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Part I

Probabilistic Higher-Order
Programs
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Randomized QuickSort (1)
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Two Kinds of Random Walks



The Coupon Collector

▶ A supermarket distributes a large quantity of coupons, each labelled with
i ∈ {1, . . . , n}.

▶ Every day, you collect one coupon at the supermarket. Any label i has probability 1
n

to occur.
▶ You win a prize when you collect a set of n coupons, each with a distinct label.
▶ Example: if n = 5, you could get the following coupons:

3, 1, 5, 2, 3, 1, 5, 2, 3, 1, 5, 2, . . .

▶ Are you guaranteed to win the prize with probability 1? After how many days, on the
average?
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Part II

Probabilistic Termination



What Algorithms Compute

▶ Deterministic Computation
▶ For every input x, there is at most one output y any algorithm A produces when fed

with x.

▶ As a consequence:

A ; JAK : N ⇀ N.

▶ Randomized Computation
▶ For every input x, any algorithm A outputs y with a probability 0 ≤ p ≤ 1.

▶ As a consequence:

A ; JAK : N → D(N).
▶ The distribution JAK(n) sums to anything between 0 and 1, thus accounting for the

probability of divergence.
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Deterministic vs. Probabilistic Transition Systems

M N L · · ·
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Syntax and Operational Semantics of Λ⊕

▶ Terms: M ::= x | λx.M | MM | M ⊕M ;

▶ Values: V ::= λx.M ;
▶ Value Distributions:

V
D−→ D(V ) ∈ R[0,1]

∑
D =

∑
V

D(V ) ≤ 1.

▶ Semantics: JMK = supM⇒D D;

E ::= [·] | EM | V E

E[(λx.M)V ] → {E[M [x/V ]]1} E[M ⊕N ] → {E[M ]
1
2 , E[N ]

1
2 }

M ⇒ ∅ V ⇒ {V 1}
M → D {P ⇒ EP }P∈SD

M ⇒
∑

P∈SD D(P )EP

▶ Context Equivalence: M ≡ N iff for every context C it holds that∑
JC[M ]K =

∑
JC[N ]K.

C ::= [·] | λx.C | CM | MC | C ⊕M | M ⊕ C

▶ Context Distance: δC(M,N) = supC |
∑

JC[M ]K −
∑

JC[N ]K|.

All this can be easily generalized to:
▶ Typed calculi.
▶ CBN
▶ Recursion.
▶ . . .
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Notions of Probabilistic Termination
▶ Given M ∈ A, let RFM be the number of transitions leading M to an irreducible N

(or ∞ if such an N does not exist).

▶ In deterministic transition systems, RFM ∈ N∞.
▶ In probabilistic transition systems RFM is a random variable.

▶ Almost-Sure Termination (AST).

Pr(RFM < ∞) = 1

▶ Positive Almost-Sure Termination (PAST).

E(RFM ) < ∞

▶ PAST implies AST, but not viceversa. A counterexample is the fair (i.e. p = 1
2 )

random walk:

0 1 2 n· · ·

p 1 − p
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An Example

M = (λx.xx⊕ I)(λx.xx⊕ I)

M ⊕ I

I

M ⊕ I

MI
...

1
2

1
2

1
2

1
2

M

M

1

1

Pr(Time(M) < ∞) =

∞∑
i=0

1

2i+1
= 1

E(Time(M)) =
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i=0

Pr(Time(M) > i)

= 2 ·
∞∑
i=0

1

2i
= 4
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The Landscape: Recursion Theory

▶ Deterministic Computation

Instance Universal

Termination Σ0
1-complete Π0

2-complete

▶ Probabilistic Computation [KK2013]

Instance Universal

AST Π0
2-complete Π0

2-complete

PAST Σ0
2-complete Π0

3-complete
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Part III

Probabilistic Termination and Types



The Landscape: Termination and Types

Simple Types

τ ::= · · · | τ → τ

τ ::= · · · | ι[ξ]
Sized Types

τ ::= · · · | τ ∧ τ

Intersection Types

τ ::= · · · | ι[I] | !i<Iτ
Linear Dependent Types

▶ Corresponds to Intuitionistic Logic or HA;
▶ Sound for termination, in presence of primitive

recursion;
▶ Very limited expressive power.

▶ Reasonably expressive, intensionally;
▶ Type inference remains decidable.

▶ Motivated by Semantics;
▶ Complete for termination;
▶ Type inference is undecidable.

▶ Relatively complete for termination and
complexity analysis;

▶ Type inference is hard, but can be mechanized.
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Deterministic Sized Types
▶ Pure λ-calculus with simple types is terminating.

▶ This can be proved in many ways, including by reducibility.
▶ The absence of full recursion can be cumbersome.

▶ What if we endow it with full recursion as a fix binder?
▶ Termination is not guaranteed anymore, for very good reasons.
▶ Is everything lost?
▶ NO!

fix f

λx : ι

f(x − 1) f(x)f(x) f(x + 1)

M

fix f

λx : ι

f(x − 1) f(x − 2) f(x − 3)

M

BAD! GOOD!

fix f

λx : ι

f(x − 1) f(x − 2) f(x − 3)

M

GOOD!

▶ For every type τ , define a set of reducible terms Redτ .
▶ Prove that all reducible terms are normalizing. . .
▶ . . . and that all typable terms are reducible.

(fix x.M)V → M{fix x.M/x}V
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Deterministic Sized Types, Technically
▶ Types.

ξ ::= a | ω | ξ + 1; τ ::= ι[ξ] | τ → τ.

▶ Typing Fixpoints.
Γ, x : ι[a] → τ ⊢ M : ι[a+ 1] → τ

Γ ⊢ fix x.M : ι[ξ] → τ

▶ Quite Powerful.
▶ Can type many forms of structural recursion.

▶ Termination.
▶ Proved by Reducibility.
▶ . . . but of an indexed form.

▶ Type Inference.
▶ It is indeed decidable.
▶ But nontrivial.

Index Terms
▶ Reducibility sets are of the form Redθ

τ .
▶ θ is an environment for index variables.
▶ Proof of reducibility for fix x.M is rather delicate.
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Probabilistic Termination

▶ Examples:
fix f.λx.if x > 0 then if FairCoin then f(x− 1) else f(x+ 1);

fix f.λx.if x > 0 then if BiasedCoin then f(x− 1) else f(x+ 1);

fix f.λx.if BiasedCoin then f(x+ 1) else x.

▶ Non-Examples:
fix f.λx.if FairCoin then f(x− 1) else (f(x+ 1); f(x+ 1));

fix f.λx.if BiasedCoin then f(x+ 1) else f(x− 1);

▶ Probabilistic termination is thus:
▶ Sensitive to the actual distribution from which we sample.
▶ Sensitive to how many recursive calls we perform.

Unbiased Random Walk, AST
Biased Random Walk, PAST

Unbiased Random Walk, with two upward calls.
Biased Random Walk, the “wrong” way.
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Probabilistic Sized Types [DLGrellois2017]
▶ Basic Idea: craft a sized-type system in such a way as to mimick the recursive

structure by a OCBMC.

▶ Judgments.
Γ | ∆ ⊢ M : µ

▶ Typing Fixpoints.
Γ | x : σ ⊢ V : ι[a+ 1] → τ OCBMC (σ) terminates.

Γ | Θ ⊢ fix x.V : ι[ξ] → τ

▶ Typing Probabilistic Choice
Γ | ∆ ⊢ M : τ Γ | Ω ⊢ N : ρ

Γ | 1
2
∆+ 1

2
Ω ⊢ M ⊕N : 1

2
τ + 1

2
ρ

▶ Termination.
▶ By a quantitative nontrivial refinement of reducibility.

λ-variables: every higher-order variable occurs at most once.

fix-variables, which are attributed a finite distribution of types.

A monadic type, namely a finite distribution of types.▶ OCBMC (σ) interprets σ as a one-counter Markov Chain.
▶ This is sufficient for typing:

▶ Unbiased random walks:

σ =

{
1

2
: ι[a+ 2] → τ,

1

2
: ι[a] → τ

}
▶ Biased random walks, with a similar σ.

▶ Reducibility sets are now on the form Redθ,p
τ

▶ p stands for the probability of being reducible.
▶ Reducibility sets are continuous:

Redθ,p
τ =

⋃
q<p

Redθ,q
τ
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Deterministic Intersection Types
▶ Question: what are simple types missing as a way to precisely capture termination?

▶ Many normalizing terms cannot be typed, e.g.:

∆ = λx.xx ∆(λx.x).

▶ Types
τ ::= A → B A ::= [τ1, . . . , τn]

▶ Typing Rules

x : A ⊢ x : A

Γ, x : A ⊢ M : B

Γ ⊢ λx.M : A → B

(Γi ⊢ V : τi)i⊎
Γi ⊢ V : [τi]i

Γ ⊢ V : [A → B] ∆ ⊢ W : A

Γ ⊎∆ ⊢ VW : B

Γ ⊢ M : A ∆, x : A ⊢ N : B

Γ ⊎∆ ⊢ let x = M in N : B

▶ Soundness for Termination
▶ By reducibility.

▶ Completeness for Termination
▶ By subject expansion, the dual of subject reduction.
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Going Probabilistic: What Do We Need?
▶ Terms can have a Type Probabilistically , for example in

Ω⊕ (λx.x)

▶ This can be captured by switching from types to multidistributions of types, namely
expressions in the form ⟨p1τ1, . . . , pnτn⟩, where

∑
pi ≤ 1.

A ̸= 1
2A+ 1

2A

▶ Functions can use their Arguments Probabilistically , for example in

λx.(xx)⊕ I

▶ This can be captured by switching from multisets to scaled multisets of types, namely
expressions in the form [q1.τ1, . . . , qn.τn]. Here

∑
qi ∈ Q+.

▶ Summing up. . .

τ ::= A → A A ::= [qi.τi]1≤i≤n A ::= ⟨piAi⟩1≤i≤n

Arrow TypesIntersection Types Type Distributions
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Typing Rules [DLFR2021]

x : A

0

⊢ x : A

0

⊢ M : 0

Γ, x : A

w

⊢ M : B

Γ

w+1

⊢ λx.M : A → B

Γ

w

⊢ V : [A → B] ∆

v

⊢ W : A

Γ ⊎∆

w+v

⊢ VW : B

Γ

w

⊢ M : A ∆

v

⊢ N : B

1
2
Γ ⊎ 1

2
∆

1
2
w+ 1

2
v+1

⊢ M ⊕N : 1
2
A+ 1

2
B

Γ

w

⊢ M : ⟨pkAk⟩k (∆k, x : Ak

vk

⊢ N : Bk)k

Γ ⊎
⊎

k ∆k

w+
∑

pkvk+1

⊢ let x = M in N :
∑

k pkBk

Γ

w

⊢ V : A

Γ

w

⊢ V : ⟨A⟩

{Γi

wi

⊢ V : τi}i⊎
Γi

∑
qiwi

⊢ V : [qi.τi]i

Typing judgements are attributed a
weight.

▶ The body N needs to be typed
several times.

▶ The resulting type is obtained
as a mixture of the various
types of N .
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An AST Example

M = NN, where N = λx.xx⊕ I

⊢ N :

(
[] →

〈
1

2
[]

〉)
= τ1 ⊢ N : [] ⊢2 M :

〈
1

2
[]

〉

⊢ N :

([
1

2
.τ1

]
→
〈
1

2
[],

1

4
[]

〉)
= τ2 ⊢ N :

[
1

2
.τ1

]
⊢3 M :

〈
1

2
[],

1

4
[]

〉
...

⊢ N :

([
1

2i
.τi
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A not-AST Example

Ω = ∆∆, where ∆ = λx.xx

⊢ ∆ : ⟨[] → ⟨⟩⟩ = ρ1 ⊢ ∆ : [] ⊢1 Ω : ⟨⟩
⊢ ∆ : ⟨[1.ρ1] → ⟨⟩⟩ = ρ2 ⊢ ∆ : [1.ρ1] ⊢2 Ω : ⟨⟩

...

⊢ ∆ :
〈
[1.ρi]i<n → ⟨⟩

〉
= ρn ⊢ ∆ : [1.ρi]i<n ⊢n Ω : ⟨⟩



AST and PAST, Precisely Characterized

Pr[M ↓] = sup
⊢M :A∈T

||A||

ETime(M) = sup
w
⊢M :0

w

T = {A | A = ⟨pi[]⟩i}
||⟨piAi⟩i|| =

∑
i pi

Why?
▶ Subject Reduction.

▶ If ⊢ M : A and M rewrites to Ni with probability
pi, then ⊢ Ni : Bi such that A =

∑
i piBi.

▶ This implies that Pr[M ↓] ≥ ||A||.
▶ Subject Expansion, which implies that

Pr[M ↓] ≤ ||A||.

0 = ⟨⟩

Why?
As above, but weighted versions of reduction
and expansion theorems are needed.
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Other Approaches
▶ Linear Dependent Types [ADLG2019]

▶ Intersection Types are complete, but only for computations .
▶ In deterministic linear dependent types [DLG2011], one is relatively complete for

first-order functions.
▶ How about probabilism?

▶ Monadic types can be made indexed:

µ ::= {σ[i] : p[i]}i∈I

▶ Subtyping is coupling-based.
▶ Nontrivial examples like RandomizedQuicksort and CouponCollector can be captured.
▶ Unfortunately, relative completeness is hard to achieve.

▶ Probabilistic Termination in Rewriting [ADLY2019, Faggian2022,
FaggianGuerrieri2022];

▶ Higher-Order Model Checking [KDLG2020];
▶ CPS Expectation Transformers [ADLB2021] ;
▶ Expectations from Probabilistic Coherent Spaces [Ehrhard2022];
▶ Curry-Howard Correspondence with Counting Propositional Logic

[ADLP2022].
▶ . . ..
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Part IV

Relational Reasoning



Examples

I ⊕ Ω vs. I

I ⊕ Ω vs. Ω

(λx.I)⊕ (λx.Ω) vs. λx.I ⊕ Ω

Not Context Equivalent: C = [·].
Context Distance? Consider Cn = (λx. x . . . x︸ ︷︷ ︸

n times
)[·].

Not Context Equivalent: C = [·].
Context Distance? Cannot easily amplify.

Not Context Equivalent in CBV: C = (λx.x(xI))[·]
Apparently Context Equivalent in CBN.
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λx.NN{W/x}
W , 1



Probabilistic Applicative Bisimulation

λx.M R λx.N

M{L/x}

L

N{L/x}
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R

M R N

JMKeval
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Applicative Bisimilarity vs. Context Equivalence

▶ Bisimilarity: the union ∼ of all bisimulation relations.
▶ Is it that ∼ is included in ≡? How to prove it?
▶ Natural strategy: is ∼ a congruence?

▶ If this is the case:

M ∼ N =⇒ C[M ] ∼ C[N ] =⇒
∑

JC[M ]K =
∑

JC[N ]K

=⇒ M ≡ N.

▶ This is a necessary sanity check anyway.
▶ The naïve proof by induction fails, due to application: from M ∼ N , one cannot

directly conclude that LM ∼ LN .



Howe’s Technique

R RH

⊆

RH is a
Congruence
whenever R is
an equivalence

∼H is a
Congruence

∼ ∼H

⊇

Key Lemma
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Our Neighborhood
▶ Λ, where we observe convergence

∼ ⊆ ≡ ≡ ⊆ ∼
CBN ✓ ✓

CBV ✓ ✓

[Abramsky1990, Howe1993]
▶ Λ⊕ with nondeterministic semantics, where we observe convergence, in its may or

must flavors.

∼ ⊆ ≡ ≡ ⊆ ∼
CBN ✓ ×
CBV ✓ ×

[Ong1993, Lassen1998]



The Probabilistic Case
▶ Λ⊕ with probabilistic semantics.

∼ ⊆ ≡ ≡ ⊆ ∼
CBN ✓ ×
CBV ✓ ✓

▶ Counterexample for CBN: (λx.I)⊕ (λx.Ω) ̸∼ λx.I ⊕ Ω
▶ Where these discrepancies come from?
▶ From testing!
▶ Bisimulation can be characterized by testing equivalence as follows:

Calculus Testing
Λ T ::= ω | a · T

PΛ⊕ T ::= ω | a · T | ⟨T, T ⟩
NΛ⊕ T ::= ω | a · T | ∧i∈I Ti | . . .



The Probabilistic Case
▶ Λ⊕ with probabilistic semantics.

∼ ⊆ ≡ ≡ ⊆ ∼
CBN ✓ ×
CBV ✓ ✓

▶ Counterexample for CBN: (λx.I)⊕ (λx.Ω) ̸∼ λx.I ⊕ Ω
▶ Where these discrepancies come from?

▶ From testing!
▶ Bisimulation can be characterized by testing equivalence as follows:

Calculus Testing
Λ T ::= ω | a · T

PΛ⊕ T ::= ω | a · T | ⟨T, T ⟩
NΛ⊕ T ::= ω | a · T | ∧i∈I Ti | . . .



The Probabilistic Case
▶ Λ⊕ with probabilistic semantics.

∼ ⊆ ≡ ≡ ⊆ ∼
CBN ✓ ×
CBV ✓ ✓

▶ Counterexample for CBN: (λx.I)⊕ (λx.Ω) ̸∼ λx.I ⊕ Ω
▶ Where these discrepancies come from?
▶ From testing!

▶ Bisimulation can be characterized by testing equivalence as follows:

Calculus Testing
Λ T ::= ω | a · T

PΛ⊕ T ::= ω | a · T | ⟨T, T ⟩
NΛ⊕ T ::= ω | a · T | ∧i∈I Ti | . . .



The Probabilistic Case
▶ Λ⊕ with probabilistic semantics.

∼ ⊆ ≡ ≡ ⊆ ∼
CBN ✓ ×
CBV ✓ ✓

▶ Counterexample for CBN: (λx.I)⊕ (λx.Ω) ̸∼ λx.I ⊕ Ω
▶ Where these discrepancies come from?
▶ From testing!
▶ Bisimulation can be characterized by testing equivalence as follows:

Calculus Testing
Λ T ::= ω | a · T

PΛ⊕ T ::= ω | a · T | ⟨T, T ⟩
NΛ⊕ T ::= ω | a · T | ∧i∈I Ti | . . .
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▶ Λ⊕ with probabilistic semantics.

≾ ⊆ ≤ ≤ ⊆ ≾
CBN ✓ ×
CBV ✓ ×

▶ Probabilistic simulation can be characterized by testing as follows:

T ::= ω | a · T | ⟨T, T ⟩ | T ∨ T

▶ Full abstraction can be recovered if endowing Λ⊕ with parallel disjunction
[CDLSV2015].
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Context Distance: the General Case [CDL2016]

▶ None of the abstract notions of distance δ gives us that δ(I, I ⊕ Ω) = 1.

▶ The underlying LMC does not reflect copying.
▶ A Tuple LMC.

▶ Preterms: M ::= x | λx.M | λ!x.M | MM | M ⊕M | !M
▶ Terms: any preterm M such that Γ ⊢ M .

!Γ, x ⊢ x !Γ, !x ⊢ x
x,Γ ⊢ M

Γ ⊢ λx.M

!x,Γ ⊢ M

Γ ⊢ λ!x.M

!Γ ⊢ M
!Γ ⊢!M

Γ, !Θ ⊢ M ∆, !Θ ⊢ N

Γ,∆,Θ ⊢ MN

Γ ⊢ M Γ ⊢ N
Γ ⊢ M ⊕N

▶ States: sequences of terms, rather than terms.
▶ Actions not only model parameter passing, but also copying of terms.

▶ Soundness and Completeness Results:

δt ≤ δc δc ≤ δt

✓ ✓
▶ Examples: δt(!(I ⊕ Ω), !Ω) = 1

2 δt(!(I ⊕ Ω), !I) = 1.
▶ Trivialisation does not hold in general, but becomes true in strongly normalising

fragments or in presence of parellel disjuction.
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Other Approaches

▶ Logical Relations [BizjakBirkedal2015];

▶ Quantitative Algebras [MardarePanangadenPlotkin2016];
▶ Probabilistic Böhm Trees [Leventis2018];
▶ Probabilistic Taylor Expansion [DLLeventis2019];
▶ (Monadic) Differential Logical Relations [DLGavazzo2022];
▶ Denotational Distance from Probabilistic Coherent Spaces [Ehrhard2022];
▶ Observational Equivalence and Computational Indistinguishability

[DLGiusti2022].
▶ . . .



Other Approaches

▶ Logical Relations [BizjakBirkedal2015];
▶ Quantitative Algebras [MardarePanangadenPlotkin2016];

▶ Probabilistic Böhm Trees [Leventis2018];
▶ Probabilistic Taylor Expansion [DLLeventis2019];
▶ (Monadic) Differential Logical Relations [DLGavazzo2022];
▶ Denotational Distance from Probabilistic Coherent Spaces [Ehrhard2022];
▶ Observational Equivalence and Computational Indistinguishability

[DLGiusti2022].
▶ . . .



Other Approaches

▶ Logical Relations [BizjakBirkedal2015];
▶ Quantitative Algebras [MardarePanangadenPlotkin2016];
▶ Probabilistic Böhm Trees [Leventis2018];

▶ Probabilistic Taylor Expansion [DLLeventis2019];
▶ (Monadic) Differential Logical Relations [DLGavazzo2022];
▶ Denotational Distance from Probabilistic Coherent Spaces [Ehrhard2022];
▶ Observational Equivalence and Computational Indistinguishability

[DLGiusti2022].
▶ . . .



Other Approaches

▶ Logical Relations [BizjakBirkedal2015];
▶ Quantitative Algebras [MardarePanangadenPlotkin2016];
▶ Probabilistic Böhm Trees [Leventis2018];
▶ Probabilistic Taylor Expansion [DLLeventis2019];

▶ (Monadic) Differential Logical Relations [DLGavazzo2022];
▶ Denotational Distance from Probabilistic Coherent Spaces [Ehrhard2022];
▶ Observational Equivalence and Computational Indistinguishability

[DLGiusti2022].
▶ . . .



Other Approaches

▶ Logical Relations [BizjakBirkedal2015];
▶ Quantitative Algebras [MardarePanangadenPlotkin2016];
▶ Probabilistic Böhm Trees [Leventis2018];
▶ Probabilistic Taylor Expansion [DLLeventis2019];
▶ (Monadic) Differential Logical Relations [DLGavazzo2022];

▶ Denotational Distance from Probabilistic Coherent Spaces [Ehrhard2022];
▶ Observational Equivalence and Computational Indistinguishability

[DLGiusti2022].
▶ . . .



Other Approaches

▶ Logical Relations [BizjakBirkedal2015];
▶ Quantitative Algebras [MardarePanangadenPlotkin2016];
▶ Probabilistic Böhm Trees [Leventis2018];
▶ Probabilistic Taylor Expansion [DLLeventis2019];
▶ (Monadic) Differential Logical Relations [DLGavazzo2022];
▶ Denotational Distance from Probabilistic Coherent Spaces [Ehrhard2022];

▶ Observational Equivalence and Computational Indistinguishability
[DLGiusti2022].

▶ . . .



Other Approaches

▶ Logical Relations [BizjakBirkedal2015];
▶ Quantitative Algebras [MardarePanangadenPlotkin2016];
▶ Probabilistic Böhm Trees [Leventis2018];
▶ Probabilistic Taylor Expansion [DLLeventis2019];
▶ (Monadic) Differential Logical Relations [DLGavazzo2022];
▶ Denotational Distance from Probabilistic Coherent Spaces [Ehrhard2022];
▶ Observational Equivalence and Computational Indistinguishability

[DLGiusti2022].

▶ . . .



Other Approaches

▶ Logical Relations [BizjakBirkedal2015];
▶ Quantitative Algebras [MardarePanangadenPlotkin2016];
▶ Probabilistic Böhm Trees [Leventis2018];
▶ Probabilistic Taylor Expansion [DLLeventis2019];
▶ (Monadic) Differential Logical Relations [DLGavazzo2022];
▶ Denotational Distance from Probabilistic Coherent Spaces [Ehrhard2022];
▶ Observational Equivalence and Computational Indistinguishability

[DLGiusti2022].
▶ . . .



Wrapping Up

▶ Some of the techniques for termination, complexity, and
relational analysis of deterministic higher-order programs can
be adapted to the probabilistic setting.

▶ This is however not trivial, since termination and program
equivalence have a different, more subtle, nature

Thank you! Questions?
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