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Motivations

• Quantitative information in computer science:
B Time, space, probability, cost, . . .

• Emerging in different areas:
B Automata, graphs, logics, algorithms, . . .
B Verification, model-checking, programming, theorem proving, . . .
B Performance measurement, network analysis, data mining, . . .

• Theory of programming languages:
B Quantitative information about programs can be captured by

type systems/relational models

• Quantitative Type Systems:
B Principles, Properties, and Applications.
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From Simple Types to Quantitative Types
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Simple Types - Main Ideas

• Grammar: A, B ::= ι | A→ B

• Typing rules:

Γ, x : A ` x : A

Γ, x : A ` t : B

Γ ` λx.t : A→ B

Γ ` t : A→ B Γ ` u : A

Γ ` tu : B

• Logical (Curry-Howard) interpretation.

• Monomorphic information.

• Lack expressivity power but typability is decidable.

• Admits powerful polymorphic extensions that are still decidable.
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Intersection Types - Main Ideas

• Grammar : A, B ::= ι | A→ B | A ∩ B

• Key typing rule:
t : A u : B

t : A ∩ B

• Finite polymorphism:

(A→ A) ∩ ((A→ B)→ (A→ B))
represent two different instances of the polymorphic type

∀X.X → X.

• But more expressive:

A ∩ (A→ B) ∩ ((A→ B)→ B)
is perfectly admissible.

• Typability becomes undecidable

• Are flexible and can be adapted to different frameworks

• Provide models for different languages

• Very powerful tool to reason about properties of higher-order languages
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Simple vs Intersection Types

Simple Types

Untyped Terms

Terminating

Terminating

=

Simply Typable

Intersection Typable
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Simple vs Intersection Types

Simple Types

Untyped Terms

Terminating

λx.xx

Terminating

=

Simply Typable

Intersection Typable

The term λx.xx is not simply typable
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TerminatingTerminating
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Simply TypableIntersection Typable
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Simple vs Intersection Types

Intersection Types

Untyped Terms

Terminating

Terminating

=

Simply Typable

Intersection Typable

λx.xx

The term λx.xx is intersection typable
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Which kind of intersection constructor?

Associativity (A ∩ B) ∩ C ∼ A ∩ (B ∩ C)
Commutativity A ∩ B ∼ B ∩ A

Idempotent versus Non-idempotent

A ∩ A ∼ A A ∩ A / A

Unbounded Resources Finite Resources
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Idempotent vs Non-Idempotent Intersection Types

Idempotent Non-idempotent
Coppo & Dezani in the eighties Gardner and Kfoury in the nineties

(Girard’s Linear Logic flavour)

Sets: A ∩ A ∩ C is {A, C} Multi-sets: A ∩ A ∩ C is [A, A, C]

Qualitative properties: Quantitative properties:
Yes or No bound and measure

De Carvalho
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An Emblematic Example: Gardner’s system revisited

Grammar:

(Types) A ::= ι | M→ A
(Multi-Types) M ::= [Ai]i∈I

Judgements:

x1 : M1, . . . , xn : Mn ` t : A

Multi-Type Mi for each variable xi

Type A for the term t
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An Emblematic Example: Gardner’s system revisited

The Typing Rules:

Type System H (H for Head)

x : [A] ` x : A
(ax)

Relevant axiom (no weakening).
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An Emblematic Example: Gardner’s system revisited

The Typing Rules:

Type System H (H for Head)

Γ ` t : A

Γ \ x ` λx.t : Γ(x)→ A
(fun)

• Notation Γ(x) represents the type of x in the environment Γ.

• Operation Γ \ x yields the environment Γ deprived from x.

• Erasing abstractions are typed with [ ]→ A (thus (λx.y)Ω is typable).
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An Emblematic Example: Gardner’s system revisited

The Typing Rules:

Type System H (H for Head)

(Γi ` t : Ai)i∈I

ti∈I Γi ` t : [Ai]i∈I
(many)

• Multiplicative rule.

• Notation [Ai]i=1..n represents a non-idempotent intersection A1 ∩ . . . ∩ An.

• Operation x : A t x : B yields multiset union for multi-types x : A t B.

• Special case: any term t can be ”artificially typed” with the empty multi-type [ ] :
then t is said to be untyped.
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An Emblematic Example: Gardner’s system revisited

The Typing Rules:

Type System H (H for Head)

Γ ` t : M→ B ∆ ` u : M

Γ t ∆ ` tu : B
(app)

• Multiplicative rule.

• Typed terms may contain untyped subterms (case M = ∅).
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An Emblematic Example: Gardner’s system revisited

The Typing Rules:

Type System H (H for Head)

x : [A] ` x : A
(ax)

Γ ` t : A

Γ \ x ` λx.t : Γ(x)→ A
(→i)

(Γi ` t : Ai)i∈I

ti∈I Γi ` t : [Ai]i∈I
(many)

Γ ` t : M→ B ∆ ` u : M

Γ t ∆ ` tu : B
(→e)

• Syntax Directed system.
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Variation: System H with a Single Counter

Type System H with a Single Counter

x : [A] `(1) x : A
(ax)

Γ `(C) t : A

Γ \ x `(C+1) λx.t : Γ(x)→ A
(→i)

(Γi `
(Ci) t : Ai)i∈I

ti∈I Γi `
(+i∈ICi) t : [Ai]i∈I

(many)
Γ `(C1) t : M→ B ∆ `(C2) u : M

Γ t ∆ `(C1+C2+1) tu : B
(→e)

• The single counter computes the number of typing rules different from (many).

• Other kind of counters will be used later.

• Counters can be also added to idempotent systems, but they result useless (as we
will see).
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Notation

(Standard) Notation for Type Derivability

Π .S Γ `
(C1,...,Cn) t : A

• Π is a (tree) derivation,

(sometimes omitted)

• S is a type system,

(sometimes omitted)

• Γ is a set of type declarations,

• (C1, . . . , Cn) are counters.

(sometimes omitted)

• t is a program/term,

• A is a type.
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A First Example

Let Ω := (λx.xx)(λx.xx). Let A := [ ]→ [ι0]→ ι1. Then,

(ax)
x : [A] ` x : A

(many)
` Ω : [ ]

(app)
x : [A] ` xΩ : [ι0]→ ι1

(ax)
x : [ι0] ` x : ι0

(many)
x : [ι0] ` x : [ι0]

(app)
x : [A, ι0] ` x Ω x : ι1

(fun)
` λx.x Ω x : [A, ι0]→ ι1

• The subterm Ω is untyped

• The bound variable x is typed with an intersection type [A, ι0].
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Another Example: Church Numerals

Let 3 := λ f .λx. f ( f ( f x))) and let B := [A]→ A.

f : B ` f : [A]→ A

f : B ` f : [A]→ A

f : B ` f : [A]→ A

x : [A] ` x : A

x : [A] ` x : [A]

f : [B], x : [A] ` f x : A

f : [B], x : [A] ` f x : [A]

f : [B, B], x : [A] ` f ( f x)) : A

f : [B, B], x : [A] ` f ( f x)) : [A]

f : [B, B, B], x : [A] ` f ( f ( f x))) : A

f : [B, B, B] ` λx. f ( f ( f x))) : [A]→ A

` 3 : [B, B, B]→ [A]→ A



Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Coming Back to the Example

Let 3 := λ f .λx. f ( f ( f x))) and let B := [A]→ A

Non-Idempotent/Quantitative Typing with Multi-Sets

` 3 : [B, B, B]→ [A]→ A
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Properties of the Inhabitation Algorithm

Non-deterministic algorithm

Theorem

The algorithm terminates:
Every call on (Γ, σ) generates a finite set of recursive calls.

The algorithm is sound:
If a call on (Γ, σ) computes T, then Γ ` T : σ.

The algorithm is complete:
If Γ ` T : σ, then there exists an answer of the algorithm which generates T.

• First inhabitation results for CBN: Bucciarelli&K.&Ronchi Della Rocca’{14,18,21}

• Similar results for CBV and dBang: Arrial&Guerrieri&K.’23

• Implementation by Arrial in Ocaml.
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Intersection Types and Quantitative Analysis

• Intersection type systems provide a mathematical meaning of programs:

[[t]] := {(Γ, A) | .Γ ` t : A}

• This gives relational models where equivalent programs have the same meaning :

If t→operational u, then [[t]] = [[u]]

i.e. .Γ `(C) t : A ⇔ .Γ `(C
′) u : A

called Subject Reduction and Expansion

Qualitative Quantitative
analysis analysis

(Idempotent types) (Non-idempotent types)

C # C′ C > C′
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Characterizing Evaluation by Means of Qualitative/Quantitative Types

t is a typable term ⇐⇒ t→ . . .→ result

More precisely:

.S Γ ` t : A ⇐⇒ t N-normalizes
to a result

Correspondence:

Type System S ⇐⇒ N-Normalization

(Idempotent)
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Characterizing Evaluation by Means of Qualitative/Quantitative Types

.S Γ `
(C) t : A ⇐⇒ t→ . . .→︸    ︷︷    ︸

length

result︸ ︷︷ ︸
size

S = Non-Idempotent Types with UPPER BOUNDS (e.g. Gardner’s System H)

t N-normalizes to a result and length + size ≤ C

S = Non-Idempotent Types with EXACT MEASURES

t N-normalizes to a result and length + size = C

A possible exponential gap between length and size

S = Non-Idempotent Types with SPLIT MEASURES

t N-normalizes to a result and length = L and size = S
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with Exact Measures

Non-Idempotent Types
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Typability Characterizes Quantitative Properties of Languages

This scheme applies to

• Different normalization notions:
B Head normalization
B Linear head normalization
B Leftmost normalization
B Strong normalization

• Different models of computation:
B Call-by-Name, Call-by-Value, Call-by-Need
B Unifying models (e.g. Call-by-Push-Value, Bang Calculus)
B Resource and explicit substitution calculi, proof-nets
B Pattern matching features
B Classical Calculi
B Non-deterministic languages
B Probabilistic languages, Bayesian inference
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B Classical Calculi
B Non-deterministic languages
B Probabilistic languages, Bayesian inference
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The Emblematic Example: Head Normalization

Head Normal Forms (HNF) : terms of the form λx1 . . . λxn.yt1 . . . tm (n,m ≥ 0)

Head Evaluation : No reduction inside arguments of applications.

(λx.t)u→hd t{x\u}

t →hd u

λx.t →hd λx.u

t →hd u t , λ

tv→hd uv

Head Normalization : if there exists a HNF u such that t →hd . . .→hd u.

Example:
Let I := λy.y and Ω := (λy.yy)(λy.yy). Then λx.IxΩ is head normalizing, while Ω is not.
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Conclusion

Characterizing Head Normalization with Gardner’s System H

Theorem (UPPER BOUNDS)

In Type System H
.H Γ `(C) t : A

⇐⇒

t head normalizes in length steps
to a HNF of size size and

length + size ≤ C.
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Characterizing Head Normalization with Split Measures

• Grammar:
(Tight Constants) tt ::= n | a

(Types) A ::= tt | M→ A

(Multi-types) M ::= [Ai]i∈I

• Judgements with two counters: x1 : M1, . . . , xn : Mn `
(L,S) t : A

• Multi-type Mi for each variable xi

• Type A for the term t
• L captures length of β-steps to head normal form
• S captures size of the future head normal form

• Typing Rules:
• They describe the increment and decrement of the two counters (L,S)
• They guess the different possible uses of the constructors along a sequence

• Tight Derivations: .Γ `(L,S) t : A is tight iff all the types in Γ, A are tight constants.
Tight derivations (noted .tight) represent minimal derivations.
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Non-Idempotent System with Split Measures

Type System SH (S for Split)
Accattolli&Graham-Lengrand&K.

x : [A] `

(0,0)

x : A
(ax)

(Γi `

(Li ,Si)

t : Ai)i∈I

ti∈I Γi `

(+i∈ILi ,+i∈ISi)

t : [Ai]
(many)

Γ; x : M `

(L,S)

t : A

Γ `

(1+L,S)

λx.t : M→ A
(func)

Γ; x : M `(L,S) t : tt IsItight(M)

Γ `(L,S+1) λx.t : a
(funp)

Γ `

(L,S)

t : M→ A Γ′ `

(L′ ,S′)

u : M

Γ t Γ′ `

(L+L′ ,S+S′)

tu : A
(appc)

Γ `

(L,S)

t : n Γ′ `

(L′ ,S′)

u : tt

Γ t Γ′ `

(L+L′ ,S+S′+1)

tu : n
(appp)

Rule Role Incrementation
func consuming function only first counter
funp persistent function only second counter
appc consuming application no counter
appp persistent application only second counter
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Example

A tight derivation for the term (λx.xI)I

x : [[a]→ a] `(0,0) x : [a]→ a

z : n `(0,0) z : n

`(0,1) I : a

`(0,1) I : [a]

x : [[a]→ a] `(0,1) xI : a

`(1,1) λx.xI : [[a]→ a]→ a

z : [a] `(0,0) z : a

`(1,0) I : [a]→ a

`(1,0) I : [[a]→ a]

`(2,1) (λx.xI)I : a

• The evaluation of t = (λx.xI)I to head normal form has length 2:

(λx.xI)I→β II→β I

• The head normal form I of t has size 1 (variables do not count).
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Characterization of Head Normalization Refined

Theorem (SPLIT MEASURES)

In Type System SH with two counters
.SH Γ `(L,S) t : A

⇐⇒

t head normalizes in L steps
to a HNF of size S.
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Qualitative Versus Quantitative Subject Reduction

Qualitative

If t is typable and t →hd t′, then t′ is typable.

Quantitative (Upper Bounds)

If .(C)
H

t and t →hd t′, then ∃ .(C′)
H

t′ s.t. C > C′.

Quantitative (Exact Measures)

If .(C)

tightt and t →hd t′, then ∃ .(C′)
tight t′ s.t. C = C′ + 1.

Quantitative (Split Measures)

If .(L,S)

tightt and t →hd t′, then ∃ .(L−1,S)

tight t′.
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Observational Equivalence

t �R1 u iff t �R2 u?

Call-by-Name Call-by-Value

Call-by-Need Neededness
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Conclusion

Call-by-Need Different from Call-by-Name

Call-by-need is different from call-by-name:

Twice (4 + 3)→cbname (4 + 3) + (4 + 3)→cbname 7 + (4 + 3)→cbname 7 + 7→cbname 14
Twice (4 + 3)→cbneed Twice 7→cbneed 7 + 7→cbneed 14

where Twice = λx.x + x.
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Call-by-Need Different from Call-by-Value

Call-by-need is different from call-by-value:

(λx.8)(4 + 3)→cbvalue (λx.8)7→cbvalue 8
(λx.8)(4 + 3)→cbneed 8

In particular

(λx.8)Ω((((→cbvalue

(λx.8)Ω→cbneed 8
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Call-by-Need Different from Neededness

(Syntactical) call-by-need is different from (semantical) neededness

(λx.x)(4 + 3)→cbneed (λx.x)7→cbneed 7
(λx.x)(4 + 3)→neededness 4 + 3→neededness 7
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Observational Equivalence by Means of Type Theory

Same typing system to capture different models of
computation

t is typable in type system A if and only if t terminates in call-by-need .

t is typable in type system A if and only if t terminates in call-by-name .

t is typable in type system A if and only if t terminates w.r.t. neededness .

Theorem (K.’16, K.&Viso&Rı́os’18)
t �

call-by-name
u if and only if t �

call-by-need
u if and only if t �

neededness
u.
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Some references

• First quantitative systems for lambda-calculus: Gardner’94, Kfoury’00,
MøllerNeergaard-Mairson’04.

• Pioneer for quantitative properties: Carvalho 07, Carvalho’18.

• Survey on quantitative types and lambda-calculus: Bucciarelli-K.-Ventura’17.

• Quantitative types and exact measures: Bernadet-GrahamLengrand’11 and 13,
Accattoli-GrahamLengrand-K.’18.

• Quantitative types for call-by-value: Ehrhard’12, Carraro-Guerrieri’14,
Accattoli-Guerrieri’18, Guerrieri’19, Manzonetto-Pagani-RonchiDellaRocca’19,
Kerinec-Manzonetto-RonchiDellaRocca’21, K.-Viso’2022, Accattoli-Guerrieri’22.

• Quantitative types for call-by-need: K.’16, K.-Rios-Viso’18,
Balabonski-Bonelli-Barenbaum-K.’17, Accattoli-Guerrieri-Leberle’19,
Accattoli-Leberle’22.

• Quantitative types for call-by-push-value: Guerrieri-Manzonetto’19,
Bucciarelli-K.-Rı́os-Viso’20.

• Quantitative types for global memory: Alves-K.-Ramos’23.
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Some references

• Quantitative types for proof-theory: deCarvalho-Pagani-TortoradeFalco’11,
Pimentel-RonchiDellaRocca-Roversi’12, TortoradeFalco-DeCarvalho’13,
K.-Ventura’15 and 17, deCarvalho-TortoradeFalco’16, Ehrhard’20,
Guerrieri-Heijltjes-Paulus’21, K.-Peyrot-Ventura’21, Espı́ritoSanto-K.-Peyrot’22.

• Quantitative types and relational models: Bucciarelli-Ehrhard’01,
Bucciarelli-Ehrhard-Manzonetto’07, Paolini-Piccolo-RonchiDellaRocca’17.

• Quantitative types and complexity classes: DeBenedetti-RonchiDellaRocca’16.
• Quantitative types and category-theory: Ehrhard’12, Mazza-Pellissier-Vial’18,

Guerrieri-Olimpieri’21. Kerinec-Manzonetto-Olimpieri’23.
• Quantitative types and concurrency: DalLago-de Visme-Mazza-Yoshimizu’19.
• Quantitative types for classical term calculi: K.-Vial’17 and 20.
• Quantitative types for infinite calculi: Vial’17.
• Quantitative types for pattern-matching calculi:

Bucciarelli-K.-RonchiDellaRocca’15 and 21, Alves-K.-Ventura’19,
Alves-K.-Ramos’22.

• Quantitative types for probabilistic programming:
DalLago-Faggian-RonchiDellaRocca.

• Quantitative types for space bounds: Accattoli-DalLago-Vanoni’21.
• Inhabitation for quantitative types: Bucciarelli-RonchiDellaRocca-K.’14,

Bucciarelli-RonchiDellaRocca-K.’21, Arrial-Guerrieri-K.’23.
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Some Related Topics

• Taylor Expansion

• Böhm Trees

• Proof-Nets

• Resource Calculi and Explicit Substitutions

• Observational Equivalence

• Game Semantics

• Relational Models

• Higher-Order Model Checking
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Concluding Remarks

Power of quantitative types

• (Quantitative) characterization of different notions of termination (head,
head-linear, head-needed, weak, strong, value, infinitary etc).

• Get around the size explosion problem (upper bounds versus split/exact
measures).

• Quantitative view of traditional properties (solvability, genericity).

• Relational models.

• Turn Inhabitation problem decidable.

• Simple observational equivalence proofs by means of types.

• Characterize complexity classes.

• Completeness of reduction strategies.
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Further Work

• Challenging cases:
B Effectful models of computation (algebraic, continuations, . . . )
B Useful evaluation (and other interesting time cost models)
B Strong evaluation (for proof assistants)
B Deep Inference
B General rewriting

• (More) quantitative view of traditional properties.

• Compare efficiency of different implementations/strategies of programming
languages by means of quantitative type theory.

• Identify decidable fragments applicable to programming languages.
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