
Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

AN INTRODUCTION TO QUANTITATIVE TYPES

Delia KESNER
kesner@irif.fr

Université Paris Cité

Differential λ-Calculus and Differential Linear Logic, 20 Years Later
Luminy, 13 May 2024

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Motivations

• Quantitative information in computer science:
B Time, space, probability, cost, . . .

• Emerging in different areas:
B Automata, graphs, logics, algorithms, . . .
B Verification, model-checking, programming, theorem proving, . . .
B Performance measurement, network analysis, data mining, . . .

• Theory of programming languages:
B Quantitative information about programs can be captured by

type systems/relational models

• Quantitative Type Systems:
B Principles, Properties, and Applications.

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Outline

1 Some Principles of Quantitative Types

2 Quantitative Types for Lambda Calculus

3 Quantitative Types and Inhabitation

4 Quantitative Types for Measuring

5 Quantitative Types and Observational Equivalence

6 Conclusion

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Outline

1 Some Principles of Quantitative Types

2 Quantitative Types for Lambda Calculus

3 Quantitative Types and Inhabitation

4 Quantitative Types for Measuring

5 Quantitative Types and Observational Equivalence

6 Conclusion

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

From Simple Types to Quantitative Types

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Simple Types - Main Ideas

• Grammar: A, B ::= ι | A→ B

• Typing rules:

Γ, x : A ` x : A

Γ, x : A ` t : B

Γ ` λx.t : A→ B

Γ ` t : A→ B Γ ` u : A

Γ ` tu : B

• Logical (Curry-Howard) interpretation.

• Monomorphic information.

• Lack expressivity power but typability is decidable.

• Admits powerful polymorphic extensions that are still decidable.

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Simple Types - Main Ideas

• Grammar: A, B ::= ι | A→ B

• Typing rules:

Γ, x : A ` x : A

Γ, x : A ` t : B

Γ ` λx.t : A→ B

Γ ` t : A→ B Γ ` u : A

Γ ` tu : B

• Logical (Curry-Howard) interpretation.

• Monomorphic information.

• Lack expressivity power but typability is decidable.

• Admits powerful polymorphic extensions that are still decidable.

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Simple Types - Main Ideas

• Grammar: A, B ::= ι | A→ B

• Typing rules:

Γ, x : A ` x : A

Γ, x : A ` t : B

Γ ` λx.t : A→ B

Γ ` t : A→ B Γ ` u : A

Γ ` tu : B

• Logical (Curry-Howard) interpretation.

• Monomorphic information.

• Lack expressivity power but typability is decidable.

• Admits powerful polymorphic extensions that are still decidable.

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Simple Types - Main Ideas

• Grammar: A, B ::= ι | A→ B

• Typing rules:

Γ, x : A ` x : A

Γ, x : A ` t : B

Γ ` λx.t : A→ B

Γ ` t : A→ B Γ ` u : A

Γ ` tu : B

• Logical (Curry-Howard) interpretation.

• Monomorphic information.

• Lack expressivity power but typability is decidable.

• Admits powerful polymorphic extensions that are still decidable.

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Simple Types - Main Ideas

• Grammar: A, B ::= ι | A→ B

• Typing rules:

Γ, x : A ` x : A

Γ, x : A ` t : B

Γ ` λx.t : A→ B

Γ ` t : A→ B Γ ` u : A

Γ ` tu : B

• Logical (Curry-Howard) interpretation.

• Monomorphic information.

• Lack expressivity power but typability is decidable.

• Admits powerful polymorphic extensions that are still decidable.

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Intersection Types - Main Ideas

• Grammar : A, B ::= ι | A→ B | A ∩ B

• Key typing rule:
t : A u : B

t : A ∩ B

• Finite polymorphism:

(A→ A) ∩ ((A→ B)→ (A→ B))
represent two different instances of the polymorphic type

∀X.X → X.

• But more expressive:

A ∩ (A→ B) ∩ ((A→ B)→ B)
is perfectly admissible.

• Typability becomes undecidable

• Are flexible and can be adapted to different frameworks

• Provide models for different languages

• Very powerful tool to reason about properties of higher-order languages

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Intersection Types - Main Ideas

• Grammar : A, B ::= ι | A→ B | A ∩ B

• Key typing rule:
t : A u : B

t : A ∩ B

• Finite polymorphism:

(A→ A) ∩ ((A→ B)→ (A→ B))
represent two different instances of the polymorphic type

∀X.X → X.

• But more expressive:

A ∩ (A→ B) ∩ ((A→ B)→ B)
is perfectly admissible.

• Typability becomes undecidable

• Are flexible and can be adapted to different frameworks

• Provide models for different languages

• Very powerful tool to reason about properties of higher-order languages

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Intersection Types - Main Ideas

• Grammar : A, B ::= ι | A→ B | A ∩ B

• Key typing rule:
t : A u : B

t : A ∩ B

• Finite polymorphism:

(A→ A) ∩ ((A→ B)→ (A→ B))
represent two different instances of the polymorphic type

∀X.X → X.

• But more expressive:

A ∩ (A→ B) ∩ ((A→ B)→ B)
is perfectly admissible.

• Typability becomes undecidable

• Are flexible and can be adapted to different frameworks

• Provide models for different languages

• Very powerful tool to reason about properties of higher-order languages

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Intersection Types - Main Ideas

• Grammar : A, B ::= ι | A→ B | A ∩ B

• Key typing rule:
t : A u : B

t : A ∩ B

• Finite polymorphism:

(A→ A) ∩ ((A→ B)→ (A→ B))
represent two different instances of the polymorphic type

∀X.X → X.

• But more expressive:

A ∩ (A→ B) ∩ ((A→ B)→ B)
is perfectly admissible.

• Typability becomes undecidable

• Are flexible and can be adapted to different frameworks

• Provide models for different languages

• Very powerful tool to reason about properties of higher-order languages

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Intersection Types - Main Ideas

• Grammar : A, B ::= ι | A→ B | A ∩ B

• Key typing rule:
t : A u : B

t : A ∩ B

• Finite polymorphism:

(A→ A) ∩ ((A→ B)→ (A→ B))
represent two different instances of the polymorphic type

∀X.X → X.

• But more expressive:

A ∩ (A→ B) ∩ ((A→ B)→ B)
is perfectly admissible.

• Typability becomes undecidable

• Are flexible and can be adapted to different frameworks

• Provide models for different languages

• Very powerful tool to reason about properties of higher-order languages

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Intersection Types - Main Ideas

• Grammar : A, B ::= ι | A→ B | A ∩ B

• Key typing rule:
t : A u : B

t : A ∩ B

• Finite polymorphism:

(A→ A) ∩ ((A→ B)→ (A→ B))
represent two different instances of the polymorphic type

∀X.X → X.

• But more expressive:

A ∩ (A→ B) ∩ ((A→ B)→ B)
is perfectly admissible.

• Typability becomes undecidable

• Are flexible and can be adapted to different frameworks

• Provide models for different languages

• Very powerful tool to reason about properties of higher-order languages

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Intersection Types - Main Ideas

• Grammar : A, B ::= ι | A→ B | A ∩ B

• Key typing rule:
t : A u : B

t : A ∩ B

• Finite polymorphism:

(A→ A) ∩ ((A→ B)→ (A→ B))
represent two different instances of the polymorphic type

∀X.X → X.

• But more expressive:

A ∩ (A→ B) ∩ ((A→ B)→ B)
is perfectly admissible.

• Typability becomes undecidable

• Are flexible and can be adapted to different frameworks

• Provide models for different languages

• Very powerful tool to reason about properties of higher-order languages

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Simple vs Intersection Types

Simple Types

Untyped Terms

Terminating

Terminating

=

Simply Typable

Intersection Typable

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Simple vs Intersection Types

Simple Types

Untyped Terms

Terminating

λx.xx

Terminating

=

Simply Typable

Intersection Typable

The term λx.xx is not simply typable

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Simple vs Intersection Types

Intersection Types

Untyped Terms

TerminatingTerminating

=

Simply TypableIntersection Typable

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Simple vs Intersection Types

Intersection Types

Untyped Terms

Terminating

Terminating

=

Simply Typable

Intersection Typable

λx.xx

The term λx.xx is intersection typable

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Which kind of intersection constructor?

Associativity (A ∩ B) ∩ C ∼ A ∩ (B ∩ C)
Commutativity A ∩ B ∼ B ∩ A

Idempotent versus Non-idempotent

A ∩ A ∼ A A ∩ A / A

Unbounded Resources Finite Resources

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Which kind of intersection constructor?

Associativity (A ∩ B) ∩ C ∼ A ∩ (B ∩ C)
Commutativity A ∩ B ∼ B ∩ A

Idempotent versus Non-idempotent

A ∩ A ∼ A A ∩ A / A

Unbounded Resources Finite Resources

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Which kind of intersection constructor?

Associativity (A ∩ B) ∩ C ∼ A ∩ (B ∩ C)
Commutativity A ∩ B ∼ B ∩ A

Idempotent versus Non-idempotent

A ∩ A ∼ A A ∩ A / A

Unbounded Resources Finite Resources

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Which kind of intersection constructor?

Associativity (A ∩ B) ∩ C ∼ A ∩ (B ∩ C)
Commutativity A ∩ B ∼ B ∩ A

Idempotent versus Non-idempotent

A ∩ A ∼ A A ∩ A / A

Unbounded Resources Finite Resources

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Which kind of intersection constructor?

Associativity (A ∩ B) ∩ C ∼ A ∩ (B ∩ C)
Commutativity A ∩ B ∼ B ∩ A

Idempotent versus Non-idempotent

A ∩ A ∼ A A ∩ A / A

Unbounded Resources Finite Resources

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Idempotent vs Non-Idempotent Intersection Types

Idempotent Non-idempotent
Coppo & Dezani in the eighties Gardner and Kfoury in the nineties

(Girard’s Linear Logic flavour)

Sets: A ∩ A ∩ C is {A, C} Multi-sets: A ∩ A ∩ C is [A, A, C]

Qualitative properties: Quantitative properties:
Yes or No bound and measure

De Carvalho

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Idempotent vs Non-Idempotent Intersection Types

Idempotent Non-idempotent
Coppo & Dezani in the eighties Gardner and Kfoury in the nineties

(Girard’s Linear Logic flavour)

Sets: A ∩ A ∩ C is {A, C} Multi-sets: A ∩ A ∩ C is [A, A, C]

Qualitative properties: Quantitative properties:
Yes or No bound and measure

De Carvalho

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Idempotent vs Non-Idempotent Intersection Types

Idempotent Non-idempotent
Coppo & Dezani in the eighties Gardner and Kfoury in the nineties

(Girard’s Linear Logic flavour)

Sets: A ∩ A ∩ C is {A, C} Multi-sets: A ∩ A ∩ C is [A, A, C]

Qualitative properties: Quantitative properties:
Yes or No bound and measure

De Carvalho

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Outline

1 Some Principles of Quantitative Types

2 Quantitative Types for Lambda Calculus

3 Quantitative Types and Inhabitation

4 Quantitative Types for Measuring

5 Quantitative Types and Observational Equivalence

6 Conclusion

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

An Emblematic Example: Gardner’s system revisited

Grammar:

(Types) A ::= ι | M→ A
(Multi-Types) M ::= [Ai]i∈I

Judgements:

x1 : M1, . . . , xn : Mn ` t : A

Multi-Type Mi for each variable xi

Type A for the term t

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

An Emblematic Example: Gardner’s system revisited

Grammar:

(Types) A ::= ι | M→ A
(Multi-Types) M ::= [Ai]i∈I

Judgements:

x1 : M1, . . . , xn : Mn ` t : A

Multi-Type Mi for each variable xi

Type A for the term t

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

An Emblematic Example: Gardner’s system revisited

The Typing Rules:

Type System H (H for Head)

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

An Emblematic Example: Gardner’s system revisited

The Typing Rules:

Type System H (H for Head)

x : [A] ` x : A
(ax)

Relevant axiom (no weakening).

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

An Emblematic Example: Gardner’s system revisited

The Typing Rules:

Type System H (H for Head)

Γ ` t : A

Γ \ x ` λx.t : Γ(x)→ A
(fun)

• Notation Γ(x) represents the type of x in the environment Γ.

• Operation Γ \ x yields the environment Γ deprived from x.

• Erasing abstractions are typed with []→ A (thus (λx.y)Ω is typable).

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

An Emblematic Example: Gardner’s system revisited

The Typing Rules:

Type System H (H for Head)

(Γi ` t : Ai)i∈I

ti∈I Γi ` t : [Ai]i∈I
(many)

• Multiplicative rule.

• Notation [Ai]i=1..n represents a non-idempotent intersection A1 ∩ . . . ∩ An.

• Operation x : A t x : B yields multiset union for multi-types x : A t B.

• Special case: any term t can be ”artificially typed” with the empty multi-type [] :
then t is said to be untyped.

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

An Emblematic Example: Gardner’s system revisited

The Typing Rules:

Type System H (H for Head)

Γ ` t : M→ B ∆ ` u : M

Γ t ∆ ` tu : B
(app)

• Multiplicative rule.

• Typed terms may contain untyped subterms (case M = ∅).

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

An Emblematic Example: Gardner’s system revisited

The Typing Rules:

Type System H (H for Head)

x : [A] ` x : A
(ax)

Γ ` t : A

Γ \ x ` λx.t : Γ(x)→ A
(→i)

(Γi ` t : Ai)i∈I

ti∈I Γi ` t : [Ai]i∈I
(many)

Γ ` t : M→ B ∆ ` u : M

Γ t ∆ ` tu : B
(→e)

• Syntax Directed system.

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Variation: System H with a Single Counter

Type System H with a Single Counter

x : [A] `(1) x : A
(ax)

Γ `(C) t : A

Γ \ x `(C+1) λx.t : Γ(x)→ A
(→i)

(Γi `
(Ci) t : Ai)i∈I

ti∈I Γi `
(+i∈ICi) t : [Ai]i∈I

(many)
Γ `(C1) t : M→ B ∆ `(C2) u : M

Γ t ∆ `(C1+C2+1) tu : B
(→e)

• The single counter computes the number of typing rules different from (many).

• Other kind of counters will be used later.

• Counters can be also added to idempotent systems, but they result useless (as we
will see).

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Notation

(Standard) Notation for Type Derivability

Π .S Γ `
(C1,...,Cn) t : A

• Π is a (tree) derivation,

(sometimes omitted)

• S is a type system,

(sometimes omitted)

• Γ is a set of type declarations,

• (C1, . . . , Cn) are counters.

(sometimes omitted)

• t is a program/term,

• A is a type.

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Notation

(Standard) Notation for Type Derivability

Π .S Γ `
(C1,...,Cn) t : A

• Π is a (tree) derivation, (sometimes omitted)

• S is a type system, (sometimes omitted)

• Γ is a set of type declarations,

• (C1, . . . , Cn) are counters. (sometimes omitted)

• t is a program/term,

• A is a type.

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

A First Example

Let Ω := (λx.xx)(λx.xx). Let A := []→ [ι0]→ ι1. Then,

(ax)
x : [A] ` x : A

(many)
` Ω : []

(app)
x : [A] ` xΩ : [ι0]→ ι1

(ax)
x : [ι0] ` x : ι0

(many)
x : [ι0] ` x : [ι0]

(app)
x : [A, ι0] ` x Ω x : ι1

(fun)
` λx.x Ω x : [A, ι0]→ ι1

• The subterm Ω is untyped

• The bound variable x is typed with an intersection type [A, ι0].

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Another Example: Church Numerals

Let 3 := λ f .λx. f (f (f x))) and let B := [A]→ A.

f : B ` f : [A]→ A

f : B ` f : [A]→ A

f : B ` f : [A]→ A

x : [A] ` x : A

x : [A] ` x : [A]

f : [B], x : [A] ` f x : A

f : [B], x : [A] ` f x : [A]

f : [B, B], x : [A] ` f (f x)) : A

f : [B, B], x : [A] ` f (f x)) : [A]

f : [B, B, B], x : [A] ` f (f (f x))) : A

f : [B, B, B] ` λx. f (f (f x))) : [A]→ A

` 3 : [B, B, B]→ [A]→ A

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Coming Back to the Example

Let 3 := λ f .λx. f (f (f x))) and let B := [A]→ A

Non-Idempotent/Quantitative Typing with Multi-Sets

` 3 : [B, B, B]→ [A]→ A

Idempotent/Qualitative Typing with Sets

` 3 : {B} → {A} → A

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Coming Back to the Example

Let 3 := λ f .λx. f (f (f x))) and let B := [A]→ A

Non-Idempotent/Quantitative Typing with Multi-Sets

` 3 : [B, B, B]→ [A]→ A

Idempotent/Qualitative Typing with Sets

` 3 : {B} → {A} → A

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Outline

1 Some Principles of Quantitative Types

2 Quantitative Types for Lambda Calculus

3 Quantitative Types and Inhabitation

4 Quantitative Types for Measuring

5 Quantitative Types and Observational Equivalence

6 Conclusion

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Duality between Typing and Inhabitation

Typing Problem
Γ? ` t : A?

Inhabitation Problem
Γ ` t? : A

Typing System

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Duality between Typing and Inhabitation

Typing Problem
Γ? ` t : A?

Term Language

Inhabitation Problem
Γ ` t? : A

Typing System

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Duality between Typing and Inhabitation

Typing Problem
Γ? ` t : A?

Term Language Typing System

Inhabitation Problem
Γ ` t? : A

Typing System

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Duality between Typing and Inhabitation

Typing Problem
Γ? ` t : A?

Term Language Typing System

Inhabitation Problem
Γ ` t? : A

Typing System

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Duality between Typing and Inhabitation

Typing Problem
Γ? ` t : A?

Term Language Typing System

Inhabitation Problem
Γ ` t? : A

Typing System

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Duality between Typing and Inhabitation

Typing Problem
Γ? ` t : A?

Term Language Typing System

Inhabitation Problem
Γ ` t? : A

Typing SystemTerm Language

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Equivalent Problems

Inhabitation

Proof Search

Program Synthesis

Γ ` t? : A

Term Language Typing System

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Typing and Inhabitation Problems for Lambda-Calculus

Call-by-Name Typing Inhabitation

Lambda-Calculus ? ` t : ? Γ ` ? : A

Simple Types Decidable Decidable
Unrestricted Undecidable Undecidable

Idempotent Types Urzyczyn

(Infinite Resources)
Restricted Undecidable Decidable

Idempotent Types Rehof, Dudenhefner, etc

(Finite Search on Infinite Resources)
Unrestricted Undecidable Decidable

Non-Idempotent Types Bucciarelli&K.&RonchiDellaRocca

(Finite Resources)

⇒
on Infinite Resources on Finite Resources

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Typing and Inhabitation Problems for Lambda-Calculus

Call-by-Name Typing Inhabitation

Lambda-Calculus ? ` t : ? Γ ` ? : A
Simple Types Decidable Decidable

Unrestricted Undecidable Undecidable
Idempotent Types Urzyczyn

(Infinite Resources)
Restricted Undecidable Decidable

Idempotent Types Rehof, Dudenhefner, etc

(Finite Search on Infinite Resources)
Unrestricted Undecidable Decidable

Non-Idempotent Types Bucciarelli&K.&RonchiDellaRocca

(Finite Resources)

⇒
on Infinite Resources on Finite Resources

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Typing and Inhabitation Problems for Lambda-Calculus

Call-by-Name Typing Inhabitation

Lambda-Calculus ? ` t : ? Γ ` ? : A
Simple Types Decidable Decidable
Unrestricted Undecidable Undecidable

Idempotent Types Urzyczyn

(Infinite Resources)

Restricted Undecidable Decidable
Idempotent Types Rehof, Dudenhefner, etc

(Finite Search on Infinite Resources)
Unrestricted Undecidable Decidable

Non-Idempotent Types Bucciarelli&K.&RonchiDellaRocca

(Finite Resources)

⇒
on Infinite Resources on Finite Resources

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Typing and Inhabitation Problems for Lambda-Calculus

Call-by-Name Typing Inhabitation

Lambda-Calculus ? ` t : ? Γ ` ? : A
Simple Types Decidable Decidable
Unrestricted Undecidable Undecidable

Idempotent Types Urzyczyn

(Infinite Resources)
Restricted Undecidable Decidable

Idempotent Types Rehof, Dudenhefner, etc

(Finite Search on Infinite Resources)

Unrestricted Undecidable Decidable
Non-Idempotent Types Bucciarelli&K.&RonchiDellaRocca

(Finite Resources)

⇒
on Infinite Resources on Finite Resources

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Typing and Inhabitation Problems for Lambda-Calculus

Call-by-Name Typing Inhabitation

Lambda-Calculus ? ` t : ? Γ ` ? : A
Simple Types Decidable Decidable
Unrestricted Undecidable Undecidable

Idempotent Types Urzyczyn

(Infinite Resources)
Restricted Undecidable Decidable

Idempotent Types Rehof, Dudenhefner, etc

(Finite Search on Infinite Resources)
Unrestricted Undecidable Decidable

Non-Idempotent Types Bucciarelli&K.&RonchiDellaRocca

(Finite Resources)

⇒
on Infinite Resources on Finite Resources

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Typing and Inhabitation Problems for Lambda-Calculus

Call-by-Name Typing Inhabitation

Lambda-Calculus ? ` t : ? Γ ` ? : A
Simple Types Decidable Decidable
Unrestricted Undecidable Undecidable

Idempotent Types Urzyczyn

(Infinite Resources)
Restricted Undecidable Decidable

Idempotent Types Rehof, Dudenhefner, etc

(Finite Search on Infinite Resources)
Unrestricted Undecidable Decidable

Non-Idempotent Types Bucciarelli&K.&RonchiDellaRocca

(Finite Resources)

⇒
on Infinite Resources on Finite Resources

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Properties of the Inhabitation Algorithm

Non-deterministic algorithm

Theorem

The algorithm terminates:
Every call on (Γ, σ) generates a finite set of recursive calls.

The algorithm is sound:
If a call on (Γ, σ) computes T, then Γ ` T : σ.

The algorithm is complete:
If Γ ` T : σ, then there exists an answer of the algorithm which generates T.

• First inhabitation results for CBN: Bucciarelli&K.&Ronchi Della Rocca’{14,18,21}

• Similar results for CBV and dBang: Arrial&Guerrieri&K.’23

• Implementation by Arrial in Ocaml.

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Properties of the Inhabitation Algorithm

Non-deterministic algorithm

Theorem
The algorithm terminates:
Every call on (Γ, σ) generates a finite set of recursive calls.

The algorithm is sound:
If a call on (Γ, σ) computes T, then Γ ` T : σ.

The algorithm is complete:
If Γ ` T : σ, then there exists an answer of the algorithm which generates T.

• First inhabitation results for CBN: Bucciarelli&K.&Ronchi Della Rocca’{14,18,21}

• Similar results for CBV and dBang: Arrial&Guerrieri&K.’23

• Implementation by Arrial in Ocaml.

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Properties of the Inhabitation Algorithm

Non-deterministic algorithm

Theorem
The algorithm terminates:
Every call on (Γ, σ) generates a finite set of recursive calls.

The algorithm is sound:
If a call on (Γ, σ) computes T, then Γ ` T : σ.

The algorithm is complete:
If Γ ` T : σ, then there exists an answer of the algorithm which generates T.

• First inhabitation results for CBN: Bucciarelli&K.&Ronchi Della Rocca’{14,18,21}

• Similar results for CBV and dBang: Arrial&Guerrieri&K.’23

• Implementation by Arrial in Ocaml.

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Properties of the Inhabitation Algorithm

Non-deterministic algorithm

Theorem
The algorithm terminates:
Every call on (Γ, σ) generates a finite set of recursive calls.

The algorithm is sound:
If a call on (Γ, σ) computes T, then Γ ` T : σ.

The algorithm is complete:
If Γ ` T : σ, then there exists an answer of the algorithm which generates T.

• First inhabitation results for CBN: Bucciarelli&K.&Ronchi Della Rocca’{14,18,21}

• Similar results for CBV and dBang: Arrial&Guerrieri&K.’23

• Implementation by Arrial in Ocaml.

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Properties of the Inhabitation Algorithm

Non-deterministic algorithm

Theorem
The algorithm terminates:
Every call on (Γ, σ) generates a finite set of recursive calls.

The algorithm is sound:
If a call on (Γ, σ) computes T, then Γ ` T : σ.

The algorithm is complete:
If Γ ` T : σ, then there exists an answer of the algorithm which generates T.

• First inhabitation results for CBN: Bucciarelli&K.&Ronchi Della Rocca’{14,18,21}

• Similar results for CBV and dBang: Arrial&Guerrieri&K.’23

• Implementation by Arrial in Ocaml.

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Outline

1 Some Principles of Quantitative Types

2 Quantitative Types for Lambda Calculus

3 Quantitative Types and Inhabitation

4 Quantitative Types for Measuring

5 Quantitative Types and Observational Equivalence

6 Conclusion

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Intersection Types and Quantitative Analysis

• Intersection type systems provide a mathematical meaning of programs:

[[t]] := {(Γ, A) | .Γ ` t : A}

• This gives relational models where equivalent programs have the same meaning :

If t→operational u, then [[t]] = [[u]]

i.e. .Γ `(C) t : A ⇔ .Γ `(C
′) u : A

called Subject Reduction and Expansion

Qualitative Quantitative
analysis analysis

(Idempotent types) (Non-idempotent types)

C # C′ C > C′

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Intersection Types and Quantitative Analysis

• Intersection type systems provide a mathematical meaning of programs:

[[t]] := {(Γ, A) | .Γ ` t : A}
• This gives relational models where equivalent programs have the same meaning :

If t→operational u, then [[t]] = [[u]]

i.e. .Γ `(C) t : A ⇔ .Γ `(C
′) u : A

called Subject Reduction and Expansion

Qualitative Quantitative
analysis analysis

(Idempotent types) (Non-idempotent types)

C # C′ C > C′

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Intersection Types and Quantitative Analysis

• Intersection type systems provide a mathematical meaning of programs:

[[t]] := {(Γ, A) | .Γ ` t : A}
• This gives relational models where equivalent programs have the same meaning :

If t→operational u, then [[t]] = [[u]]

i.e. .Γ `(C) t : A ⇔ .Γ `(C
′) u : A

called Subject Reduction and Expansion

Qualitative Quantitative
analysis analysis

(Idempotent types) (Non-idempotent types)

C # C′ C > C′

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Intersection Types and Quantitative Analysis

• Intersection type systems provide a mathematical meaning of programs:

[[t]] := {(Γ, A) | .Γ ` t : A}
• This gives relational models where equivalent programs have the same meaning :

If t→operational u, then [[t]] = [[u]]

i.e. .Γ `(C) t : A ⇔ .Γ `(C
′) u : A

called Subject Reduction and Expansion

Qualitative Quantitative
analysis analysis

(Idempotent types) (Non-idempotent types)

C # C′ C > C′

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Intersection Types and Quantitative Analysis

• Intersection type systems provide a mathematical meaning of programs:

[[t]] := {(Γ, A) | .Γ ` t : A}
• This gives relational models where equivalent programs have the same meaning :

If t→operational u, then [[t]] = [[u]]

i.e. .Γ `(C) t : A ⇔ .Γ `(C
′) u : A

called Subject Reduction and Expansion

Qualitative Quantitative
analysis analysis

(Idempotent types) (Non-idempotent types)

C # C′ C > C′

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Characterizing Evaluation by Means of Qualitative/Quantitative Types

t is a typable term ⇐⇒ t→ . . .→ result

More precisely:

.S Γ ` t : A ⇐⇒ t N-normalizes
to a result

Correspondence:

Type System S ⇐⇒ N-Normalization

(Idempotent)

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Characterizing Evaluation by Means of Qualitative/Quantitative Types

t is a typable term ⇐⇒ t→ . . .→ result

More precisely:

.S Γ ` t : A ⇐⇒ t N-normalizes
to a result

Correspondence:

Type System S ⇐⇒ N-Normalization

(Idempotent)

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Characterizing Evaluation by Means of Qualitative/Quantitative Types

t is a typable term ⇐⇒ t→ . . .→ result

More precisely:

.S Γ ` t : A ⇐⇒ t N-normalizes
to a result

Correspondence:

Type System S ⇐⇒ N-Normalization

(Idempotent)

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Characterizing Evaluation by Means of Qualitative/Quantitative Types

t is a typable term ⇐⇒ t→ . . .→ result

More precisely:

.S Γ ` t : A ⇐⇒ t N-normalizes
to a result

Correspondence:

Type System S ⇐⇒ N-Normalization

(Idempotent)

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Characterizing Evaluation by Means of Qualitative/Quantitative Types

.S Γ `
(C) t : A ⇐⇒ t→ . . .→︸ ︷︷ ︸

length

result︸ ︷︷ ︸
size

S = Non-Idempotent Types with UPPER BOUNDS (e.g. Gardner’s System H)

t N-normalizes to a result and length + size ≤ C

S = Non-Idempotent Types with EXACT MEASURES

t N-normalizes to a result and length + size = C

A possible exponential gap between length and size

S = Non-Idempotent Types with SPLIT MEASURES

t N-normalizes to a result and length = L and size = S

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Characterizing Evaluation by Means of Qualitative/Quantitative Types

.S Γ `
(C) t : A ⇐⇒ t→ . . .→︸ ︷︷ ︸

length

result︸ ︷︷ ︸
size

S = Non-Idempotent Types with UPPER BOUNDS (e.g. Gardner’s System H)

t N-normalizes to a result and length + size ≤ C

S = Non-Idempotent Types with EXACT MEASURES

t N-normalizes to a result and length + size = C

A possible exponential gap between length and size

S = Non-Idempotent Types with SPLIT MEASURES

t N-normalizes to a result and length = L and size = S

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Characterizing Evaluation by Means of Qualitative/Quantitative Types

.S Γ `
(C) t : A ⇐⇒ t→ . . .→︸ ︷︷ ︸

length

result︸ ︷︷ ︸
size

S = Non-Idempotent Types with UPPER BOUNDS (e.g. Gardner’s System H)

t N-normalizes to a result and length + size ≤ C

S = Non-Idempotent Types with EXACT MEASURES

t N-normalizes to a result and length + size = C

A possible exponential gap between length and size

S = Non-Idempotent Types with SPLIT MEASURES

t N-normalizes to a result and length = L and size = S

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Characterizing Evaluation by Means of Qualitative/Quantitative Types

.S Γ `
(C) t : A ⇐⇒ t→ . . .→︸ ︷︷ ︸

length

result︸ ︷︷ ︸
size

S = Non-Idempotent Types with UPPER BOUNDS (e.g. Gardner’s System H)

t N-normalizes to a result and length + size ≤ C

S = Non-Idempotent Types with EXACT MEASURES

t N-normalizes to a result and length + size = C

A possible exponential gap between length and size

S = Non-Idempotent Types with SPLIT MEASURES

t N-normalizes to a result and length = L and size = S

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Characterizing Evaluation by Means of Qualitative/Quantitative Types

.S Γ `
(L,S) t : A ⇐⇒ t→ . . .→︸ ︷︷ ︸

length

result︸ ︷︷ ︸
size

S = Non-Idempotent Types with UPPER BOUNDS (e.g. Gardner’s System H)

t N-normalizes to a result and length + size ≤ C

S = Non-Idempotent Types with EXACT MEASURES

t N-normalizes to a result and length + size = C

A possible exponential gap between length and size

S = Non-Idempotent Types with SPLIT MEASURES

t N-normalizes to a result and length = L and size = S

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Graphically

Idempotent Types

Non-Idempotent Types
with Upper Bounds

Non-Idempotent Types
with Exact Measures

Non-Idempotent Types
with Split Measures

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Graphically

Idempotent Types
Non-Idempotent Types

with Upper Bounds

Non-Idempotent Types
with Exact Measures

Non-Idempotent Types
with Split Measures

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Graphically

Idempotent Types
Non-Idempotent Types

with Upper Bounds

Non-Idempotent Types
with Exact Measures

Non-Idempotent Types
with Split Measures

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Graphically

Idempotent Types
Non-Idempotent Types

with Upper Bounds

Non-Idempotent Types
with Exact Measures

Non-Idempotent Types
with Split Measures

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Typability Characterizes Quantitative Properties of Languages

This scheme applies to

• Different normalization notions:
B Head normalization
B Linear head normalization
B Leftmost normalization
B Strong normalization

• Different models of computation:
B Call-by-Name, Call-by-Value, Call-by-Need
B Unifying models (e.g. Call-by-Push-Value, Bang Calculus)
B Resource and explicit substitution calculi, proof-nets
B Pattern matching features
B Classical Calculi
B Non-deterministic languages
B Probabilistic languages, Bayesian inference

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Typability Characterizes Quantitative Properties of Languages

This scheme applies to

• Different normalization notions:
B Head normalization
B Linear head normalization
B Leftmost normalization
B Strong normalization

• Different models of computation:
B Call-by-Name, Call-by-Value, Call-by-Need
B Unifying models (e.g. Call-by-Push-Value, Bang Calculus)
B Resource and explicit substitution calculi, proof-nets
B Pattern matching features
B Classical Calculi
B Non-deterministic languages
B Probabilistic languages, Bayesian inference

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Typability Characterizes Quantitative Properties of Languages

This scheme applies to

• Different normalization notions:
B Head normalization
B Linear head normalization
B Leftmost normalization
B Strong normalization

• Different models of computation:
B Call-by-Name, Call-by-Value, Call-by-Need
B Unifying models (e.g. Call-by-Push-Value, Bang Calculus)
B Resource and explicit substitution calculi, proof-nets
B Pattern matching features
B Classical Calculi
B Non-deterministic languages
B Probabilistic languages, Bayesian inference

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Typability Characterizes Quantitative Properties of Languages

This scheme applies to

• Different normalization notions:
B Head normalization
B Linear head normalization
B Leftmost normalization
B Strong normalization

• Different models of computation:
B Call-by-Name, Call-by-Value, Call-by-Need
B Unifying models (e.g. Call-by-Push-Value, Bang Calculus)
B Resource and explicit substitution calculi, proof-nets
B Pattern matching features
B Classical Calculi
B Non-deterministic languages
B Probabilistic languages, Bayesian inference

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

The Emblematic Example: Head Normalization

Head Normal Forms (HNF) : terms of the form λx1 . . . λxn.yt1 . . . tm (n,m ≥ 0)

Head Evaluation : No reduction inside arguments of applications.

(λx.t)u→hd t{x\u}

t →hd u

λx.t →hd λx.u

t →hd u t , λ

tv→hd uv

Head Normalization : if there exists a HNF u such that t →hd . . .→hd u.

Example:
Let I := λy.y and Ω := (λy.yy)(λy.yy). Then λx.IxΩ is head normalizing, while Ω is not.

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

The Emblematic Example: Head Normalization

Head Normal Forms (HNF) : terms of the form λx1 . . . λxn.yt1 . . . tm (n,m ≥ 0)

Head Evaluation : No reduction inside arguments of applications.

(λx.t)u→hd t{x\u}

t →hd u

λx.t →hd λx.u

t →hd u t , λ

tv→hd uv

Head Normalization : if there exists a HNF u such that t →hd . . .→hd u.

Example:
Let I := λy.y and Ω := (λy.yy)(λy.yy). Then λx.IxΩ is head normalizing, while Ω is not.

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

The Emblematic Example: Head Normalization

Head Normal Forms (HNF) : terms of the form λx1 . . . λxn.yt1 . . . tm (n,m ≥ 0)

Head Evaluation : No reduction inside arguments of applications.

(λx.t)u→hd t{x\u}

t →hd u

λx.t →hd λx.u

t →hd u t , λ

tv→hd uv

Head Normalization : if there exists a HNF u such that t →hd . . .→hd u.

Example:
Let I := λy.y and Ω := (λy.yy)(λy.yy). Then λx.IxΩ is head normalizing, while Ω is not.

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

The Emblematic Example: Head Normalization

Head Normal Forms (HNF) : terms of the form λx1 . . . λxn.yt1 . . . tm (n,m ≥ 0)

Head Evaluation : No reduction inside arguments of applications.

(λx.t)u→hd t{x\u}

t →hd u

λx.t →hd λx.u

t →hd u t , λ

tv→hd uv

Head Normalization : if there exists a HNF u such that t →hd . . .→hd u.

Example:
Let I := λy.y and Ω := (λy.yy)(λy.yy). Then λx.IxΩ is head normalizing, while Ω is not.

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Characterizing Head Normalization with Gardner’s System H

Theorem (UPPER BOUNDS)

In Type System H
.H Γ `(C) t : A

⇐⇒

t head normalizes in length steps
to a HNF of size size and

length + size ≤ C.

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Characterizing Head Normalization with Gardner’s System H

Theorem (UPPER BOUNDS)

In Type System H
.H Γ `(C) t : A

⇐⇒

t head normalizes in length steps
to a HNF of size size and

length + size ≤ C.

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Characterizing Head Normalization with Split Measures

• Grammar:
(Tight Constants) tt ::= n | a

(Types) A ::= tt | M→ A

(Multi-types) M ::= [Ai]i∈I

• Judgements with two counters: x1 : M1, . . . , xn : Mn `
(L,S) t : A

• Multi-type Mi for each variable xi

• Type A for the term t
• L captures length of β-steps to head normal form
• S captures size of the future head normal form

• Typing Rules:
• They describe the increment and decrement of the two counters (L,S)
• They guess the different possible uses of the constructors along a sequence

• Tight Derivations: .Γ `(L,S) t : A is tight iff all the types in Γ, A are tight constants.
Tight derivations (noted .tight) represent minimal derivations.

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Characterizing Head Normalization with Split Measures

• Grammar:
(Tight Constants) tt ::= n | a

(Types) A ::= tt | M→ A

(Multi-types) M ::= [Ai]i∈I

• Judgements with two counters: x1 : M1, . . . , xn : Mn `
(L,S) t : A

• Multi-type Mi for each variable xi

• Type A for the term t
• L captures length of β-steps to head normal form
• S captures size of the future head normal form

• Typing Rules:
• They describe the increment and decrement of the two counters (L,S)
• They guess the different possible uses of the constructors along a sequence

• Tight Derivations: .Γ `(L,S) t : A is tight iff all the types in Γ, A are tight constants.
Tight derivations (noted .tight) represent minimal derivations.

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Characterizing Head Normalization with Split Measures

• Grammar:
(Tight Constants) tt ::= n | a

(Types) A ::= tt | M→ A

(Multi-types) M ::= [Ai]i∈I

• Judgements with two counters: x1 : M1, . . . , xn : Mn `
(L,S) t : A

• Multi-type Mi for each variable xi

• Type A for the term t
• L captures length of β-steps to head normal form
• S captures size of the future head normal form

• Typing Rules:
• They describe the increment and decrement of the two counters (L,S)
• They guess the different possible uses of the constructors along a sequence

• Tight Derivations: .Γ `(L,S) t : A is tight iff all the types in Γ, A are tight constants.
Tight derivations (noted .tight) represent minimal derivations.

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Characterizing Head Normalization with Split Measures

• Grammar:
(Tight Constants) tt ::= n | a

(Types) A ::= tt | M→ A

(Multi-types) M ::= [Ai]i∈I

• Judgements with two counters: x1 : M1, . . . , xn : Mn `
(L,S) t : A

• Multi-type Mi for each variable xi

• Type A for the term t
• L captures length of β-steps to head normal form
• S captures size of the future head normal form

• Typing Rules:
• They describe the increment and decrement of the two counters (L,S)
• They guess the different possible uses of the constructors along a sequence

• Tight Derivations: .Γ `(L,S) t : A is tight iff all the types in Γ, A are tight constants.
Tight derivations (noted .tight) represent minimal derivations.

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Non-Idempotent System with Split Measures

Type System SH (S for Split)
Accattolli&Graham-Lengrand&K.

x : [A] `

(0,0)

x : A
(ax)

(Γi `

(Li ,Si)

t : Ai)i∈I

ti∈I Γi `

(+i∈ILi ,+i∈ISi)

t : [Ai]
(many)

Γ; x : M `

(L,S)

t : A

Γ `

(1+L,S)

λx.t : M→ A
(func)

Γ; x : M `(L,S) t : tt IsItight(M)

Γ `(L,S+1) λx.t : a
(funp)

Γ `

(L,S)

t : M→ A Γ′ `

(L′ ,S′)

u : M

Γ t Γ′ `

(L+L′ ,S+S′)

tu : A
(appc)

Γ `

(L,S)

t : n Γ′ `

(L′ ,S′)

u : tt

Γ t Γ′ `

(L+L′ ,S+S′+1)

tu : n
(appp)

Rule Role Incrementation
func consuming function only first counter
funp persistent function only second counter
appc consuming application no counter
appp persistent application only second counter

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Non-Idempotent System with Split Measures

Type System SH (S for Split)
Accattolli&Graham-Lengrand&K.

x : [A] `(0,0) x : A
(ax)

(Γi `
(Li ,Si) t : Ai)i∈I

ti∈I Γi `
(+i∈ILi ,+i∈ISi) t : [Ai]

(many)

Γ; x : M `(L,S) t : A

Γ `(1+L,S) λx.t : M→ A
(func)

Γ; x : M `(L,S) t : tt IsItight(M)

Γ `(L,S+1) λx.t : a
(funp)

Γ `(L,S) t : M→ A Γ′ `(L′ ,S′) u : M

Γ t Γ′ `(L+L′ ,S+S′) tu : A
(appc)

Γ `

(L,S)

t : n Γ′ `

(L′ ,S′)

u : tt

Γ t Γ′ `

(L+L′ ,S+S′+1)

tu : n
(appp)

Rule Role Incrementation
func consuming function only first counter
funp persistent function only second counter
appc consuming application no counter
appp persistent application only second counter

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Non-Idempotent System with Split Measures

Type System SH (S for Split)
Accattolli&Graham-Lengrand&K.

x : [A] `(0,0) x : A
(ax)

(Γi `
(Li ,Si) t : Ai)i∈I

ti∈I Γi `
(+i∈ILi ,+i∈ISi) t : [Ai]

(many)

Γ; x : M `(L,S) t : A

Γ `(1+L,S) λx.t : M→ A
(func)

Γ; x : M `(L,S) t : tt IsItight(M)

Γ `(L,S+1) λx.t : a
(funp)

Γ `(L,S) t : M→ A Γ′ `(L′ ,S′) u : M

Γ t Γ′ `(L+L′ ,S+S′) tu : A
(appc)

Γ `(L,S) t : n Γ′ `(L′ ,S′) u : tt

Γ t Γ′ `(L+L′ ,S+S′+1) tu : n
(appp)

Rule Role Incrementation
func consuming function only first counter
funp persistent function only second counter
appc consuming application no counter
appp persistent application only second counter

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Non-Idempotent System with Split Measures

Type System SH (S for Split)
Accattolli&Graham-Lengrand&K.

x : [A] `(0,0) x : A
(ax)

(Γi `
(Li ,Si) t : Ai)i∈I

ti∈I Γi `
(+i∈ILi ,+i∈ISi) t : [Ai]

(many)

Γ; x : M `(L,S) t : A

Γ `(1+L,S) λx.t : M→ A
(func)

Γ; x : M `(L,S) t : tt IsItight(M)

Γ `(L,S+1) λx.t : a
(funp)

Γ `(L,S) t : M→ A Γ′ `(L′ ,S′) u : M

Γ t Γ′ `(L+L′ ,S+S′) tu : A
(appc)

Γ `(L,S) t : n Γ′ `(L′ ,S′) u : tt

Γ t Γ′ `(L+L′ ,S+S′+1) tu : n
(appp)

Rule Role Incrementation
func consuming function only first counter
funp persistent function only second counter
appc consuming application no counter
appp persistent application only second counter

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Example

A tight derivation for the term (λx.xI)I

x : [[a]→ a] `(0,0) x : [a]→ a

z : n `(0,0) z : n

`(0,1) I : a

`(0,1) I : [a]

x : [[a]→ a] `(0,1) xI : a

`(1,1) λx.xI : [[a]→ a]→ a

z : [a] `(0,0) z : a

`(1,0) I : [a]→ a

`(1,0) I : [[a]→ a]

`(2,1) (λx.xI)I : a

• The evaluation of t = (λx.xI)I to head normal form has length 2:

(λx.xI)I→β II→β I

• The head normal form I of t has size 1 (variables do not count).

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Characterization of Head Normalization Refined

Theorem (SPLIT MEASURES)

In Type System SH with two counters
.SH Γ `(L,S) t : A

⇐⇒

t head normalizes in L steps
to a HNF of size S.

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Characterization of Head Normalization Refined

Theorem (SPLIT MEASURES)

In Type System SH with two counters
.SH Γ `(L,S) t : A

⇐⇒

t head normalizes in L steps
to a HNF of size S.

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Qualitative Versus Quantitative Subject Reduction

Qualitative

If t is typable and t →hd t′, then t′ is typable.

Quantitative (Upper Bounds)

If .(C)
H

t and t →hd t′, then ∃ .(C′)
H

t′ s.t. C > C′.

Quantitative (Exact Measures)

If .(C)

tightt and t →hd t′, then ∃ .(C′)
tight t′ s.t. C = C′ + 1.

Quantitative (Split Measures)

If .(L,S)

tightt and t →hd t′, then ∃ .(L−1,S)

tight t′.

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Qualitative Versus Quantitative Subject Reduction

Qualitative

If t is typable and t →hd t′, then t′ is typable.

Quantitative (Upper Bounds)

If .(C)
H

t and t →hd t′, then ∃ .(C′)
H

t′ s.t. C > C′.

Quantitative (Exact Measures)

If .(C)

tightt and t →hd t′, then ∃ .(C′)
tight t′ s.t. C = C′ + 1.

Quantitative (Split Measures)

If .(L,S)

tightt and t →hd t′, then ∃ .(L−1,S)

tight t′.

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Qualitative Versus Quantitative Subject Reduction

Qualitative

If t is typable and t →hd t′, then t′ is typable.

Quantitative (Upper Bounds)

If .(C)
H

t and t →hd t′, then ∃ .(C′)
H

t′ s.t. C > C′.

Quantitative (Exact Measures)

If .(C)

tightt and t →hd t′, then ∃ .(C′)
tight t′ s.t. C = C′ + 1.

Quantitative (Split Measures)

If .(L,S)

tightt and t →hd t′, then ∃ .(L−1,S)

tight t′.

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Qualitative Versus Quantitative Subject Reduction

Qualitative

If t is typable and t →hd t′, then t′ is typable.

Quantitative (Upper Bounds)

If .(C)
H

t and t →hd t′, then ∃ .(C′)
H

t′ s.t. C > C′.

Quantitative (Exact Measures)

If .(C)

tightt and t →hd t′, then ∃ .(C′)
tight t′ s.t. C = C′ + 1.

Quantitative (Split Measures)

If .(L,S)

tightt and t →hd t′, then ∃ .(L−1,S)

tight t′.

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Outline

1 Some Principles of Quantitative Types

2 Quantitative Types for Lambda Calculus

3 Quantitative Types and Inhabitation

4 Quantitative Types for Measuring

5 Quantitative Types and Observational Equivalence

6 Conclusion

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Observational Equivalence

t �R1 u iff t �R2 u?

Call-by-Name Call-by-Value

Call-by-Need Neededness

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Observational Equivalence

t �R1 u iff t �R2 u?

Call-by-Name Call-by-Value

Call-by-Need Neededness

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Call-by-Need Different from Call-by-Name

Call-by-need is different from call-by-name:

Twice (4 + 3)→cbname (4 + 3) + (4 + 3)→cbname 7 + (4 + 3)→cbname 7 + 7→cbname 14
Twice (4 + 3)→cbneed Twice 7→cbneed 7 + 7→cbneed 14

where Twice = λx.x + x.

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Call-by-Need Different from Call-by-Name

Call-by-need is different from call-by-name:

Twice (4 + 3)→cbname (4 + 3) + (4 + 3)→cbname 7 + (4 + 3)→cbname 7 + 7→cbname 14
Twice (4 + 3)→cbneed Twice 7→cbneed 7 + 7→cbneed 14

where Twice = λx.x + x.

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Call-by-Need Different from Call-by-Value

Call-by-need is different from call-by-value:

(λx.8)(4 + 3)→cbvalue (λx.8)7→cbvalue 8
(λx.8)(4 + 3)→cbneed 8

In particular

(λx.8)Ω((((→cbvalue

(λx.8)Ω→cbneed 8

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Call-by-Need Different from Call-by-Value

Call-by-need is different from call-by-value:

(λx.8)(4 + 3)→cbvalue (λx.8)7→cbvalue 8
(λx.8)(4 + 3)→cbneed 8

In particular

(λx.8)Ω((((→cbvalue

(λx.8)Ω→cbneed 8

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Call-by-Need Different from Neededness

(Syntactical) call-by-need is different from (semantical) neededness

(λx.x)(4 + 3)→cbneed (λx.x)7→cbneed 7
(λx.x)(4 + 3)→neededness 4 + 3→neededness 7

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Call-by-Need Different from Neededness

(Syntactical) call-by-need is different from (semantical) neededness

(λx.x)(4 + 3)→cbneed (λx.x)7→cbneed 7
(λx.x)(4 + 3)→neededness 4 + 3→neededness 7

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Observational Equivalence by Means of Type Theory

Same typing system to capture different models of
computation

t is typable in type system A if and only if t terminates in call-by-need .

t is typable in type system A if and only if t terminates in call-by-name .

t is typable in type system A if and only if t terminates w.r.t. neededness .

Theorem (K.’16, K.&Viso&Rı́os’18)
t �

call-by-name
u if and only if t �

call-by-need
u if and only if t �

neededness
u.

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Observational Equivalence by Means of Type Theory

Same typing system to capture different models of
computation

t is typable in type system A if and only if t terminates in call-by-need .

t is typable in type system A if and only if t terminates in call-by-name .

t is typable in type system A if and only if t terminates w.r.t. neededness .

Theorem (K.’16, K.&Viso&Rı́os’18)
t �

call-by-name
u if and only if t �

call-by-need
u if and only if t �

neededness
u.

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Observational Equivalence by Means of Type Theory

Same typing system to capture different models of
computation

t is typable in type system A if and only if t terminates in call-by-need .

t is typable in type system A if and only if t terminates in call-by-name .

t is typable in type system A if and only if t terminates w.r.t. neededness .

Theorem (K.’16, K.&Viso&Rı́os’18)
t �

call-by-name
u if and only if t �

call-by-need
u if and only if t �

neededness
u.

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Observational Equivalence by Means of Type Theory

Same typing system to capture different models of
computation

t is typable in type system A if and only if t terminates in call-by-need .

t is typable in type system A if and only if t terminates in call-by-name .

t is typable in type system A if and only if t terminates w.r.t. neededness .

Theorem (K.’16, K.&Viso&Rı́os’18)
t �

call-by-name
u if and only if t �

call-by-need
u if and only if t �

neededness
u.

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Some references

• First quantitative systems for lambda-calculus: Gardner’94, Kfoury’00,
MøllerNeergaard-Mairson’04.

• Pioneer for quantitative properties: Carvalho 07, Carvalho’18.

• Survey on quantitative types and lambda-calculus: Bucciarelli-K.-Ventura’17.

• Quantitative types and exact measures: Bernadet-GrahamLengrand’11 and 13,
Accattoli-GrahamLengrand-K.’18.

• Quantitative types for call-by-value: Ehrhard’12, Carraro-Guerrieri’14,
Accattoli-Guerrieri’18, Guerrieri’19, Manzonetto-Pagani-RonchiDellaRocca’19,
Kerinec-Manzonetto-RonchiDellaRocca’21, K.-Viso’2022, Accattoli-Guerrieri’22.

• Quantitative types for call-by-need: K.’16, K.-Rios-Viso’18,
Balabonski-Bonelli-Barenbaum-K.’17, Accattoli-Guerrieri-Leberle’19,
Accattoli-Leberle’22.

• Quantitative types for call-by-push-value: Guerrieri-Manzonetto’19,
Bucciarelli-K.-Rı́os-Viso’20.

• Quantitative types for global memory: Alves-K.-Ramos’23.

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Some references

• Quantitative types for proof-theory: deCarvalho-Pagani-TortoradeFalco’11,
Pimentel-RonchiDellaRocca-Roversi’12, TortoradeFalco-DeCarvalho’13,
K.-Ventura’15 and 17, deCarvalho-TortoradeFalco’16, Ehrhard’20,
Guerrieri-Heijltjes-Paulus’21, K.-Peyrot-Ventura’21, Espı́ritoSanto-K.-Peyrot’22.

• Quantitative types and relational models: Bucciarelli-Ehrhard’01,
Bucciarelli-Ehrhard-Manzonetto’07, Paolini-Piccolo-RonchiDellaRocca’17.

• Quantitative types and complexity classes: DeBenedetti-RonchiDellaRocca’16.
• Quantitative types and category-theory: Ehrhard’12, Mazza-Pellissier-Vial’18,

Guerrieri-Olimpieri’21. Kerinec-Manzonetto-Olimpieri’23.
• Quantitative types and concurrency: DalLago-de Visme-Mazza-Yoshimizu’19.
• Quantitative types for classical term calculi: K.-Vial’17 and 20.
• Quantitative types for infinite calculi: Vial’17.
• Quantitative types for pattern-matching calculi:

Bucciarelli-K.-RonchiDellaRocca’15 and 21, Alves-K.-Ventura’19,
Alves-K.-Ramos’22.

• Quantitative types for probabilistic programming:
DalLago-Faggian-RonchiDellaRocca.

• Quantitative types for space bounds: Accattoli-DalLago-Vanoni’21.
• Inhabitation for quantitative types: Bucciarelli-RonchiDellaRocca-K.’14,

Bucciarelli-RonchiDellaRocca-K.’21, Arrial-Guerrieri-K.’23.

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Some Related Topics

• Taylor Expansion

• Böhm Trees

• Proof-Nets

• Resource Calculi and Explicit Substitutions

• Observational Equivalence

• Game Semantics

• Relational Models

• Higher-Order Model Checking

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Outline

1 Some Principles of Quantitative Types

2 Quantitative Types for Lambda Calculus

3 Quantitative Types and Inhabitation

4 Quantitative Types for Measuring

5 Quantitative Types and Observational Equivalence

6 Conclusion

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Concluding Remarks

Power of quantitative types

• (Quantitative) characterization of different notions of termination (head,
head-linear, head-needed, weak, strong, value, infinitary etc).

• Get around the size explosion problem (upper bounds versus split/exact
measures).

• Quantitative view of traditional properties (solvability, genericity).

• Relational models.

• Turn Inhabitation problem decidable.

• Simple observational equivalence proofs by means of types.

• Characterize complexity classes.

• Completeness of reduction strategies.

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Concluding Remarks

Power of quantitative types

• (Quantitative) characterization of different notions of termination (head,
head-linear, head-needed, weak, strong, value, infinitary etc).

• Get around the size explosion problem (upper bounds versus split/exact
measures).

• Quantitative view of traditional properties (solvability, genericity).

• Relational models.

• Turn Inhabitation problem decidable.

• Simple observational equivalence proofs by means of types.

• Characterize complexity classes.

• Completeness of reduction strategies.

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Concluding Remarks

Power of quantitative types

• (Quantitative) characterization of different notions of termination (head,
head-linear, head-needed, weak, strong, value, infinitary etc).

• Get around the size explosion problem (upper bounds versus split/exact
measures).

• Quantitative view of traditional properties (solvability, genericity).

• Relational models.

• Turn Inhabitation problem decidable.

• Simple observational equivalence proofs by means of types.

• Characterize complexity classes.

• Completeness of reduction strategies.

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Concluding Remarks

Power of quantitative types

• (Quantitative) characterization of different notions of termination (head,
head-linear, head-needed, weak, strong, value, infinitary etc).

• Get around the size explosion problem (upper bounds versus split/exact
measures).

• Quantitative view of traditional properties (solvability, genericity).

• Relational models.

• Turn Inhabitation problem decidable.

• Simple observational equivalence proofs by means of types.

• Characterize complexity classes.

• Completeness of reduction strategies.

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Concluding Remarks

Power of quantitative types

• (Quantitative) characterization of different notions of termination (head,
head-linear, head-needed, weak, strong, value, infinitary etc).

• Get around the size explosion problem (upper bounds versus split/exact
measures).

• Quantitative view of traditional properties (solvability, genericity).

• Relational models.

• Turn Inhabitation problem decidable.

• Simple observational equivalence proofs by means of types.

• Characterize complexity classes.

• Completeness of reduction strategies.

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Concluding Remarks

Power of quantitative types

• (Quantitative) characterization of different notions of termination (head,
head-linear, head-needed, weak, strong, value, infinitary etc).

• Get around the size explosion problem (upper bounds versus split/exact
measures).

• Quantitative view of traditional properties (solvability, genericity).

• Relational models.

• Turn Inhabitation problem decidable.

• Simple observational equivalence proofs by means of types.

• Characterize complexity classes.

• Completeness of reduction strategies.

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Concluding Remarks

Power of quantitative types

• (Quantitative) characterization of different notions of termination (head,
head-linear, head-needed, weak, strong, value, infinitary etc).

• Get around the size explosion problem (upper bounds versus split/exact
measures).

• Quantitative view of traditional properties (solvability, genericity).

• Relational models.

• Turn Inhabitation problem decidable.

• Simple observational equivalence proofs by means of types.

• Characterize complexity classes.

• Completeness of reduction strategies.

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Concluding Remarks

Power of quantitative types

• (Quantitative) characterization of different notions of termination (head,
head-linear, head-needed, weak, strong, value, infinitary etc).

• Get around the size explosion problem (upper bounds versus split/exact
measures).

• Quantitative view of traditional properties (solvability, genericity).

• Relational models.

• Turn Inhabitation problem decidable.

• Simple observational equivalence proofs by means of types.

• Characterize complexity classes.

• Completeness of reduction strategies.

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Further Work

• Challenging cases:
B Effectful models of computation (algebraic, continuations, . . .)
B Useful evaluation (and other interesting time cost models)
B Strong evaluation (for proof assistants)
B Deep Inference
B General rewriting

• (More) quantitative view of traditional properties.

• Compare efficiency of different implementations/strategies of programming
languages by means of quantitative type theory.

• Identify decidable fragments applicable to programming languages.

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Further Work

• Challenging cases:
B Effectful models of computation (algebraic, continuations, . . .)
B Useful evaluation (and other interesting time cost models)
B Strong evaluation (for proof assistants)
B Deep Inference
B General rewriting

• (More) quantitative view of traditional properties.

• Compare efficiency of different implementations/strategies of programming
languages by means of quantitative type theory.

• Identify decidable fragments applicable to programming languages.

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Further Work

• Challenging cases:
B Effectful models of computation (algebraic, continuations, . . .)
B Useful evaluation (and other interesting time cost models)
B Strong evaluation (for proof assistants)
B Deep Inference
B General rewriting

• (More) quantitative view of traditional properties.

• Compare efficiency of different implementations/strategies of programming
languages by means of quantitative type theory.

• Identify decidable fragments applicable to programming languages.

Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Further Work

• Challenging cases:
B Effectful models of computation (algebraic, continuations, . . .)
B Useful evaluation (and other interesting time cost models)
B Strong evaluation (for proof assistants)
B Deep Inference
B General rewriting

• (More) quantitative view of traditional properties.

• Compare efficiency of different implementations/strategies of programming
languages by means of quantitative type theory.

• Identify decidable fragments applicable to programming languages.

	Some Principles of Quantitative Types
	Quantitative Types for Lambda Calculus
	Quantitative Types and Inhabitation
	Quantitative Types for Measuring
	Quantitative Types and Observational Equivalence
	Conclusion

