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Weighted relational models
This talk will be an overview of weighted relational models of (differential) linear logic and
typed lambda calculus.
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Prehistory

Girard’s quantitative semantics introduced the idea of interpreting lambda-terms as
power series.

Jean-Yves Girard, ‘Normal Functors, Power Series and λ-Calculus’, Annals of Pure
and Applied Logic 37, no. 2 (1 February 1988): 129–77,

.

The relational model of linear logic underpins everything here.

Lamarche introduced the Cartesian closed category of weighted relations via an
algebraic construction

François Lamarche, ‘Quantitative Domains and Infinitary Algebras’, Theoretical
Computer Science 94, no. 1 (2 March 1992): 37–62, 

.

https://doi.org/10.1016/0168-0072(88)90025-5

https://doi.org/10.1016/0304-
3975(92)90323-8
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Ehrhard’s Finiteness Spaces refine these models so that infinite sums are not needed.

Thomas Ehrhard, ‘Finiteness Spaces’, Mathematical Structures in Computer Science
15, no. 4 (August 2005): 615–46, .

Probabilistic coherence spaces were shown to be an adequate model of lambda-
calculus by Ehrhard et al.

Thomas Ehrhard, Michele Pagani, and Christine Tasson, ‘The Computational
Meaning of Probabilistic Coherence Spaces’, in LICS 2011 (IEEE 2011), 87–96,

.

https://doi.org/10.1017/S0960129504004645

https://doi.org/10.1109/LICS.2011.29
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We’ll describe work that shows a general soundness result for weighted relational models
of typed lambda-calculus with recursion.
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The simplest model of linear logic

The relational model is arguably the simplest categorical model of linear logic:

A formula  is intepreted as a set 
A proof of  is interpreted as a relation from  to 
More generally, a proof of

is interpreted as a subset of

𝐴 [[𝐴]]

𝐴 ⊢ 𝐵 [[𝐴]] [[𝐵]]

, … , ⊢ 𝐵𝐴1 𝐴𝑛

[[ ]] × ⋯ × [[ ]] × [[𝐵]].𝐴1 𝐴𝑛
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The category Rel has:

objects: sets
morphisms : relations from  to  i.e. subsets of 
composition: relational composition

𝑋 → 𝑌 𝑋 𝑌 𝑋 × 𝑌
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 ; cartesian product of sets
; disjoint union

Note that

We have a symmetric monoidal closed category, hence a model of the  fragment of
MLL.

The disjoint union is a Cartesian product in this category, so we can model .

[[𝐴 ⊗ 𝐵]] = [[𝐴⊸𝐵]] = [[𝐴]] × [[𝐵]]

[[𝐴 & 𝐵]] = [[𝐴]] + [[𝐵]]

𝐑𝐞𝐥(𝑋 × 𝑌 , 𝑍) ≅ 𝐑𝐞𝐥(𝑋, 𝑌 × 𝑍).

⊗, ⊸

&
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Exponential
The exponential  can be interpreted using finite multisets:

We’ll give the comonad structure.

Given a relation ,  is the relation

Dereliction (counit) is the relation  given by

Digging (comultiplication) is the relation  given by

We also get the Seely isomorphisms:  is isomorphic to .

Could not be easier!

!𝐴

[[!𝐴]] = [[𝐴]]𝐌𝑓

𝑓 : 𝑋 → 𝑌 !𝑓

{([ , … , ], [ , … , ]) ∣ ( , ) ∈ 𝑓}.𝑥1 𝑥𝑛 𝑦1 𝑦𝑛 𝑥𝑖 𝑦𝑖

!𝑋 → 𝑋

{([𝑥], 𝑥) ∣ 𝑥 ∈ 𝑋}.

!𝑋 → !!𝑋

{(𝑚, 𝑀) ∣ 𝑚 = ⨄ 𝑀}.

(𝑋 + 𝑌 )𝐌𝑓 𝑋 × 𝑌𝐌𝑓 𝐌𝑓
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A short abstract interlude
Finite multisets give the free commutative monoid on a set.

Because the category Rel of sets and relations is the Kleisli category on Set for the
powerset monad, and because this is commutative,  also gives free commutative
monoids in Rel.

(See e.g. Hyland et al. ‘A Category Theoretic Formulation for Engeler-Style Models of the
Untyped λ-Calculus’. Proceedings of MFCSIT 2004, ENTCS 161 (31 August 2006): 43–57.

.)

Rel is self-dual, so these are also free commutative comonoids.

Hence  is the Lafont exponential in Rel.

𝐌𝑓

https://doi.org/10.1016/j.entcs.2006.04.024

𝐌𝑓
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A model of typed lambda-calculus
The Kleisli category for  gives us a Cartesian closed category and hence a model of
typed lambda calculus.

A term of type  is interpreted as a relation from  to .

Composition:  is given by

𝐌𝑓

𝐴 → 𝐵 [[𝐴]]𝐌𝑓 [[𝐵]]

𝑓; 𝑔

{( , 𝑛) ∣ ( , ) ∈ 𝑓, ([ , … , ], 𝑛) ∈ 𝑔}⨄
𝑖

𝑆𝑖 𝑆𝑖 𝑛𝑖 𝑛1 𝑛𝑘
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Assuming an obvious interpretation of the booleans and logical operations,  is the
following relation:

𝑥 ∧ ¬𝑦

𝑥 : 𝐁𝐨𝐨𝐥,

[𝗍𝗋𝗎𝖾]

[𝗍𝗋𝗎𝖾]

[𝖿𝖺𝗅𝗌𝖾]

[𝖿𝖺𝗅𝗌𝖾]

𝑦 : 𝐁𝐨𝐨𝐥

[𝗍𝗋𝗎𝖾]

[𝖿𝖺𝗅𝗌𝖾]

[𝗍𝗋𝗎𝖾]

[𝖿𝖺𝗅𝗌𝖾]

⊢ 𝑥 ∧ ¬𝑦 : 𝐁𝐨𝐨𝐥

𝖿𝖺𝗅𝗌𝖾

𝗍𝗋𝗎𝖾

𝖿𝖺𝗅𝗌𝖾

𝖿𝖺𝗅𝗌𝖾
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If  and  are contracted to give  we have the following relation:𝑥 𝑦 𝑥 ∧ ¬𝑥

𝑥 : 𝐁𝐨𝐨𝐥

[𝗍𝗋𝗎𝖾, 𝗍𝗋𝗎𝖾]

[𝗍𝗋𝗎𝖾, 𝖿𝖺𝗅𝗌𝖾]

[𝖿𝖺𝗅𝗌𝖾, 𝗍𝗋𝗎𝖾]

[𝖿𝖺𝗅𝗌𝖾, 𝖿𝖺𝗅𝗌𝖾]

⊢ 𝑥 ∧ ¬𝑥 : 𝐁𝐨𝐨𝐥

𝖿𝖺𝗅𝗌𝖾

𝗍𝗋𝗎𝖾

𝖿𝖺𝗅𝗌𝖾

𝖿𝖺𝗅𝗌𝖾
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Remarks

It is natural to read these relations right-to-left: “to deliver this output, these inputs are
needed”.

The model is already somewhat quantitative (or at least intensional): it reveals the number
of times a term interacts with its variables.

The model caters for nondeterminism: the two invocations of an argument can in
principle be supplied different values.
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A model of nondeterminism
We can exploit this to interpret a nondeterministic extension of the language:

[[𝑀 𝗈𝗋 𝑁]] = [[𝑀]] ∪ [[𝑁]].
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From relations to matrices
A relation on  can be viewed as a matrix indexed by , populated with
booleans:

In this view, composition of relations is matrix multiplication: given relations 
and 

Ingredients:

finite multiplication ( )
infinite sum ( )
distributivity

𝑓 ⊆ 𝑋 × 𝑌 𝑋 × 𝑌

= 𝗍𝗋𝗎𝖾 iff (𝑥, 𝑦) ∈ 𝑓.𝑓(𝑥,𝑦)

𝑓 : 𝑋 → 𝑌

𝑔 : 𝑌 → 𝑍

(𝑔 ∘ 𝑓 = ∧ .)(𝑥,𝑧) ⋁
𝑦∈𝑌

𝑓(𝑥,𝑦) 𝑔(𝑦,𝑧)

∧
⋁
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Complete semirings
We can replace the booleans in this construction with any complete semiring.

A complete (commutative) semiring  comprises:

a commutative monoid 
summation maps  for every set  satisfying

appropriate commutativity and associativity laws
distributivity

The empty sum provides a zero element.

(𝑅, ⋅, 1, ∑)

(𝑅, ⋅, 1)

: → 𝑅∑
𝑋

𝑅
𝑋

𝑋

𝑎 ⋅ = 𝑎 ⋅ .∑
𝐼

𝑏𝑖 ∑
𝐼

𝑏𝑖
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Infinite sums
We need infinite sums because some of our indexing sets will be infinite:  is infinite
for any non-empty .

Ehrhard’s finiteness spaces give a way to manage without infinite sum: extra structure
guarantees that in the composition

there are at most finitely many  for which  and  are non-zero.

We take the easy way out and assume infinite sums exist.

𝑋𝐌𝑓

𝑋

(𝑔 ∘ 𝑓 = ∧ .)(𝑥,𝑧) ⋁
𝑦∈𝑌

𝑓(𝑥,𝑦) 𝑔(𝑦,𝑧)

𝑦 𝑓(𝑥,𝑦) 𝑔(𝑦,𝑧)
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Complete semirings have no negatives
By the way, a complete semiring cannot be a ring: they are zerosumfree (aka positive)
because if  then𝑎 + 𝑏 = 0

0 =

=

=

=

=

0 + 0 + …

(𝑎 + 𝑏) + (𝑎 + 𝑏) + …

𝑎 + (𝑏 + 𝑎) + (𝑏 + 𝑎) + …

𝑎 + 0 + 0 + …

𝑎.
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Examples

the booleans with finite conjunction and infinite disjunction
this gives us the relational model

the natural numbers with infinite, with finite multiplication and infinite
summation

 can be replaced by 

the (discrete) tropical semiring

the (continuous) tropical semiring

(𝐁𝐨𝐨𝐥, ∧, 𝗍𝗋𝗎𝖾, ⋁)

( , ×, 1, ∑)𝐍
∞

𝐍 𝐑

( , +, 0, min)𝐍
∞

( , +, 0, inf)𝐑
∞
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Categories of weighted relations
Given any complete semiring  we can define a category, generalising from Rel:

objects are sets
morphisms  to  are matrices which we can describe as functions

composition:

The identity is given by the diagonal matrix,

using the Kronecker delta.

𝑅

𝑋 𝑌

𝑓 : 𝑋 × 𝑌 → 𝑅

(𝑓; 𝑔 = ⋅ .)(𝑥,𝑧) ∑
𝑦∈𝑌

𝑓(𝑥,𝑦) 𝑔(𝑦,𝑧)

𝑖 =𝑑(𝑥, )𝑥′ 𝛿𝑥,𝑥′
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Weighted relational models of linear
logic

It’s easy to lift the interpretation of the multiplicatives and  from Rel to a weighted
model: nothing changes!

As before, morphisms from  to  are the same thing as morphisms from  to
.

And morphisms from  to  are matrices

which correspond to pairs of matrices

So we get a categorical product again.

&

[[𝐴 ⊗ 𝐵]] = [[𝐴⊸𝐵]] = [[𝐴]] × [[𝐵]]

[[𝐴 & 𝐵]] = [[𝐴]] + [[𝐵]]

𝑋 × 𝑌 𝑍 𝑋

𝑌 × 𝑍

𝑋 𝑌 + 𝑍

𝑓 : 𝑋 × (𝑌 + 𝑍) → 𝑅

: 𝑋 × 𝑌 → 𝑅 : 𝑋 × 𝑍 → 𝑅.𝑓1 𝑓2
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Algebraic viewpoints
We can view these matrices as describing linear maps between the modules of vectors 
and ; or in the other direction via duality.

We could also see them as giving, for each , a vector , which we could write as an
infinite formal sum

𝑅𝑋

𝑅𝑌

𝑦 ∈ 𝑌 𝑅𝑋

𝑦 ↦ + + …𝑟1𝑥1 𝑟2𝑥2
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Exponentials, quantitatively
Exponentials interact more interestingly with the coefficients.

We want to make  into a (free) commutative comonoid on ; in the right-to-left view,
this will be a monoid.

The underlying set  is already a monoid, where multiplication is multiset union. We
extend this to formal sums (vectors).

𝑋𝐌𝑓 𝑋

𝑋𝐌𝑓
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Suppose  has

In the right-to-left viewpoint outlined above:

𝑓 : 𝐁𝐨𝐨𝐥 → 𝐁𝐨𝐨𝐥

= 1 = 1𝑓(𝗍𝗋𝗎𝖾,𝗍𝗋𝗎𝖾) 𝑓(𝖿𝖺𝗅𝗌𝖾,𝗍𝗋𝗎𝖾)

𝗍𝗋𝗎𝖾 ↦ 1.𝗍𝗋𝗎𝖾 + 1.𝖿𝖺𝗅𝗌𝖾.
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Consider . Following algebraic intuition, we define it by
multiplication:

Thus  has two ways to relate

!𝑓 : 𝐁𝐨𝐨𝐥 → 𝐁𝐨𝐨𝐥𝐌𝑓 𝐌𝑓

[𝗍𝗋𝗎𝖾, 𝗍𝗋𝗎𝖾] ↦

=

+

+

(1.𝗍𝗋𝗎𝖾 + 1.𝖿𝖺𝗅𝗌𝖾) × (1.𝗍𝗋𝗎𝖾 + 1.𝖿𝖺𝗅𝗌𝖾)

1.[𝗍𝗋𝗎𝖾, 𝗍𝗋𝗎𝖾]

(1 + 1). [𝗍𝗋𝗎𝖾, 𝖿𝖺𝗅𝗌𝖾]

1.[𝖿𝖺𝗅𝗌𝖾, 𝖿𝖺𝗅𝗌𝖾]

!𝑓 : 𝐁𝐨𝐨𝐥 → 𝐁𝐨𝐨𝐥𝐌𝑓 𝐌𝑓

[𝗍𝗋𝗎𝖾, 𝖿𝖺𝗅𝗌𝖾] with [𝗍𝗋𝗎𝖾, 𝗍𝗋𝗎𝖾].
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Kleisli composition is power series substitution
A morphism  associates:

to every  a vector of quantities indexed by .

If we regard the elements of  as formal indeterminates, this is:

to every  a formal power series

Each multiset is a basic monomial, something like

and the quantities are the coefficients.

!𝑋 → 𝑌

𝑦 ∈ 𝑌 𝑋𝐌𝑓

𝑥

𝑦 ∈ 𝑌

(𝑚). 𝑚∑
𝑚∈ 𝑋𝐌𝑓

𝑓𝑦

= [ , , , , , ]𝑥3

1
𝑥2𝑥2

3
𝑥1 𝑥1 𝑥1 𝑥2 𝑥3 𝑥3
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Given , we want the promotion  to be a comonoid
homomorphism. With the above view, this means

to every multiset (monomial) in , associate a formal power series
in such a way that power series multiplication is preserved.

The functorial action is similar:

 associates to each  a coefficient for each , i.e. a formal sum of $x$s
we lift this to  by multiplication of power series

𝑓 : 𝑋 → 𝑌𝐌𝑓 : 𝑋 → 𝑌𝑓 ! 𝐌𝑓 𝐌𝑓

𝑌𝐌𝑓

𝑓 : 𝑋 → 𝑌 𝑦 𝑥

!𝑓 : 𝑋 → 𝑌𝐌𝑓 𝐌𝑓
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Given  and , the Kleisli composition  works as follows:

 takes each  to a power series over ;
substitute each  with the power series  and multiply out.

𝑓 : 𝑋 → 𝑌𝐌𝑓 𝑔 : 𝑌 → 𝑍𝐌𝑓 𝑓; 𝑔

𝑔 𝑧 𝑌

𝑦 ∈ 𝑌 𝑓(𝑦)
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Example
Let  be given by:

Then  maps  to

𝑓, 𝑔 : 𝐁𝐨𝐨𝐥 → 𝐁𝐨𝐨𝐥𝐌𝑓

𝑔(𝗍𝗋𝗎𝖾)

𝑔(𝖿𝖺𝗅𝗌𝖾)

𝑓(𝗍𝗋𝗎𝖾)

𝑓(𝖿𝖺𝗅𝗌𝖾)

=

=

=

=

1. + 2.𝖿𝖺𝗅𝗌𝖾𝗍𝗋𝗎𝖾
2

0

1.𝗍𝗋𝗎𝖾 + 1.𝖿𝖺𝗅𝗌𝖾

1.𝗍𝗋𝗎𝖾

𝑓; 𝑔 𝗍𝗋𝗎𝖾

(1.𝗍𝗋𝗎𝖾 + 1.𝖿𝖺𝗅𝗌𝖾 + 2.𝗍𝗋𝗎𝖾 = 1. + 2.𝗍𝗋𝗎𝖾𝖿𝖺𝗅𝗌𝖾 + 1. + 2.𝗍𝗋𝗎𝖾)2 𝗍𝗋𝗎𝖾
2

𝖿𝖺𝗅𝗌𝖾
2
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Abstractly
What we’ve constructed is the symmetric algebra (free commutative monoid) over the
module of -indexed vectors.

But we’re reading our arrows backwards, so this is the free commutative comonoid: the
Lafont exponential.

Lamarche made the observation that

It’s quite common to discover models of linear logic (and related things) as the opposite of
familiar algebraic categories.

𝑋

Linear logic is in fact co-linear
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Weighted relational models of typed
lambda-calculi

These constructions give us a model of linear logic, and the Kleisli category is Cartesian
closed.

We can therefore model typed lambda calculi. Let’s model something like a programming
language:

add some base types , 
add some constants with the obvious semantics e.g.  has

We have additional operations available in the model:

we can add weighted relations together
we can multiply relations by quantities.

What does this let us do?

𝐁𝐨𝐨𝐥 𝐈𝐧𝐭

[[𝚝𝚛𝚞𝚎]] : ∅ → 𝐁𝐨𝐨𝐥𝐌𝑓

= 1 = 0[[𝚝𝚛𝚞𝚎]]([],𝗍𝗋𝗎𝖾) [[𝚝𝚛𝚞𝚎]]([],𝖿𝖺𝗅𝗌𝖾)
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Nondeterminism
Addition of morphisms gives us an interpretation of nondeterministic choice:

If we work with the semiring , we see that for example

More generally we might expect that for a term ,

is the number of choice-paths that  can take to reach .

[[𝑀 𝗈𝗋 𝑁]] = [[𝑀]] + [[𝑁]].

( , ×, 1, ∑)𝐍
∞

= 2.[[𝚝𝚛𝚞𝚎 𝗈𝗋 𝚝𝚛𝚞𝚎]]([],𝗍𝗋𝗎𝖾)

⊢ 𝑀 : 𝐁𝐨𝐨𝐥

[[𝑀]]([],𝗍𝗋𝗎𝖾)

𝑀 𝚝𝚛𝚞𝚎
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Probabilistic choice
Since we can weight our terms by multiplication with a quantity, we can interpret
probabilistic choice: if we work with the reals rather than naturals we can define

Then for example

[[𝑀 𝑁]] = 𝑝[[𝑀]] + (1 − 𝑝)[[𝑁]].+𝑝

= .[[𝚝𝚛𝚞𝚎 (𝚝𝚛𝚞𝚎 𝚏𝚊𝚕𝚜𝚎)]]+ 1

2

+ 1

2 ([],𝗍𝗋𝗎𝖾)

3

4
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Can we use ?
For modelling probability, it’s tempting to try using coefficients from  rather than

.

Sadly this won’t work. For example, the term

contains

[0, 1]

[0, 1]

𝐑
∞

𝑥 : 𝐁𝐨𝐨𝐥, 𝑦 : 𝐁𝐨𝐨𝐥 ⊢ 𝑥 ∧ 𝑦 : 𝐁𝐨𝐨𝐥

([𝗍𝗋𝗎𝖾], [𝖿𝖺𝗅𝗌𝖾], 𝖿𝖺𝗅𝗌𝖾) with coefficient 1

([𝖿𝖺𝗅𝗌𝖾], [𝗍𝗋𝗎𝖾], 𝖿𝖺𝗅𝗌𝖾) with coefficient 1
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If we contract  and , the input patterns

become the same multiset and the coefficients are added.

Then

contains

The good news is that the model still seems to be counting choice-paths correctly!

𝑥 𝑦

([𝗍𝗋𝗎𝖾], [𝖿𝖺𝗅𝗌𝖾]) ([𝖿𝖺𝗅𝗌𝖾], [𝗍𝗋𝗎𝖾])

𝑥 : 𝐁𝐨𝐨𝐥 ⊢ 𝑥 ∧ 𝑥 : 𝐁𝐨𝐨𝐥

([𝗍𝗋𝗎𝖾, 𝖿𝖺𝗅𝗌𝖾], 𝖿𝖺𝗅𝗌𝖾) with coefficient 2
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A generic soundness theorem
We shall give a weighted operational semantics to typed lambda-calculus in such a way
that these relational models measure the operational reduction paths.

Syntax (at least):

for , the semiring of interest; plus base types and constants for booleans, numerals
and basic operations as desired.

Operational semantics is via weighted reductions : “  reduces to  in one step
with weight ”.

𝑀 ::= 𝑥 ∣ 𝜆 . 𝑀 ∣ 𝑀𝑀 ∣ 𝑀 𝗈𝗋 𝑀 ∣ 𝑟𝑀𝑥
𝐴

𝑟 ∈ 𝑅

𝑀 𝑁→

𝑟

𝑀 𝑁

𝑟
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Basic reductions

Evaluate in a call-by-name strategy.

(𝜆 . 𝑀)𝑁 𝑀[𝑁/𝑥]𝑥
𝐴

→

1

𝑀 𝗈𝗋 𝑁 𝑀 𝑀 𝗈𝗋 𝑁 𝑁→

1

→

1

𝑟𝑀 𝑀→

𝑟
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Define the weight of a reduction path

to be the product

For a term , define  to be the sum of the weights of paths

𝑀 ⋯→

𝑟1

𝑀1 →

𝑟
𝑛

𝑀𝑛

⋅ ⋯ ⋅𝑟1 𝑟𝑛

⊢ 𝑀 : 𝐈𝐧𝐭 Red(𝑀, 𝑛)

𝑀 𝑛.→
∗
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Example

Red(𝑀, 2) = +𝑝2 𝑞2
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Theorem.  

Soundness
By standard reasoning we can prove

For any term ⊢ 𝑀 : 𝐈𝐧𝐭

Red(𝑀, 0) = .[[𝑀]]([],0)
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Using , the semantics counts reduction paths
Using , translating probabilistic choice as

the semantics computes probability of reduction to a value
Using , the model computes the lowest weight of a reduction path;

if we instrument terms, e.g. replacing each  by , the model
counts β-reductions.

( , ×, 1, ∑)𝐍
∞

( , ×, 1, ∑)𝐑
∞

𝑀 𝗈𝗋  𝑁
1

2

1

2

( , +, 0, min)𝐍
∞

𝜆𝑥. 𝑀 𝜆𝑥.1𝑀
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Fixed points and recursion
To interpret recursion, we’d like to add a fixed point combinator to the language and give
it a semantics.

The easy way: insist that our semiring is continuous.

That is:

the semiring is a complete partial order
addition and multiplication are continuous
infinite sums are least upper bounds of chains of finite sums.

Then the morphisms form complete partial orders and we can interpret fixed points in the
normal way. Soundness is proved by standard techniques.
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Fixed points without continuity
In fact, as shown by Laird, continuity is not required.

A fixed point combinator may be defined by taking a sum over all possible recursive call-
patterns, expressed using nested multisets:

Given , we can define  for each  expressing the result
of nested recursive calls to  following the pattern of .

Then

J. Laird, ‘Fixed Points In Quantitative Semantics’, in Proceedings, LICS ’16, ACM 2016),
347–56, .

= ∅ = 𝕄 = .𝕄0 𝕄𝑛+1 𝐌𝑓𝕄𝑛 ⋃
𝑛

𝕄𝑛

𝑓 : 𝑋 → 𝑋𝐌𝑓 : 𝐼 → 𝑋𝑓 𝑚 𝐌𝑓 𝑚 ∈ 𝕄

𝑓 𝑚

fix(𝑓) = ; 𝑓.∑
𝑚∈𝕄

𝑓 𝑚

https://doi.org/10.1145/2933575.2934569
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Untyped lambda-calculus
A related construction gives a model of untyped λ-calculus in these categories:

Then  so we have a reflexive object

Antonio Bucciarelli, Thomas Ehrhard, and Giulio Manzonetto, ‘Not Enough Points Is
Enough’, in CSL 2007, Springer 2007), 298–312, 

.

= ∅ = ( 𝐷 = ⋃ .𝐷0 𝐷𝑛+1 𝐌𝑓𝐷𝑛)
𝜔

𝐷𝑛

𝐷 ≅ 𝐷 × 𝐷𝐌𝑓

𝐷 ≅ 𝐷 ⇒ 𝐷.

https://doi.org/10.1007/978-3-540-74915-
8_24
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Further
Our simple-minded quantitative model is sound but not fully abstract and has barely been
explored. Others have done more:

Probabilistic coherence spaces are a refinement of one version of this model that
delivers a quite remarkable full abstraction result.

Thomas Ehrhard, Christine Tasson, and Michele Pagani, ‘Probabilistic Coherence
Spaces Are Fully Abstract for Probabilistic PCF’, in Proceedings, POPL ’14 (ACM
2014), 309–20, .

Barbarossa and Pistone have recently studied the tropical version of the model.
They have established connections with generalized metric spaces, and analysed the
differential structure of the model in detail.

Davide Barbarossa and Paolo Pistone, ‘Tropical Mathematics and the Lambda-
Calculus I: Metric and Differential Analysis of Effectful Programs’, in CSL 2024,
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2024,

.

https://doi.org/10.1145/2535838.2535865

https://doi.org/10.4230/LIPIcs.CSL.2024.14
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