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QuickSort

let app x v z = x @ (2::¥);;

let partition = function
| pivot :: rest -> (List.partition (( > ) pivot) (rest)),pivot;;

let rec quick sort = function
| 1]
| [_] as list -> list
| list ->
let (11, 12), el = partition list in
app (quick sort 11) (quick_sort 12) el;;



The Structure of QuickSort

quick_sort

:: quick_sort :
quick_sort




QuickSort, HO

let app = function
| (X:Y)rz -> X @ (Z::Y)FF

let partition = function
| pivot :: rest -> (List.partition (( > ) pivot) (rest)),pivot;;

let rec dac divide conquer = function
| ]
| 1_1 as list -> list
| list ->
let (11, 12),el = divide list in
conquer ((dac divide conquer 11, dac divide conquer 12),el);;

let quick sort = dac partition app;;



Randomized QuickSort (1)

let app = function
| (x,¥),2 => x & (2::¥);;

let rec extract = function
| [1,_ => (11,0)
| hd::tl,n ->
if n==0 then
(tl,hd)
else
let (l,el) = extract(tl,n-1) in
(hd::1,el);;

let partition list =
let (rest,pivot) = extract (list, (Random.int (List.length list))) in
(List.partition (( > ) pivot) (rest)),pivot;;



Randomized QuickSort (2)

let rec dac divide congquer
| 11

| [_] as list -> list
| list ->

let (11, 12),el = divide list in
conquer ((dac divide congquer 11, dac divide conquer 12),el);;

let rand quick sort = dac partition app;;

= function
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Two Kinds of Random Walks

rec iter £ g n = if n==0 then g else let m=pred(n) in f m (iter f g m);;
mult m n = succ(m)*n;;
fact = iter mult 1;;

rec param iter f g step n =
if n==0 then g else let m=step(n) in f m (param iter f g step m);;

succ_2 m n = n+l;;

updown_fair x = x+(2*Random.int(2)-1);;

fair random walk = param iter succ_2 0 updown_ fair;;
updown_biased x = if Random.int(3)==0 then x+1 else x-1;;

biased random walk = param iter succ_2 0 updown_biased;;
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The Coupon Collector

A supermarket distributes a large quantity of coupons, each labelled with
ie{l,...,n}.

Every day, you collect one coupon at the supermarket. Any label i has probability %
to occur.

You win a prize when you collect a set of n coupons, each with a distinct label.

Example: if n =5, you could get the following coupons:

3,1,5,2,3,1,5,2,3,1,5,2, ...

Are you guaranteed to win the prize with probability 17 After how many days, on the
average?



The Coupon Collector

let rec base param iter f g step base e =
if base(e) then g else let d=step(e) in f d (base_param iter f g step base d);;

let second zero = function
| (_,0) => true
| _ -> false;;

let succ_ 2 m n = nt+l;;

let step_2 = function
| (n,m) -> if Random.int(n)<=m then (n,m-1) else (n,m);;

let coupon_collector x = base param iter succ_2 0 step 2 second zero (X,X);;
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What Algorithms Compute

> Deterministic Computation

» For every input x, there is at most one output y any algorithm A produces when fed
with z.
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What Algorithms Compute

> Deterministic Computation

» For every input z, there is at most one output y any algorithm A produces when fed
with z.

> As a consequence:

A ~r [A] : N — N.

» Randomized Computation
» For every input x, any algorithm A outputs y with a probability 0 < p < 1.

» As a consequence:

A~  [A]:N—= 9(N).

» The distribution [A](n) sums to anything between 0 and 1, thus accounting for the
probability of divergence.
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Deterministic vs. Probabilistic Transition Systems
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Syntax and Operational Semantics of Ag

> Terms: M =z | \e.M | MM | M M;
> Values: V .= \x.M;

> Value Distributions:

V2 D(V) Ry Yo=Y DWv)<1
%
> Semantics: [M] = supy o D;
> Context Equivalence: M = N iff for every context C' it holds that
2ICM]] = X ICIN]].
» Context Distance: §“ (M, N) = sup. | S [C[M]] — S[CIN]]I.



Syntax and Operational Semantics of Ag

All this can be easily generalized to:

> Typed calculi.
Terms: M =z | Ax. M | M1l » BN

Values: V ::= \zx.M; > Recursion.
Value Distributions: >

v

v

v

V2 D(V) Ry Yo=Y 1)<

> Semantics: [M] = supy o D;

> Context Equivalence: M = N iff for every context C' it holds that
2[CIM]] = > ICINT].

» Context Distance: §“ (M, N) = sup. | S [C[M]] — S[CIN]]I.
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Notions of Probabilistic Termination

Given M € A, let RF); be the number of transitions leading M to an irreducible N
(or oo if such an N does not exist).

» In deterministic transition systems, RFy; € N*°.
» In probabilistic transition systems RF,s is a random variable.

Almost-Sure Termination (AST).
Pr(RFy < o0) =1
Positive Almost-Sure Termination (PAST).
E(RFy) < o0

PAST implies AST, but not viceversa. A counterexample is the fair (i.e. p = %)

random walk:

¢ * P
n

[eal
[E—
DO ¢
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An Example

M=Mxz® ) Ar.xx )

M
| .
Mol Pr(Time(M Z 11+1 =
M
ll T|me ZPr T|me
MEBI =0
=2. sz

I M =0



The Landscape: Recursion Theory

> Deterministic Computation

Instance Universal

Termination ¥0-complete I19-complete



The Landscape: Recursion Theory

> Deterministic Computation
Instance Universal
Termination ¥0-complete I19-complete
> Probabilistic Computation [KK2013|
Instance Universal
AST [19-complete [19-complete

PAST ¥9-complete [19-complete
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The Landscape: Termination and Types

> Corresponds to Intuitionistic Logic or HA;

> Sound for termination, in presence of primitive
recursion;

> Very limited expressive power.

Simple M‘ypes

T = | ToT
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The Landscape: Termination and Types

Sized Types
T ou= - | [

\

Simple Types

> R bl ive, intensionally;
easonably expressive, intensionally; . | T

> Type inference remains decidable.
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The Landscape: Termination and Types

Sized Types
T ou= - | [

\

Simple

T = .-

Intersection Types

T u= - |TAT

/

VvDes

> Motivated by Semantics;
> Complete for termination;

> Type inference is undecidable.
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The Landscape: Termination and Types

Sized Types Intersection Types

T ou= - | [ T u= - |TAT

-
\ > Relatively complete for termination and
complexity analysis;

@8]

> Type inference is hard, but can be mechanized.

T = l 7 =7 /

Linear Dependent Types
T ou= o ) | LicrT
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Deterministic Sized Types

> Pure A-calculus with simple types is terminating.
» This can be proved in many ways, including by reducibility.
» The absence of full recursion can be cumbersome,

> For every type 7, define a set of reducible terms Red..
> Prove that all reducible terms are normalizing. . .
> ...and that all typable terms are reducible.
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Deterministic Sized Types

Pure A-calculus with simple types is terminating.
» This can be proved in many ways, including by reducibility.
» The absence of full recursion can be cumbersome.

What if we endow it with full recursion as a fix binder?
Termination is not guaranteed anymore, for very good reasons.
Is everything lost?

NO!
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Deterministic Sized Types

Pure A-calculus with simple types is terminating.
» This can be proved in many ways, including by reducibility.
» The absence of full recursion can be cumbersome.

What if we endow it with full recursion as a fix binder?
Termination is not guaranteed anymore, for very good reasons.
Is everything lost?
NO!
fi}‘c f fii‘c f
AT i AT : L

BAD! GOOD!

f(x — 1) f(xz) f(z) f(xz4+1) f(x —1) f(xz —2) f(z — 3)
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Deterministic Sized Types, Technically

> Types.
{:::a‘w‘{—!—l; TIZZL[E]‘T—)T.

» Typing Fixpoints.

> Reducibility sets are of the form Red?.

> 0 is an environment for index variables.

> Proof of reducibility for fix .M is rather delicate.

¥ Quite Powertul.
» Can type many fory# of structural recursion.

» Termination.

> Proved by Reducibility.
» ...but of an indexed form.
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Deterministic Sized Types, Technically

Types.
{:::a‘w‘{—!—l; TIZZL[E]‘T—)T.

Typing Fixpoints.

Iyz:ia] =7 M:ia
Ik fix o.M :[€]

Quite Powerful.
» Can type many forms of structural recursion.
Termination.

> Proved by Reducibility.
» ...but of an indexed form.

Type Inference.

» It is indeed decidable.
» But nontrivial.
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Probabilistic Termination

» Examples:

fix f.Az.if > 0 then if FairCoin then f(x — 1) else f(x + 1);
fix f.Ax.if & > 0 then if BiasedCoin then f(x — 1) else f(z + 1);
fix f.)\z.if BiasedCoin then f(z + 1) else x.

> Non-Examples:

fix f.Az.if FairCoin then f(x — 1) else (f(z + 1); f(x + 1));
fix f\Az.if BiasedCoin then f(z + 1) else f(z — 1);

A

Unbiased Random Walk, withl \wo upward calls. |

Biased Random Walk, the “wrong” way. |




Probabilistic Termination

» Examples:

fix f.Az.if > 0 then if FairCoin then f(x — 1) else f(x + 1);
fix f.Ax.if & > 0 then if BiasedCoin then f(x — 1) else f(z + 1);
fix f.)\z.if BiasedCoin then f(z + 1) else x.

> Non-Examples:

fix f.Az.if FairCoin then f(x — 1) else (f(z + 1); f(x + 1));
fix f.\z.if BiasedCoin then f(z + 1) else f(z — 1);

> Probabilistic termination is thus:

» Sensitive to the actual distribution from which we sample.
» Sensitive to how many recursive calls we perform.
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Probabilistic Sized Types [DLGrellois2017]

> Basic Idea: craft a sized-type system in such a way as to mimick the recursive
structure by a OCBMC.

> Judgments.
F'|AFM:pu

| A-variables: every higher-order varf pble /:curs at most once. |

]
| fix-variables, which are attributed finite distribution of types. |

/1

|A monadic type, namely a finite distribution of types. |
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Probabilistic Sized Types [DLGrellois2017]

> Basic Idea: craft a sized-type system in such a way as to mimick the recursive
structure by a OCBMC.

> Judgments.
F'|AFM:pu

» Typing Fixpoints.
Flz:okFV:a+1] -7 OCBMC(o) terminates.
POk fixaV ¢ -7

A

> OCBMC/(o) interprets o as a one-counter Markov Chain.

> This is sufficient for typing:
» Unbiased random walks:

UZ{%:L[G+2]—>T,%:L[Q]—>T}

P> Biased random walks, with a similar o.
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Probabilistic Sized Types [DLGrellois2017]

Basic Idea: craft a sized-type system in such a way as to mimick the recursive
structure by a OCBMC.

Judgments.
F'|AFM:pu

Typing Fixj > Reducibility sets are now on the form Red?”
> p stands for the probability of being reducible.

> Reducibility sets are continuous:

Red?” = | J Red?*
q<p

Typing Pro

i il (Y i
riia+iormMmen:||r+ip

Termination.

> By a quantitative nontrivial refinement of reducibility.
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Deterministic Intersection Types

Question: what are simple types missing as a way to precisely capture termination?

Many normalizing terms cannot be typed, e.g.:

A = \x.xx A(Az.x).
Types
Tu:=A— B Ac=11,...,7Ta]
Typing Rules
I'z:A+M:B T EV i)
z:AFz: A 'XxM:A— B WL EV o nls
'v:[A—-B] AFW:A '-M:A Ajz:A-N:B
TWAFVW:B F'WAkrletx=Min N: B

Soundness for Termination
» By reducibility.
Completeness for Termination

» By subject expansion, the dual of subject reduction.
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Going Probabilistic: What Do We Need?

» Terms can have a Type Probabilistically, for example in

Q@ (A\x.x)

» This can be captured by switching from types to multidistributions of types, namely
expressions in the form (pi71,...,pn7n), where > p; < 1.

*» Functions can use their Arguments Probabilistically, for example in

Ae.(xx) @ 1

» This can be captured by switching from multisets to scaled multisets of types, namely
expressions in the form [g1.71, ..., qn.Tn‘1

I

I A wn) a-=
Type Distributions |

» Summing up... \
A=

Ti=A— A A = [q;-Ti]1<i<n

<piAi>1§i§n
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Typing Rules |[DLFR2021]

F,x:All—UM:B

0 0 w—+1
r: Ak x: A FM:0 ' XaM:A—B
TFV:ASB AFW:A IFM:A AFN:B
w+v Lwtlot1
TwA b VIV:B I'wlA” b MeN:1A+13

' M: <pkAk>k (Ak,l‘ . Ak }‘AN . Bk)k
W+ prUk Il

Typing jud, 0 ttributed
F@Lﬂk A, - w}efzp;}r:tg judgements are attributed a
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Typing Rules |[DLFR2021]

w
Le:AF M:3B
0 0 w1l
r:AFz: A = M > The body NV needs to be typed
several times.

r lf V- [A N B] A }i W- A > The resulting type is obtained

as a mixture of the various

w—+v
TWA - VIV:B ey G

_|_
N[ =
o3

2 2 ly ~ 2
w Vg
' M: <pkAk>k (Ak,l‘ . Ak F . Bk)k

w+> ) pruk+1
Moy, Ag ~ letz=Min N : ), piBy

IV A i V:m)s
T

TE V(A W0 R Vgl
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An AST Example

M = NN, where N = A z.xx [

FN:([]%<%[]>>:T1 FN ] F2M¢<%U>
FN: (Bn} — <%[]aiﬂ>) = T2 EN: E.ﬁ} HM <%U,iﬂ>



A not-AST Example

Q= AA, where A = \x.xzx

FA:([=0)=pm FA: Fla:()
A (L] - ) = po NTIPY 0.0
FA: <[1.pi]i<n — <>> = Pn FA:[Lplicn FQ: ()
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AST and PAST, Precisely Characterized

Pr{M ] sup [|A]

/\ 1

Why?

> Subject Reduction.
> If - M : A and M rewrites to N; with probability
pi, then = N; : B; such that A = >, p;B;.
» This implies that Pr[M |] > ||A]].
> Subject Expansion, which implies that
Pr[M]] < ||A]|.

IV J
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AST and PAST, Precisely Characterized

Pr{MI] = sup [JA]
FM:AeT

IEj’Time(M) T wSU.p w
A =M:0
Why?

As above, but weighted versions of reduction
and expansion theorems are needed.
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Part IV

Relational Reasoning



Examples
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——

n times

I3 VS. I




Examples

I3 VS.

I3 VS.



Examples

Not Context Equivalent: C' = [-].
Context Distance? Cannot easily amplify.

I U oS¢ vv I

I3 VS. ()




Examples

I3 VS. I
I3 VS, ()

(Ax.l) ® (A\z.2) s Ax. ] ® Q)



Examples

I3 VS. I

Not Context Equivalent in CBV: C' = (Az.xz(z1))[]
Apparently Context Equivalent in CBN.

T U o0 vv. S0

(Ax.l) ® (A\z.2) s Ax. ] ® Q)
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A Labelled Markov Chain for Ag

Terms Values

N{W/x} A\z.N
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L
Ax.M R Ax.N M{L/x} R N{L/z}
L
eval [M]
M R N

k [V]

eval
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Probabilistic Applicative Bisimulation

L
Ae M R AN M{L/z} R N{L/z}
L
S

M R [M](E)=[N](E)

N
evalk [N] \j



Applicative Bisimilarity vs. Context Equivalence

> Bisimilarity: the union ~ of all bisimulation relations.

v

Is it that ~ is included in =7 How to prove it?

v

Natural strategy: is ~ a congruence?
P If this is the case:

M~N = C[M]~C[N] = > [CIM]] =) _[C[N]]
— M = N.

» This is a necessary sanity check anyway.

> The naive proof by induction fails, due to application: from M ~ N, one cannot
directly conclude that LM ~ LN.
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Our Neighborhood

> A, where we observe convergence

2
1M
Il
Il
N
2

CBN
CBV

[Abramsky1990, Howe1993]

> Ag with nondeterministic semantics, where we observe convergence, in its may or
must flavors.

~C

Il
Il

IN
2

X

CBN
CBV X

[Ong1993, Lassen1998]
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The Probabilistic Case

Ag with probabilistic semantics.

Il
Il
1N
Z

CBN

X

CBV

Counterexample for CBN: (Az.I) & (A\x.Q) o Az & Q

Where these discrepancies

From testing!

Bisimulation can be characterized by testing equivalence as follows:

come from?

Calculus Testing
A T:=w ‘ a-T
PAg w | a1 | (TT)

NAg

T:=
T:=w ’

a-T | Nier T; |
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The Probabilistic Case

> Ag with probabilistic semantics.

3IC<|<

1N

N

CBN
CBV

X | X

> Probabilistic simulation can be characterized by testing as follows:

Ti=w | a-T| @1 | TVT

> Full abstraction can be recovered if endowing Ag with parallel disjunction
[CDLSV2015].

IC<(<
CBN X
CBV

1N

=
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Context Distance: the Affine Case |[CDL2015|

> Let us consider a simple fragment of Ag, first.
> Preterms: M,N :=z | \e.M | MM | Mo M | o
> Terms: any preterm M such that T' - M.
» Behavioural Distance §°.
» The metric analogue to bisimilarity.
> Trace Distance §°.

» The maximum distance induced by traces, i.e., sequences of actions:
8 (M, N) = supy |Pr(M,T) — Pr(N,T)|.

» Soundness and Completeness Results:

0" < C | 6¢ <o |6t <o 6 <
X

» Example: /(1,1 & Q) =61 ®Q,Q) = 1.
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Context Distance: the General Case |CDL2016|

v

None of the abstract notions of distance ¢ gives us that (1,7 @ Q) = 1.

The underlying LMC does not reflect copying.

A Tuple LMC.
> Preterms: M u=a | o.M | MaM | MM | MaM | 1M
» Terms: any preterm M such that I' - M.

> States: sequences of terms, rather than terms.
» Actions not only model parameter passing, but also copying of terms.

v

v

v

Soundness and Completeness Results:

6t < 5| oc < ot

v

Examples: ¢'(!/(1 ©Q),1Q) = 1 ST o)) =1.
> Trivialisation does not hold in general, but becomes true in strongly normalising
fragments or in presence of parellel disjuction.
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» This is however not trivial, since termination and program
equivalence have a different, more subtle, nature
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Thank you! Questions?
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