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Motivations

• Quantitative information in computer science:
B Time, space, probability, cost, . . .

• Emerging in different areas:
B Automata, graphs, logics, algorithms, . . .
B Verification, model-checking, programming, theorem proving, . . .
B Performance measurement, network analysis, data mining, . . .

• Theory of programming languages:
B Quantitative information about programs can be captured by

type systems/relational models

• Quantitative Type Systems:
B Principles, Properties, and Applications.
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From Simple Types to Quantitative Types
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Simple Types - Main Ideas

• Grammar: A, B ::= ι | A→ B

• Typing rules:

Γ, x : A ` x : A

Γ, x : A ` t : B

Γ ` λx.t : A→ B

Γ ` t : A→ B Γ ` u : A

Γ ` tu : B

• Logical (Curry-Howard) interpretation.

• Monomorphic information.

• Lack expressivity power but typability is decidable.

• Admits powerful polymorphic extensions that are still decidable.
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Intersection Types - Main Ideas

• Grammar : A, B ::= ι | A→ B | A ∩ B

• Key typing rule:
t : A u : B

t : A ∩ B

• Finite polymorphism:

(A→ A) ∩ ((A→ B)→ (A→ B))
represent two different instances of the polymorphic type

∀X.X → X.

• But more expressive:

A ∩ (A→ B) ∩ ((A→ B)→ B)
is perfectly admissible.

• Typability becomes undecidable

• Are flexible and can be adapted to different frameworks

• Provide models for different languages

• Very powerful tool to reason about properties of higher-order languages
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Simple vs Intersection Types

Simple Types

Untyped Terms

Terminating

Terminating

=

Simply Typable

Intersection Typable
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Simple vs Intersection Types

Simple Types

Untyped Terms

Terminating

λx.xx

Terminating

=

Simply Typable

Intersection Typable

The term λx.xx is not simply typable
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Simple vs Intersection Types

Intersection Types

Untyped Terms

Terminating

Terminating

=

Simply Typable

Intersection Typable

λx.xx

The term λx.xx is intersection typable



Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Which kind of intersection constructor?

Associativity (A ∩ B) ∩ C ∼ A ∩ (B ∩ C)
Commutativity A ∩ B ∼ B ∩ A

Idempotent versus Non-idempotent

A ∩ A ∼ A A ∩ A / A

Unbounded Resources Finite Resources
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Idempotent vs Non-Idempotent Intersection Types

Idempotent Non-idempotent
Coppo & Dezani in the eighties Gardner and Kfoury in the nineties

(Girard’s Linear Logic flavour)

Sets: A ∩ A ∩ C is {A, C} Multi-sets: A ∩ A ∩ C is [A, A, C]

Qualitative properties: Quantitative properties:
Yes or No bound and measure

De Carvalho
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An Emblematic Example: Gardner’s system revisited

Grammar:

(Types) A ::= ι | M→ A
(Multi-Types) M ::= [Ai]i∈I

Judgements:

x1 : M1, . . . , xn : Mn ` t : A

Multi-Type Mi for each variable xi

Type A for the term t
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An Emblematic Example: Gardner’s system revisited

The Typing Rules:

Type System H (H for Head)

x : [A] ` x : A
(ax)

Relevant axiom (no weakening).
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An Emblematic Example: Gardner’s system revisited

The Typing Rules:

Type System H (H for Head)

Γ ` t : A

Γ \ x ` λx.t : Γ(x)→ A
(fun)

• Notation Γ(x) represents the type of x in the environment Γ.

• Operation Γ \ x yields the environment Γ deprived from x.

• Erasing abstractions are typed with [ ]→ A (thus (λx.y)Ω is typable).
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An Emblematic Example: Gardner’s system revisited

The Typing Rules:

Type System H (H for Head)

(Γi ` t : Ai)i∈I

ti∈I Γi ` t : [Ai]i∈I
(many)

• Multiplicative rule.

• Notation [Ai]i=1..n represents a non-idempotent intersection A1 ∩ . . . ∩ An.

• Operation x : A t x : B yields multiset union for multi-types x : A t B.

• Special case: any term t can be ”artificially typed” with the empty multi-type [ ] :
then t is said to be untyped.
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An Emblematic Example: Gardner’s system revisited

The Typing Rules:

Type System H (H for Head)

Γ ` t : M→ B ∆ ` u : M

Γ t ∆ ` tu : B
(app)

• Multiplicative rule.

• Typed terms may contain untyped subterms (case M = ∅).
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An Emblematic Example: Gardner’s system revisited

The Typing Rules:

Type System H (H for Head)

x : [A] ` x : A
(ax)

Γ ` t : A

Γ \ x ` λx.t : Γ(x)→ A
(→i)

(Γi ` t : Ai)i∈I

ti∈I Γi ` t : [Ai]i∈I
(many)

Γ ` t : M→ B ∆ ` u : M

Γ t ∆ ` tu : B
(→e)

• Syntax Directed system.
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Variation: System H with a Single Counter

Type System H with a Single Counter

x : [A] `(1) x : A
(ax)

Γ `(C) t : A

Γ \ x `(C+1) λx.t : Γ(x)→ A
(→i)

(Γi `
(Ci) t : Ai)i∈I

ti∈I Γi `
(+i∈ICi) t : [Ai]i∈I

(many)
Γ `(C1) t : M→ B ∆ `(C2) u : M

Γ t ∆ `(C1+C2+1) tu : B
(→e)

• The single counter computes the number of typing rules different from (many).

• Other kind of counters will be used later.

• Counters can be also added to idempotent systems, but they result useless (as we
will see).
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Notation

(Standard) Notation for Type Derivability

Π .S Γ `
(C1,...,Cn) t : A

• Π is a (tree) derivation,

(sometimes omitted)

• S is a type system,

(sometimes omitted)

• Γ is a set of type declarations,

• (C1, . . . , Cn) are counters.

(sometimes omitted)

• t is a program/term,

• A is a type.
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A First Example

Let Ω := (λx.xx)(λx.xx). Let A := [ ]→ [ι0]→ ι1. Then,

(ax)
x : [A] ` x : A

(many)
` Ω : [ ]

(app)
x : [A] ` xΩ : [ι0]→ ι1

(ax)
x : [ι0] ` x : ι0

(many)
x : [ι0] ` x : [ι0]

(app)
x : [A, ι0] ` x Ω x : ι1

(fun)
` λx.x Ω x : [A, ι0]→ ι1

• The subterm Ω is untyped

• The bound variable x is typed with an intersection type [A, ι0].
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Another Example: Church Numerals

Let 3 := λ f .λx. f ( f ( f x))) and let B := [A]→ A.

f : B ` f : [A]→ A

f : B ` f : [A]→ A

f : B ` f : [A]→ A

x : [A] ` x : A

x : [A] ` x : [A]

f : [B], x : [A] ` f x : A

f : [B], x : [A] ` f x : [A]

f : [B, B], x : [A] ` f ( f x)) : A

f : [B, B], x : [A] ` f ( f x)) : [A]

f : [B, B, B], x : [A] ` f ( f ( f x))) : A

f : [B, B, B] ` λx. f ( f ( f x))) : [A]→ A

` 3 : [B, B, B]→ [A]→ A



Delia KESNER
kesner@irif.fr

Some Principles of
Quantitative Types

Quantitative Types for
Lambda Calculus

Quantitative Types and
Inhabitation

Quantitative Types for
Measuring

Quantitative Types and
Observational
Equivalence

Conclusion

Coming Back to the Example

Let 3 := λ f .λx. f ( f ( f x))) and let B := [A]→ A

Non-Idempotent/Quantitative Typing with Multi-Sets

` 3 : [B, B, B]→ [A]→ A
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Properties of the Inhabitation Algorithm

Non-deterministic algorithm

Theorem

The algorithm terminates:
Every call on (Γ, σ) generates a finite set of recursive calls.

The algorithm is sound:
If a call on (Γ, σ) computes T, then Γ ` T : σ.

The algorithm is complete:
If Γ ` T : σ, then there exists an answer of the algorithm which generates T.

• First inhabitation results for CBN: Bucciarelli&K.&Ronchi Della Rocca’{14,18,21}

• Similar results for CBV and dBang: Arrial&Guerrieri&K.’23

• Implementation by Arrial in Ocaml.
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Intersection Types and Quantitative Analysis

• Intersection type systems provide a mathematical meaning of programs:

[[t]] := {(Γ, A) | .Γ ` t : A}

• This gives relational models where equivalent programs have the same meaning :

If t→operational u, then [[t]] = [[u]]

i.e. .Γ `(C) t : A ⇔ .Γ `(C
′) u : A

called Subject Reduction and Expansion

Qualitative Quantitative
analysis analysis

(Idempotent types) (Non-idempotent types)

C # C′ C > C′
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Characterizing Evaluation by Means of Qualitative/Quantitative Types

t is a typable term ⇐⇒ t→ . . .→ result

More precisely:

.S Γ ` t : A ⇐⇒ t N-normalizes
to a result

Correspondence:

Type System S ⇐⇒ N-Normalization

(Idempotent)
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Characterizing Evaluation by Means of Qualitative/Quantitative Types

.S Γ `
(C) t : A ⇐⇒ t→ . . .→︸    ︷︷    ︸

length

result︸ ︷︷ ︸
size

S = Non-Idempotent Types with UPPER BOUNDS (e.g. Gardner’s System H)

t N-normalizes to a result and length + size ≤ C

S = Non-Idempotent Types with EXACT MEASURES

t N-normalizes to a result and length + size = C

A possible exponential gap between length and size

S = Non-Idempotent Types with SPLIT MEASURES

t N-normalizes to a result and length = L and size = S
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Typability Characterizes Quantitative Properties of Languages

This scheme applies to

• Different normalization notions:
B Head normalization
B Linear head normalization
B Leftmost normalization
B Strong normalization

• Different models of computation:
B Call-by-Name, Call-by-Value, Call-by-Need
B Unifying models (e.g. Call-by-Push-Value, Bang Calculus)
B Resource and explicit substitution calculi, proof-nets
B Pattern matching features
B Classical Calculi
B Non-deterministic languages
B Probabilistic languages, Bayesian inference
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B Classical Calculi
B Non-deterministic languages
B Probabilistic languages, Bayesian inference
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The Emblematic Example: Head Normalization

Head Normal Forms (HNF) : terms of the form λx1 . . . λxn.yt1 . . . tm (n,m ≥ 0)

Head Evaluation : No reduction inside arguments of applications.

(λx.t)u→hd t{x\u}

t →hd u

λx.t →hd λx.u

t →hd u t , λ

tv→hd uv

Head Normalization : if there exists a HNF u such that t →hd . . .→hd u.

Example:
Let I := λy.y and Ω := (λy.yy)(λy.yy). Then λx.IxΩ is head normalizing, while Ω is not.
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Conclusion

Characterizing Head Normalization with Gardner’s System H

Theorem (UPPER BOUNDS)

In Type System H
.H Γ `(C) t : A

⇐⇒

t head normalizes in length steps
to a HNF of size size and

length + size ≤ C.
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Characterizing Head Normalization with Split Measures

• Grammar:
(Tight Constants) tt ::= n | a

(Types) A ::= tt | M→ A

(Multi-types) M ::= [Ai]i∈I

• Judgements with two counters: x1 : M1, . . . , xn : Mn `
(L,S) t : A

• Multi-type Mi for each variable xi

• Type A for the term t
• L captures length of β-steps to head normal form
• S captures size of the future head normal form

• Typing Rules:
• They describe the increment and decrement of the two counters (L,S)
• They guess the different possible uses of the constructors along a sequence

• Tight Derivations: .Γ `(L,S) t : A is tight iff all the types in Γ, A are tight constants.
Tight derivations (noted .tight) represent minimal derivations.
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Non-Idempotent System with Split Measures

Type System SH (S for Split)
Accattolli&Graham-Lengrand&K.

x : [A] `

(0,0)

x : A
(ax)

(Γi `

(Li ,Si)

t : Ai)i∈I

ti∈I Γi `

(+i∈ILi ,+i∈ISi)

t : [Ai]
(many)

Γ; x : M `

(L,S)

t : A

Γ `

(1+L,S)

λx.t : M→ A
(func)

Γ; x : M `(L,S) t : tt IsItight(M)

Γ `(L,S+1) λx.t : a
(funp)

Γ `

(L,S)

t : M→ A Γ′ `

(L′ ,S′)

u : M

Γ t Γ′ `

(L+L′ ,S+S′)

tu : A
(appc)

Γ `

(L,S)

t : n Γ′ `

(L′ ,S′)

u : tt

Γ t Γ′ `

(L+L′ ,S+S′+1)

tu : n
(appp)

Rule Role Incrementation
func consuming function only first counter
funp persistent function only second counter
appc consuming application no counter
appp persistent application only second counter
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Example

A tight derivation for the term (λx.xI)I

x : [[a]→ a] `(0,0) x : [a]→ a

z : n `(0,0) z : n

`(0,1) I : a

`(0,1) I : [a]

x : [[a]→ a] `(0,1) xI : a

`(1,1) λx.xI : [[a]→ a]→ a

z : [a] `(0,0) z : a

`(1,0) I : [a]→ a

`(1,0) I : [[a]→ a]

`(2,1) (λx.xI)I : a

• The evaluation of t = (λx.xI)I to head normal form has length 2:

(λx.xI)I→β II→β I

• The head normal form I of t has size 1 (variables do not count).
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Characterization of Head Normalization Refined

Theorem (SPLIT MEASURES)

In Type System SH with two counters
.SH Γ `(L,S) t : A

⇐⇒

t head normalizes in L steps
to a HNF of size S.
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Qualitative Versus Quantitative Subject Reduction

Qualitative

If t is typable and t →hd t′, then t′ is typable.

Quantitative (Upper Bounds)

If .(C)
H

t and t →hd t′, then ∃ .(C′)
H

t′ s.t. C > C′.

Quantitative (Exact Measures)

If .(C)

tightt and t →hd t′, then ∃ .(C′)
tight t′ s.t. C = C′ + 1.

Quantitative (Split Measures)

If .(L,S)

tightt and t →hd t′, then ∃ .(L−1,S)

tight t′.
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Observational Equivalence

t �R1 u iff t �R2 u?

Call-by-Name Call-by-Value

Call-by-Need Neededness
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Conclusion

Call-by-Need Different from Call-by-Name

Call-by-need is different from call-by-name:

Twice (4 + 3)→cbname (4 + 3) + (4 + 3)→cbname 7 + (4 + 3)→cbname 7 + 7→cbname 14
Twice (4 + 3)→cbneed Twice 7→cbneed 7 + 7→cbneed 14

where Twice = λx.x + x.
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Call-by-Need Different from Call-by-Value

Call-by-need is different from call-by-value:

(λx.8)(4 + 3)→cbvalue (λx.8)7→cbvalue 8
(λx.8)(4 + 3)→cbneed 8

In particular

(λx.8)Ω((((→cbvalue

(λx.8)Ω→cbneed 8
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Call-by-Need Different from Neededness

(Syntactical) call-by-need is different from (semantical) neededness

(λx.x)(4 + 3)→cbneed (λx.x)7→cbneed 7
(λx.x)(4 + 3)→neededness 4 + 3→neededness 7
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Observational Equivalence by Means of Type Theory

Same typing system to capture different models of
computation

t is typable in type system A if and only if t terminates in call-by-need .

t is typable in type system A if and only if t terminates in call-by-name .

t is typable in type system A if and only if t terminates w.r.t. neededness .

Theorem (K.’16, K.&Viso&Rı́os’18)
t �

call-by-name
u if and only if t �

call-by-need
u if and only if t �

neededness
u.
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Some references

• First quantitative systems for lambda-calculus: Gardner’94, Kfoury’00,
MøllerNeergaard-Mairson’04.

• Pioneer for quantitative properties: Carvalho 07, Carvalho’18.

• Survey on quantitative types and lambda-calculus: Bucciarelli-K.-Ventura’17.

• Quantitative types and exact measures: Bernadet-GrahamLengrand’11 and 13,
Accattoli-GrahamLengrand-K.’18.

• Quantitative types for call-by-value: Ehrhard’12, Carraro-Guerrieri’14,
Accattoli-Guerrieri’18, Guerrieri’19, Manzonetto-Pagani-RonchiDellaRocca’19,
Kerinec-Manzonetto-RonchiDellaRocca’21, K.-Viso’2022, Accattoli-Guerrieri’22.

• Quantitative types for call-by-need: K.’16, K.-Rios-Viso’18,
Balabonski-Bonelli-Barenbaum-K.’17, Accattoli-Guerrieri-Leberle’19,
Accattoli-Leberle’22.

• Quantitative types for call-by-push-value: Guerrieri-Manzonetto’19,
Bucciarelli-K.-Rı́os-Viso’20.

• Quantitative types for global memory: Alves-K.-Ramos’23.
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Some references

• Quantitative types for proof-theory: deCarvalho-Pagani-TortoradeFalco’11,
Pimentel-RonchiDellaRocca-Roversi’12, TortoradeFalco-DeCarvalho’13,
K.-Ventura’15 and 17, deCarvalho-TortoradeFalco’16, Ehrhard’20,
Guerrieri-Heijltjes-Paulus’21, K.-Peyrot-Ventura’21, Espı́ritoSanto-K.-Peyrot’22.

• Quantitative types and relational models: Bucciarelli-Ehrhard’01,
Bucciarelli-Ehrhard-Manzonetto’07, Paolini-Piccolo-RonchiDellaRocca’17.

• Quantitative types and complexity classes: DeBenedetti-RonchiDellaRocca’16.
• Quantitative types and category-theory: Ehrhard’12, Mazza-Pellissier-Vial’18,

Guerrieri-Olimpieri’21. Kerinec-Manzonetto-Olimpieri’23.
• Quantitative types and concurrency: DalLago-de Visme-Mazza-Yoshimizu’19.
• Quantitative types for classical term calculi: K.-Vial’17 and 20.
• Quantitative types for infinite calculi: Vial’17.
• Quantitative types for pattern-matching calculi:

Bucciarelli-K.-RonchiDellaRocca’15 and 21, Alves-K.-Ventura’19,
Alves-K.-Ramos’22.

• Quantitative types for probabilistic programming:
DalLago-Faggian-RonchiDellaRocca.

• Quantitative types for space bounds: Accattoli-DalLago-Vanoni’21.
• Inhabitation for quantitative types: Bucciarelli-RonchiDellaRocca-K.’14,

Bucciarelli-RonchiDellaRocca-K.’21, Arrial-Guerrieri-K.’23.
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Some Related Topics

• Taylor Expansion

• Böhm Trees

• Proof-Nets

• Resource Calculi and Explicit Substitutions

• Observational Equivalence

• Game Semantics

• Relational Models

• Higher-Order Model Checking
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Concluding Remarks

Power of quantitative types

• (Quantitative) characterization of different notions of termination (head,
head-linear, head-needed, weak, strong, value, infinitary etc).

• Get around the size explosion problem (upper bounds versus split/exact
measures).

• Quantitative view of traditional properties (solvability, genericity).

• Relational models.

• Turn Inhabitation problem decidable.

• Simple observational equivalence proofs by means of types.

• Characterize complexity classes.

• Completeness of reduction strategies.
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Further Work

• Challenging cases:
B Effectful models of computation (algebraic, continuations, . . . )
B Useful evaluation (and other interesting time cost models)
B Strong evaluation (for proof assistants)
B Deep Inference
B General rewriting

• (More) quantitative view of traditional properties.

• Compare efficiency of different implementations/strategies of programming
languages by means of quantitative type theory.

• Identify decidable fragments applicable to programming languages.
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