
Reasoning Operationally About
Probabilistic Higher-Order Programs

Ugo Dal Lago

CIRM, Marseille, May 14, 2024

Part I

Probabilistic Higher-Order
Programs

QuickSort

The Structure of QuickSort

quick sort

quick sort

quick sort

QuickSort, HO

Randomized QuickSort (1)

Randomized QuickSort (2)

Random Walk

0 1 2 n· · ·

p 1 − p

Two Kinds of Random Walks

The Coupon Collector

▶ A supermarket distributes a large quantity of coupons, each labelled with
i ∈ {1, . . . , n}.

▶ Every day, you collect one coupon at the supermarket. Any label i has probability 1
n

to occur.
▶ You win a prize when you collect a set of n coupons, each with a distinct label.
▶ Example: if n = 5, you could get the following coupons:

3, 1, 5, 2, 3, 1, 5, 2, 3, 1, 5, 2, . . .

▶ Are you guaranteed to win the prize with probability 1? After how many days, on the
average?

The Coupon Collector

▶ A supermarket distributes a large quantity of coupons, each labelled with
i ∈ {1, . . . , n}.

▶ Every day, you collect one coupon at the supermarket. Any label i has probability 1
n

to occur.

▶ You win a prize when you collect a set of n coupons, each with a distinct label.
▶ Example: if n = 5, you could get the following coupons:

3, 1, 5, 2, 3, 1, 5, 2, 3, 1, 5, 2, . . .

▶ Are you guaranteed to win the prize with probability 1? After how many days, on the
average?

The Coupon Collector

▶ A supermarket distributes a large quantity of coupons, each labelled with
i ∈ {1, . . . , n}.

▶ Every day, you collect one coupon at the supermarket. Any label i has probability 1
n

to occur.
▶ You win a prize when you collect a set of n coupons, each with a distinct label.

▶ Example: if n = 5, you could get the following coupons:

3, 1, 5, 2, 3, 1, 5, 2, 3, 1, 5, 2, . . .

▶ Are you guaranteed to win the prize with probability 1? After how many days, on the
average?

The Coupon Collector

▶ A supermarket distributes a large quantity of coupons, each labelled with
i ∈ {1, . . . , n}.

▶ Every day, you collect one coupon at the supermarket. Any label i has probability 1
n

to occur.
▶ You win a prize when you collect a set of n coupons, each with a distinct label.
▶ Example: if n = 5, you could get the following coupons:

3, 1, 5, 2, 3, 1, 5, 2, 3, 1, 5, 2, . . .

▶ Are you guaranteed to win the prize with probability 1? After how many days, on the
average?

The Coupon Collector

▶ A supermarket distributes a large quantity of coupons, each labelled with
i ∈ {1, . . . , n}.

▶ Every day, you collect one coupon at the supermarket. Any label i has probability 1
n

to occur.
▶ You win a prize when you collect a set of n coupons, each with a distinct label.
▶ Example: if n = 5, you could get the following coupons:

3, 1, 5, 2, 3, 1, 5, 2, 3, 1, 5, 2, . . .

▶ Are you guaranteed to win the prize with probability 1? After how many days, on the
average?

The Coupon Collector

Part II

Probabilistic Termination

What Algorithms Compute

▶ Deterministic Computation
▶ For every input x, there is at most one output y any algorithm A produces when fed

with x.

▶ As a consequence:

A ; JAK : N ⇀ N.

▶ Randomized Computation
▶ For every input x, any algorithm A outputs y with a probability 0 ≤ p ≤ 1.

▶ As a consequence:

A ; JAK : N → D(N).
▶ The distribution JAK(n) sums to anything between 0 and 1, thus accounting for the

probability of divergence.

What Algorithms Compute

▶ Deterministic Computation
▶ For every input x, there is at most one output y any algorithm A produces when fed

with x.

▶ As a consequence:

A ; JAK : N ⇀ N.
▶ Randomized Computation

▶ For every input x, any algorithm A outputs y with a probability 0 ≤ p ≤ 1.

▶ As a consequence:

A ; JAK : N → D(N).
▶ The distribution JAK(n) sums to anything between 0 and 1, thus accounting for the

probability of divergence.

Deterministic vs. Probabilistic Transition Systems

M N L · · ·

(A,−−�)

−−�: A ⇀ A

Deterministic vs. Probabilistic Transition Systems

M N L · · ·

(A,−−�)

−−�: A ⇀ A

Deterministic vs. Probabilistic Transition Systems

M N L · · ·

(A,−−�)

−−�: A ⇀ A

Deterministic vs. Probabilistic Transition Systems

M N L · · ·

(A,−−�)

−−�: A ⇀ A

Deterministic vs. Probabilistic Transition Systems

M N L · · ·
(A,−−�)

−−�: A ⇀ A

Deterministic vs. Probabilistic Transition Systems

M

N

L

P

Q

1
2

1
2

1
2

1
2

(A,−−�)

−−�: A ⇀ D(A)

Deterministic vs. Probabilistic Transition Systems

M

N

L

P

Q

1
2

1
2

1
2

1
2

(A,−−�)

−−�: A ⇀ D(A)

Deterministic vs. Probabilistic Transition Systems

M

N

L

P

Q

1
2

1
2

1
3

2
3

(A,−−�)

−−�: A ⇀ D(A)

Deterministic vs. Probabilistic Transition Systems

M

N

L

P

Q

1
2

1
2

1
3

2
3

(A,−−�)

−−�: A ⇀ D(A)

Syntax and Operational Semantics of Λ⊕

▶ Terms: M ::= x | λx.M | MM | M ⊕M ;

▶ Values: V ::= λx.M ;
▶ Value Distributions:

V
D−→ D(V) ∈ R[0,1]

∑
D =

∑
V

D(V) ≤ 1.

▶ Semantics: JMK = supM⇒D D;

E ::= [·] | EM | V E

E[(λx.M)V] → {E[M [x/V]]1} E[M ⊕N] → {E[M]
1
2 , E[N]

1
2 }

M ⇒ ∅ V ⇒ {V 1}
M → D {P ⇒ EP }P∈SD

M ⇒
∑

P∈SD D(P)EP

▶ Context Equivalence: M ≡ N iff for every context C it holds that∑
JC[M]K =

∑
JC[N]K.

C ::= [·] | λx.C | CM | MC | C ⊕M | M ⊕ C

▶ Context Distance: δC(M,N) = supC |
∑

JC[M]K −
∑

JC[N]K|.

All this can be easily generalized to:
▶ Typed calculi.
▶ CBN
▶ Recursion.
▶ . . .

Syntax and Operational Semantics of Λ⊕

▶ Terms: M ::= x | λx.M | MM | M ⊕M ;
▶ Values: V ::= λx.M ;

▶ Value Distributions:

V
D−→ D(V) ∈ R[0,1]

∑
D =

∑
V

D(V) ≤ 1.

▶ Semantics: JMK = supM⇒D D;

E ::= [·] | EM | V E

E[(λx.M)V] → {E[M [x/V]]1} E[M ⊕N] → {E[M]
1
2 , E[N]

1
2 }

M ⇒ ∅ V ⇒ {V 1}
M → D {P ⇒ EP }P∈SD

M ⇒
∑

P∈SD D(P)EP

▶ Context Equivalence: M ≡ N iff for every context C it holds that∑
JC[M]K =

∑
JC[N]K.

C ::= [·] | λx.C | CM | MC | C ⊕M | M ⊕ C

▶ Context Distance: δC(M,N) = supC |
∑

JC[M]K −
∑

JC[N]K|.

All this can be easily generalized to:
▶ Typed calculi.
▶ CBN
▶ Recursion.
▶ . . .

Syntax and Operational Semantics of Λ⊕

▶ Terms: M ::= x | λx.M | MM | M ⊕M ;
▶ Values: V ::= λx.M ;
▶ Value Distributions:

V
D−→ D(V) ∈ R[0,1]

∑
D =

∑
V

D(V) ≤ 1.

▶ Semantics: JMK = supM⇒D D;

E ::= [·] | EM | V E

E[(λx.M)V] → {E[M [x/V]]1} E[M ⊕N] → {E[M]
1
2 , E[N]

1
2 }

M ⇒ ∅ V ⇒ {V 1}
M → D {P ⇒ EP }P∈SD

M ⇒
∑

P∈SD D(P)EP

▶ Context Equivalence: M ≡ N iff for every context C it holds that∑
JC[M]K =

∑
JC[N]K.

C ::= [·] | λx.C | CM | MC | C ⊕M | M ⊕ C

▶ Context Distance: δC(M,N) = supC |
∑

JC[M]K −
∑

JC[N]K|.

All this can be easily generalized to:
▶ Typed calculi.
▶ CBN
▶ Recursion.
▶ . . .

Syntax and Operational Semantics of Λ⊕

▶ Terms: M ::= x | λx.M | MM | M ⊕M ;
▶ Values: V ::= λx.M ;
▶ Value Distributions:

V
D−→ D(V) ∈ R[0,1]

∑
D =

∑
V

D(V) ≤ 1.

▶ Semantics: JMK = supM⇒D D;

E ::= [·] | EM | V E

E[(λx.M)V] → {E[M [x/V]]1} E[M ⊕N] → {E[M]
1
2 , E[N]

1
2 }

M ⇒ ∅ V ⇒ {V 1}
M → D {P ⇒ EP }P∈SD

M ⇒
∑

P∈SD D(P)EP

▶ Context Equivalence: M ≡ N iff for every context C it holds that∑
JC[M]K =

∑
JC[N]K.

C ::= [·] | λx.C | CM | MC | C ⊕M | M ⊕ C

▶ Context Distance: δC(M,N) = supC |
∑

JC[M]K −
∑

JC[N]K|.

All this can be easily generalized to:
▶ Typed calculi.
▶ CBN
▶ Recursion.
▶ . . .

Syntax and Operational Semantics of Λ⊕

▶ Terms: M ::= x | λx.M | MM | M ⊕M ;
▶ Values: V ::= λx.M ;
▶ Value Distributions:

V
D−→ D(V) ∈ R[0,1]

∑
D =

∑
V

D(V) ≤ 1.

▶ Semantics: JMK = supM⇒D D;

E ::= [·] | EM | V E

E[(λx.M)V] → {E[M [x/V]]1} E[M ⊕N] → {E[M]
1
2 , E[N]

1
2 }

M ⇒ ∅ V ⇒ {V 1}
M → D {P ⇒ EP }P∈SD

M ⇒
∑

P∈SD D(P)EP

▶ Context Equivalence: M ≡ N iff for every context C it holds that∑
JC[M]K =

∑
JC[N]K.

C ::= [·] | λx.C | CM | MC | C ⊕M | M ⊕ C

▶ Context Distance: δC(M,N) = supC |
∑

JC[M]K −
∑

JC[N]K|.

All this can be easily generalized to:
▶ Typed calculi.
▶ CBN
▶ Recursion.
▶ . . .

Syntax and Operational Semantics of Λ⊕

▶ Terms: M ::= x | λx.M | MM | M ⊕M ;
▶ Values: V ::= λx.M ;
▶ Value Distributions:

V
D−→ D(V) ∈ R[0,1]

∑
D =

∑
V

D(V) ≤ 1.

▶ Semantics: JMK = supM⇒D D;

E ::= [·] | EM | V E

E[(λx.M)V] → {E[M [x/V]]1} E[M ⊕N] → {E[M]
1
2 , E[N]

1
2 }

M ⇒ ∅ V ⇒ {V 1}
M → D {P ⇒ EP }P∈SD

M ⇒
∑

P∈SD D(P)EP

▶ Context Equivalence: M ≡ N iff for every context C it holds that∑
JC[M]K =

∑
JC[N]K.

C ::= [·] | λx.C | CM | MC | C ⊕M | M ⊕ C

▶ Context Distance: δC(M,N) = supC |
∑

JC[M]K −
∑

JC[N]K|.

All this can be easily generalized to:
▶ Typed calculi.
▶ CBN
▶ Recursion.
▶ . . .

Syntax and Operational Semantics of Λ⊕

▶ Terms: M ::= x | λx.M | MM | M ⊕M ;
▶ Values: V ::= λx.M ;
▶ Value Distributions:

V
D−→ D(V) ∈ R[0,1]

∑
D =

∑
V

D(V) ≤ 1.

▶ Semantics: JMK = supM⇒D D;

E ::= [·] | EM | V E

E[(λx.M)V] → {E[M [x/V]]1} E[M ⊕N] → {E[M]
1
2 , E[N]

1
2 }

M ⇒ ∅ V ⇒ {V 1}
M → D {P ⇒ EP }P∈SD

M ⇒
∑

P∈SD D(P)EP

▶ Context Equivalence: M ≡ N iff for every context C it holds that∑
JC[M]K =

∑
JC[N]K.

C ::= [·] | λx.C | CM | MC | C ⊕M | M ⊕ C

▶ Context Distance: δC(M,N) = supC |
∑

JC[M]K −
∑

JC[N]K|.

All this can be easily generalized to:
▶ Typed calculi.
▶ CBN
▶ Recursion.
▶ . . .

Syntax and Operational Semantics of Λ⊕

▶ Terms: M ::= x | λx.M | MM | M ⊕M ;
▶ Values: V ::= λx.M ;
▶ Value Distributions:

V
D−→ D(V) ∈ R[0,1]

∑
D =

∑
V

D(V) ≤ 1.

▶ Semantics: JMK = supM⇒D D;

E ::= [·] | EM | V E

E[(λx.M)V] → {E[M [x/V]]1} E[M ⊕N] → {E[M]
1
2 , E[N]

1
2 }

M ⇒ ∅ V ⇒ {V 1}
M → D {P ⇒ EP }P∈SD

M ⇒
∑

P∈SD D(P)EP

▶ Context Equivalence: M ≡ N iff for every context C it holds that∑
JC[M]K =

∑
JC[N]K.

C ::= [·] | λx.C | CM | MC | C ⊕M | M ⊕ C

▶ Context Distance: δC(M,N) = supC |
∑

JC[M]K −
∑

JC[N]K|.

All this can be easily generalized to:
▶ Typed calculi.
▶ CBN
▶ Recursion.
▶ . . .

Syntax and Operational Semantics of Λ⊕

▶ Terms: M ::= x | λx.M | MM | M ⊕M ;
▶ Values: V ::= λx.M ;
▶ Value Distributions:

V
D−→ D(V) ∈ R[0,1]

∑
D =

∑
V

D(V) ≤ 1.

▶ Semantics: JMK = supM⇒D D;

E ::= [·] | EM | V E

E[(λx.M)V] → {E[M [x/V]]1} E[M ⊕N] → {E[M]
1
2 , E[N]

1
2 }

M ⇒ ∅ V ⇒ {V 1}
M → D {P ⇒ EP }P∈SD

M ⇒
∑

P∈SD D(P)EP

▶ Context Equivalence: M ≡ N iff for every context C it holds that∑
JC[M]K =

∑
JC[N]K.

C ::= [·] | λx.C | CM | MC | C ⊕M | M ⊕ C

▶ Context Distance: δC(M,N) = supC |
∑

JC[M]K −
∑

JC[N]K|.

All this can be easily generalized to:
▶ Typed calculi.
▶ CBN
▶ Recursion.
▶ . . .

Notions of Probabilistic Termination
▶ Given M ∈ A, let RFM be the number of transitions leading M to an irreducible N

(or ∞ if such an N does not exist).

▶ In deterministic transition systems, RFM ∈ N∞.
▶ In probabilistic transition systems RFM is a random variable.

▶ Almost-Sure Termination (AST).

Pr(RFM < ∞) = 1

▶ Positive Almost-Sure Termination (PAST).

E(RFM) < ∞

▶ PAST implies AST, but not viceversa. A counterexample is the fair (i.e. p = 1
2)

random walk:

0 1 2 n· · ·

p 1 − p

Notions of Probabilistic Termination
▶ Given M ∈ A, let RFM be the number of transitions leading M to an irreducible N

(or ∞ if such an N does not exist).
▶ In deterministic transition systems, RFM ∈ N∞.
▶ In probabilistic transition systems RFM is a random variable.

▶ Almost-Sure Termination (AST).

Pr(RFM < ∞) = 1

▶ Positive Almost-Sure Termination (PAST).

E(RFM) < ∞

▶ PAST implies AST, but not viceversa. A counterexample is the fair (i.e. p = 1
2)

random walk:

0 1 2 n· · ·

p 1 − p

Notions of Probabilistic Termination
▶ Given M ∈ A, let RFM be the number of transitions leading M to an irreducible N

(or ∞ if such an N does not exist).
▶ In deterministic transition systems, RFM ∈ N∞.
▶ In probabilistic transition systems RFM is a random variable.

▶ Almost-Sure Termination (AST).

Pr(RFM < ∞) = 1

▶ Positive Almost-Sure Termination (PAST).

E(RFM) < ∞

▶ PAST implies AST, but not viceversa. A counterexample is the fair (i.e. p = 1
2)

random walk:

0 1 2 n· · ·

p 1 − p

Notions of Probabilistic Termination
▶ Given M ∈ A, let RFM be the number of transitions leading M to an irreducible N

(or ∞ if such an N does not exist).
▶ In deterministic transition systems, RFM ∈ N∞.
▶ In probabilistic transition systems RFM is a random variable.

▶ Almost-Sure Termination (AST).

Pr(RFM < ∞) = 1

▶ Positive Almost-Sure Termination (PAST).

E(RFM) < ∞

▶ PAST implies AST, but not viceversa. A counterexample is the fair (i.e. p = 1
2)

random walk:

0 1 2 n· · ·

p 1 − p

Notions of Probabilistic Termination
▶ Given M ∈ A, let RFM be the number of transitions leading M to an irreducible N

(or ∞ if such an N does not exist).
▶ In deterministic transition systems, RFM ∈ N∞.
▶ In probabilistic transition systems RFM is a random variable.

▶ Almost-Sure Termination (AST).

Pr(RFM < ∞) = 1

▶ Positive Almost-Sure Termination (PAST).

E(RFM) < ∞

▶ PAST implies AST, but not viceversa. A counterexample is the fair (i.e. p = 1
2)

random walk:

0 1 2 n· · ·

p 1 − p

An Example

M = (λx.xx⊕ I)(λx.xx⊕ I)

M ⊕ I

I

M ⊕ I

MI
...

1
2

1
2

1
2

1
2

M

M

1

1

Pr(Time(M) < ∞) =

∞∑
i=0

1

2i+1
= 1

E(Time(M)) =

∞∑
i=0

Pr(Time(M) > i)

= 2 ·
∞∑
i=0

1

2i
= 4

An Example

M = (λx.xx⊕ I)(λx.xx⊕ I)

M ⊕ I

I

M ⊕ I

MI
...

1
2

1
2

1
2

1
2

M

M

1

1

Pr(Time(M) < ∞) =

∞∑
i=0

1

2i+1
= 1

E(Time(M)) =

∞∑
i=0

Pr(Time(M) > i)

= 2 ·
∞∑
i=0

1

2i
= 4

An Example

M = (λx.xx⊕ I)(λx.xx⊕ I)

M ⊕ I

I

M ⊕ I

MI
...

1
2

1
2

1
2

1
2

M

M

1

1

Pr(Time(M) < ∞) =

∞∑
i=0

1

2i+1
= 1

E(Time(M)) =

∞∑
i=0

Pr(Time(M) > i)

= 2 ·
∞∑
i=0

1

2i
= 4

The Landscape: Recursion Theory

▶ Deterministic Computation

Instance Universal

Termination Σ0
1-complete Π0

2-complete

▶ Probabilistic Computation [KK2013]

Instance Universal

AST Π0
2-complete Π0

2-complete

PAST Σ0
2-complete Π0

3-complete

The Landscape: Recursion Theory

▶ Deterministic Computation

Instance Universal

Termination Σ0
1-complete Π0

2-complete

▶ Probabilistic Computation [KK2013]

Instance Universal

AST Π0
2-complete Π0

2-complete

PAST Σ0
2-complete Π0

3-complete

Part III

Probabilistic Termination and Types

The Landscape: Termination and Types

Simple Types

τ ::= · · · | τ → τ

τ ::= · · · | ι[ξ]
Sized Types

τ ::= · · · | τ ∧ τ

Intersection Types

τ ::= · · · | ι[I] | !i<Iτ
Linear Dependent Types

▶ Corresponds to Intuitionistic Logic or HA;
▶ Sound for termination, in presence of primitive

recursion;
▶ Very limited expressive power.

▶ Reasonably expressive, intensionally;
▶ Type inference remains decidable.

▶ Motivated by Semantics;
▶ Complete for termination;
▶ Type inference is undecidable.

▶ Relatively complete for termination and
complexity analysis;

▶ Type inference is hard, but can be mechanized.

The Landscape: Termination and Types

Simple Types

τ ::= · · · | τ → τ

τ ::= · · · | ι[ξ]
Sized Types

τ ::= · · · | τ ∧ τ

Intersection Types

τ ::= · · · | ι[I] | !i<Iτ
Linear Dependent Types

▶ Corresponds to Intuitionistic Logic or HA;
▶ Sound for termination, in presence of primitive

recursion;
▶ Very limited expressive power.

▶ Reasonably expressive, intensionally;
▶ Type inference remains decidable.

▶ Motivated by Semantics;
▶ Complete for termination;
▶ Type inference is undecidable.

▶ Relatively complete for termination and
complexity analysis;

▶ Type inference is hard, but can be mechanized.

The Landscape: Termination and Types

Simple Types

τ ::= · · · | τ → τ

τ ::= · · · | ι[ξ]
Sized Types

τ ::= · · · | τ ∧ τ

Intersection Types

τ ::= · · · | ι[I] | !i<Iτ
Linear Dependent Types

▶ Corresponds to Intuitionistic Logic or HA;
▶ Sound for termination, in presence of primitive

recursion;
▶ Very limited expressive power.

▶ Reasonably expressive, intensionally;
▶ Type inference remains decidable.

▶ Motivated by Semantics;
▶ Complete for termination;
▶ Type inference is undecidable.

▶ Relatively complete for termination and
complexity analysis;

▶ Type inference is hard, but can be mechanized.

The Landscape: Termination and Types

Simple Types

τ ::= · · · | τ → τ

τ ::= · · · | ι[ξ]
Sized Types

τ ::= · · · | τ ∧ τ

Intersection Types

τ ::= · · · | ι[I] | !i<Iτ
Linear Dependent Types

▶ Corresponds to Intuitionistic Logic or HA;
▶ Sound for termination, in presence of primitive

recursion;
▶ Very limited expressive power.

▶ Reasonably expressive, intensionally;
▶ Type inference remains decidable.

▶ Motivated by Semantics;
▶ Complete for termination;
▶ Type inference is undecidable.

▶ Relatively complete for termination and
complexity analysis;

▶ Type inference is hard, but can be mechanized.

The Landscape: Termination and Types

Simple Types

τ ::= · · · | τ → τ

τ ::= · · · | ι[ξ]
Sized Types

τ ::= · · · | τ ∧ τ

Intersection Types

τ ::= · · · | ι[I] | !i<Iτ
Linear Dependent Types

▶ Corresponds to Intuitionistic Logic or HA;
▶ Sound for termination, in presence of primitive

recursion;
▶ Very limited expressive power.

▶ Reasonably expressive, intensionally;
▶ Type inference remains decidable.

▶ Motivated by Semantics;
▶ Complete for termination;
▶ Type inference is undecidable.

▶ Relatively complete for termination and
complexity analysis;

▶ Type inference is hard, but can be mechanized.

The Landscape: Termination and Types

Simple Types

τ ::= · · · | τ → τ

τ ::= · · · | ι[ξ]
Sized Types

τ ::= · · · | τ ∧ τ

Intersection Types

τ ::= · · · | ι[I] | !i<Iτ
Linear Dependent Types

▶ Corresponds to Intuitionistic Logic or HA;
▶ Sound for termination, in presence of primitive

recursion;
▶ Very limited expressive power.

▶ Reasonably expressive, intensionally;
▶ Type inference remains decidable.

▶ Motivated by Semantics;
▶ Complete for termination;
▶ Type inference is undecidable.

▶ Relatively complete for termination and
complexity analysis;

▶ Type inference is hard, but can be mechanized.

The Landscape: Termination and Types

Simple Types

τ ::= · · · | τ → τ

τ ::= · · · | ι[ξ]
Sized Types

τ ::= · · · | τ ∧ τ

Intersection Types

τ ::= · · · | ι[I] | !i<Iτ
Linear Dependent Types

▶ Corresponds to Intuitionistic Logic or HA;
▶ Sound for termination, in presence of primitive

recursion;
▶ Very limited expressive power.

▶ Reasonably expressive, intensionally;
▶ Type inference remains decidable.

▶ Motivated by Semantics;
▶ Complete for termination;
▶ Type inference is undecidable.

▶ Relatively complete for termination and
complexity analysis;

▶ Type inference is hard, but can be mechanized.

The Landscape: Termination and Types

Simple Types

τ ::= · · · | τ → τ

τ ::= · · · | ι[ξ]
Sized Types

τ ::= · · · | τ ∧ τ

Intersection Types

τ ::= · · · | ι[I] | !i<Iτ
Linear Dependent Types

▶ Corresponds to Intuitionistic Logic or HA;
▶ Sound for termination, in presence of primitive

recursion;
▶ Very limited expressive power.

▶ Reasonably expressive, intensionally;
▶ Type inference remains decidable.

▶ Motivated by Semantics;
▶ Complete for termination;
▶ Type inference is undecidable.

▶ Relatively complete for termination and
complexity analysis;

▶ Type inference is hard, but can be mechanized.

Deterministic Sized Types
▶ Pure λ-calculus with simple types is terminating.

▶ This can be proved in many ways, including by reducibility.
▶ The absence of full recursion can be cumbersome.

▶ What if we endow it with full recursion as a fix binder?
▶ Termination is not guaranteed anymore, for very good reasons.
▶ Is everything lost?
▶ NO!

fix f

λx : ι

f(x − 1) f(x)f(x) f(x + 1)

M

fix f

λx : ι

f(x − 1) f(x − 2) f(x − 3)

M

BAD! GOOD!

fix f

λx : ι

f(x − 1) f(x − 2) f(x − 3)

M

GOOD!

▶ For every type τ , define a set of reducible terms Redτ .
▶ Prove that all reducible terms are normalizing. . .
▶ . . . and that all typable terms are reducible.

(fix x.M)V → M{fix x.M/x}V

Deterministic Sized Types
▶ Pure λ-calculus with simple types is terminating.

▶ This can be proved in many ways, including by reducibility.
▶ The absence of full recursion can be cumbersome.

▶ What if we endow it with full recursion as a fix binder?
▶ Termination is not guaranteed anymore, for very good reasons.
▶ Is everything lost?
▶ NO!

fix f

λx : ι

f(x − 1) f(x)f(x) f(x + 1)

M

fix f

λx : ι

f(x − 1) f(x − 2) f(x − 3)

M

BAD! GOOD!

fix f

λx : ι

f(x − 1) f(x − 2) f(x − 3)

M

GOOD!

▶ For every type τ , define a set of reducible terms Redτ .
▶ Prove that all reducible terms are normalizing. . .
▶ . . . and that all typable terms are reducible.

(fix x.M)V → M{fix x.M/x}V

Deterministic Sized Types
▶ Pure λ-calculus with simple types is terminating.

▶ This can be proved in many ways, including by reducibility.
▶ The absence of full recursion can be cumbersome.

▶ What if we endow it with full recursion as a fix binder?

▶ Termination is not guaranteed anymore, for very good reasons.
▶ Is everything lost?
▶ NO!

fix f

λx : ι

f(x − 1) f(x)f(x) f(x + 1)

M

fix f

λx : ι

f(x − 1) f(x − 2) f(x − 3)

M

BAD! GOOD!

fix f

λx : ι

f(x − 1) f(x − 2) f(x − 3)

M

GOOD!

▶ For every type τ , define a set of reducible terms Redτ .
▶ Prove that all reducible terms are normalizing. . .
▶ . . . and that all typable terms are reducible.

(fix x.M)V → M{fix x.M/x}V

Deterministic Sized Types
▶ Pure λ-calculus with simple types is terminating.

▶ This can be proved in many ways, including by reducibility.
▶ The absence of full recursion can be cumbersome.

▶ What if we endow it with full recursion as a fix binder?

▶ Termination is not guaranteed anymore, for very good reasons.
▶ Is everything lost?
▶ NO!

fix f

λx : ι

f(x − 1) f(x)f(x) f(x + 1)

M

fix f

λx : ι

f(x − 1) f(x − 2) f(x − 3)

M

BAD! GOOD!

fix f

λx : ι

f(x − 1) f(x − 2) f(x − 3)

M

GOOD!

▶ For every type τ , define a set of reducible terms Redτ .
▶ Prove that all reducible terms are normalizing. . .
▶ . . . and that all typable terms are reducible.

(fix x.M)V → M{fix x.M/x}V

Deterministic Sized Types
▶ Pure λ-calculus with simple types is terminating.

▶ This can be proved in many ways, including by reducibility.
▶ The absence of full recursion can be cumbersome.

▶ What if we endow it with full recursion as a fix binder?
▶ Termination is not guaranteed anymore, for very good reasons.

▶ Is everything lost?
▶ NO!

fix f

λx : ι

f(x − 1) f(x)f(x) f(x + 1)

M

fix f

λx : ι

f(x − 1) f(x − 2) f(x − 3)

M

BAD! GOOD!

fix f

λx : ι

f(x − 1) f(x − 2) f(x − 3)

M

GOOD!

▶ For every type τ , define a set of reducible terms Redτ .
▶ Prove that all reducible terms are normalizing. . .
▶ . . . and that all typable terms are reducible.

(fix x.M)V → M{fix x.M/x}V

Deterministic Sized Types
▶ Pure λ-calculus with simple types is terminating.

▶ This can be proved in many ways, including by reducibility.
▶ The absence of full recursion can be cumbersome.

▶ What if we endow it with full recursion as a fix binder?
▶ Termination is not guaranteed anymore, for very good reasons.
▶ Is everything lost?

▶ NO!

fix f

λx : ι

f(x − 1) f(x)f(x) f(x + 1)

M

fix f

λx : ι

f(x − 1) f(x − 2) f(x − 3)

M

BAD! GOOD!

fix f

λx : ι

f(x − 1) f(x − 2) f(x − 3)

M

GOOD!

▶ For every type τ , define a set of reducible terms Redτ .
▶ Prove that all reducible terms are normalizing. . .
▶ . . . and that all typable terms are reducible.

(fix x.M)V → M{fix x.M/x}V

Deterministic Sized Types
▶ Pure λ-calculus with simple types is terminating.

▶ This can be proved in many ways, including by reducibility.
▶ The absence of full recursion can be cumbersome.

▶ What if we endow it with full recursion as a fix binder?
▶ Termination is not guaranteed anymore, for very good reasons.
▶ Is everything lost?
▶ NO!

fix f

λx : ι

f(x − 1) f(x)f(x) f(x + 1)

M

fix f

λx : ι

f(x − 1) f(x − 2) f(x − 3)

M

BAD! GOOD!

fix f

λx : ι

f(x − 1) f(x − 2) f(x − 3)

M

GOOD!

▶ For every type τ , define a set of reducible terms Redτ .
▶ Prove that all reducible terms are normalizing. . .
▶ . . . and that all typable terms are reducible.

(fix x.M)V → M{fix x.M/x}V

Deterministic Sized Types
▶ Pure λ-calculus with simple types is terminating.

▶ This can be proved in many ways, including by reducibility.
▶ The absence of full recursion can be cumbersome.

▶ What if we endow it with full recursion as a fix binder?
▶ Termination is not guaranteed anymore, for very good reasons.
▶ Is everything lost?
▶ NO!

fix f

λx : ι

f(x − 1) f(x)f(x) f(x + 1)

M

fix f

λx : ι

f(x − 1) f(x − 2) f(x − 3)

M

BAD! GOOD!

fix f

λx : ι

f(x − 1) f(x − 2) f(x − 3)

M

GOOD!

▶ For every type τ , define a set of reducible terms Redτ .
▶ Prove that all reducible terms are normalizing. . .
▶ . . . and that all typable terms are reducible.

(fix x.M)V → M{fix x.M/x}V

Deterministic Sized Types
▶ Pure λ-calculus with simple types is terminating.

▶ This can be proved in many ways, including by reducibility.
▶ The absence of full recursion can be cumbersome.

▶ What if we endow it with full recursion as a fix binder?
▶ Termination is not guaranteed anymore, for very good reasons.
▶ Is everything lost?
▶ NO!

fix f

λx : ι

f(x − 1) f(x)f(x) f(x + 1)

M

fix f

λx : ι

f(x − 1) f(x − 2) f(x − 3)

M

BAD! GOOD!

fix f

λx : ι

f(x − 1) f(x − 2) f(x − 3)

M

GOOD!

▶ For every type τ , define a set of reducible terms Redτ .
▶ Prove that all reducible terms are normalizing. . .
▶ . . . and that all typable terms are reducible.

(fix x.M)V → M{fix x.M/x}V

Deterministic Sized Types, Technically
▶ Types.

ξ ::= a | ω | ξ + 1; τ ::= ι[ξ] | τ → τ.

▶ Typing Fixpoints.
Γ, x : ι[a] → τ ⊢ M : ι[a+ 1] → τ

Γ ⊢ fix x.M : ι[ξ] → τ

▶ Quite Powerful.
▶ Can type many forms of structural recursion.

▶ Termination.
▶ Proved by Reducibility.
▶ . . . but of an indexed form.

▶ Type Inference.
▶ It is indeed decidable.
▶ But nontrivial.

Index Terms
▶ Reducibility sets are of the form Redθ

τ .
▶ θ is an environment for index variables.
▶ Proof of reducibility for fix x.M is rather delicate.

Deterministic Sized Types, Technically
▶ Types.

ξ ::= a | ω | ξ + 1; τ ::= ι[ξ] | τ → τ.

▶ Typing Fixpoints.
Γ, x : ι[a] → τ ⊢ M : ι[a+ 1] → τ

Γ ⊢ fix x.M : ι[ξ] → τ

▶ Quite Powerful.
▶ Can type many forms of structural recursion.

▶ Termination.
▶ Proved by Reducibility.
▶ . . . but of an indexed form.

▶ Type Inference.
▶ It is indeed decidable.
▶ But nontrivial.

Index Terms

▶ Reducibility sets are of the form Redθ
τ .

▶ θ is an environment for index variables.
▶ Proof of reducibility for fix x.M is rather delicate.

Deterministic Sized Types, Technically
▶ Types.

ξ ::= a | ω | ξ + 1; τ ::= ι[ξ] | τ → τ.

▶ Typing Fixpoints.
Γ, x : ι[a] → τ ⊢ M : ι[a+ 1] → τ

Γ ⊢ fix x.M : ι[ξ] → τ

▶ Quite Powerful.
▶ Can type many forms of structural recursion.

▶ Termination.
▶ Proved by Reducibility.
▶ . . . but of an indexed form.

▶ Type Inference.
▶ It is indeed decidable.
▶ But nontrivial.

Index Terms
▶ Reducibility sets are of the form Redθ

τ .
▶ θ is an environment for index variables.
▶ Proof of reducibility for fix x.M is rather delicate.

Deterministic Sized Types, Technically
▶ Types.

ξ ::= a | ω | ξ + 1; τ ::= ι[ξ] | τ → τ.

▶ Typing Fixpoints.
Γ, x : ι[a] → τ ⊢ M : ι[a+ 1] → τ

Γ ⊢ fix x.M : ι[ξ] → τ

▶ Quite Powerful.
▶ Can type many forms of structural recursion.

▶ Termination.
▶ Proved by Reducibility.
▶ . . . but of an indexed form.

▶ Type Inference.
▶ It is indeed decidable.
▶ But nontrivial.

Index Terms
▶ Reducibility sets are of the form Redθ

τ .
▶ θ is an environment for index variables.
▶ Proof of reducibility for fix x.M is rather delicate.

Deterministic Sized Types, Technically
▶ Types.

ξ ::= a | ω | ξ + 1; τ ::= ι[ξ] | τ → τ.

▶ Typing Fixpoints.
Γ, x : ι[a] → τ ⊢ M : ι[a+ 1] → τ

Γ ⊢ fix x.M : ι[ξ] → τ

▶ Quite Powerful.
▶ Can type many forms of structural recursion.

▶ Termination.
▶ Proved by Reducibility.
▶ . . . but of an indexed form.

▶ Type Inference.
▶ It is indeed decidable.
▶ But nontrivial.

Index Terms
▶ Reducibility sets are of the form Redθ

τ .
▶ θ is an environment for index variables.
▶ Proof of reducibility for fix x.M is rather delicate.

Deterministic Sized Types, Technically
▶ Types.

ξ ::= a | ω | ξ + 1; τ ::= ι[ξ] | τ → τ.

▶ Typing Fixpoints.
Γ, x : ι[a] → τ ⊢ M : ι[a+ 1] → τ

Γ ⊢ fix x.M : ι[ξ] → τ

▶ Quite Powerful.
▶ Can type many forms of structural recursion.

▶ Termination.
▶ Proved by Reducibility.
▶ . . . but of an indexed form.

▶ Type Inference.
▶ It is indeed decidable.
▶ But nontrivial.

Index Terms

▶ Reducibility sets are of the form Redθ
τ .

▶ θ is an environment for index variables.
▶ Proof of reducibility for fix x.M is rather delicate.

Deterministic Sized Types, Technically
▶ Types.

ξ ::= a | ω | ξ + 1; τ ::= ι[ξ] | τ → τ.

▶ Typing Fixpoints.
Γ, x : ι[a] → τ ⊢ M : ι[a+ 1] → τ

Γ ⊢ fix x.M : ι[ξ] → τ

▶ Quite Powerful.
▶ Can type many forms of structural recursion.

▶ Termination.
▶ Proved by Reducibility.
▶ . . . but of an indexed form.

▶ Type Inference.
▶ It is indeed decidable.
▶ But nontrivial.

Index Terms
▶ Reducibility sets are of the form Redθ

τ .
▶ θ is an environment for index variables.
▶ Proof of reducibility for fix x.M is rather delicate.

Probabilistic Termination

▶ Examples:
fix f.λx.if x > 0 then if FairCoin then f(x− 1) else f(x+ 1);

fix f.λx.if x > 0 then if BiasedCoin then f(x− 1) else f(x+ 1);

fix f.λx.if BiasedCoin then f(x+ 1) else x.

▶ Non-Examples:
fix f.λx.if FairCoin then f(x− 1) else (f(x+ 1); f(x+ 1));

fix f.λx.if BiasedCoin then f(x+ 1) else f(x− 1);

▶ Probabilistic termination is thus:
▶ Sensitive to the actual distribution from which we sample.
▶ Sensitive to how many recursive calls we perform.

Unbiased Random Walk, AST
Biased Random Walk, PAST

Unbiased Random Walk, with two upward calls.
Biased Random Walk, the “wrong” way.

Probabilistic Termination

▶ Examples:
fix f.λx.if x > 0 then if FairCoin then f(x− 1) else f(x+ 1);

fix f.λx.if x > 0 then if BiasedCoin then f(x− 1) else f(x+ 1);

fix f.λx.if BiasedCoin then f(x+ 1) else x.

▶ Non-Examples:
fix f.λx.if FairCoin then f(x− 1) else (f(x+ 1); f(x+ 1));

fix f.λx.if BiasedCoin then f(x+ 1) else f(x− 1);

▶ Probabilistic termination is thus:
▶ Sensitive to the actual distribution from which we sample.
▶ Sensitive to how many recursive calls we perform.

Unbiased Random Walk, AST

Biased Random Walk, PAST

Unbiased Random Walk, with two upward calls.
Biased Random Walk, the “wrong” way.

Probabilistic Termination

▶ Examples:
fix f.λx.if x > 0 then if FairCoin then f(x− 1) else f(x+ 1);

fix f.λx.if x > 0 then if BiasedCoin then f(x− 1) else f(x+ 1);

fix f.λx.if BiasedCoin then f(x+ 1) else x.

▶ Non-Examples:
fix f.λx.if FairCoin then f(x− 1) else (f(x+ 1); f(x+ 1));

fix f.λx.if BiasedCoin then f(x+ 1) else f(x− 1);

▶ Probabilistic termination is thus:
▶ Sensitive to the actual distribution from which we sample.
▶ Sensitive to how many recursive calls we perform.

Unbiased Random Walk, AST
Biased Random Walk, PAST

Unbiased Random Walk, with two upward calls.
Biased Random Walk, the “wrong” way.

Probabilistic Termination

▶ Examples:
fix f.λx.if x > 0 then if FairCoin then f(x− 1) else f(x+ 1);

fix f.λx.if x > 0 then if BiasedCoin then f(x− 1) else f(x+ 1);

fix f.λx.if BiasedCoin then f(x+ 1) else x.

▶ Non-Examples:
fix f.λx.if FairCoin then f(x− 1) else (f(x+ 1); f(x+ 1));

fix f.λx.if BiasedCoin then f(x+ 1) else f(x− 1);

▶ Probabilistic termination is thus:
▶ Sensitive to the actual distribution from which we sample.
▶ Sensitive to how many recursive calls we perform.

Unbiased Random Walk, AST
Biased Random Walk, PAST

Unbiased Random Walk, with two upward calls.
Biased Random Walk, the “wrong” way.

Probabilistic Termination

▶ Examples:
fix f.λx.if x > 0 then if FairCoin then f(x− 1) else f(x+ 1);

fix f.λx.if x > 0 then if BiasedCoin then f(x− 1) else f(x+ 1);

fix f.λx.if BiasedCoin then f(x+ 1) else x.

▶ Non-Examples:
fix f.λx.if FairCoin then f(x− 1) else (f(x+ 1); f(x+ 1));

fix f.λx.if BiasedCoin then f(x+ 1) else f(x− 1);

▶ Probabilistic termination is thus:
▶ Sensitive to the actual distribution from which we sample.
▶ Sensitive to how many recursive calls we perform.

Unbiased Random Walk, AST
Biased Random Walk, PAST

Unbiased Random Walk, with two upward calls.

Biased Random Walk, the “wrong” way.

Probabilistic Termination

▶ Examples:
fix f.λx.if x > 0 then if FairCoin then f(x− 1) else f(x+ 1);

fix f.λx.if x > 0 then if BiasedCoin then f(x− 1) else f(x+ 1);

fix f.λx.if BiasedCoin then f(x+ 1) else x.

▶ Non-Examples:
fix f.λx.if FairCoin then f(x− 1) else (f(x+ 1); f(x+ 1));

fix f.λx.if BiasedCoin then f(x+ 1) else f(x− 1);

▶ Probabilistic termination is thus:
▶ Sensitive to the actual distribution from which we sample.
▶ Sensitive to how many recursive calls we perform.

Unbiased Random Walk, AST
Biased Random Walk, PAST

Unbiased Random Walk, with two upward calls.
Biased Random Walk, the “wrong” way.

Probabilistic Termination

▶ Examples:
fix f.λx.if x > 0 then if FairCoin then f(x− 1) else f(x+ 1);

fix f.λx.if x > 0 then if BiasedCoin then f(x− 1) else f(x+ 1);

fix f.λx.if BiasedCoin then f(x+ 1) else x.

▶ Non-Examples:
fix f.λx.if FairCoin then f(x− 1) else (f(x+ 1); f(x+ 1));

fix f.λx.if BiasedCoin then f(x+ 1) else f(x− 1);

▶ Probabilistic termination is thus:
▶ Sensitive to the actual distribution from which we sample.
▶ Sensitive to how many recursive calls we perform.

Unbiased Random Walk, AST
Biased Random Walk, PAST

Unbiased Random Walk, with two upward calls.
Biased Random Walk, the “wrong” way.

Probabilistic Sized Types [DLGrellois2017]
▶ Basic Idea: craft a sized-type system in such a way as to mimick the recursive

structure by a OCBMC.

▶ Judgments.
Γ | ∆ ⊢ M : µ

▶ Typing Fixpoints.
Γ | x : σ ⊢ V : ι[a+ 1] → τ OCBMC (σ) terminates.

Γ | Θ ⊢ fix x.V : ι[ξ] → τ

▶ Typing Probabilistic Choice
Γ | ∆ ⊢ M : τ Γ | Ω ⊢ N : ρ

Γ | 1
2
∆+ 1

2
Ω ⊢ M ⊕N : 1

2
τ + 1

2
ρ

▶ Termination.
▶ By a quantitative nontrivial refinement of reducibility.

λ-variables: every higher-order variable occurs at most once.

fix-variables, which are attributed a finite distribution of types.

A monadic type, namely a finite distribution of types.▶ OCBMC (σ) interprets σ as a one-counter Markov Chain.
▶ This is sufficient for typing:

▶ Unbiased random walks:

σ =

{
1

2
: ι[a+ 2] → τ,

1

2
: ι[a] → τ

}
▶ Biased random walks, with a similar σ.

▶ Reducibility sets are now on the form Redθ,p
τ

▶ p stands for the probability of being reducible.
▶ Reducibility sets are continuous:

Redθ,p
τ =

⋃
q<p

Redθ,q
τ

Probabilistic Sized Types [DLGrellois2017]
▶ Basic Idea: craft a sized-type system in such a way as to mimick the recursive

structure by a OCBMC.
▶ Judgments.

Γ | ∆ ⊢ M : µ

▶ Typing Fixpoints.
Γ | x : σ ⊢ V : ι[a+ 1] → τ OCBMC (σ) terminates.

Γ | Θ ⊢ fix x.V : ι[ξ] → τ

▶ Typing Probabilistic Choice
Γ | ∆ ⊢ M : τ Γ | Ω ⊢ N : ρ

Γ | 1
2
∆+ 1

2
Ω ⊢ M ⊕N : 1

2
τ + 1

2
ρ

▶ Termination.
▶ By a quantitative nontrivial refinement of reducibility.

λ-variables: every higher-order variable occurs at most once.

fix-variables, which are attributed a finite distribution of types.

A monadic type, namely a finite distribution of types.▶ OCBMC (σ) interprets σ as a one-counter Markov Chain.
▶ This is sufficient for typing:

▶ Unbiased random walks:

σ =

{
1

2
: ι[a+ 2] → τ,

1

2
: ι[a] → τ

}
▶ Biased random walks, with a similar σ.

▶ Reducibility sets are now on the form Redθ,p
τ

▶ p stands for the probability of being reducible.
▶ Reducibility sets are continuous:

Redθ,p
τ =

⋃
q<p

Redθ,q
τ

Probabilistic Sized Types [DLGrellois2017]
▶ Basic Idea: craft a sized-type system in such a way as to mimick the recursive

structure by a OCBMC.
▶ Judgments.

Γ | ∆ ⊢ M : µ

▶ Typing Fixpoints.
Γ | x : σ ⊢ V : ι[a+ 1] → τ OCBMC (σ) terminates.

Γ | Θ ⊢ fix x.V : ι[ξ] → τ

▶ Typing Probabilistic Choice
Γ | ∆ ⊢ M : τ Γ | Ω ⊢ N : ρ

Γ | 1
2
∆+ 1

2
Ω ⊢ M ⊕N : 1

2
τ + 1

2
ρ

▶ Termination.
▶ By a quantitative nontrivial refinement of reducibility.

λ-variables: every higher-order variable occurs at most once.

fix-variables, which are attributed a finite distribution of types.

A monadic type, namely a finite distribution of types.▶ OCBMC (σ) interprets σ as a one-counter Markov Chain.
▶ This is sufficient for typing:

▶ Unbiased random walks:

σ =

{
1

2
: ι[a+ 2] → τ,

1

2
: ι[a] → τ

}
▶ Biased random walks, with a similar σ.

▶ Reducibility sets are now on the form Redθ,p
τ

▶ p stands for the probability of being reducible.
▶ Reducibility sets are continuous:

Redθ,p
τ =

⋃
q<p

Redθ,q
τ

Probabilistic Sized Types [DLGrellois2017]
▶ Basic Idea: craft a sized-type system in such a way as to mimick the recursive

structure by a OCBMC.
▶ Judgments.

Γ | ∆ ⊢ M : µ

▶ Typing Fixpoints.
Γ | x : σ ⊢ V : ι[a+ 1] → τ OCBMC (σ) terminates.

Γ | Θ ⊢ fix x.V : ι[ξ] → τ

▶ Typing Probabilistic Choice
Γ | ∆ ⊢ M : τ Γ | Ω ⊢ N : ρ

Γ | 1
2
∆+ 1

2
Ω ⊢ M ⊕N : 1

2
τ + 1

2
ρ

▶ Termination.
▶ By a quantitative nontrivial refinement of reducibility.

λ-variables: every higher-order variable occurs at most once.

fix-variables, which are attributed a finite distribution of types.

A monadic type, namely a finite distribution of types.▶ OCBMC (σ) interprets σ as a one-counter Markov Chain.
▶ This is sufficient for typing:

▶ Unbiased random walks:

σ =

{
1

2
: ι[a+ 2] → τ,

1

2
: ι[a] → τ

}
▶ Biased random walks, with a similar σ.

▶ Reducibility sets are now on the form Redθ,p
τ

▶ p stands for the probability of being reducible.
▶ Reducibility sets are continuous:

Redθ,p
τ =

⋃
q<p

Redθ,q
τ

Probabilistic Sized Types [DLGrellois2017]
▶ Basic Idea: craft a sized-type system in such a way as to mimick the recursive

structure by a OCBMC.
▶ Judgments.

Γ | ∆ ⊢ M : µ

▶ Typing Fixpoints.
Γ | x : σ ⊢ V : ι[a+ 1] → τ OCBMC (σ) terminates.

Γ | Θ ⊢ fix x.V : ι[ξ] → τ

▶ Typing Probabilistic Choice
Γ | ∆ ⊢ M : τ Γ | Ω ⊢ N : ρ

Γ | 1
2
∆+ 1

2
Ω ⊢ M ⊕N : 1

2
τ + 1

2
ρ

▶ Termination.
▶ By a quantitative nontrivial refinement of reducibility.

λ-variables: every higher-order variable occurs at most once.

fix-variables, which are attributed a finite distribution of types.

A monadic type, namely a finite distribution of types.

▶ OCBMC (σ) interprets σ as a one-counter Markov Chain.
▶ This is sufficient for typing:

▶ Unbiased random walks:

σ =

{
1

2
: ι[a+ 2] → τ,

1

2
: ι[a] → τ

}
▶ Biased random walks, with a similar σ.

▶ Reducibility sets are now on the form Redθ,p
τ

▶ p stands for the probability of being reducible.
▶ Reducibility sets are continuous:

Redθ,p
τ =

⋃
q<p

Redθ,q
τ

Probabilistic Sized Types [DLGrellois2017]
▶ Basic Idea: craft a sized-type system in such a way as to mimick the recursive

structure by a OCBMC.
▶ Judgments.

Γ | ∆ ⊢ M : µ

▶ Typing Fixpoints.
Γ | x : σ ⊢ V : ι[a+ 1] → τ OCBMC (σ) terminates.

Γ | Θ ⊢ fix x.V : ι[ξ] → τ

▶ Typing Probabilistic Choice
Γ | ∆ ⊢ M : τ Γ | Ω ⊢ N : ρ

Γ | 1
2
∆+ 1

2
Ω ⊢ M ⊕N : 1

2
τ + 1

2
ρ

▶ Termination.
▶ By a quantitative nontrivial refinement of reducibility.

λ-variables: every higher-order variable occurs at most once.

fix-variables, which are attributed a finite distribution of types.

A monadic type, namely a finite distribution of types.▶ OCBMC (σ) interprets σ as a one-counter Markov Chain.
▶ This is sufficient for typing:

▶ Unbiased random walks:

σ =

{
1

2
: ι[a+ 2] → τ,

1

2
: ι[a] → τ

}
▶ Biased random walks, with a similar σ.

▶ Reducibility sets are now on the form Redθ,p
τ

▶ p stands for the probability of being reducible.
▶ Reducibility sets are continuous:

Redθ,p
τ =

⋃
q<p

Redθ,q
τ

Probabilistic Sized Types [DLGrellois2017]
▶ Basic Idea: craft a sized-type system in such a way as to mimick the recursive

structure by a OCBMC.
▶ Judgments.

Γ | ∆ ⊢ M : µ

▶ Typing Fixpoints.
Γ | x : σ ⊢ V : ι[a+ 1] → τ OCBMC (σ) terminates.

Γ | Θ ⊢ fix x.V : ι[ξ] → τ

▶ Typing Probabilistic Choice
Γ | ∆ ⊢ M : τ Γ | Ω ⊢ N : ρ

Γ | 1
2
∆+ 1

2
Ω ⊢ M ⊕N : 1

2
τ + 1

2
ρ

▶ Termination.
▶ By a quantitative nontrivial refinement of reducibility.

λ-variables: every higher-order variable occurs at most once.

fix-variables, which are attributed a finite distribution of types.

A monadic type, namely a finite distribution of types.

▶ OCBMC (σ) interprets σ as a one-counter Markov Chain.
▶ This is sufficient for typing:

▶ Unbiased random walks:

σ =

{
1

2
: ι[a+ 2] → τ,

1

2
: ι[a] → τ

}
▶ Biased random walks, with a similar σ.

▶ Reducibility sets are now on the form Redθ,p
τ

▶ p stands for the probability of being reducible.
▶ Reducibility sets are continuous:

Redθ,p
τ =

⋃
q<p

Redθ,q
τ

Probabilistic Sized Types [DLGrellois2017]
▶ Basic Idea: craft a sized-type system in such a way as to mimick the recursive

structure by a OCBMC.
▶ Judgments.

Γ | ∆ ⊢ M : µ

▶ Typing Fixpoints.
Γ | x : σ ⊢ V : ι[a+ 1] → τ OCBMC (σ) terminates.

Γ | Θ ⊢ fix x.V : ι[ξ] → τ

▶ Typing Probabilistic Choice
Γ | ∆ ⊢ M : τ Γ | Ω ⊢ N : ρ

Γ | 1
2
∆+ 1

2
Ω ⊢ M ⊕N : 1

2
τ + 1

2
ρ

▶ Termination.
▶ By a quantitative nontrivial refinement of reducibility.

λ-variables: every higher-order variable occurs at most once.

fix-variables, which are attributed a finite distribution of types.

A monadic type, namely a finite distribution of types.▶ OCBMC (σ) interprets σ as a one-counter Markov Chain.
▶ This is sufficient for typing:

▶ Unbiased random walks:

σ =

{
1

2
: ι[a+ 2] → τ,

1

2
: ι[a] → τ

}
▶ Biased random walks, with a similar σ.

▶ Reducibility sets are now on the form Redθ,p
τ

▶ p stands for the probability of being reducible.
▶ Reducibility sets are continuous:

Redθ,p
τ =

⋃
q<p

Redθ,q
τ

Probabilistic Sized Types [DLGrellois2017]
▶ Basic Idea: craft a sized-type system in such a way as to mimick the recursive

structure by a OCBMC.
▶ Judgments.

Γ | ∆ ⊢ M : µ

▶ Typing Fixpoints.
Γ | x : σ ⊢ V : ι[a+ 1] → τ OCBMC (σ) terminates.

Γ | Θ ⊢ fix x.V : ι[ξ] → τ

▶ Typing Probabilistic Choice
Γ | ∆ ⊢ M : τ Γ | Ω ⊢ N : ρ

Γ | 1
2
∆+ 1

2
Ω ⊢ M ⊕N : 1

2
τ + 1

2
ρ

▶ Termination.
▶ By a quantitative nontrivial refinement of reducibility.

λ-variables: every higher-order variable occurs at most once.

fix-variables, which are attributed a finite distribution of types.

A monadic type, namely a finite distribution of types.▶ OCBMC (σ) interprets σ as a one-counter Markov Chain.
▶ This is sufficient for typing:

▶ Unbiased random walks:

σ =

{
1

2
: ι[a+ 2] → τ,

1

2
: ι[a] → τ

}
▶ Biased random walks, with a similar σ.

▶ Reducibility sets are now on the form Redθ,p
τ

▶ p stands for the probability of being reducible.
▶ Reducibility sets are continuous:

Redθ,p
τ =

⋃
q<p

Redθ,q
τ

Probabilistic Sized Types [DLGrellois2017]
▶ Basic Idea: craft a sized-type system in such a way as to mimick the recursive

structure by a OCBMC.
▶ Judgments.

Γ | ∆ ⊢ M : µ

▶ Typing Fixpoints.
Γ | x : σ ⊢ V : ι[a+ 1] → τ OCBMC (σ) terminates.

Γ | Θ ⊢ fix x.V : ι[ξ] → τ

▶ Typing Probabilistic Choice
Γ | ∆ ⊢ M : τ Γ | Ω ⊢ N : ρ

Γ | 1
2
∆+ 1

2
Ω ⊢ M ⊕N : 1

2
τ + 1

2
ρ

▶ Termination.
▶ By a quantitative nontrivial refinement of reducibility.

λ-variables: every higher-order variable occurs at most once.

fix-variables, which are attributed a finite distribution of types.

A monadic type, namely a finite distribution of types.▶ OCBMC (σ) interprets σ as a one-counter Markov Chain.
▶ This is sufficient for typing:

▶ Unbiased random walks:

σ =

{
1

2
: ι[a+ 2] → τ,

1

2
: ι[a] → τ

}
▶ Biased random walks, with a similar σ.

▶ Reducibility sets are now on the form Redθ,p
τ

▶ p stands for the probability of being reducible.
▶ Reducibility sets are continuous:

Redθ,p
τ =

⋃
q<p

Redθ,q
τ

Deterministic Intersection Types
▶ Question: what are simple types missing as a way to precisely capture termination?

▶ Many normalizing terms cannot be typed, e.g.:

∆ = λx.xx ∆(λx.x).

▶ Types
τ ::= A → B A ::= [τ1, . . . , τn]

▶ Typing Rules

x : A ⊢ x : A

Γ, x : A ⊢ M : B

Γ ⊢ λx.M : A → B

(Γi ⊢ V : τi)i⊎
Γi ⊢ V : [τi]i

Γ ⊢ V : [A → B] ∆ ⊢ W : A

Γ ⊎∆ ⊢ VW : B

Γ ⊢ M : A ∆, x : A ⊢ N : B

Γ ⊎∆ ⊢ let x = M in N : B

▶ Soundness for Termination
▶ By reducibility.

▶ Completeness for Termination
▶ By subject expansion, the dual of subject reduction.

Deterministic Intersection Types
▶ Question: what are simple types missing as a way to precisely capture termination?
▶ Many normalizing terms cannot be typed, e.g.:

∆ = λx.xx ∆(λx.x).

▶ Types
τ ::= A → B A ::= [τ1, . . . , τn]

▶ Typing Rules

x : A ⊢ x : A

Γ, x : A ⊢ M : B

Γ ⊢ λx.M : A → B

(Γi ⊢ V : τi)i⊎
Γi ⊢ V : [τi]i

Γ ⊢ V : [A → B] ∆ ⊢ W : A

Γ ⊎∆ ⊢ VW : B

Γ ⊢ M : A ∆, x : A ⊢ N : B

Γ ⊎∆ ⊢ let x = M in N : B

▶ Soundness for Termination
▶ By reducibility.

▶ Completeness for Termination
▶ By subject expansion, the dual of subject reduction.

Deterministic Intersection Types
▶ Question: what are simple types missing as a way to precisely capture termination?
▶ Many normalizing terms cannot be typed, e.g.:

∆ = λx.xx ∆(λx.x).

▶ Types
τ ::= A → B A ::= [τ1, . . . , τn]

▶ Typing Rules

x : A ⊢ x : A

Γ, x : A ⊢ M : B

Γ ⊢ λx.M : A → B

(Γi ⊢ V : τi)i⊎
Γi ⊢ V : [τi]i

Γ ⊢ V : [A → B] ∆ ⊢ W : A

Γ ⊎∆ ⊢ VW : B

Γ ⊢ M : A ∆, x : A ⊢ N : B

Γ ⊎∆ ⊢ let x = M in N : B

▶ Soundness for Termination
▶ By reducibility.

▶ Completeness for Termination
▶ By subject expansion, the dual of subject reduction.

Deterministic Intersection Types
▶ Question: what are simple types missing as a way to precisely capture termination?
▶ Many normalizing terms cannot be typed, e.g.:

∆ = λx.xx ∆(λx.x).

▶ Types
τ ::= A → B A ::= [τ1, . . . , τn]

▶ Typing Rules

x : A ⊢ x : A

Γ, x : A ⊢ M : B

Γ ⊢ λx.M : A → B

(Γi ⊢ V : τi)i⊎
Γi ⊢ V : [τi]i

Γ ⊢ V : [A → B] ∆ ⊢ W : A

Γ ⊎∆ ⊢ VW : B

Γ ⊢ M : A ∆, x : A ⊢ N : B

Γ ⊎∆ ⊢ let x = M in N : B

▶ Soundness for Termination
▶ By reducibility.

▶ Completeness for Termination
▶ By subject expansion, the dual of subject reduction.

Deterministic Intersection Types
▶ Question: what are simple types missing as a way to precisely capture termination?
▶ Many normalizing terms cannot be typed, e.g.:

∆ = λx.xx ∆(λx.x).

▶ Types
τ ::= A → B A ::= [τ1, . . . , τn]

▶ Typing Rules

x : A ⊢ x : A

Γ, x : A ⊢ M : B

Γ ⊢ λx.M : A → B

(Γi ⊢ V : τi)i⊎
Γi ⊢ V : [τi]i

Γ ⊢ V : [A → B] ∆ ⊢ W : A

Γ ⊎∆ ⊢ VW : B

Γ ⊢ M : A ∆, x : A ⊢ N : B

Γ ⊎∆ ⊢ let x = M in N : B

▶ Soundness for Termination
▶ By reducibility.

▶ Completeness for Termination
▶ By subject expansion, the dual of subject reduction.

Deterministic Intersection Types
▶ Question: what are simple types missing as a way to precisely capture termination?
▶ Many normalizing terms cannot be typed, e.g.:

∆ = λx.xx ∆(λx.x).

▶ Types
τ ::= A → B A ::= [τ1, . . . , τn]

▶ Typing Rules

x : A ⊢ x : A

Γ, x : A ⊢ M : B

Γ ⊢ λx.M : A → B

(Γi ⊢ V : τi)i⊎
Γi ⊢ V : [τi]i

Γ ⊢ V : [A → B] ∆ ⊢ W : A

Γ ⊎∆ ⊢ VW : B

Γ ⊢ M : A ∆, x : A ⊢ N : B

Γ ⊎∆ ⊢ let x = M in N : B

▶ Soundness for Termination
▶ By reducibility.

▶ Completeness for Termination
▶ By subject expansion, the dual of subject reduction.

Going Probabilistic: What Do We Need?
▶ Terms can have a Type Probabilistically , for example in

Ω⊕ (λx.x)

▶ This can be captured by switching from types to multidistributions of types, namely
expressions in the form ⟨p1τ1, . . . , pnτn⟩, where

∑
pi ≤ 1.

A ̸= 1
2A+ 1

2A

▶ Functions can use their Arguments Probabilistically , for example in

λx.(xx)⊕ I

▶ This can be captured by switching from multisets to scaled multisets of types, namely
expressions in the form [q1.τ1, . . . , qn.τn]. Here

∑
qi ∈ Q+.

▶ Summing up. . .

τ ::= A → A A ::= [qi.τi]1≤i≤n A ::= ⟨piAi⟩1≤i≤n

Arrow TypesIntersection Types Type Distributions

Going Probabilistic: What Do We Need?
▶ Terms can have a Type Probabilistically , for example in

Ω⊕ (λx.x)

▶ This can be captured by switching from types to multidistributions of types, namely
expressions in the form ⟨p1τ1, . . . , pnτn⟩, where

∑
pi ≤ 1.

A ̸= 1
2A+ 1

2A

▶ Functions can use their Arguments Probabilistically , for example in

λx.(xx)⊕ I

▶ This can be captured by switching from multisets to scaled multisets of types, namely
expressions in the form [q1.τ1, . . . , qn.τn]. Here

∑
qi ∈ Q+.

▶ Summing up. . .

τ ::= A → A A ::= [qi.τi]1≤i≤n A ::= ⟨piAi⟩1≤i≤n

Arrow TypesIntersection Types Type Distributions

Going Probabilistic: What Do We Need?
▶ Terms can have a Type Probabilistically , for example in

Ω⊕ (λx.x)

▶ This can be captured by switching from types to multidistributions of types, namely
expressions in the form ⟨p1τ1, . . . , pnτn⟩, where

∑
pi ≤ 1.

A ̸= 1
2A+ 1

2A

▶ Functions can use their Arguments Probabilistically , for example in

λx.(xx)⊕ I

▶ This can be captured by switching from multisets to scaled multisets of types, namely
expressions in the form [q1.τ1, . . . , qn.τn]. Here

∑
qi ∈ Q+.

▶ Summing up. . .

τ ::= A → A A ::= [qi.τi]1≤i≤n A ::= ⟨piAi⟩1≤i≤n

Arrow TypesIntersection Types Type Distributions

Going Probabilistic: What Do We Need?
▶ Terms can have a Type Probabilistically , for example in

Ω⊕ (λx.x)

▶ This can be captured by switching from types to multidistributions of types, namely
expressions in the form ⟨p1τ1, . . . , pnτn⟩, where

∑
pi ≤ 1.

A ̸= 1
2A+ 1

2A

▶ Functions can use their Arguments Probabilistically , for example in

λx.(xx)⊕ I

▶ This can be captured by switching from multisets to scaled multisets of types, namely
expressions in the form [q1.τ1, . . . , qn.τn]. Here

∑
qi ∈ Q+.

▶ Summing up. . .

τ ::= A → A A ::= [qi.τi]1≤i≤n A ::= ⟨piAi⟩1≤i≤n

Arrow TypesIntersection Types Type Distributions

Going Probabilistic: What Do We Need?
▶ Terms can have a Type Probabilistically , for example in

Ω⊕ (λx.x)

▶ This can be captured by switching from types to multidistributions of types, namely
expressions in the form ⟨p1τ1, . . . , pnτn⟩, where

∑
pi ≤ 1.

A ̸= 1
2A+ 1

2A

▶ Functions can use their Arguments Probabilistically , for example in

λx.(xx)⊕ I

▶ This can be captured by switching from multisets to scaled multisets of types, namely
expressions in the form [q1.τ1, . . . , qn.τn]. Here

∑
qi ∈ Q+.

▶ Summing up. . .

τ ::= A → A A ::= [qi.τi]1≤i≤n A ::= ⟨piAi⟩1≤i≤n

Arrow TypesIntersection Types Type Distributions

Going Probabilistic: What Do We Need?
▶ Terms can have a Type Probabilistically , for example in

Ω⊕ (λx.x)

▶ This can be captured by switching from types to multidistributions of types, namely
expressions in the form ⟨p1τ1, . . . , pnτn⟩, where

∑
pi ≤ 1.

A ̸= 1
2A+ 1

2A

▶ Functions can use their Arguments Probabilistically , for example in

λx.(xx)⊕ I

▶ This can be captured by switching from multisets to scaled multisets of types, namely
expressions in the form [q1.τ1, . . . , qn.τn]. Here

∑
qi ∈ Q+.

▶ Summing up. . .

τ ::= A → A A ::= [qi.τi]1≤i≤n A ::= ⟨piAi⟩1≤i≤n

Arrow TypesIntersection Types Type Distributions

Going Probabilistic: What Do We Need?
▶ Terms can have a Type Probabilistically , for example in

Ω⊕ (λx.x)

▶ This can be captured by switching from types to multidistributions of types, namely
expressions in the form ⟨p1τ1, . . . , pnτn⟩, where

∑
pi ≤ 1.

A ̸= 1
2A+ 1

2A

▶ Functions can use their Arguments Probabilistically , for example in

λx.(xx)⊕ I

▶ This can be captured by switching from multisets to scaled multisets of types, namely
expressions in the form [q1.τ1, . . . , qn.τn]. Here

∑
qi ∈ Q+.

▶ Summing up. . .

τ ::= A → A A ::= [qi.τi]1≤i≤n A ::= ⟨piAi⟩1≤i≤n

Arrow Types

Intersection Types Type Distributions

Going Probabilistic: What Do We Need?
▶ Terms can have a Type Probabilistically , for example in

Ω⊕ (λx.x)

▶ This can be captured by switching from types to multidistributions of types, namely
expressions in the form ⟨p1τ1, . . . , pnτn⟩, where

∑
pi ≤ 1.

A ̸= 1
2A+ 1

2A

▶ Functions can use their Arguments Probabilistically , for example in

λx.(xx)⊕ I

▶ This can be captured by switching from multisets to scaled multisets of types, namely
expressions in the form [q1.τ1, . . . , qn.τn]. Here

∑
qi ∈ Q+.

▶ Summing up. . .

τ ::= A → A A ::= [qi.τi]1≤i≤n A ::= ⟨piAi⟩1≤i≤n

Arrow Types

Intersection Types

Type Distributions

Going Probabilistic: What Do We Need?
▶ Terms can have a Type Probabilistically , for example in

Ω⊕ (λx.x)

▶ This can be captured by switching from types to multidistributions of types, namely
expressions in the form ⟨p1τ1, . . . , pnτn⟩, where

∑
pi ≤ 1.

A ̸= 1
2A+ 1

2A

▶ Functions can use their Arguments Probabilistically , for example in

λx.(xx)⊕ I

▶ This can be captured by switching from multisets to scaled multisets of types, namely
expressions in the form [q1.τ1, . . . , qn.τn]. Here

∑
qi ∈ Q+.

▶ Summing up. . .

τ ::= A → A A ::= [qi.τi]1≤i≤n A ::= ⟨piAi⟩1≤i≤n

Arrow TypesIntersection Types

Type Distributions

Typing Rules [DLFR2021]

x : A

0

⊢ x : A

0

⊢ M : 0

Γ, x : A

w

⊢ M : B

Γ

w+1

⊢ λx.M : A → B

Γ

w

⊢ V : [A → B] ∆

v

⊢ W : A

Γ ⊎∆

w+v

⊢ VW : B

Γ

w

⊢ M : A ∆

v

⊢ N : B

1
2
Γ ⊎ 1

2
∆

1
2
w+ 1

2
v+1

⊢ M ⊕N : 1
2
A+ 1

2
B

Γ

w

⊢ M : ⟨pkAk⟩k (∆k, x : Ak

vk

⊢ N : Bk)k

Γ ⊎
⊎

k ∆k

w+
∑

pkvk+1

⊢ let x = M in N :
∑

k pkBk

Γ

w

⊢ V : A

Γ

w

⊢ V : ⟨A⟩

{Γi

wi

⊢ V : τi}i⊎
Γi

∑
qiwi

⊢ V : [qi.τi]i

Typing judgements are attributed a
weight.

▶ The body N needs to be typed
several times.

▶ The resulting type is obtained
as a mixture of the various
types of N .

Typing Rules [DLFR2021]

x : A
0

⊢ x : A
0

⊢ M : 0

Γ, x : A
w

⊢ M : B

Γ
w+1

⊢ λx.M : A → B

Γ
w

⊢ V : [A → B] ∆
v

⊢ W : A

Γ ⊎∆
w+v

⊢ VW : B

Γ
w

⊢ M : A ∆
v

⊢ N : B

1
2
Γ ⊎ 1

2
∆

1
2
w+ 1

2
v+1

⊢ M ⊕N : 1
2
A+ 1

2
B

Γ
w

⊢ M : ⟨pkAk⟩k (∆k, x : Ak

vk
⊢ N : Bk)k

Γ ⊎
⊎

k ∆k

w+
∑

pkvk+1

⊢ let x = M in N :
∑

k pkBk

Γ
w

⊢ V : A

Γ
w

⊢ V : ⟨A⟩

{Γi

wi

⊢ V : τi}i⊎
Γi

∑
qiwi

⊢ V : [qi.τi]i

Typing judgements are attributed a
weight.

▶ The body N needs to be typed
several times.

▶ The resulting type is obtained
as a mixture of the various
types of N .

Typing Rules [DLFR2021]

x : A
0

⊢ x : A
0

⊢ M : 0

Γ, x : A
w

⊢ M : B

Γ
w+1

⊢ λx.M : A → B

Γ
w

⊢ V : [A → B] ∆
v

⊢ W : A

Γ ⊎∆
w+v

⊢ VW : B

Γ
w

⊢ M : A ∆
v

⊢ N : B

1
2
Γ ⊎ 1

2
∆

1
2
w+ 1

2
v+1

⊢ M ⊕N : 1
2
A+ 1

2
B

Γ
w

⊢ M : ⟨pkAk⟩k (∆k, x : Ak

vk
⊢ N : Bk)k

Γ ⊎
⊎

k ∆k

w+
∑

pkvk+1

⊢ let x = M in N :
∑

k pkBk

Γ
w

⊢ V : A

Γ
w

⊢ V : ⟨A⟩

{Γi

wi

⊢ V : τi}i⊎
Γi

∑
qiwi

⊢ V : [qi.τi]i

Typing judgements are attributed a
weight.

▶ The body N needs to be typed
several times.

▶ The resulting type is obtained
as a mixture of the various
types of N .

An AST Example

M = NN, where N = λx.xx⊕ I

⊢ N :

(
[] →

〈
1

2
[]

〉)
= τ1 ⊢ N : [] ⊢2 M :

〈
1

2
[]

〉

⊢ N :

([
1

2
.τ1

]
→
〈
1

2
[],

1

4
[]

〉)
= τ2 ⊢ N :

[
1

2
.τ1

]
⊢3 M :

〈
1

2
[],

1

4
[]

〉
...

⊢ N :

([
1

2i
.τi

]
i<n

→
〈

1

2i
[]

〉
i≤n

)
= τn ⊢ N :

[
1

2i
.τi

]
i<n

⊢4− 1
2n−2 M :

〈
1

2i
[]

〉
i≤n

An AST Example

M = NN, where N = λx.xx⊕ I

⊢ N :

(
[] →

〈
1

2
[]

〉)
= τ1 ⊢ N : [] ⊢2 M :

〈
1

2
[]

〉

⊢ N :

([
1

2
.τ1

]
→
〈
1

2
[],

1

4
[]

〉)
= τ2 ⊢ N :

[
1

2
.τ1

]
⊢3 M :

〈
1

2
[],

1

4
[]

〉
...

⊢ N :

([
1

2i
.τi

]
i<n

→
〈

1

2i
[]

〉
i≤n

)
= τn ⊢ N :

[
1

2i
.τi

]
i<n

⊢4− 1
2n−2 M :

〈
1

2i
[]

〉
i≤n

An AST Example

M = NN, where N = λx.xx⊕ I

⊢ N :

(
[] →

〈
1

2
[]

〉)
= τ1 ⊢ N : [] ⊢2 M :

〈
1

2
[]

〉
⊢ N :

([
1

2
.τ1

]
→
〈
1

2
[],

1

4
[]

〉)
= τ2 ⊢ N :

[
1

2
.τ1

]
⊢3 M :

〈
1

2
[],

1

4
[]

〉

...

⊢ N :

([
1

2i
.τi

]
i<n

→
〈

1

2i
[]

〉
i≤n

)
= τn ⊢ N :

[
1

2i
.τi

]
i<n

⊢4− 1
2n−2 M :

〈
1

2i
[]

〉
i≤n

An AST Example

M = NN, where N = λx.xx⊕ I

⊢ N :

(
[] →

〈
1

2
[]

〉)
= τ1 ⊢ N : [] ⊢2 M :

〈
1

2
[]

〉
⊢ N :

([
1

2
.τ1

]
→
〈
1

2
[],

1

4
[]

〉)
= τ2 ⊢ N :

[
1

2
.τ1

]
⊢3 M :

〈
1

2
[],

1

4
[]

〉
...

⊢ N :

([
1

2i
.τi

]
i<n

→
〈

1

2i
[]

〉
i≤n

)
= τn ⊢ N :

[
1

2i
.τi

]
i<n

⊢4− 1
2n−2 M :

〈
1

2i
[]

〉
i≤n

A not-AST Example

Ω = ∆∆, where ∆ = λx.xx

⊢ ∆ : ⟨[] → ⟨⟩⟩ = ρ1 ⊢ ∆ : [] ⊢1 Ω : ⟨⟩
⊢ ∆ : ⟨[1.ρ1] → ⟨⟩⟩ = ρ2 ⊢ ∆ : [1.ρ1] ⊢2 Ω : ⟨⟩

...

⊢ ∆ :
〈
[1.ρi]i<n → ⟨⟩

〉
= ρn ⊢ ∆ : [1.ρi]i<n ⊢n Ω : ⟨⟩

AST and PAST, Precisely Characterized

Pr[M ↓] = sup
⊢M :A∈T

||A||

ETime(M) = sup
w
⊢M :0

w

T = {A | A = ⟨pi[]⟩i}
||⟨piAi⟩i|| =

∑
i pi

Why?
▶ Subject Reduction.

▶ If ⊢ M : A and M rewrites to Ni with probability
pi, then ⊢ Ni : Bi such that A =

∑
i piBi.

▶ This implies that Pr[M ↓] ≥ ||A||.
▶ Subject Expansion, which implies that

Pr[M ↓] ≤ ||A||.

0 = ⟨⟩

Why?
As above, but weighted versions of reduction
and expansion theorems are needed.

AST and PAST, Precisely Characterized

Pr[M ↓] = sup
⊢M :A∈T

||A||

ETime(M) = sup
w
⊢M :0

wT = {A | A = ⟨pi[]⟩i}

||⟨piAi⟩i|| =
∑

i pi

Why?
▶ Subject Reduction.

▶ If ⊢ M : A and M rewrites to Ni with probability
pi, then ⊢ Ni : Bi such that A =

∑
i piBi.

▶ This implies that Pr[M ↓] ≥ ||A||.
▶ Subject Expansion, which implies that

Pr[M ↓] ≤ ||A||.

0 = ⟨⟩

Why?
As above, but weighted versions of reduction
and expansion theorems are needed.

AST and PAST, Precisely Characterized

Pr[M ↓] = sup
⊢M :A∈T

||A||

ETime(M) = sup
w
⊢M :0

w

T = {A | A = ⟨pi[]⟩i}

||⟨piAi⟩i|| =
∑

i pi

Why?
▶ Subject Reduction.

▶ If ⊢ M : A and M rewrites to Ni with probability
pi, then ⊢ Ni : Bi such that A =

∑
i piBi.

▶ This implies that Pr[M ↓] ≥ ||A||.
▶ Subject Expansion, which implies that

Pr[M ↓] ≤ ||A||.

0 = ⟨⟩

Why?
As above, but weighted versions of reduction
and expansion theorems are needed.

AST and PAST, Precisely Characterized

Pr[M ↓] = sup
⊢M :A∈T

||A||

ETime(M) = sup
w
⊢M :0

w

T = {A | A = ⟨pi[]⟩i}
||⟨piAi⟩i|| =

∑
i pi

Why?
▶ Subject Reduction.

▶ If ⊢ M : A and M rewrites to Ni with probability
pi, then ⊢ Ni : Bi such that A =

∑
i piBi.

▶ This implies that Pr[M ↓] ≥ ||A||.
▶ Subject Expansion, which implies that

Pr[M ↓] ≤ ||A||.

0 = ⟨⟩

Why?
As above, but weighted versions of reduction
and expansion theorems are needed.

AST and PAST, Precisely Characterized

Pr[M ↓] = sup
⊢M :A∈T

||A||

ETime(M) = sup
w
⊢M :0

w

T = {A | A = ⟨pi[]⟩i}
||⟨piAi⟩i|| =

∑
i pi

Why?
▶ Subject Reduction.

▶ If ⊢ M : A and M rewrites to Ni with probability
pi, then ⊢ Ni : Bi such that A =

∑
i piBi.

▶ This implies that Pr[M ↓] ≥ ||A||.
▶ Subject Expansion, which implies that

Pr[M ↓] ≤ ||A||.

0 = ⟨⟩

Why?
As above, but weighted versions of reduction
and expansion theorems are needed.

AST and PAST, Precisely Characterized

Pr[M ↓] = sup
⊢M :A∈T

||A||

ETime(M) = sup
w
⊢M :0

w

T = {A | A = ⟨pi[]⟩i}
||⟨piAi⟩i|| =

∑
i pi

Why?
▶ Subject Reduction.

▶ If ⊢ M : A and M rewrites to Ni with probability
pi, then ⊢ Ni : Bi such that A =

∑
i piBi.

▶ This implies that Pr[M ↓] ≥ ||A||.
▶ Subject Expansion, which implies that

Pr[M ↓] ≤ ||A||.

0 = ⟨⟩

Why?
As above, but weighted versions of reduction
and expansion theorems are needed.

Other Approaches
▶ Linear Dependent Types [ADLG2019]

▶ Intersection Types are complete, but only for computations .
▶ In deterministic linear dependent types [DLG2011], one is relatively complete for

first-order functions.
▶ How about probabilism?

▶ Monadic types can be made indexed:

µ ::= {σ[i] : p[i]}i∈I

▶ Subtyping is coupling-based.
▶ Nontrivial examples like RandomizedQuicksort and CouponCollector can be captured.
▶ Unfortunately, relative completeness is hard to achieve.

▶ Probabilistic Termination in Rewriting [ADLY2019, Faggian2022,
FaggianGuerrieri2022];

▶ Higher-Order Model Checking [KDLG2020];
▶ CPS Expectation Transformers [ADLB2021] ;
▶ Expectations from Probabilistic Coherent Spaces [Ehrhard2022];
▶ Curry-Howard Correspondence with Counting Propositional Logic

[ADLP2022].
▶

Other Approaches
▶ Linear Dependent Types [ADLG2019]

▶ Intersection Types are complete, but only for computations .
▶ In deterministic linear dependent types [DLG2011], one is relatively complete for

first-order functions.
▶ How about probabilism?

▶ Monadic types can be made indexed:

µ ::= {σ[i] : p[i]}i∈I

▶ Subtyping is coupling-based.
▶ Nontrivial examples like RandomizedQuicksort and CouponCollector can be captured.
▶ Unfortunately, relative completeness is hard to achieve.

▶ Probabilistic Termination in Rewriting [ADLY2019, Faggian2022,
FaggianGuerrieri2022];

▶ Higher-Order Model Checking [KDLG2020];
▶ CPS Expectation Transformers [ADLB2021] ;
▶ Expectations from Probabilistic Coherent Spaces [Ehrhard2022];
▶ Curry-Howard Correspondence with Counting Propositional Logic

[ADLP2022].
▶

Other Approaches
▶ Linear Dependent Types [ADLG2019]

▶ Intersection Types are complete, but only for computations .
▶ In deterministic linear dependent types [DLG2011], one is relatively complete for

first-order functions.
▶ How about probabilism?

▶ Monadic types can be made indexed:

µ ::= {σ[i] : p[i]}i∈I

▶ Subtyping is coupling-based.
▶ Nontrivial examples like RandomizedQuicksort and CouponCollector can be captured.
▶ Unfortunately, relative completeness is hard to achieve.

▶ Probabilistic Termination in Rewriting [ADLY2019, Faggian2022,
FaggianGuerrieri2022];

▶ Higher-Order Model Checking [KDLG2020];

▶ CPS Expectation Transformers [ADLB2021] ;
▶ Expectations from Probabilistic Coherent Spaces [Ehrhard2022];
▶ Curry-Howard Correspondence with Counting Propositional Logic

[ADLP2022].
▶

Other Approaches
▶ Linear Dependent Types [ADLG2019]

▶ Intersection Types are complete, but only for computations .
▶ In deterministic linear dependent types [DLG2011], one is relatively complete for

first-order functions.
▶ How about probabilism?

▶ Monadic types can be made indexed:

µ ::= {σ[i] : p[i]}i∈I

▶ Subtyping is coupling-based.
▶ Nontrivial examples like RandomizedQuicksort and CouponCollector can be captured.
▶ Unfortunately, relative completeness is hard to achieve.

▶ Probabilistic Termination in Rewriting [ADLY2019, Faggian2022,
FaggianGuerrieri2022];

▶ Higher-Order Model Checking [KDLG2020];
▶ CPS Expectation Transformers [ADLB2021] ;

▶ Expectations from Probabilistic Coherent Spaces [Ehrhard2022];
▶ Curry-Howard Correspondence with Counting Propositional Logic

[ADLP2022].
▶

Other Approaches
▶ Linear Dependent Types [ADLG2019]

▶ Intersection Types are complete, but only for computations .
▶ In deterministic linear dependent types [DLG2011], one is relatively complete for

first-order functions.
▶ How about probabilism?

▶ Monadic types can be made indexed:

µ ::= {σ[i] : p[i]}i∈I

▶ Subtyping is coupling-based.
▶ Nontrivial examples like RandomizedQuicksort and CouponCollector can be captured.
▶ Unfortunately, relative completeness is hard to achieve.

▶ Probabilistic Termination in Rewriting [ADLY2019, Faggian2022,
FaggianGuerrieri2022];

▶ Higher-Order Model Checking [KDLG2020];
▶ CPS Expectation Transformers [ADLB2021] ;
▶ Expectations from Probabilistic Coherent Spaces [Ehrhard2022];

▶ Curry-Howard Correspondence with Counting Propositional Logic
[ADLP2022].

▶

Other Approaches
▶ Linear Dependent Types [ADLG2019]

▶ Intersection Types are complete, but only for computations .
▶ In deterministic linear dependent types [DLG2011], one is relatively complete for

first-order functions.
▶ How about probabilism?

▶ Monadic types can be made indexed:

µ ::= {σ[i] : p[i]}i∈I

▶ Subtyping is coupling-based.
▶ Nontrivial examples like RandomizedQuicksort and CouponCollector can be captured.
▶ Unfortunately, relative completeness is hard to achieve.

▶ Probabilistic Termination in Rewriting [ADLY2019, Faggian2022,
FaggianGuerrieri2022];

▶ Higher-Order Model Checking [KDLG2020];
▶ CPS Expectation Transformers [ADLB2021] ;
▶ Expectations from Probabilistic Coherent Spaces [Ehrhard2022];
▶ Curry-Howard Correspondence with Counting Propositional Logic

[ADLP2022].

▶

Other Approaches
▶ Linear Dependent Types [ADLG2019]

▶ Intersection Types are complete, but only for computations .
▶ In deterministic linear dependent types [DLG2011], one is relatively complete for

first-order functions.
▶ How about probabilism?

▶ Monadic types can be made indexed:

µ ::= {σ[i] : p[i]}i∈I

▶ Subtyping is coupling-based.
▶ Nontrivial examples like RandomizedQuicksort and CouponCollector can be captured.
▶ Unfortunately, relative completeness is hard to achieve.

▶ Probabilistic Termination in Rewriting [ADLY2019, Faggian2022,
FaggianGuerrieri2022];

▶ Higher-Order Model Checking [KDLG2020];
▶ CPS Expectation Transformers [ADLB2021] ;
▶ Expectations from Probabilistic Coherent Spaces [Ehrhard2022];
▶ Curry-Howard Correspondence with Counting Propositional Logic

[ADLP2022].
▶

Part IV

Relational Reasoning

Examples

I ⊕ Ω vs. I

I ⊕ Ω vs. Ω

(λx.I)⊕ (λx.Ω) vs. λx.I ⊕ Ω

Not Context Equivalent: C = [·].
Context Distance? Consider Cn = (λx. x . . . x︸ ︷︷ ︸

n times
)[·].

Not Context Equivalent: C = [·].
Context Distance? Cannot easily amplify.

Not Context Equivalent in CBV: C = (λx.x(xI))[·]
Apparently Context Equivalent in CBN.

Examples

I ⊕ Ω vs. I

I ⊕ Ω vs. Ω

(λx.I)⊕ (λx.Ω) vs. λx.I ⊕ Ω

Not Context Equivalent: C = [·].
Context Distance? Consider Cn = (λx. x . . . x︸ ︷︷ ︸

n times
)[·].

Not Context Equivalent: C = [·].
Context Distance? Cannot easily amplify.

Not Context Equivalent in CBV: C = (λx.x(xI))[·]
Apparently Context Equivalent in CBN.

Examples

I ⊕ Ω vs. I

I ⊕ Ω vs. Ω

(λx.I)⊕ (λx.Ω) vs. λx.I ⊕ Ω

Not Context Equivalent: C = [·].
Context Distance? Consider Cn = (λx. x . . . x︸ ︷︷ ︸

n times
)[·].

Not Context Equivalent: C = [·].
Context Distance? Cannot easily amplify.

Not Context Equivalent in CBV: C = (λx.x(xI))[·]
Apparently Context Equivalent in CBN.

Examples

I ⊕ Ω vs. I

I ⊕ Ω vs. Ω

(λx.I)⊕ (λx.Ω) vs. λx.I ⊕ Ω

Not Context Equivalent: C = [·].
Context Distance? Consider Cn = (λx. x . . . x︸ ︷︷ ︸

n times
)[·].

Not Context Equivalent: C = [·].
Context Distance? Cannot easily amplify.

Not Context Equivalent in CBV: C = (λx.x(xI))[·]
Apparently Context Equivalent in CBN.

Examples

I ⊕ Ω vs. I

I ⊕ Ω vs. Ω

(λx.I)⊕ (λx.Ω) vs. λx.I ⊕ Ω

Not Context Equivalent: C = [·].
Context Distance? Consider Cn = (λx. x . . . x︸ ︷︷ ︸

n times
)[·].

Not Context Equivalent: C = [·].
Context Distance? Cannot easily amplify.

Not Context Equivalent in CBV: C = (λx.x(xI))[·]
Apparently Context Equivalent in CBN.

Examples

I ⊕ Ω vs. I

I ⊕ Ω vs. Ω

(λx.I)⊕ (λx.Ω) vs. λx.I ⊕ Ω

Not Context Equivalent: C = [·].
Context Distance? Consider Cn = (λx. x . . . x︸ ︷︷ ︸

n times
)[·].

Not Context Equivalent: C = [·].
Context Distance? Cannot easily amplify.

Not Context Equivalent in CBV: C = (λx.x(xI))[·]
Apparently Context Equivalent in CBN.

A Labelled Markov Chain for Λ⊕

Terms

Values

M V

W

Z

...

eval, JMK(V)

eval, JMK(W)

eval, JMK(Z)

A Labelled Markov Chain for Λ⊕

Terms Values

M V

W

Z

...

eval, JMK(V)

eval, JMK(W)

eval, JMK(Z)

A Labelled Markov Chain for Λ⊕

Terms Values

M

V

W

Z

...

eval, JMK(V)

eval, JMK(W)

eval, JMK(Z)

A Labelled Markov Chain for Λ⊕

Terms Values

M V

W

Z

...

eval, JMK(V)

eval, JMK(W)

eval, JMK(Z)

A Labelled Markov Chain for Λ⊕

Terms Values

M V

W

Z

...

eval, JMK(V)

eval, JMK(W)

eval, JMK(Z)

λx.N

A Labelled Markov Chain for Λ⊕

Terms Values

M V

W

Z

...

eval, JMK(V)

eval, JMK(W)

eval, JMK(Z)

λx.NN{W/x}
W , 1

Probabilistic Applicative Bisimulation

λx.M R λx.N

M{L/x}

L

N{L/x}

L

R

M R N

JMKeval

JNKeval

JMK(E) JNK(E)=

Probabilistic Applicative Bisimulation

λx.M R λx.N M{L/x}

L

N{L/x}

L

R

M R N

JMKeval

JNKeval

JMK(E) JNK(E)=

Probabilistic Applicative Bisimulation

λx.M R λx.N M{L/x}

L

N{L/x}

L

R

M R N

JMKeval

JNKeval

JMK(E) JNK(E)=

Probabilistic Applicative Bisimulation

λx.M R λx.N M{L/x}

L

N{L/x}

L

R

M R N

JMKeval

JNKeval

JMK(E) JNK(E)=

Probabilistic Applicative Bisimulation

λx.M R λx.N M{L/x}

L

N{L/x}

L

R

M R N

JMKeval

JNKeval

JMK(E) JNK(E)=

Probabilistic Applicative Bisimulation

λx.M R λx.N M{L/x}

L

N{L/x}

L

R

M R N

JMKeval

JNKeval

JMK(E) JNK(E)=

Probabilistic Applicative Bisimulation

λx.M R λx.N M{L/x}

L

N{L/x}

L

R

M R N

JMKeval

JNKeval

JMK(E) JNK(E)=

Probabilistic Applicative Bisimulation

λx.M R λx.N M{L/x}

L

N{L/x}

L

R

M R N

JMKeval

JNKeval

JMK(E)

JNK(E)=

Probabilistic Applicative Bisimulation

λx.M R λx.N M{L/x}

L

N{L/x}

L

R

M R N

JMKeval

JNKeval

JMK(E) JNK(E)

=

Probabilistic Applicative Bisimulation

λx.M R λx.N M{L/x}

L

N{L/x}

L

R

M R N

JMKeval

JNKeval

JMK(E) JNK(E)=

Applicative Bisimilarity vs. Context Equivalence

▶ Bisimilarity: the union ∼ of all bisimulation relations.
▶ Is it that ∼ is included in ≡? How to prove it?
▶ Natural strategy: is ∼ a congruence?

▶ If this is the case:

M ∼ N =⇒ C[M] ∼ C[N] =⇒
∑

JC[M]K =
∑

JC[N]K

=⇒ M ≡ N.

▶ This is a necessary sanity check anyway.
▶ The naïve proof by induction fails, due to application: from M ∼ N , one cannot

directly conclude that LM ∼ LN .

Howe’s Technique

R RH

⊆

RH is a
Congruence
whenever R is
an equivalence

∼H is a
Congruence

∼ ∼H

⊇

Key Lemma

Howe’s Technique

R RH

⊆

RH is a
Congruence
whenever R is
an equivalence

∼H is a
Congruence

∼ ∼H

⊇

Key Lemma

Howe’s Technique

R RH

⊆

RH is a
Congruence
whenever R is
an equivalence

∼H is a
Congruence

∼ ∼H

⊇

Key Lemma

Howe’s Technique

R RH

⊆

RH is a
Congruence
whenever R is
an equivalence

∼H is a
Congruence

∼ ∼H

⊇

Key Lemma

Howe’s Technique

R RH

⊆

RH is a
Congruence
whenever R is
an equivalence

∼H is a
Congruence

∼ ∼H

⊇

Key Lemma

Our Neighborhood
▶ Λ, where we observe convergence

∼ ⊆ ≡ ≡ ⊆ ∼
CBN ✓ ✓

CBV ✓ ✓

[Abramsky1990, Howe1993]
▶ Λ⊕ with nondeterministic semantics, where we observe convergence, in its may or

must flavors.

∼ ⊆ ≡ ≡ ⊆ ∼
CBN ✓ ×
CBV ✓ ×

[Ong1993, Lassen1998]

The Probabilistic Case
▶ Λ⊕ with probabilistic semantics.

∼ ⊆ ≡ ≡ ⊆ ∼
CBN ✓ ×
CBV ✓ ✓

▶ Counterexample for CBN: (λx.I)⊕ (λx.Ω) ̸∼ λx.I ⊕ Ω
▶ Where these discrepancies come from?
▶ From testing!
▶ Bisimulation can be characterized by testing equivalence as follows:

Calculus Testing
Λ T ::= ω | a · T

PΛ⊕ T ::= ω | a · T | ⟨T, T ⟩
NΛ⊕ T ::= ω | a · T | ∧i∈I Ti | . . .

The Probabilistic Case
▶ Λ⊕ with probabilistic semantics.

∼ ⊆ ≡ ≡ ⊆ ∼
CBN ✓ ×
CBV ✓ ✓

▶ Counterexample for CBN: (λx.I)⊕ (λx.Ω) ̸∼ λx.I ⊕ Ω
▶ Where these discrepancies come from?

▶ From testing!
▶ Bisimulation can be characterized by testing equivalence as follows:

Calculus Testing
Λ T ::= ω | a · T

PΛ⊕ T ::= ω | a · T | ⟨T, T ⟩
NΛ⊕ T ::= ω | a · T | ∧i∈I Ti | . . .

The Probabilistic Case
▶ Λ⊕ with probabilistic semantics.

∼ ⊆ ≡ ≡ ⊆ ∼
CBN ✓ ×
CBV ✓ ✓

▶ Counterexample for CBN: (λx.I)⊕ (λx.Ω) ̸∼ λx.I ⊕ Ω
▶ Where these discrepancies come from?
▶ From testing!

▶ Bisimulation can be characterized by testing equivalence as follows:

Calculus Testing
Λ T ::= ω | a · T

PΛ⊕ T ::= ω | a · T | ⟨T, T ⟩
NΛ⊕ T ::= ω | a · T | ∧i∈I Ti | . . .

The Probabilistic Case
▶ Λ⊕ with probabilistic semantics.

∼ ⊆ ≡ ≡ ⊆ ∼
CBN ✓ ×
CBV ✓ ✓

▶ Counterexample for CBN: (λx.I)⊕ (λx.Ω) ̸∼ λx.I ⊕ Ω
▶ Where these discrepancies come from?
▶ From testing!
▶ Bisimulation can be characterized by testing equivalence as follows:

Calculus Testing
Λ T ::= ω | a · T

PΛ⊕ T ::= ω | a · T | ⟨T, T ⟩
NΛ⊕ T ::= ω | a · T | ∧i∈I Ti | . . .

The Probabilistic Case
▶ Λ⊕ with probabilistic semantics.

≾ ⊆ ≤ ≤ ⊆ ≾
CBN ✓ ×
CBV ✓ ×

▶ Probabilistic simulation can be characterized by testing as follows:

T ::= ω | a · T | ⟨T, T ⟩ | T ∨ T

▶ Full abstraction can be recovered if endowing Λ⊕ with parallel disjunction
[CDLSV2015].

≾ ⊆ ≤ ≤ ⊆ ≾
CBN ✓ ×
CBV ✓ ✓

The Probabilistic Case
▶ Λ⊕ with probabilistic semantics.

≾ ⊆ ≤ ≤ ⊆ ≾
CBN ✓ ×
CBV ✓ ×

▶ Probabilistic simulation can be characterized by testing as follows:

T ::= ω | a · T | ⟨T, T ⟩ | T ∨ T

▶ Full abstraction can be recovered if endowing Λ⊕ with parallel disjunction
[CDLSV2015].

≾ ⊆ ≤ ≤ ⊆ ≾
CBN ✓ ×
CBV ✓ ✓

The Probabilistic Case
▶ Λ⊕ with probabilistic semantics.

≾ ⊆ ≤ ≤ ⊆ ≾
CBN ✓ ×
CBV ✓ ×

▶ Probabilistic simulation can be characterized by testing as follows:

T ::= ω | a · T | ⟨T, T ⟩ | T ∨ T

▶ Full abstraction can be recovered if endowing Λ⊕ with parallel disjunction
[CDLSV2015].

≾ ⊆ ≤ ≤ ⊆ ≾
CBN ✓ ×
CBV ✓ ✓

Context Distance: the Affine Case [CDL2015]

▶ Let us consider a simple fragment of Λ⊕, first.

▶ Preterms: M,N ::= x | λx.M | MM | M ⊕M | Ω;
▶ Terms: any preterm M such that Γ ⊢ M .

Γ, x ⊢ x
x,Γ ⊢ M

Γ ⊢ λx.M

Γ ⊢ M ∆ ⊢ N
Γ,∆ ⊢ MN

Γ ⊢ M Γ ⊢ N
Γ ⊢ M ⊕N

▶ Behavioural Distance δb.
▶ The metric analogue to bisimilarity.

▶ Trace Distance δt.
▶ The maximum distance induced by traces, i.e., sequences of actions:

δt(M,N) = supT |Pr(M,T)− Pr(N,T)|.
▶ Soundness and Completeness Results:

δb ≤ δc δc ≤ δb δt ≤ δc δc ≤ δt

✓ × ✓ ✓
▶ Example: δt(I, I ⊕ Ω) = δt(I ⊕ Ω,Ω) = 1

2 .

Context Distance: the Affine Case [CDL2015]

▶ Let us consider a simple fragment of Λ⊕, first.
▶ Preterms: M,N ::= x | λx.M | MM | M ⊕M | Ω;

▶ Terms: any preterm M such that Γ ⊢ M .

Γ, x ⊢ x
x,Γ ⊢ M

Γ ⊢ λx.M

Γ ⊢ M ∆ ⊢ N
Γ,∆ ⊢ MN

Γ ⊢ M Γ ⊢ N
Γ ⊢ M ⊕N

▶ Behavioural Distance δb.
▶ The metric analogue to bisimilarity.

▶ Trace Distance δt.
▶ The maximum distance induced by traces, i.e., sequences of actions:

δt(M,N) = supT |Pr(M,T)− Pr(N,T)|.
▶ Soundness and Completeness Results:

δb ≤ δc δc ≤ δb δt ≤ δc δc ≤ δt

✓ × ✓ ✓
▶ Example: δt(I, I ⊕ Ω) = δt(I ⊕ Ω,Ω) = 1

2 .

Context Distance: the Affine Case [CDL2015]

▶ Let us consider a simple fragment of Λ⊕, first.
▶ Preterms: M,N ::= x | λx.M | MM | M ⊕M | Ω;
▶ Terms: any preterm M such that Γ ⊢ M .

Γ, x ⊢ x
x,Γ ⊢ M

Γ ⊢ λx.M

Γ ⊢ M ∆ ⊢ N
Γ,∆ ⊢ MN

Γ ⊢ M Γ ⊢ N
Γ ⊢ M ⊕N

▶ Behavioural Distance δb.
▶ The metric analogue to bisimilarity.

▶ Trace Distance δt.
▶ The maximum distance induced by traces, i.e., sequences of actions:

δt(M,N) = supT |Pr(M,T)− Pr(N,T)|.
▶ Soundness and Completeness Results:

δb ≤ δc δc ≤ δb δt ≤ δc δc ≤ δt

✓ × ✓ ✓
▶ Example: δt(I, I ⊕ Ω) = δt(I ⊕ Ω,Ω) = 1

2 .

Context Distance: the Affine Case [CDL2015]

▶ Let us consider a simple fragment of Λ⊕, first.
▶ Preterms: M,N ::= x | λx.M | MM | M ⊕M | Ω;
▶ Terms: any preterm M such that Γ ⊢ M .

Γ, x ⊢ x
x,Γ ⊢ M

Γ ⊢ λx.M

Γ ⊢ M ∆ ⊢ N
Γ,∆ ⊢ MN

Γ ⊢ M Γ ⊢ N
Γ ⊢ M ⊕N

▶ Behavioural Distance δb.
▶ The metric analogue to bisimilarity.

▶ Trace Distance δt.
▶ The maximum distance induced by traces, i.e., sequences of actions:

δt(M,N) = supT |Pr(M,T)− Pr(N,T)|.
▶ Soundness and Completeness Results:

δb ≤ δc δc ≤ δb δt ≤ δc δc ≤ δt

✓ × ✓ ✓
▶ Example: δt(I, I ⊕ Ω) = δt(I ⊕ Ω,Ω) = 1

2 .

Context Distance: the Affine Case [CDL2015]

▶ Let us consider a simple fragment of Λ⊕, first.
▶ Preterms: M,N ::= x | λx.M | MM | M ⊕M | Ω;
▶ Terms: any preterm M such that Γ ⊢ M .

Γ, x ⊢ x
x,Γ ⊢ M

Γ ⊢ λx.M

Γ ⊢ M ∆ ⊢ N
Γ,∆ ⊢ MN

Γ ⊢ M Γ ⊢ N
Γ ⊢ M ⊕N

▶ Behavioural Distance δb.
▶ The metric analogue to bisimilarity.

▶ Trace Distance δt.
▶ The maximum distance induced by traces, i.e., sequences of actions:

δt(M,N) = supT |Pr(M,T)− Pr(N,T)|.
▶ Soundness and Completeness Results:

δb ≤ δc δc ≤ δb δt ≤ δc δc ≤ δt

✓ × ✓ ✓
▶ Example: δt(I, I ⊕ Ω) = δt(I ⊕ Ω,Ω) = 1

2 .

Context Distance: the Affine Case [CDL2015]

▶ Let us consider a simple fragment of Λ⊕, first.
▶ Preterms: M,N ::= x | λx.M | MM | M ⊕M | Ω;
▶ Terms: any preterm M such that Γ ⊢ M .

Γ, x ⊢ x
x,Γ ⊢ M

Γ ⊢ λx.M

Γ ⊢ M ∆ ⊢ N
Γ,∆ ⊢ MN

Γ ⊢ M Γ ⊢ N
Γ ⊢ M ⊕N

▶ Behavioural Distance δb.
▶ The metric analogue to bisimilarity.

▶ Trace Distance δt.
▶ The maximum distance induced by traces, i.e., sequences of actions:

δt(M,N) = supT |Pr(M,T)− Pr(N,T)|.

▶ Soundness and Completeness Results:

δb ≤ δc δc ≤ δb δt ≤ δc δc ≤ δt

✓ × ✓ ✓
▶ Example: δt(I, I ⊕ Ω) = δt(I ⊕ Ω,Ω) = 1

2 .

Context Distance: the Affine Case [CDL2015]

▶ Let us consider a simple fragment of Λ⊕, first.
▶ Preterms: M,N ::= x | λx.M | MM | M ⊕M | Ω;
▶ Terms: any preterm M such that Γ ⊢ M .

Γ, x ⊢ x
x,Γ ⊢ M

Γ ⊢ λx.M

Γ ⊢ M ∆ ⊢ N
Γ,∆ ⊢ MN

Γ ⊢ M Γ ⊢ N
Γ ⊢ M ⊕N

▶ Behavioural Distance δb.
▶ The metric analogue to bisimilarity.

▶ Trace Distance δt.
▶ The maximum distance induced by traces, i.e., sequences of actions:

δt(M,N) = supT |Pr(M,T)− Pr(N,T)|.
▶ Soundness and Completeness Results:

δb ≤ δc δc ≤ δb δt ≤ δc δc ≤ δt

✓ × ✓ ✓

▶ Example: δt(I, I ⊕ Ω) = δt(I ⊕ Ω,Ω) = 1
2 .

Context Distance: the Affine Case [CDL2015]

▶ Let us consider a simple fragment of Λ⊕, first.
▶ Preterms: M,N ::= x | λx.M | MM | M ⊕M | Ω;
▶ Terms: any preterm M such that Γ ⊢ M .

Γ, x ⊢ x
x,Γ ⊢ M

Γ ⊢ λx.M

Γ ⊢ M ∆ ⊢ N
Γ,∆ ⊢ MN

Γ ⊢ M Γ ⊢ N
Γ ⊢ M ⊕N

▶ Behavioural Distance δb.
▶ The metric analogue to bisimilarity.

▶ Trace Distance δt.
▶ The maximum distance induced by traces, i.e., sequences of actions:

δt(M,N) = supT |Pr(M,T)− Pr(N,T)|.
▶ Soundness and Completeness Results:

δb ≤ δc δc ≤ δb δt ≤ δc δc ≤ δt

✓ × ✓ ✓
▶ Example: δt(I, I ⊕ Ω) = δt(I ⊕ Ω,Ω) = 1

2 .

Context Distance: the General Case [CDL2016]

▶ None of the abstract notions of distance δ gives us that δ(I, I ⊕ Ω) = 1.

▶ The underlying LMC does not reflect copying.
▶ A Tuple LMC.

▶ Preterms: M ::= x | λx.M | λ!x.M | MM | M ⊕M | !M
▶ Terms: any preterm M such that Γ ⊢ M .

!Γ, x ⊢ x !Γ, !x ⊢ x
x,Γ ⊢ M

Γ ⊢ λx.M

!x,Γ ⊢ M

Γ ⊢ λ!x.M

!Γ ⊢ M
!Γ ⊢!M

Γ, !Θ ⊢ M ∆, !Θ ⊢ N

Γ,∆,Θ ⊢ MN

Γ ⊢ M Γ ⊢ N
Γ ⊢ M ⊕N

▶ States: sequences of terms, rather than terms.
▶ Actions not only model parameter passing, but also copying of terms.

▶ Soundness and Completeness Results:

δt ≤ δc δc ≤ δt

✓ ✓
▶ Examples: δt(!(I ⊕ Ω), !Ω) = 1

2 δt(!(I ⊕ Ω), !I) = 1.
▶ Trivialisation does not hold in general, but becomes true in strongly normalising

fragments or in presence of parellel disjuction.

Context Distance: the General Case [CDL2016]

▶ None of the abstract notions of distance δ gives us that δ(I, I ⊕ Ω) = 1.
▶ The underlying LMC does not reflect copying.

▶ A Tuple LMC.
▶ Preterms: M ::= x | λx.M | λ!x.M | MM | M ⊕M | !M
▶ Terms: any preterm M such that Γ ⊢ M .

!Γ, x ⊢ x !Γ, !x ⊢ x
x,Γ ⊢ M

Γ ⊢ λx.M

!x,Γ ⊢ M

Γ ⊢ λ!x.M

!Γ ⊢ M
!Γ ⊢!M

Γ, !Θ ⊢ M ∆, !Θ ⊢ N

Γ,∆,Θ ⊢ MN

Γ ⊢ M Γ ⊢ N
Γ ⊢ M ⊕N

▶ States: sequences of terms, rather than terms.
▶ Actions not only model parameter passing, but also copying of terms.

▶ Soundness and Completeness Results:

δt ≤ δc δc ≤ δt

✓ ✓
▶ Examples: δt(!(I ⊕ Ω), !Ω) = 1

2 δt(!(I ⊕ Ω), !I) = 1.
▶ Trivialisation does not hold in general, but becomes true in strongly normalising

fragments or in presence of parellel disjuction.

Context Distance: the General Case [CDL2016]

▶ None of the abstract notions of distance δ gives us that δ(I, I ⊕ Ω) = 1.
▶ The underlying LMC does not reflect copying.
▶ A Tuple LMC.

▶ Preterms: M ::= x | λx.M | λ!x.M | MM | M ⊕M | !M
▶ Terms: any preterm M such that Γ ⊢ M .

!Γ, x ⊢ x !Γ, !x ⊢ x
x,Γ ⊢ M

Γ ⊢ λx.M

!x,Γ ⊢ M

Γ ⊢ λ!x.M

!Γ ⊢ M
!Γ ⊢!M

Γ, !Θ ⊢ M ∆, !Θ ⊢ N

Γ,∆,Θ ⊢ MN

Γ ⊢ M Γ ⊢ N
Γ ⊢ M ⊕N

▶ States: sequences of terms, rather than terms.
▶ Actions not only model parameter passing, but also copying of terms.

▶ Soundness and Completeness Results:

δt ≤ δc δc ≤ δt

✓ ✓
▶ Examples: δt(!(I ⊕ Ω), !Ω) = 1

2 δt(!(I ⊕ Ω), !I) = 1.
▶ Trivialisation does not hold in general, but becomes true in strongly normalising

fragments or in presence of parellel disjuction.

Context Distance: the General Case [CDL2016]

▶ None of the abstract notions of distance δ gives us that δ(I, I ⊕ Ω) = 1.
▶ The underlying LMC does not reflect copying.
▶ A Tuple LMC.

▶ Preterms: M ::= x | λx.M | λ!x.M | MM | M ⊕M | !M
▶ Terms: any preterm M such that Γ ⊢ M .

!Γ, x ⊢ x !Γ, !x ⊢ x
x,Γ ⊢ M

Γ ⊢ λx.M

!x,Γ ⊢ M

Γ ⊢ λ!x.M

!Γ ⊢ M
!Γ ⊢!M

Γ, !Θ ⊢ M ∆, !Θ ⊢ N

Γ,∆,Θ ⊢ MN

Γ ⊢ M Γ ⊢ N
Γ ⊢ M ⊕N

▶ States: sequences of terms, rather than terms.
▶ Actions not only model parameter passing, but also copying of terms.

▶ Soundness and Completeness Results:

δt ≤ δc δc ≤ δt

✓ ✓
▶ Examples: δt(!(I ⊕ Ω), !Ω) = 1

2 δt(!(I ⊕ Ω), !I) = 1.
▶ Trivialisation does not hold in general, but becomes true in strongly normalising

fragments or in presence of parellel disjuction.

Context Distance: the General Case [CDL2016]

▶ None of the abstract notions of distance δ gives us that δ(I, I ⊕ Ω) = 1.
▶ The underlying LMC does not reflect copying.
▶ A Tuple LMC.

▶ Preterms: M ::= x | λx.M | λ!x.M | MM | M ⊕M | !M
▶ Terms: any preterm M such that Γ ⊢ M .

!Γ, x ⊢ x !Γ, !x ⊢ x
x,Γ ⊢ M

Γ ⊢ λx.M

!x,Γ ⊢ M

Γ ⊢ λ!x.M

!Γ ⊢ M
!Γ ⊢!M

Γ, !Θ ⊢ M ∆, !Θ ⊢ N

Γ,∆,Θ ⊢ MN

Γ ⊢ M Γ ⊢ N
Γ ⊢ M ⊕N

▶ States: sequences of terms, rather than terms.
▶ Actions not only model parameter passing, but also copying of terms.

▶ Soundness and Completeness Results:

δt ≤ δc δc ≤ δt

✓ ✓

▶ Examples: δt(!(I ⊕ Ω), !Ω) = 1
2 δt(!(I ⊕ Ω), !I) = 1.

▶ Trivialisation does not hold in general, but becomes true in strongly normalising
fragments or in presence of parellel disjuction.

Context Distance: the General Case [CDL2016]

▶ None of the abstract notions of distance δ gives us that δ(I, I ⊕ Ω) = 1.
▶ The underlying LMC does not reflect copying.
▶ A Tuple LMC.

▶ Preterms: M ::= x | λx.M | λ!x.M | MM | M ⊕M | !M
▶ Terms: any preterm M such that Γ ⊢ M .

!Γ, x ⊢ x !Γ, !x ⊢ x
x,Γ ⊢ M

Γ ⊢ λx.M

!x,Γ ⊢ M

Γ ⊢ λ!x.M

!Γ ⊢ M
!Γ ⊢!M

Γ, !Θ ⊢ M ∆, !Θ ⊢ N

Γ,∆,Θ ⊢ MN

Γ ⊢ M Γ ⊢ N
Γ ⊢ M ⊕N

▶ States: sequences of terms, rather than terms.
▶ Actions not only model parameter passing, but also copying of terms.

▶ Soundness and Completeness Results:

δt ≤ δc δc ≤ δt

✓ ✓
▶ Examples: δt(!(I ⊕ Ω), !Ω) = 1

2 δt(!(I ⊕ Ω), !I) = 1.

▶ Trivialisation does not hold in general, but becomes true in strongly normalising
fragments or in presence of parellel disjuction.

Context Distance: the General Case [CDL2016]

▶ None of the abstract notions of distance δ gives us that δ(I, I ⊕ Ω) = 1.
▶ The underlying LMC does not reflect copying.
▶ A Tuple LMC.

▶ Preterms: M ::= x | λx.M | λ!x.M | MM | M ⊕M | !M
▶ Terms: any preterm M such that Γ ⊢ M .

!Γ, x ⊢ x !Γ, !x ⊢ x
x,Γ ⊢ M

Γ ⊢ λx.M

!x,Γ ⊢ M

Γ ⊢ λ!x.M

!Γ ⊢ M
!Γ ⊢!M

Γ, !Θ ⊢ M ∆, !Θ ⊢ N

Γ,∆,Θ ⊢ MN

Γ ⊢ M Γ ⊢ N
Γ ⊢ M ⊕N

▶ States: sequences of terms, rather than terms.
▶ Actions not only model parameter passing, but also copying of terms.

▶ Soundness and Completeness Results:

δt ≤ δc δc ≤ δt

✓ ✓
▶ Examples: δt(!(I ⊕ Ω), !Ω) = 1

2 δt(!(I ⊕ Ω), !I) = 1.
▶ Trivialisation does not hold in general, but becomes true in strongly normalising

fragments or in presence of parellel disjuction.

Other Approaches

▶ Logical Relations [BizjakBirkedal2015];

▶ Quantitative Algebras [MardarePanangadenPlotkin2016];
▶ Probabilistic Böhm Trees [Leventis2018];
▶ Probabilistic Taylor Expansion [DLLeventis2019];
▶ (Monadic) Differential Logical Relations [DLGavazzo2022];
▶ Denotational Distance from Probabilistic Coherent Spaces [Ehrhard2022];
▶ Observational Equivalence and Computational Indistinguishability

[DLGiusti2022].
▶ . . .

Other Approaches

▶ Logical Relations [BizjakBirkedal2015];
▶ Quantitative Algebras [MardarePanangadenPlotkin2016];

▶ Probabilistic Böhm Trees [Leventis2018];
▶ Probabilistic Taylor Expansion [DLLeventis2019];
▶ (Monadic) Differential Logical Relations [DLGavazzo2022];
▶ Denotational Distance from Probabilistic Coherent Spaces [Ehrhard2022];
▶ Observational Equivalence and Computational Indistinguishability

[DLGiusti2022].
▶ . . .

Other Approaches

▶ Logical Relations [BizjakBirkedal2015];
▶ Quantitative Algebras [MardarePanangadenPlotkin2016];
▶ Probabilistic Böhm Trees [Leventis2018];

▶ Probabilistic Taylor Expansion [DLLeventis2019];
▶ (Monadic) Differential Logical Relations [DLGavazzo2022];
▶ Denotational Distance from Probabilistic Coherent Spaces [Ehrhard2022];
▶ Observational Equivalence and Computational Indistinguishability

[DLGiusti2022].
▶ . . .

Other Approaches

▶ Logical Relations [BizjakBirkedal2015];
▶ Quantitative Algebras [MardarePanangadenPlotkin2016];
▶ Probabilistic Böhm Trees [Leventis2018];
▶ Probabilistic Taylor Expansion [DLLeventis2019];

▶ (Monadic) Differential Logical Relations [DLGavazzo2022];
▶ Denotational Distance from Probabilistic Coherent Spaces [Ehrhard2022];
▶ Observational Equivalence and Computational Indistinguishability

[DLGiusti2022].
▶ . . .

Other Approaches

▶ Logical Relations [BizjakBirkedal2015];
▶ Quantitative Algebras [MardarePanangadenPlotkin2016];
▶ Probabilistic Böhm Trees [Leventis2018];
▶ Probabilistic Taylor Expansion [DLLeventis2019];
▶ (Monadic) Differential Logical Relations [DLGavazzo2022];

▶ Denotational Distance from Probabilistic Coherent Spaces [Ehrhard2022];
▶ Observational Equivalence and Computational Indistinguishability

[DLGiusti2022].
▶ . . .

Other Approaches

▶ Logical Relations [BizjakBirkedal2015];
▶ Quantitative Algebras [MardarePanangadenPlotkin2016];
▶ Probabilistic Böhm Trees [Leventis2018];
▶ Probabilistic Taylor Expansion [DLLeventis2019];
▶ (Monadic) Differential Logical Relations [DLGavazzo2022];
▶ Denotational Distance from Probabilistic Coherent Spaces [Ehrhard2022];

▶ Observational Equivalence and Computational Indistinguishability
[DLGiusti2022].

▶ . . .

Other Approaches

▶ Logical Relations [BizjakBirkedal2015];
▶ Quantitative Algebras [MardarePanangadenPlotkin2016];
▶ Probabilistic Böhm Trees [Leventis2018];
▶ Probabilistic Taylor Expansion [DLLeventis2019];
▶ (Monadic) Differential Logical Relations [DLGavazzo2022];
▶ Denotational Distance from Probabilistic Coherent Spaces [Ehrhard2022];
▶ Observational Equivalence and Computational Indistinguishability

[DLGiusti2022].

▶ . . .

Other Approaches

▶ Logical Relations [BizjakBirkedal2015];
▶ Quantitative Algebras [MardarePanangadenPlotkin2016];
▶ Probabilistic Böhm Trees [Leventis2018];
▶ Probabilistic Taylor Expansion [DLLeventis2019];
▶ (Monadic) Differential Logical Relations [DLGavazzo2022];
▶ Denotational Distance from Probabilistic Coherent Spaces [Ehrhard2022];
▶ Observational Equivalence and Computational Indistinguishability

[DLGiusti2022].
▶ . . .

Wrapping Up

▶ Some of the techniques for termination, complexity, and
relational analysis of deterministic higher-order programs can
be adapted to the probabilistic setting.

▶ This is however not trivial, since termination and program
equivalence have a different, more subtle, nature

Thank you! Questions?

Wrapping Up

▶ Some of the techniques for termination, complexity, and
relational analysis of deterministic higher-order programs can
be adapted to the probabilistic setting.

▶ This is however not trivial, since termination and program
equivalence have a different, more subtle, nature

Thank you! Questions?

	Probabilistic Higher-Order Programs
	Probabilistic Termination
	Probabilistic Termination and Types
	Relational Reasoning

