda x.u$	$tv \rightarrow_{hd} uv$

Head Normalization : if there exists a HNF *u* such that $t \rightarrow_{hd} \ldots \rightarrow_{hd} u$.

Head Normal Forms (HNF)	
-------------------------	--

terms of the form
$$\lambda x_1 \dots \lambda x_n . y t_1 \dots t_m (n, m \ge 0)$$

Head Evaluation : No reduction inside arguments of applications.

	$t \rightarrow_{hd} u$	$t \rightarrow_{hd} u$	$t \neq \lambda$
$(\lambda x.t)u \to_{hd} t\{x \setminus u\}$	$\overline{\lambda x.t} \to_{hd} \lambda x.u$	$tv \rightarrow_{ha}$	_d uv

Head Normalization : if there exists a HNF *u* such that $t \rightarrow_{hd} \ldots \rightarrow_{hd} u$.

Example:

Let I := $\lambda y.y$ and Ω := $(\lambda y.yy)(\lambda y.yy)$. Then $\lambda x.Ix\Omega$ is head normalizing, while Ω is not.

Theorem (UPPER BOUNDS)

Theorem (UPPER BOUNDS)

```
In Type System \mathcal{H}

\triangleright_{\mathcal{H}} \Gamma \vdash^{(\mathbb{C})} \mathbf{t} : \mathbf{A}

\longleftrightarrow

\mathbf{t} head normalizes in length steps

to a HNF of size size and

length + size \leq \mathbf{C}.
```

(Tight Constants)	tt	::=	n a
(Types)	Α	::=	$\texttt{tt} \mid \texttt{M} \to \texttt{A}$
(Multi-types)	М	::=	$[\mathbf{A}_i]_{i\in I}$

(Tight Constants)	tt	::=	n a
(Types)	Α	::=	$\texttt{tt} \mid \texttt{M} \to \texttt{A}$
(Multi-types)	М	::=	$[\mathbf{A}_i]_{i\in I}$

- Judgements with two counters: $x_1 : \mathbb{M}_1, \dots, x_n : \mathbb{M}_n \vdash (\mathbf{L}, \mathbf{S}) t : \mathbf{A}$
 - Multi-type M_i for each variable x_i
 - Type A for the term t
 - L captures length of β -steps to head normal form
 - S captures size of the future head normal form

(Tight Constants)	tt	::=	n a
(Types)	Α	::=	$\texttt{tt} \mid \texttt{M} \to \texttt{A}$
(Multi-types)	М	::=	$[\mathbf{A}_i]_{i\in I}$

- Judgements with two counters: $x_1 : \mathbb{M}_1, \dots, x_n : \mathbb{M}_n \vdash (\mathbf{L}, \mathbf{S}) t : \mathbf{A}$
 - Multi-type M_i for each variable x_i
 - Type A for the term t
 - L captures length of β -steps to head normal form
 - S captures size of the future head normal form
- Typing Rules:
 - They describe the increment and decrement of the two counters (L,S)
 - They guess the different possible uses of the constructors along a sequence

(Tight Constants)	tt	::=	n a
(Types)	Α	::=	$\texttt{tt} \mid \texttt{M} \to \texttt{A}$
(Multi-types)	М	::=	$[\mathbf{A}_i]_{i\in I}$

- Judgements with two counters: $x_1 : M_1, \ldots, x_n : M_n \vdash^{(L,S)} t : A$
 - Multi-type M_i for each variable x_i
 - Type A for the term t
 - L captures length of β -steps to head normal form
 - S captures size of the future head normal form
- Typing Rules:
 - They describe the increment and decrement of the two counters $\left(L,S\right)$
 - They guess the different possible uses of the constructors along a sequence
- Tight Derivations: ▷Γ ⊢^(L,S) t : A is tight iff all the types in Γ, A are tight constants. Tight derivations (noted ▷_{tight}) represent minimal derivations.

Γ

Type System \mathcal{SH} (S for Split)

$$\frac{\Gamma_{i} \vdash t: \mathbf{A}_{i}}{\mathbf{A}_{i}: [\mathbf{A}] \vdash x: \mathbf{A}} (\mathbf{a}\mathbf{x}) = \frac{(\Gamma_{i} \vdash t: \mathbf{A}_{i})_{i \in I}}{\Box_{i \in I} \Gamma_{i} \vdash t: [\mathbf{A}_{i}]} (\mathbf{m}\mathbf{a}\mathbf{n}\mathbf{y})$$

$$\frac{\Gamma_{i}: x: \mathbf{M} \vdash t: \mathbf{A}}{\Gamma \vdash \lambda x. t: \mathbf{M} \to \mathbf{A}} (\mathbf{f}\mathbf{u}\mathbf{n}_{c})$$

$$\frac{\Gamma_{i} \vdash t: \mathbf{M} \to \mathbf{A} \quad \Gamma' \vdash u: \mathbf{M}}{\Gamma \sqcup \Gamma' \vdash tu: \mathbf{A}} (\mathbf{a}\mathbf{p}\mathbf{p}_{c})$$

Type System \mathcal{SH} (S for Split)

$$\frac{\Gamma_{i} \vdash (\mathbf{L}_{i}, \mathbf{S}_{i})}{\frac{\Gamma_{i} : [\mathbf{A}] \vdash (\mathbf{L}_{i}, \mathbf{S})}{\Gamma_{i} \vdash (\mathbf{L}_{i}, \mathbf{S})} \frac{\Gamma_{i} : [\mathbf{A}_{i}]}{\mathbf{A} : [\mathbf{A}_{i}]} (\text{many})} \frac{\Gamma_{i} : \mathbf{X} : [\mathbf{A}] \vdash (\mathbf{L}_{i}, \mathbf{S})}{\frac{\Gamma_{i} : \mathbf{X} : \mathbf{M} \vdash (\mathbf{L}_{i}, \mathbf{S})}{\Lambda : \mathbf{X} : \mathbf{M} \to \mathbf{A}}} (\text{fun}_{c})}{\frac{\Gamma_{i} \vdash (\mathbf{L}_{i}, \mathbf{S})}{\Gamma_{i} \vdash (\mathbf{L}_{i}, \mathbf{S})} \frac{\Gamma_{i} : \mathbf{M} \to \mathbf{A}}{\Gamma_{i} \vdash (\mathbf{L}_{i}, \mathbf{S})} (\mathbf{L}_{i}, \mathbf{S})} (\mathbf{L}_{i}, \mathbf{S})} (\mathbf{L}_{i}, \mathbf{S})}{\Gamma_{i} \vdash \Gamma_{i} \vdash (\mathbf{S})} \frac{\Gamma_{i} : \mathbf{M} \to \mathbf{A}}{\Gamma_{i} \vdash (\mathbf{L}_{i}, \mathbf{S})} \frac{\Gamma_{i} : \mathbf{M} \to \mathbf{A}}{\tau_{i} \vdash (\mathbf{L}_{i}, \mathbf{S})} (\mathbf{L}_{i}, \mathbf{S})}$$

Type System \mathcal{SH} (S for Split)

$$\frac{(\Gamma_{i} \vdash^{(\mathbf{L}_{i},\mathbf{S}_{i})} t : \mathbf{A})_{i \in I}}{\prod_{i \in I} \Gamma_{i} \vdash^{(\mathbf{L}_{i},\mathbf{S}_{i})} t : \mathbf{A}} (\operatorname{ax}) \qquad \frac{(\Gamma_{i} \vdash^{(\mathbf{L}_{i},\mathbf{S}_{i})} t : \mathbf{A})_{i \in I}}{\prod_{i \in I} \Gamma_{i} \vdash^{(\mathbf{L}_{i},\mathbf{L}_{i},+_{i \in I}\mathbf{S}_{i})} t : [\mathbf{A}_{i}]} (\operatorname{many})}{\Gamma \vdash^{(\mathbf{L},\mathbf{S})} \lambda x.t : \mathbf{M} \to \mathbf{A}} (\operatorname{fun}_{c}) \qquad \frac{\Gamma; x : \mathbf{M} \vdash^{(\mathbf{L},\mathbf{S})} t : \operatorname{tt} \quad \mathbf{IsItight}(\mathbf{M})}{\Gamma \vdash^{(\mathbf{L},\mathbf{S}+1)} \lambda x.t : \mathbf{a}} (\operatorname{fun}_{p})}{\Gamma \vdash^{(\mathbf{L},\mathbf{S})} t : \mathbf{M} \to \mathbf{A}} (\operatorname{fun}_{c}) \qquad \frac{\Gamma; x : \mathbf{M} \vdash^{(\mathbf{L},\mathbf{S})} t : \operatorname{tt} \quad \mathbf{IsItight}(\mathbf{M})}{\Gamma \vdash^{(\mathbf{L},\mathbf{S}+1)} \lambda x.t : \mathbf{a}} (\operatorname{app}_{p})}$$

Type System \mathcal{SH} (S for Split)

$$\frac{(\Gamma_{i} \vdash^{(\mathbf{L}_{i},\mathbf{S}_{i})} t : \mathbf{A})_{i \in I}}{\prod_{i \in I} \Gamma_{i} \vdash^{(\mathbf{L}_{i},\mathbf{S}_{i})} t : \mathbf{A}} (\operatorname{ax}) \qquad \frac{(\Gamma_{i} \vdash^{(\mathbf{L}_{i},\mathbf{S}_{i})} t : \mathbf{A})_{i \in I}}{\prod_{i \in I} \Gamma_{i} \vdash^{(\mathbf{L}_{i},\mathbf{L}_{i}+\mathbf{i}\in\mathbf{I}\mathbf{S}_{i})} t : [\mathbf{A}_{i}]} (\operatorname{many})}{\Gamma \vdash^{(\mathbf{L},\mathbf{S})} \lambda x.t : \mathbf{M} \to \mathbf{A}} (\operatorname{fun}_{c}) \qquad \frac{\Gamma; x : \mathbf{M} \vdash^{(\mathbf{L},\mathbf{S})} t : \operatorname{tt} \quad \mathbf{IsItight}(\mathbf{M})}{\Gamma \vdash^{(\mathbf{L},\mathbf{S}+1)} \lambda x.t : \mathbf{a}} (\operatorname{fun}_{p})}{\Gamma \vdash^{(\mathbf{L},\mathbf{S}+1)} \lambda x.t : \mathbf{a}} (\operatorname{fun}_{p})}$$

$$\frac{\Gamma \vdash^{(\mathbf{L},\mathbf{S})} t : \mathbf{M} \to \mathbf{A} \quad \Gamma' \vdash^{(\mathbf{L}',\mathbf{S}')} u : \mathbf{M}}{\Gamma \sqcup \Gamma' \vdash^{(\mathbf{L}+\mathbf{L}',\mathbf{S}+\mathbf{S}'+1)} tu : \mathbf{A}}} (\operatorname{app}_{p}) \qquad \frac{\Gamma \vdash^{(\mathbf{L},\mathbf{S})} t : \mathbf{n} \quad \Gamma' \vdash^{(\mathbf{L}',\mathbf{S}')} u : \operatorname{tt}}{\Gamma \sqcup \Gamma' \vdash^{(\mathbf{L}+\mathbf{L}',\mathbf{S}+\mathbf{S}'+1)} tu : \mathbf{n}} (\operatorname{app}_{p})}{\Gamma \sqcup \Gamma' \vdash^{(\mathbf{L}+\mathbf{L}',\mathbf{S}+\mathbf{S}'+1)} tu : \mathbf{n}} (\operatorname{app}_{p})}$$

Rule	Role	Incrementation
fun _c	consuming function	only first counter
funp	persistent function	only second counter
app _c	consuming application	no counter
appp	persistent application	only second counter

Example

A tight derivation for the term $(\lambda x.xI)I$ $\frac{z:n \vdash^{(0,0)} z:n}{\vdash^{(0,1)} I:a}$ $\frac{x:[[a] \rightarrow a] \vdash^{(0,0)} x:[a] \rightarrow a}{\vdash^{(1,1)} \lambda x.xI:[[a] \rightarrow a] \rightarrow a}$ $\frac{z:[a] \vdash^{(0,0)} z:a}{\vdash^{(1,0)} I:[a] \rightarrow a}$

• The evaluation of $t = (\lambda x. xI)I$ to head normal form has length 2:

 $(\lambda x. x\mathbf{I})\mathbf{I} \rightarrow_{\beta} \mathbf{II} \rightarrow_{\beta} \mathbf{I}$

• The head normal form I of *t* has size 1 (variables do not count).

In Type System SH with two counters $\triangleright_{SH} \Gamma \vdash^{(\mathbf{L},\mathbf{S})} \mathbf{t} : \mathbf{A}$ \longleftrightarrow \mathbf{t} head normalizes in \mathbf{L} steps to a HNF of size \mathbf{S} .

In Type System SH with two counters $\triangleright_{SH} \Gamma \vdash^{(L,S)} t : A$ \longleftrightarrow t head normalizes in L steps to a HNF of size S.

If *t* is typable and $t \rightarrow_{hd} t'$, then *t'* is typable.

If *t* is typable and $t \rightarrow_{hd} t'$, then *t'* is typable.

Quantitative (Upper Bounds)

If
$$\triangleright_{\mathcal{H}}^{(\mathbb{C})} t$$
 and $t \to_{hd} t'$, then $\exists \triangleright_{\mathcal{H}}^{(\mathbb{C}')} t'$ s.t. $\mathbb{C} > \mathbb{C}'$.

If *t* is typable and $t \rightarrow_{hd} t'$, then *t'* is typable.

Quantitative (Upper Bounds)

If
$$\triangleright_{\mathcal{H}}^{(\mathbb{C})}t$$
 and $t \to_{hd} t'$, then $\exists \triangleright_{\mathcal{H}}^{(\mathbb{C}')}t'$ s.t. $\mathbb{C} > \mathbb{C}'$.

Quantitative (Exact Measures)

If
$$\triangleright_{\text{tight}}^{(\mathbb{C})} t$$
 and $t \rightarrow_{hd} t'$, then $\exists \triangleright_{\text{tight}}^{(\mathbb{C}')} t'$ s.t. $\mathbb{C} = \mathbb{C}' + 1$.

If *t* is typable and $t \rightarrow_{hd} t'$, then *t'* is typable.

Quantitative (Upper Bounds)

If
$$\triangleright_{\mathcal{H}}^{(\mathbb{C})}t$$
 and $t \to_{hd} t'$, then $\exists \triangleright_{\mathcal{H}}^{(\mathbb{C}')}t'$ s.t. $\mathbb{C} > \mathbb{C}'$.

Quantitative (Exact Measures)

$$f \triangleright_{\text{tight}}^{(\mathbb{C})} t$$
 and $t \rightarrow_{hd} t'$, then $\exists \triangleright_{\text{tight}}^{(\mathbb{C}')} t'$ s.t. $\mathbb{C} = \mathbb{C}' + 1$.

Quantitative (Split Measures)

If
$$\triangleright_{\text{tight}}^{(\mathbf{L},\mathbf{S})} t$$
 and $t \rightarrow_{hd} t'$, then $\exists \triangleright_{\text{tight}}^{(\mathbf{L}-\mathbf{1},\mathbf{S})} t'$.

Outline

- Quantitative Types for Lambda Calculus
- 3 Quantitative Types and Inhabitation
- 4 Quantitative Types for Measuring
- Quantitative Types and Observational Equivalence

Conclusion

Observational Equivalence

Observational Equivalence

Call-by-Need Different from Call-by-Name

Call-by-Need Different from Call-by-Name

Call-by-need is different from call-by-name:

 $\begin{array}{l} \text{Twice } (4+3) \rightarrow_{\text{cbname}} (4+3) + (4+3) \rightarrow_{\text{cbname}} 7 + (4+3) \rightarrow_{\text{cbname}} 7 + 7 \rightarrow_{\text{cbname}} 14 \\ \text{Twice } (4+3) \rightarrow_{\text{cbneed}} \text{Twice } 7 \rightarrow_{\text{cbneed}} 7 + 7 \rightarrow_{\text{cbneed}} 14 \end{array}$

where Twice = $\lambda x.x + x$.

Call-by-Need Different from Call-by-Value

Call-by-Need Different from Call-by-Value

Call-by-need is different from call-by-value:

$$(\lambda x.8)(4+3) \rightarrow_{\text{cbvalue}} (\lambda x.8)7 \rightarrow_{\text{cbvalue}} 8$$

 $(\lambda x.8)(4+3) \rightarrow_{\text{cbneed}} 8$

In particular

$$(\lambda x.8)\Omega \xrightarrow{}_{\text{cbvalue}} (\lambda x.8)\Omega \xrightarrow{}_{\text{cbneed}} 8$$

(Syntactical) call-by-need is different from (semantical) neededness

$$(\lambda x.x)(4+3) \rightarrow_{\text{cbneed}} (\lambda x.x)7 \rightarrow_{\text{cbneed}} 7$$

 $(\lambda x.x)(4+3) \rightarrow_{\text{neededness}} 4+3 \rightarrow_{\text{neededness}} 7$

Observational Equivalence by Means of Type Theory

Same typing system to capture different models of computation

Same typing system to capture different models of computation

- t is typable in type system \mathcal{A} if and only if t terminates in call-by-need.
- t is typable in type system \mathcal{A} if and only if t terminates in call-by-name.
- t is typable in type system \mathcal{A} if and only if t terminates w.r.t. neededness.

Same typing system to capture different models of computation

- t is typable in type system \mathcal{A} if and only if t terminates in call-by-need.
- t is typable in type system \mathcal{A} if and only if t terminates in call-by-name .
- t is typable in type system \mathcal{R} if and only if t terminates w.r.t. neededness.

Theorem (K.'16, K.&Viso&Ríos'18)

- **First** quantitative systems for lambda-calculus: Gardner'94, Kfoury'00, MøllerNeergaard-Mairson'04.
- Pioneer for quantitative properties: Carvalho 07, Carvalho'18.
- Survey on quantitative types and lambda-calculus: Bucciarelli-K.-Ventura'17.
- Quantitative types and **exact measures**: Bernadet-GrahamLengrand'11 and 13, Accattoli-GrahamLengrand-K.'18.
- Quantitative types for **call-by-value**: Ehrhard'12, Carraro-Guerrieri'14, Accattoli-Guerrieri'18, Guerrieri'19, Manzonetto-Pagani-RonchiDellaRocca'19, Kerinec-Manzonetto-RonchiDellaRocca'21, K.-Viso'2022, Accattoli-Guerrieri'22.
- Quantitative types for call-by-need: K.'16, K.-Rios-Viso'18, Balabonski-Bonelli-Barenbaum-K.'17, Accattoli-Guerrieri-Leberle'19, Accattoli-Leberle'22.
- Quantitative types for call-by-push-value: Guerrieri-Manzonetto'19, Bucciarelli-K.-Ríos-Viso'20.
- Quantitative types for **global memory**: Alves-K.-Ramos'23.

Some references

- Quantitative types for proof-theory: deCarvalho-Pagani-TortoradeFalco'11, Pimentel-RonchiDellaRocca-Roversi'12, TortoradeFalco-DeCarvalho'13, K.-Ventura'15 and 17, deCarvalho-TortoradeFalco'16, Ehrhard'20, Guerrieri-Heijltjes-Paulus'21, K.-Peyrot-Ventura'21, EspíritoSanto-K.-Peyrot'22.
- Quantitative types and **relational models**: Bucciarelli-Ehrhard'01, Bucciarelli-Ehrhard-Manzonetto'07, Paolini-Piccolo-RonchiDellaRocca'17.
- Quantitative types and complexity classes: DeBenedetti-RonchiDellaRocca'16.
- Quantitative types and **category-theory**: Ehrhard'12, Mazza-Pellissier-Vial'18, Guerrieri-Olimpieri'21. Kerinec-Manzonetto-Olimpieri'23.
- Quantitative types and concurrency: DalLago-de Visme-Mazza-Yoshimizu'19.
- Quantitative types for classical term calculi: K.-Vial'17 and 20.
- Quantitative types for infinite calculi: Vial'17.
- Quantitative types for **pattern-matching calculi**: Bucciarelli-K.-RonchiDellaRocca'15 and 21, Alves-K.-Ventura'19, Alves-K.-Ramos'22.
- Quantitative types for **probabilistic programming**: DalLago-Faggian-RonchiDellaRocca.
- Quantitative types for **space bounds**: Accattoli-DalLago-Vanoni'21.
- Inhabitation for quantitative types: Bucciarelli-RonchiDellaRocca-K.'14, Bucciarelli-RonchiDellaRocca-K.'21, Arrial-Guerrieri-K.'23.

- Taylor Expansion
- Böhm Trees
- Proof-Nets
- Resource Calculi and Explicit Substitutions
- Observational Equivalence
- Game Semantics
- Relational Models
- Higher-Order Model Checking

Outline

- 2 Quantitative Types for Lambda Calculus
- 3 Quantitative Types and Inhabitation
- Quantitative Types for Measuring
- Quantitative Types and Observational Equivalence

• (Quantitative) characterization of different notions of termination (head, head-linear, head-needed, weak, strong, value, infinitary etc).

- (Quantitative) characterization of different notions of termination (head, head-linear, head-needed, weak, strong, value, infinitary etc).
- Get around the size explosion problem (upper bounds versus split/exact measures).

- (Quantitative) characterization of different notions of termination (head, head-linear, head-needed, weak, strong, value, infinitary etc).
- Get around the size explosion problem (upper bounds versus split/exact measures).
- Quantitative view of traditional properties (solvability, genericity).

- (Quantitative) characterization of different notions of termination (head, head-linear, head-needed, weak, strong, value, infinitary etc).
- Get around the size explosion problem (upper bounds versus split/exact measures).
- Quantitative view of traditional properties (solvability, genericity).
- Relational models.

- (Quantitative) characterization of different notions of termination (head, head-linear, head-needed, weak, strong, value, infinitary etc).
- Get around the size explosion problem (upper bounds versus split/exact measures).
- Quantitative view of traditional properties (solvability, genericity).
- Relational models.
- Turn Inhabitation problem decidable.

- (Quantitative) characterization of different notions of termination (head, head-linear, head-needed, weak, strong, value, infinitary etc).
- Get around the size explosion problem (upper bounds versus split/exact measures).
- Quantitative view of traditional properties (solvability, genericity).
- Relational models.
- Turn Inhabitation problem decidable.
- Simple observational equivalence proofs by means of types.

- (Quantitative) characterization of different notions of termination (head, head-linear, head-needed, weak, strong, value, infinitary etc).
- Get around the size explosion problem (upper bounds versus split/exact measures).
- Quantitative view of traditional properties (solvability, genericity).
- Relational models.
- Turn Inhabitation problem decidable.
- Simple observational equivalence proofs by means of types.
- Characterize complexity classes.

- (Quantitative) characterization of different notions of termination (head, head-linear, head-needed, weak, strong, value, infinitary etc).
- Get around the size explosion problem (upper bounds versus split/exact measures).
- Quantitative view of traditional properties (solvability, genericity).
- Relational models.
- Turn Inhabitation problem decidable.
- Simple observational equivalence proofs by means of types.
- Characterize complexity classes.
- Completeness of reduction strategies.

- Challenging cases:
 - ▶ Effectful models of computation (algebraic, continuations, ...)
 - Useful evaluation (and other interesting time cost models)
 - Strong evaluation (for proof assistants)
 - Deep Inference
 - General rewriting

- Challenging cases:
 - ▶ Effectful models of computation (algebraic, continuations, ...)
 - Useful evaluation (and other interesting time cost models)
 - Strong evaluation (for proof assistants)
 - Deep Inference
 - General rewriting
- (More) quantitative view of traditional properties.

- Challenging cases:
 - ▷ Effectful models of computation (algebraic, continuations, ...)
 - Useful evaluation (and other interesting time cost models)
 - Strong evaluation (for proof assistants)
 - Deep Inference
 - General rewriting
- (More) quantitative view of traditional properties.
- Compare **efficiency** of different implementations/strategies of programming languages by means of quantitative type theory.

- Challenging cases:
 - ▷ Effectful models of computation (algebraic, continuations, ...)
 - Useful evaluation (and other interesting time cost models)
 - Strong evaluation (for proof assistants)
 - Deep Inference
 - General rewriting
- (More) quantitative view of traditional properties.
- Compare **efficiency** of different implementations/strategies of programming languages by means of quantitative type theory.
- Identify decidable fragments applicable to programming languages.