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Böhm Trees and Taylor Expansion

Introduction

The Big Picture

CalculiProgram Approximation Denotational Semantics

λ-Calculus

Resource Calculus

Scott’s Semantics

Relational Semantics
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Introduction

λ-calculus

The untyped λ-calculus (Church, 1932)

Based on a primitive notion of function.

M,N ::= x | λx .M | MN

Computation becomes substitution

(λx .M)N →β M{N/x}

A program is a closed term M ∈ Λo .
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Introduction

λ-calculus

Some examples

1. The identity I = λx.x
IM→β M

2. The projections K = λxy.x and F = λxy.y:

KMN→β (λy.M)N→β M

3. The self-application ∆ = λx .xx

∆M →β MM

4. The “looping” combinator Ω = ∆∆

Ω = ∆∆→β ∆∆ = Ω→β Ω→β · · ·
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Introduction

λ-calculus

The Theory of Program Approximation

How to handle complex programs?

Denotational Semantics

▶ Model = abstract mathematical structure.

▶ Define a program interpretation satisfying compositionality.

[[MN]] = [[M]] • [[N]].

Systems of Approximants

▶ Decompose a program into elementary “bricks”

▶ Retrieve the whole program behaviour performing some
“limit” of its (finite) approximants.

M =
∨
{A | A is an approximant of M}
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Introduction

λ-calculus

Denotational vs Operational Models

Continuous Semantics (Scott, 1969)

D∞: First denotational model of λ-calculus.

Böhm tree semantics (Barendregt, 1977)

Tree-like representation for program execution.

“Syntactic model” of λ-calculus.
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Introduction

Scott’s continuity

Scott’s topology

Let D = (D,≤,⊥) be a complete partial ordering:
d ≤ d ′ ⇐⇒ the datum d is less defined than d ′

The Scott topology on D is defined as follows: O is Scott-open if

1. O is upward closed: ∀d ∈ O, d ′ ∈ D . [d ≤ d ′ ⇒ d ′ ∈ O]

2. ∀A ⊆ O .A directed and
∨

A ∈ O ⇒ A ∩ O ̸= ∅
directed = non-empty, downward closed, closed under finite ∨.

Examples. Let D be a cpo, d ∈ D.
The following sets are open:

▶ {x ∈ D | x ̸= ⊥}
▶ {x ∈ D | x ̸≤ d}

The Scott topology is T0:
all points are topologically
distinguishable.
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Introduction

Scott’s continuity

Scott continuity

Proposition. Let D be a cpo. A function

f : D → D

is Scott continuous if and only if, for every directed subset I ⊆ D,

f
(∨
I
)
=

∨
f (I).

A function is Scott continuous means

“A finite portion of the output of a program must be
generated by a finite portion of its input.”
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Introduction

Scott’s continuity

The Crucial Point — How to Handle Recursion?

Kleene Fixed Point Theorem
Let D = (D,≤,⊥) be a domain. Every Scott-continuous function

f : D → D

has a least fixed point lfp(f ) that can be calculated as follows:

lfp(f ) =
∨
n∈N

f n(⊥)

The Kleene Fixed Point Theorem is used in denotational
semantics, to give meaning to recursive function definitions
in programming languages.
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Introduction

Scott’s continuity

Fixed Point Combinators

1. A λ-term X is a fixed point of a λ-term M if

MX =β X

2. One can define fixed point combinators:

Y = λf.(λx.f(xx))(λx.f(xx))

Open Problem. Define

Fix(M) = {[X ]β | X ∈ Λo .MX =β X}

Conjecture. For all M ∈ Λo either |Fix(M)| = 1 or Fix(M) = ℵ0.
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Introduction

Scott’s continuity

Fixed Point Combinators

1. A λ-term X is a fixed point of a λ-term M if

MX =β X

2. One can define fixed point combinators:

Y = λf.(λx.f(xx))(λx.f(xx))

Lemma. For all M ∈ Λ, YM is a fixed point of M:

YM = (λf .(λx .f (xx))(λx .f (xx)))M
→β (λx .M(xx))(λx .M(xx))
→β M((λx .M(xx))(λx .M(xx))) β← M(YM)
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Introduction

Operational semantics

Possible behaviours of a program

Classification Behaviour Result

β-normalizable P → P1 → P2 ↠97 P99 → 42 completely defined

unsolvable P → P1 → P ↠97 P1 → · · · undefined

solvable P → o1P1 → o1(o2P2)→ · · · stable parts
↠∞ o1(o2(o3(· · · on)) · · · ) (infinitary)

P P1 P2 P99 42
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Operational semantics

Possible behaviours of a program

Classification Behaviour Result

β-normalizable P → P1 → P2 ↠97 P99 → 42 completely defined

unsolvable P → P1 → P ↠97 P1 → · · · undefined

solvable P → o1P1 → o1(o2P2)→ · · · stable parts
↠∞ o1(o2(o3(· · · on)) · · · ) (infinitary)

P P1

3,

P2

1

P3

4

π

15926535 · · ·
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Böhm Trees

Definition

The Böhm Tree Semantics (Barendregt’77)

Given a λ-term M, its Böhm tree BT(M) is defined as follows:

▶ If M is unsolvable (completely undefined), then

BT(M) = ⊥

▶ Otherwise M ↠β λx1 . . . xn.y M1 · · ·Mk and

BT(M) = λx1 . . . xn.y

BT(M1) · · · BT(Mk)

One of the first coinductive definition!
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Böhm Trees

Examples

Example - Fixed point combinator Y

Y = λf .(λx .f (xx))(λx .f (xx))

→β λf .f ((λx .f (xx))(λx .f (xx))))

→β λf .f (f ((λx .f (xx))(λx .f (xx)))))

→β λf .f (f (f ((λx .f (xx))(λx .f (xx))))))

↠β λf .f n((λx .f (xx))(λx .f (xx))))

↠β · · ·

BT(Y)
q

λf .f

f

f

f

...



Böhm Trees and Taylor Expansion

Böhm Trees

Examples

Böhm trees - Examples
BT(X )

q
λx .x

λy .yx

λz .zy

λw .wz

λq.qw

BT(YK)
q
⊥

BT(Pn)
q

λx1 . . . xny .y

x1 · · · xn

where

▶ Pn = λx1 . . . xny.yx1 · · · xn
▶ X = Y(λyx.xxy)
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Böhm Trees

Examples

The Böhm tree semantics is “infinitary”

There are λ-terms M,N with the same Böhm tree, that
cannot be equated by any “finite” reduction.

1. Take a λ-term M satisfying:

M ↠β λzx .x(Mz)

2. Take a variable y . Then, BT(My) = λx .x

BT(My)

= λx .x

λx .x

...

3. For y ̸= z , we have My ̸=β Mz

but BT(My) = BT(Mz).
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Böhm Trees

Λ∞

Digression - Böhm trees as infinitary normal forms

Generate Λ∞ by taking the grammar of λ-calculus coinductively:

T ,U ::=co-ind x | λx .T | TU

Example:

@

@

∆3@

∆3@

∆3@

∆3@

∆3
...

@

@

∆3@

∆3@

∆3
...

@

@

∆3
... . . .

λx∆3 =where

@

@ x

x x
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Böhm Trees

Λ∞

Digression - Böhm trees as infinitary normal forms
Take the infinitary λ-calculus Λ∞

⊥ with ⊥:

T ,U ::=co-ind ⊥ | x | λx .T | TU

Reduction is now coinductive:

T ↠β x

T ↠↠β⊥ x

T ↠β⊥ λx .U ′ U ′ ↠↠β⊥ U

T ↠↠β⊥ λx .U

T ↠β U ′V ′ U ′ ↠↠β⊥ U V ′ ↠↠β⊥ V

T ↠↠β⊥ UV

T has no hnf T ̸= ⊥
T ↠↠β⊥ ⊥

(⊥)

Theorem. (Λ∞
⊥ ,↠↠β⊥) is confluent and strongly normalizing.

For all M ∈ Λ: BT(M) = nf∞β⊥(M).
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Böhm Trees

Approximation theory

That was scary. . . can we go back to induction?

▶ Finite trees are pieces of “output” that can be obtained in a
finite amount of time.

▶ Böhm trees are naturally ordered, as follows:

λf .f

f

f

f

...

⊑λf .f

f

f

⊥

⊑λf .f

f

⊥

⊑λf .f

⊥

⊑⊥
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Böhm Trees

Approximation theory

Finite Approximants

The set A of finite approximants is defined as follows:

(A) A, Ai ::= ⊥ | λx1 . . . xn.y A1 · · ·Ak

The Scott-ordering ⊑ on A is defined by:

⊥ ⊑ A

A ⊑ A′

λx .A ⊑ λx .A′
A1 ⊑ A′

1 · · ·An ⊑ A′
n

xA1 · · ·An ⊑ xA1 · · ·An

The corresponding “sup” A ⊔ A′ is inductively given by:

⊥ ⊔ A = A ⊔ ⊥ = A

A1A2 ⊔ A′
1A

′
2 = (A1 ⊔ A′

1)(A2 ⊔ A′
2)

λx .A ⊔ λx .A′ = λx .(A ⊔ A′)
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Böhm Trees

Approximation theory

Direct approximation

The direct approximant ω(M) ∈ A of M ∈ Λ is inductively defined:

ω(λx1 . . . xn.yM1 · · ·Mk) = λx1 . . . xn.yω(M1) · · ·ω(Mk),

ω(λx1 . . . xn.(λy .P)QM1 · · ·Mk) = ⊥.

The set of finite approximants of a λ-term M is defined by:

A(M) = {ω(N) | N =β M} ↓

Lemma.

1. M →β N implies ω(M) ⊑ ω(N).

2. If M =β N then A(M) = A(N).
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Böhm Trees

Approximation theory

Lemma. The set A(M) is an ideal w.r.t. ⊑:
1. ⊥ ∈ A(M);

2. if A1,A2 ∈ A(M) then A1 ⊔ A2 ∈ A(M);

3. downward closed: A1 ⊑ A2 ∈ A(M) ⇒ A1 ∈ A(M).

Proof. (1) and (3) hold trivially.

2) If A1,A2 ∈ A(M) then A1 ⊑ ω(N1) and A2 ⊑ ω(N2) for some

N1 =β M =β N2

R1

    ~~~~
R2

    ~~~~

R
    ~~~~

Conclude since direct approximants increase along reduction. □
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Böhm Trees

Approximation theory

The Syntactic Approximation Theorem

For all M ∈ Λ,

BT(M) =
⊔
A(M)

Examples:

▶ A(Ω) = {⊥}, for Ω = (λx .xx)(λx .xx),

▶ A(Y) = { ⊥,
λf .f⊥,
λf .f (f⊥),
λf .f (f (f⊥)), . . . ,
λf .f n(⊥), . . . }

Example

BT(Y)
q

λf .f

f

f

f

...

There is a 1-to-1 correspondence between A(M) and BT(M).
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Böhm Trees

Approximation theory

The Böhm-tree semantics

How to prove that the equivalence

M =B N ⇐⇒ BT(M) = BT(N)

is an equational theory of λ-calculus? We need to check:

▶ =B contains =β. (done)

▶ for all contexts C [], M =B N ⇒ C [M] =B C [N]. (difficult)

Problem. If I give you BT(M) and BT(N), what can you tell me of

BT(MN)?
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Böhm Trees

The tree topology

The topological approach

Consider the map
BT(−) : Λ→ Böhm trees.

Böhm trees are an algebraic cpo endowed with Scott topology.

The inverse image of Scott topology defines a topology on Λ.

1. {M | M solvable} is open.
2. {M | M unsolvable} is closed.
3. Unsolvables are compactification point:

The only open set containing all unsolvables is the whole set Λ.

4. Every β-normalizable M is an isolated point:
{N | M =β N} is an open set.

5. The application and λ-abstraction on Λ are Scott continuous.
See [§14.2,Barendregt84.]
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Böhm Trees

The tree topology

Böhm trees contextuality - Method 1.

Theorem. =B is compatible with the application.

Proof. Let N =B N ′, we want to prove MN =B MN ′. Assume that
MN ̸=B MN ′, i.e., BT(MN) ̸= BT(MN ′), towards a contradiction.

▶ Since Scott’s topology is T0, there is a Scott open O
containing, say, MN but not MN ′.

▶ By continuity of application there exists an open set U
containing N ′ such that {MX | X ∈ U} ⊆ O.

In conclusion:

BT(N) = BT(N ′) ⇒ N ′ ∈ {MX | X ∈ U} ⊆ O (absurd).
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Böhm Trees

Λ∞ applications

Böhm trees contextuality

Method 2. Use Λ∞
⊥ with infinitary ordinal reduction ↠∞.

Assume BT(M) = BT(M ′) and BT(N) = BT(N ′).

MN

∞
����

∞// // BT(M) · BT(N)

∞vvvv

= BT(M ′) · BT(N ′)

∞
����

BT(MN) BT(M ′N ′)

Conclude BT(MN) = BT(M ′N ′) by the unicity of normal forms.
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Böhm Trees

Genericity

The Genericity Lemma

Genericity. Let M be a λ-term, U an unsolvable and N a β-nf.

MU =β N ⇒ ∀L ∈ Λ .ML =β N.

Proof.

1. We have seen that {P | P =β N} is Scott open.
2. By continuity of M 7→ MN, the set O = {P | MP =β N} is

also a Scott open containing U.

3. The leftmost strategy is normalizable, whence

MU =β N ⇐⇒ MU =B N ⇐⇒ MV =B N,∀V unsolvable

4. So O contains all unsolvables.

5. But the unique open set including all unsolvables is Λ.
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Böhm Trees

The Big Picture

The Big Picture

CalculiProgram Approximation Denotational Semantics

λ-Calculus

Resource Calculus

Scott’s Semantics

(Relational Semantics)

Böhm Trees



Böhm Trees and Taylor Expansion

The Resource Calculus

The Resource Calculus
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The Resource Calculus

Introduction

Lambda Calculus is not resource conscious

In one step of β-reduction

(λx .M)N →β M{N/x}

the argument N can be:

▶ Erased: (λxy .y)N →β λy .y

▶ Duplicated: (λx .xx)N →β NN

▶ Copied an arbitrary number of times:

(λfz .f (f (· · · f (z))))N →β λz .N(N(· · ·N(z)))
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The Resource Calculus

Introduction

Linear Logic is resource sensitive

Linear Logic decomposes the intuitionistic arrow

A→ B as !A ⊸ B

and this suggests that one step of β-reduction

(λx .M)N →β M{N/x}

should be decomposable into more elementary steps.
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The Resource Calculus

Introduction

Linear Lambda Calculus is stupid extremely basic

The näıve calculus arising from linearity

λx .M ⇒ x occurs exactly once in M

is not very interesting from the operational point of view.

λxyz .xyz , λxyz .yzx , λxyz .zxy , λxyz .x(λf .yf )(λg .gz), . . .

It can be interesting from a combinatorial perspective:

Noam Zeilberger. Counting isomorphism classes of β-normal
linear lambda terms. arXiv:1509.07596 (2015)

Noam Zeilberger: Linear lambda terms as invariants of rooted
trivalent maps. J. Funct. Program. 26: e21 (2016)
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Introduction

The Resource Calculus

It is a resource sensitive version of λ-calculus where

▶ variables can occur multiple times in its programs,

▶ resources cannot be erased nor copied during the reduction.

Introduced in

T. Ehrhard, L. Regnier: The differential lambda-calculus.
Theor. Comput. Sci. 309(1-3): 1-41 (2003)

More understandable syntax in

M. Pagani, P. Tranquilli: Parallel Reduction in Resource
Lambda-Calculus. APLAS 2009: 226-242

Ancestor

G. Boudol: The Lambda-Calculus with Multiplicities.
CONCUR 1993: 1-6
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The Resource Calculus

Its syntax and operational semantics

Its syntax

Syntactic categories:

Terms s, t, u ::= x | λx .t | tb Λr

Bags b ::= [t1, . . . , tn], for n ≥ 0, Λb

Formal sums S,T,U ::= 0 | t + T N⟨Λr ⟩

Intuitively

▶ Terms are the protagonists of our calculus.

▶ Bags are multisets of linear resources.

▶ Sums represent non-deterministic choice between terms

s + t → s s + t → t

but the choice is never actually made.
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The Resource Calculus

Its syntax and operational semantics

Assumptions

On formal sums

▶ The operator + is associative and commutative.

▶ As usual, we write
∑k

i=1 ti = t1 + · · ·+ tk

Bags are multisets represented in multiplicative notation.

▶ 1 is the empty bag.

▶ b1 · b2 represents the multiset union of b1 and b2.
▶ Structural induction on bags, becomes:

▶ 1, base case.
▶ [t] · b, induction step.

Sums of bags B ∈ N⟨Λb⟩ are useful but not important.
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The Resource Calculus

Its syntax and operational semantics

All constructors are linear
In this context

“linearity” ≃ commutation with sums

Notation.
For sums in N⟨Λr ⟩, we introduce a syntactic sugar:

λx .
∑n

i=1 ti :=
∑n

i=1 λx .ti

(
∑n

i=1 ti )b :=
∑n

i=1 tib

t(
∑n

i=1 bi ) :=
∑n

i=1 tbi

In other words, sums can always be pushed to surface.

Remark. A subterm 0 annihilates the whole term:

λx .0 = t0 = 0b = 0 and [0] · b = 0
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Its syntax and operational semantics

Its operational semantics – the idea

(λx .t)[s1, s2, s3]→ ?

x

o
x

x

x

Confluent LinearStrongly Normalizable

degx(x) = 1 degx(y) = 0

degx(λy .t) = degx(t) degx(tb) = degx(t) + degx(b)

degx(1) = 0 degx([t] · b) = degx(t) + degx(b)
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Its syntax and operational semantics

Its operational semantics – the idea

(λx .t)[s1, s2, s3]→ t⟨s1/x1, s2/x2, s3/x3⟩

x

o
x

x

x

Confluent LinearStrongly Normalizable
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Böhm Trees and Taylor Expansion

The Resource Calculus

Its syntax and operational semantics

Its operational semantics – the idea

(λx .t)[s1, s2, s3]→
∑
σ∈S3

t⟨s1/xσ(1), s2/xσ(2), s3/xσ(3)⟩
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x

x
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Confluent LinearStrongly Normalizable

degx(x) = 1 degx(y) = 0

degx(λy .t) = degx(t) degx(tb) = degx(t) + degx(b)
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Its syntax and operational semantics

Its operational semantics – the idea

(λx .t)[s1, s2, s3]→ 0

x

o

x

x

Confluent LinearStrongly Normalizable

degx(x) = 1 degx(y) = 0
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The Resource Calculus

Its syntax and operational semantics

Linear substitution
For s, t ∈ Λr , define t⟨s/x⟩ ∈ N⟨Λr ⟩ aka the

linear substitution of s for one occurrence of x in t

y⟨s/x⟩ =

{
s, if x = y ,

0, otherwise,

(λy .t)⟨s/x⟩ = λy .t⟨s/x⟩ (wlog. x ̸= y)

(tb)⟨s/x⟩ = t⟨s/x⟩b + t(b⟨s/x⟩)
on bags:

1⟨s/x⟩ = 0

[t]⟨s/x⟩ = [t⟨s/x⟩]
(b1 · b2)⟨s/x⟩ = b1⟨s/x⟩ · b2 + b1 · (b2⟨s/x⟩)
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Its syntax and operational semantics

Linear substitution
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The Resource Calculus

Its syntax and operational semantics

Its operational semantics

Baby-step. Define →b⊆ Λr × N⟨Λr ⟩ by

(λx .t)([s] · b) →b (λx .t⟨s/x⟩)b

(λx .t)1 →b

{
t, if x /∈ fv(t),

0, otherwise.

Normal step. Define →r⊆ Λr × N⟨Λr ⟩ by

(λx .t)[s1, . . . , sn]→r


∑
σ∈Gn

t{s1/xσ(1), . . . , sn/xσ(n)}, if degx(t) = n,

0, otherwise.
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The Resource Calculus

Its syntax and operational semantics

Examples of reductions

Both notions of reduction extend to → ⊆ N⟨Λr ⟩ × N⟨Λr ⟩ by

t → t ′ ⇒ t + T→ t ′ + T

▶ Baby-steps:

(λxy .x [y , y ])[a][b, b]

→b (λxy .a[y , y ])1[b, b]

→b (λy .a[y , y ])[b, b]

→b (λy .a[b, y ])[b] + (λy .a[y , b])[b] = 2.(λy .a[b, y ])[b]

→b (λy .a[b, b])1 + (λy .a[b, y ])[b]

→b 2.(λy .a[b, b])1
2→b 2.a[b, b] = a[b, b] + a[b, b]
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Its syntax and operational semantics

Examples of reductions

Both notions of reduction extend to → ⊆ N⟨Λr ⟩ × N⟨Λr ⟩ by
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The Resource Calculus

Its syntax and operational semantics

Examples of reductions

Both notions of reduction extend to → ⊆ N⟨Λr ⟩ × N⟨Λr ⟩ by

t → t ′ ⇒ t + T→ t ′ + T

▶ Normal-steps:

(λxy .x [y , y ])[a][b, b] →r (λy .a[y , y ])[b, b]

→r 2.a[b, b]

Theorem (Equivalence baby ↔ normal reductions)

▶ If t →r T then t ↠b T.
▶ For T = t1 + · · ·+ tn with each ti in normal form, we have:

t ↠b T ⇐⇒ t ↠r T
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The Resource Calculus

Main properties

Main Properties – Strong Normalization

Theorem. The resource calculus is strongly normalizing (SN).

Proof Define:

▶ the size #t ∈ N of a term t, as you imagine.

▶ the size of a sum #(t1 + · · ·+ tn) = [#t1, . . . ,#tn] ∈Mf (N)
Check that # decreases along a reduction

(λx .t)[s1, . . . , sn]→b

{
t⟨s1/x1, . . . , sn/xn⟩ ? degx(t) = n

0 ✓ otherwise

w.r.t. the multiset ordering <m.
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The Resource Calculus

Main properties

Main Properties – Confluence

Theorem. The resource calculus is confluent.

Proof. The resource calculus is locally confluent, i.e., t →r T1 and
t →r T2 imply ∃S such that T1 ↠r S and T2 ↠r S.

t

~~   
T1

�� ��

T2

����
S

Conclude by Newmann’s Lemma. A term rewriting system is
confluent if it is SN and locally confluent. □
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The Resource Calculus

Main properties

Main Properties – Linearity

▶ Starvation:

(λx .x [x ])[λx .x [x ], λx .x [x ]]→r 2.(λx .x [x ])[λx .x [x ]]→r 0

▶ Surfeit:

(λfgx .f [g [x ]])[h][b, c]→r (λgx .h[g [x ]])[b, c]→r 0

▶ Non-determinism:

(λx .x [x ])[f , g ]→r f [g ] + g [f ]
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The Resource Calculus

Main properties

Main Properties – Summary
The Resource Calculus

t ::= x | λx .t | t b
b ::= [t1, . . . , tn] where n ≥ 0

T ::= t1 + · · ·+ tn

Reduction:

(λx .t)[s1, . . . , sn] ↠r T ̸= 0 ⇒ t must use each si exactly once
in the reduction to a value.

t ↠r cL0M = 0 ⇐ otherwise, the whole program t
becomes an empty program 0.

Main Properties
Strong Normalization: Trivial, because there is no duplication. ✓

Confluence: Locally confluent + strongly normalizing. ✓

Linearity: Nothing gets erased in a non-zero reduction. ✓
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The Resource Calculus

Main properties

Its expressive power
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The Resource Calculus

The Big Picture

The Big Picture

CalculiProgram Approximation Denotational Semantics

λ-Calculus

Resource Calculus

Scott’s Semantics

(Relational Semantics)

Böhm Trees

Taylor Expansion
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The Resource Calculus

The Big Picture

Is the Resource Calculus
of any interest?

t⟨s/x⟩ ∼=
∂t

∂x
· s
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Taylor Expansion and Applications

Introduction

Towards a differential theory of program approximations

tangent
∆x

∆y

x

y

f (x)

derivative
∆y
∆x

as ∆x → 0

Mathematical Analysis

Taylor expansion

f (x) =
∞∑
n=0

f (n)(a)

n!
(x − a)n

Theory of Programming Languages

The differential λ-calculus

D(λx .M) · N →

λx .
(
∂M
∂x · N

)
linear substitution of N

for one occurrence of x in M

Taylor expansion T (−)

P x =
∞∑
n=0

1

n!

(
Dn(P) · (x , . . . , x)

)
0
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Taylor Expansion and Applications

Introduction

The ambitious goal

Replace the theory of program approximation based on

Scott-continuity and Böhm trees

with the theory of

resource consumption based on Taylor expansion.

Resource calculus = Target language of Taylor expansion
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Taylor Expansion and Applications

Definition

Taylor Expansion

T (−) : Λ → power series of resource approximants

T (x) = x

T (λx .M) = λx .T (M)

T (MN) =
∑
k∈N

1

k!
T (M)[T (N), . . . , T (N)︸ ︷︷ ︸

k times

]

Examples

▶ T (I) = {λx.x},
▶ T (∆) = {λx.x1, λx.x[x], λx.x[x, x], λx.x[x, x, x], . . . },

= {λx .x [n.x ] | n ≥ 0},
▶ T (Ω) = {(λx.x[n.x])[λx.x[n1.x], . . . , λx.x[nk.x]] | n, k, ni ≥ 0}.
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Taylor Expansion and Applications

Definition

Taylor Expansion

T (−) : Λ → sets of resource approximants

T (x) = {x}
T (λx .M) = {λx .t | t ∈ T (M)}

T (MN) =
⋃
k∈N

{
t[s1, . . . , sk ] | t ∈ T (M), s1, . . . , sk ∈ T (N)

}
Examples

▶ T (I) = {λx.x},
▶ T (∆) = {λx.x1, λx.x[x], λx.x[x, x], λx.x[x, x, x], . . . },

= {λx .x [n.x ] | n ≥ 0},
▶ T (Ω) = {(λx.x[n.x])[λx.x[n1.x], . . . , λx.x[nk.x]] | n, k, ni ≥ 0}.
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Taylor Expansion and Applications

Dynamic behaviour

The Dynamics of Taylor Expansion

The Taylor expansion is a “static” operation

▶ M = x ⇒ t ∈ T (M) has the shape of a variable,

▶ M = λx .N ⇒ t ∈ T (M) has the shape of an abstraction,

▶ M = PQ ⇒ t ∈ T (M) has the shape of an application,

▶ M = (λx .P)Q ⇒ t ∈ T (M) has the shape of a redex.

As the Resource Calculus enjoys SN, we can define:

NF(T (M)) =
⋃
{nf(t) | t ∈ T (M)}
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Taylor Expansion and Applications

Dynamic behaviour

Normalizing the Taylor Expansion

NF(T (Ω)) = ∅

▶ For every t ∈ T (Ω), check t ↠r 0.

▶ Conclude T (Ω) = ∅.

More generally:

M is unsolvable ⇒ NF(T (M)) = ∅

(We’ll prove it later)
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Normalizing the Taylor Expansion
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Böhm Trees and Taylor Expansion

Taylor Expansion and Applications

Dynamic behaviour

Normalizing the Taylor Expansion

NF(T (Y)) = ?

▶ Mmm. . .

Let us look at its shape:

Y = λf.(λx.f(xx))(λx.f(xx))

▶ Mmm. . .

Problem! That’s a toughy. . .
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Böhm Trees and Taylor Expansion

Taylor Expansion and Applications

Dynamic behaviour

Normalizing the Taylor Expansion

NF(T (Y)) = ?

▶ Mmm. . .

Let us look at its shape:

Y = λf.(λx.f(xx))(λx.f(xx))

▶ Mmm. . .

Problem! That’s a toughy. . .
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Taylor Expansion and Applications

Taylor Expansion vs Böhm Trees

We know how to compute its Böhm tree

BT(Y) = λf.f(f(f(f(· · · ))))

since

A(Y) = {λf.f⊥, λf.f(f⊥), λf.f(f(f⊥)), λf.f(f(f(f⊥))), . . . }
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Taylor Expansion and Applications

Taylor Expansion vs Böhm Trees

Can we Taylor expand a Böhm tree?

For an approximant A, define:

T (⊥) = ∅,
T (x) = {x},
T (λx .A) = {λx .t | t ∈ T (A)},

T (A1A2) =
⋃
k∈N

{
t[s1, . . . , sk ] | t ∈ T (A1), s1, . . . , sk ∈ T (A2)

}
.

Then, we can simply define

T (BT(M)) =
⋃

A∈A(M)

T (A)
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Taylor Expansion vs Böhm Trees

Commutation Taylor / Böhm

Theorem (Ehrhard & Regnier 2003)

For every λ-term M, we have:

NF(T (M)) = T (BT(M))

Thanks! T (BT(Y)) = {λf.f1, λf.f[λf.f1], λf.f[λf.f1, λf.f1], . . . }

Corollary 1

M is unsolvable ⇐⇒ NF(T (M)) = ∅

Corollary 2

BT(M) = BT(N) ⇐⇒ NF(T (M)) = NF(T (N))
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Taylor Expansion vs Böhm Trees

Taylor Expansion vs Böhm Trees

Λ

BT

��

T // Λr

NF

��
B

T
// NF(Λr )

Advantages:

1. Approximants are closed under application.

2. Enjoy Strong Normalization + Linearity.

3. Generalizable to the mainstream languages.

Disadvantage:

1. lots of indices arise from the linearization.
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Applications

Classic results

Chapter 14Scott’s Continuity Berry’s Stability

Khan & Plotkin’s
Sequentiality

Contextuality of BTs

Genericity Lemma

∄ parallel or

Perpendicular
Lines Lemma

topological argument

Commutation Theorem
NF(T (P)) = T (BT(P))

D. Barbarossa and G. Manzonetto. Taylor Subsumes Scott, Berry, Kahn and Plotkin.
PACMPL Vol. 4, pp. 1:1-1:23, 2020.
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Böhm Trees and Taylor Expansion

Taylor Expansion and Applications

Applications

Contextuality of =B via Taylor Expansion

BT(N) = BT(N ′) ⇒ ∀M . BT(MN) = BT(MN ′)

Proof. More precisely:

BT(N) ⊑ BT(N ′) ⇒ ∀M . BT(MN) ⊑ BT(MN ′)

Equivalently, by Corollary 2: let

NF(T (N)) ⊆ NF(T (N ′))

we have to prove:

NF(T (MN)) ⊆ NF(T (MN ′))
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Applications

A proof of context closure via Taylor Expansion

NF(T (N)) ⊆ NF(T (N ′)) ⇒ NF(T (MN)) ⊆ NF(T (MN ′))

Proof. Take t ∈ NF(T (MN)), then ∃t ′ ∈ T (MN) such that

t ′ = s1[u1, . . . , uk ] // // t + T

nf(s1)[nf(u1), . . . ,nf(uk)]

with s1 ∈ T (M)

and u1, . . . , uk ∈ T (N).

We conclude that
t ∈ NF(T (MN ′)). □
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Applications

A proof of context closure via Taylor Expansion

NF(T (N)) ⊆ NF(T (N ′)) ⇒ NF(T (MN)) ⊆ NF(T (MN ′))

Proof. Take t ∈ NF(T (MN)), then ∃t ′ ∈ T (MN) such that

t ′ = s1[u1, . . . , uk ] // // t + T

nf(s1)[nf(u1), . . . ,nf(uk)]

with nf(s1) ∈ NF(T (M))

and nf(u1), . . . ,nf(uk) ∈ NF(T (N))

= NF(T (N ′)).
We conclude that t ∈ NF(T (MN ′)). □
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A proof of context closure via Taylor Expansion

NF(T (N)) ⊆ NF(T (N ′)) ⇒ NF(T (MN)) ⊆ NF(T (MN ′))

Proof. Take t ∈ NF(T (MN)), then ∃t ′ ∈ T (MN) such that

t ′ = s1[u1, . . . , uk ] // //

����

t + T

nf(s1)[nf(u1), . . . ,nf(uk)]

55 55

with nf(s1) ∈ NF(T (M))

and nf(u1), . . . ,nf(uk) ∈ NF(T (N)) = NF(T (N ′)).
We conclude that t ∈ NF(T (MN ′)). □
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Some Taylor approximants are “just like” Böhm’s

A resource term t is called

▶ linearized if every bag in t has cardinality 1.

▶ affined if every bag in t has cardinality at most 1.

Every affined normal t ∈ Λr can be sent to an approximant |t| ∈ A:

|x | = x ,

|λx .t| = λx .|t|,
|s[t]| = |s| |t|,
|s[]| = |s| ⊥.



Böhm Trees and Taylor Expansion

Taylor Expansion and Applications

Applications

Some Taylor approximants are “just like” Böhm’s

A resource term t is called

▶ linearized if every bag in t has cardinality 1.

▶ affined if every bag in t has cardinality at most 1.

Every approximant A ̸= ⊥, can be sent to an affined A◦ ∈ Λr :

x◦ = x ,

(λx .A)◦ = λx .A◦,

(A1A2)
◦ = A◦

1[A
◦
2],

(A⊥)◦ = A◦[].
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Properties

▶ For all A ∈ A− {⊥} and t ∈ Λr , we have:

|P◦| = P

and
|t|◦ = t.

▶ For all M there exists a unique linearized t such that

t ∈ NF(T (M)) ⇐⇒ M is β-normalizable.

In this case, we have nfβ(M) = |t|.
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The Genericity Lemma
Let M unsolvable. C [M] has a β-nf ⇒ ∀N .C [M] =β C [N].

Standard proof: Topological method.

Compactification points in the tree topology are precisely the
unsolvables.

Several proofs in the literature:

Masako Takahashi: A Simple Proof of the Genericity Lemma.
Logic, Language and Computation 1994: 117-118

Jan Kuper: Proving the Genericity Lemma by Leftmost
Reduction is Simple. RTA 1995: 271-278

Proof. As C [M] normalizable, ∃!t ∈ NF(T (C [M])) linearized s.t.

|t| = nf(C [M])

So, there exist t ′ ∈ T (C [M]) such that:

t ′ = cLs1, . . . , sk M // // t + T

for some cL−M ∈ T (C [−]) and s1, . . . , sk ∈ T (M).

Thus, L−M cannot
occur in cL−M so we get:

cLs1, . . . , sk M ∈ T (C [N]) ⇒ t ∈ NF(T (C [N]))

and since t is linearized we obtain nfβ(C [N]) = |t|. □
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The Genericity Lemma
Let M unsolvable. C [M] has a β-nf ⇒ ∀N .C [M] =β C [N].

Proof. As C [M] normalizable, ∃!t ∈ NF(T (C [M])) linearized s.t.

|t| = nf(C [M])

So, there exist t ′ ∈ T (C [M]) such that:

t ′ = cLs1, . . . , sk M // // t + T

for some cL−M ∈ T (C [−]) and s1, . . . , sk ∈ T (M).

Thus, L−M cannot
occur in cL−M so we get:

cLs1, . . . , sk M ∈ T (C [N]) ⇒ t ∈ NF(T (C [N]))

and since t is linearized we obtain nfβ(C [N]) = |t|. □
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The Genericity Lemma
Let M unsolvable. C [M] has a β-nf ⇒ ∀N .C [M] =β C [N].

Proof. As C [M] normalizable, ∃!t ∈ NF(T (C [M])) linearized s.t.

|t| = nf(C [M])

So, there exist t ′ ∈ T (C [M]) such that:

t ′ = cLs1, . . . , sk M // //

����

t + T

cLnf(s1), . . . ,nf(sk)M

66 66

for some cL−M ∈ T (C [−]) and s1, . . . , sk ∈ T (M). (By Confluence and
Strong Normalization.)

Thus, L−M cannot occur in cL−M so we get:

cLs1, . . . , sk M ∈ T (C [N]) ⇒ t ∈ NF(T (C [N]))

and since t is linearized we obtain nfβ(C [N]) = |t|. □
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The Genericity Lemma
Let M unsolvable. C [M] has a β-nf ⇒ ∀N .C [M] =β C [N].

Proof. As C [M] normalizable, ∃!t ∈ NF(T (C [M])) linearized s.t.

|t| = nf(C [M])

So, there exist t ′ ∈ T (C [M]) such that:

t ′ = cLs1, . . . , sk M // //

����

t + T

cL0, . . . , 0M

66 66

for some cL−M ∈ T (C [−]) and s1, . . . , sk ∈ T (M). Now, M unsolvable
entails nf(si ) = 0.

Thus, L−M cannot occur in cL−M so we get:

cLs1, . . . , sk M ∈ T (C [N]) ⇒ t ∈ NF(T (C [N]))

and since t is linearized we obtain nfβ(C [N]) = |t|. □
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The Genericity Lemma
Let M unsolvable. C [M] has a β-nf ⇒ ∀N .C [M] =β C [N].

Proof. As C [M] normalizable, ∃!t ∈ NF(T (C [M])) linearized s.t.

|t| = nf(C [M])

So, there exist t ′ ∈ T (C [M]) such that:

t ′ = cLs1, . . . , sk M // //

����

t + T

cL0, . . . , 0M

66 66

for some cL−M ∈ T (C [−]) and s1, . . . , sk ∈ T (M). Now, M unsolvable
entails nf(si ) = 0. Thus, L−M cannot occur in cL−M so we get:

cLs1, . . . , sk M ∈ T (C [N]) ⇒ t ∈ NF(T (C [N]))

and since t is linearized we obtain nfβ(C [N]) = |t|. □
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Perpendicular Lines Lemma
PLL: If a context C [−1, . . . ,−n] : Λ

n → Λ is constant on n
perpendicular lines, then it must be constant everywhere.

x

y

z

R3

ℓ1 = {(x , 1, 2) | x ∈ R},
ℓ2 = {(0, y , 1) | y ∈ R},
ℓ3 = {(1, 0, z) | z ∈ R}.
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Perpendicular Lines Lemma
PLL: If a context C [−1, . . . ,−n] : Λ

n → Λ is constant on n
perpendicular lines, then it must be constant everywhere.

x

y

z

Λ3

ℓ1 = {(X , λx .x , λxy .x) | X ∈ Λ},
ℓ2 = {(λxy .y ,Y , λx .x) | Y ∈ Λ},
ℓ3 = {(λx .x , λxy .x ,Z ) | Z ∈ Λ}.
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Known results

Perpendicular Lines Lemma β B
open term model ✓ ✓

closed term model ✗ ?

▶ M(B) |= PLL, Barendregt’s Book 1982,
Proof technique: Sequentiality.

▶ Mo(B) |= PLL?

▶ Mo(β) ̸|= PLL, by Barendregt & Statman 1999.
Proof: Counterexample via Plotkin’s terms.

▶ M(β) |= PLL, by De Vrijer & Endrullis 2008.
Proof: via Reduction under Substitution.
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Perpendicular Lines Lemma

∀Z


C [Z ,M12, . . . . . . ,M1n] =B N1

C [M21,Z , . . . . . . ,M2n] =B N2

. . .
...

...
C [Mn1, . . . ,Mn(n−1),Z ] =B Nn

⇓
∀Z⃗ .C [Z1, . . . ,Zn] =B N1 =B · · · =B Nn
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Perpendicular Lines Lemma

∀Z


C [Z ,M12, . . . . . . ,M1n] =B N1

C [M21,Z , . . . . . . ,M2n] =B N2

. . .
...

...
C [Mn1, . . . ,Mn(n−1),Z ] =B Nn

⇓

∀Z⃗ .C [Z1, . . . ,Zn] =B N1 =B · · · =B Nn

In B a context C [−] can be constant for several reasons:

1. C does not contain the hole in the first place (the trivial case);

2. the hole is erased during its reduction;

3. the hole is “hidden” behind an unsolvable;

4. the hole is never erased but “pushed into infinity”.
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Perpendicular Lines Lemma

∀Z


C [Z ,M12, . . . . . . ,M1n] =B N1

C [M21,Z , . . . . . . ,M2n] =B N2

. . .
...

...
C [Mn1, . . . ,Mn(n−1),Z ] =B Nn

⇓

∀Z⃗ .C [Z1, . . . ,Zn] =B N1 =B · · · =B Nn

An approximant c ∈ T (C [−]) such that nf(c) ̸= 0 can be
constant for only one reason:

1. c does not contain the hole in the first place (the trivial case);

2. the hole is erased during its reduction ;

3. the hole is “hidden” behind an unsolvable;

4. the hole is never erased but “pushed into infinity”.
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Perpendicular Lines Lemma

∀Z


C [Z ,M12, . . . . . . ,M1n] =B N1

C [M21,Z , . . . . . . ,M2n] =B N2

. . .
...

...
C [Mn1, . . . ,Mn(n−1),Z ] =B Nn

⇓

∀Z⃗ .C [Z1, . . . ,Zn] =B N1 =B · · · =B Nn

An approximant c ∈ T (C [−]) such that nf(c) ̸= 0 can be
constant for only one reason:

1. c does not contain the hole in the first place (the trivial case);

2. the hole is erased during its reduction (linearity);

3. the hole is “hidden” behind an unsolvable;

4. the hole is never erased but “pushed into infinity”.
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Perpendicular Lines Lemma

∀Z


C [Z ,M12, . . . . . . ,M1n] =B N1

C [M21,Z , . . . . . . ,M2n] =B N2

. . .
...

...
C [Mn1, . . . ,Mn(n−1),Z ] =B Nn

⇓

∀Z⃗ .C [Z1, . . . ,Zn] =B N1 =B · · · =B Nn

An approximant c ∈ T (C [−]) such that nf(c) ̸= 0 can be
constant for only one reason:

1. c does not contain the hole in the first place (the trivial case);

2. the hole is erased during its reduction (linearity);

3. the hole is “hidden” behind an unsolvable (SN);

4. the hole is never erased but “pushed into infinity”.
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Perpendicular Lines Lemma

∀Z


C [Z ,M12, . . . . . . ,M1n] =B N1

C [M21,Z , . . . . . . ,M2n] =B N2

. . .
...

...
C [Mn1, . . . ,Mn(n−1),Z ] =B Nn

⇓

∀Z⃗ .C [Z1, . . . ,Zn] =B N1 =B · · · =B Nn

An approximant c ∈ T (C [−]) such that nf(c) ̸= 0 can be
constant for only one reason:

1. c does not contain the hole in the first place (the trivial case);

2. the hole is erased during its reduction (linearity);

3. the hole is “hidden” behind an unsolvable (SN);

4. the hole is never erased but “pushed into infinity” (finiteness).
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Perpendicular Lines Lemma

∀Z


C [Z ,M12, . . . . . . ,M1n] =B N1

C [M21,Z , . . . . . . ,M2n] =B N2

. . .
...

...
C [Mn1, . . . ,Mn(n−1),Z ] =B Nn

⇓

∀Z⃗ .C [Z1, . . . ,Zn] =B N1 =B · · · =B Nn

Claim.
∀c ∈ T (C [−1, . . . ,−n]), nf(c) ̸= 0⇒ c cannot contain any hole.

By induction on the size of c, using all the properties above.
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Perpendicular Lines Lemma

∀Z


C [Z ,M12, . . . . . . ,M1n] =B N1

C [M21,Z , . . . . . . ,M2n] =B N2

. . .
...

...
C [Mn1, . . . ,Mn(n−1),Z ] =B Nn

⇓

∀Z⃗ .C [Z1, . . . ,Zn] =B N1 =B · · · =B Nn

Our proof does not need open terms!

Mo(B) |= PLL ✓
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This completes the picture!

Perpendicular Lines Lemma β B
open term model ✓ ✓

closed term model ✗ ✓
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The Big Picture

CalculiProgram Approximation Denotational Semantics

λ-Calculus

Resource Calculus

Scott’s Semantics

Relational Semantics

Böhm Trees

Taylor Expansion
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Advantage: These techniques scale to many languages

λ-calculus Quantum
calculi

Probabilistic
calculi

Non-
determinism

may

must

Probabilistic
PCF

Erratic
PCF /
Idealized
Algol

Differential
calculi

Resource
calculus

Resource
PCF

differential
λ-calculus

Algebraic
calculi
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Extensionality
▶ Extensional BT’s.

Nakajima, Hyland, Wadsworth, Lévy.

▶ Degrees of extensionality in BT.
Intrigila, Manzonetto and Polonsky.

▶ Extensional Taylor Expansion.
Blondeau-Patissier, Clairambault, Vaux Auclair.

Meaningfulness
▶ Berarducci Trees

Berarducci.

▶ CbV solvability
Accattoli, Guerrieri.

▶ Magnificent Böhm approximant
Arrial, Kesner, Guerrieri.

Call-by-value

▶ CbV Böhm Tree.
Kerinec, Manzonetto, Pagani.

Accattoli, Lancelot, Faggian.

▶ CbV Taylor Expansion.
Ehrhard, Guerrieri.

Approximations for Λ∞

▶ Infinitary Linear Logic.
Baelde, Doumane, Kuperberg, Saurin.

Ehrhard.

▶ Taylor Expansion for Λ∞.
Cerda, Vaux Auclair.
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