
Böhm Trees and Taylor Expansion

Böhm Trees and Taylor Expansion

Giulio Manzonetto

gmanzone@irif.fr

IRIF, Université Paris Cité

13 May 2024

http://www.irif.fr/~gmanzone/

Böhm Trees and Taylor Expansion

Table of contents

Introduction

Böhm Trees

The Resource Calculus

Taylor Expansion and Applications

Conclusions

Böhm Trees and Taylor Expansion

Introduction

The Big Picture

CalculiProgram Approximation Denotational Semantics

λ-Calculus

Böhm Trees and Taylor Expansion

Introduction

The Big Picture

CalculiProgram Approximation Denotational Semantics

λ-Calculus

Scott’s Semantics

Böhm Trees and Taylor Expansion

Introduction

The Big Picture

CalculiProgram Approximation Denotational Semantics

λ-Calculus

Scott’s SemanticsBöhm Trees

Böhm Trees and Taylor Expansion

Introduction

The Big Picture

CalculiProgram Approximation Denotational Semantics

λ-Calculus

Scott’s Semantics

Relational Semantics

Böhm Trees

Böhm Trees and Taylor Expansion

Introduction

The Big Picture

CalculiProgram Approximation Denotational Semantics

λ-Calculus

Resource Calculus

Scott’s Semantics

Relational Semantics

Böhm Trees

Böhm Trees and Taylor Expansion

Introduction

The Big Picture

CalculiProgram Approximation Denotational Semantics

λ-Calculus

Resource Calculus

Scott’s Semantics

Relational Semantics

Böhm Trees

Taylor Expansion

Böhm Trees and Taylor Expansion

Introduction

The Big Picture

CalculiProgram Approximation Denotational Semantics

λ-Calculus

Resource Calculus

Scott’s Semantics

Relational Semantics

Böhm Trees

Taylor Expansion

Böhm Trees and Taylor Expansion

Introduction

λ-calculus

The untyped λ-calculus (Church, 1932)

Based on a primitive notion of function.

M,N ::= x | λx .M | MN

Computation becomes substitution

(λx .M)N →β M{N/x}

A program is a closed term M ∈ Λo .

Böhm Trees and Taylor Expansion

Introduction

λ-calculus

Some examples

1. The identity I = λx.x
IM→β M

2. The projections K = λxy.x and F = λxy.y:

KMN→β (λy.M)N→β M

3. The self-application ∆ = λx .xx

∆M →β MM

4. The “looping” combinator Ω = ∆∆

Ω = ∆∆→β ∆∆ = Ω→β Ω→β · · ·

Böhm Trees and Taylor Expansion

Introduction

λ-calculus

The Theory of Program Approximation

How to handle complex programs?

Denotational Semantics

▶ Model = abstract mathematical structure.

▶ Define a program interpretation satisfying compositionality.

[[MN]] = [[M]] • [[N]].

Systems of Approximants

▶ Decompose a program into elementary “bricks”

▶ Retrieve the whole program behaviour performing some
“limit” of its (finite) approximants.

M =
∨
{A | A is an approximant of M}

Böhm Trees and Taylor Expansion

Introduction

λ-calculus

Denotational vs Operational Models

Continuous Semantics (Scott, 1969)

D∞: First denotational model of λ-calculus.

Böhm tree semantics (Barendregt, 1977)

Tree-like representation for program execution.

“Syntactic model” of λ-calculus.

Böhm Trees and Taylor Expansion

Introduction

Scott’s continuity

Scott’s topology

Let D = (D,≤,⊥) be a complete partial ordering:
d ≤ d ′ ⇐⇒ the datum d is less defined than d ′

The Scott topology on D is defined as follows: O is Scott-open if

1. O is upward closed: ∀d ∈ O, d ′ ∈ D . [d ≤ d ′ ⇒ d ′ ∈ O]

2. ∀A ⊆ O .A directed and
∨

A ∈ O ⇒ A ∩ O ̸= ∅
directed = non-empty, downward closed, closed under finite ∨.

Examples. Let D be a cpo, d ∈ D.
The following sets are open:

▶ {x ∈ D | x ̸= ⊥}
▶ {x ∈ D | x ̸≤ d}

The Scott topology is T0:
all points are topologically
distinguishable.

Böhm Trees and Taylor Expansion

Introduction

Scott’s continuity

Scott continuity

Proposition. Let D be a cpo. A function

f : D → D

is Scott continuous if and only if, for every directed subset I ⊆ D,

f
(∨
I
)
=

∨
f (I).

A function is Scott continuous means

“A finite portion of the output of a program must be
generated by a finite portion of its input.”

Böhm Trees and Taylor Expansion

Introduction

Scott’s continuity

The Crucial Point — How to Handle Recursion?

Kleene Fixed Point Theorem
Let D = (D,≤,⊥) be a domain. Every Scott-continuous function

f : D → D

has a least fixed point lfp(f) that can be calculated as follows:

lfp(f) =
∨
n∈N

f n(⊥)

The Kleene Fixed Point Theorem is used in denotational
semantics, to give meaning to recursive function definitions
in programming languages.

Böhm Trees and Taylor Expansion

Introduction

Scott’s continuity

Fixed Point Combinators

1. A λ-term X is a fixed point of a λ-term M if

MX =β X

2. One can define fixed point combinators:

Y = λf.(λx.f(xx))(λx.f(xx))

Open Problem. Define

Fix(M) = {[X]β | X ∈ Λo .MX =β X}

Conjecture. For all M ∈ Λo either |Fix(M)| = 1 or Fix(M) = ℵ0.

Böhm Trees and Taylor Expansion

Introduction

Scott’s continuity

Fixed Point Combinators

1. A λ-term X is a fixed point of a λ-term M if

MX =β X

2. One can define fixed point combinators:

Y = λf.(λx.f(xx))(λx.f(xx))

Lemma. For all M ∈ Λ, YM is a fixed point of M:

YM = (λf .(λx .f (xx))(λx .f (xx)))M
→β (λx .M(xx))(λx .M(xx))
→β M((λx .M(xx))(λx .M(xx))) β← M(YM)

Böhm Trees and Taylor Expansion

Introduction

Operational semantics

Possible behaviours of a program

Classification Behaviour Result

β-normalizable P → P1 → P2 ↠97 P99 → 42 completely defined

unsolvable P → P1 → P ↠97 P1 → · · · undefined

solvable P → o1P1 → o1(o2P2)→ · · · stable parts
↠∞ o1(o2(o3(· · · on)) · · ·) (infinitary)

P P1 P2 P99 42

Böhm Trees and Taylor Expansion

Introduction

Operational semantics

Possible behaviours of a program

Classification Behaviour Result

β-normalizable P → P1 → P2 ↠97 P99 → 42 completely defined

unsolvable P → P1 → P ↠97 P1 → · · · undefined

solvable P → o1P1 → o1(o2P2)→ · · · stable parts
↠∞ o1(o2(o3(· · · on)) · · ·) (infinitary)

P P1

Böhm Trees and Taylor Expansion

Introduction

Operational semantics

Possible behaviours of a program

Classification Behaviour Result

β-normalizable P → P1 → P2 ↠97 P99 → 42 completely defined

unsolvable P → P1 → P ↠97 P1 → · · · undefined

solvable P → o1P1 → o1(o2P2)→ · · · stable parts
↠∞ o1(o2(o3(· · · on)) · · ·) (infinitary)

P P1

3,

P2

1

P3

4

π

15926535 · · ·

Böhm Trees and Taylor Expansion

Böhm Trees

Definition

The Böhm Tree Semantics (Barendregt’77)

Given a λ-term M, its Böhm tree BT(M) is defined as follows:

▶ If M is unsolvable (completely undefined), then

BT(M) = ⊥

▶ Otherwise M ↠β λx1 . . . xn.y M1 · · ·Mk and

BT(M) = λx1 . . . xn.y

BT(M1) · · · BT(Mk)

One of the first coinductive definition!

Böhm Trees and Taylor Expansion

Böhm Trees

Definition

The Böhm Tree Semantics (Barendregt’77)

Given a λ-term M, its Böhm tree BT(M) is defined as follows:

▶ If M is unsolvable (completely undefined), then

BT(M) = ⊥

▶ Otherwise M ↠β λx1 . . . xn.y M1 · · ·Mk and

BT(M) = λx1 . . . xn.y

BT(M1) · · · BT(Mk)

One of the first coinductive definition!

Böhm Trees and Taylor Expansion

Böhm Trees

Examples

Example - Fixed point combinator Y

Y = λf .(λx .f (xx))(λx .f (xx))

→β λf .f ((λx .f (xx))(λx .f (xx))))

→β λf .f (f ((λx .f (xx))(λx .f (xx)))))

→β λf .f (f (f ((λx .f (xx))(λx .f (xx))))))

↠β λf .f n((λx .f (xx))(λx .f (xx))))

↠β · · ·

BT(Y)
q

λf .f

f

f

f

...

Böhm Trees and Taylor Expansion

Böhm Trees

Examples

Böhm trees - Examples
BT(X)

q
λx .x

λy .yx

λz .zy

λw .wz

λq.qw

BT(YK)
q
⊥

BT(Pn)
q

λx1 . . . xny .y

x1 · · · xn

where

▶ Pn = λx1 . . . xny.yx1 · · · xn
▶ X = Y(λyx.xxy)

Böhm Trees and Taylor Expansion

Böhm Trees

Examples

The Böhm tree semantics is “infinitary”

There are λ-terms M,N with the same Böhm tree, that
cannot be equated by any “finite” reduction.

1. Take a λ-term M satisfying:

M ↠β λzx .x(Mz)

2. Take a variable y . Then, BT(My) = λx .x

BT(My)

= λx .x

λx .x

...

3. For y ̸= z , we have My ̸=β Mz

but BT(My) = BT(Mz).

Böhm Trees and Taylor Expansion

Böhm Trees

Λ∞

Digression - Böhm trees as infinitary normal forms

Generate Λ∞ by taking the grammar of λ-calculus coinductively:

T ,U ::=co-ind x | λx .T | TU

Example:

@

@

∆3@

∆3@

∆3@

∆3@

∆3
...

@

@

∆3@

∆3@

∆3
...

@

@

∆3
... . . .

λx∆3 =where

@

@ x

x x

Böhm Trees and Taylor Expansion

Böhm Trees

Λ∞

Digression - Böhm trees as infinitary normal forms
Take the infinitary λ-calculus Λ∞

⊥ with ⊥:

T ,U ::=co-ind ⊥ | x | λx .T | TU

Reduction is now coinductive:

T ↠β x

T ↠↠β⊥ x

T ↠β⊥ λx .U ′ U ′ ↠↠β⊥ U

T ↠↠β⊥ λx .U

T ↠β U ′V ′ U ′ ↠↠β⊥ U V ′ ↠↠β⊥ V

T ↠↠β⊥ UV

T has no hnf T ̸= ⊥
T ↠↠β⊥ ⊥

(⊥)

Theorem. (Λ∞
⊥ ,↠↠β⊥) is confluent and strongly normalizing.

For all M ∈ Λ: BT(M) = nf∞β⊥(M).

Böhm Trees and Taylor Expansion

Böhm Trees

Approximation theory

That was scary. . . can we go back to induction?

▶ Finite trees are pieces of “output” that can be obtained in a
finite amount of time.

▶ Böhm trees are naturally ordered, as follows:

λf .f

f

f

f

...

⊑λf .f

f

f

⊥

⊑λf .f

f

⊥

⊑λf .f

⊥

⊑⊥

Böhm Trees and Taylor Expansion

Böhm Trees

Approximation theory

Finite Approximants

The set A of finite approximants is defined as follows:

(A) A, Ai ::= ⊥ | λx1 . . . xn.y A1 · · ·Ak

The Scott-ordering ⊑ on A is defined by:

⊥ ⊑ A

A ⊑ A′

λx .A ⊑ λx .A′
A1 ⊑ A′

1 · · ·An ⊑ A′
n

xA1 · · ·An ⊑ xA1 · · ·An

The corresponding “sup” A ⊔ A′ is inductively given by:

⊥ ⊔ A = A ⊔ ⊥ = A

A1A2 ⊔ A′
1A

′
2 = (A1 ⊔ A′

1)(A2 ⊔ A′
2)

λx .A ⊔ λx .A′ = λx .(A ⊔ A′)

Böhm Trees and Taylor Expansion

Böhm Trees

Approximation theory

Direct approximation

The direct approximant ω(M) ∈ A of M ∈ Λ is inductively defined:

ω(λx1 . . . xn.yM1 · · ·Mk) = λx1 . . . xn.yω(M1) · · ·ω(Mk),

ω(λx1 . . . xn.(λy .P)QM1 · · ·Mk) = ⊥.

The set of finite approximants of a λ-term M is defined by:

A(M) = {ω(N) | N =β M} ↓

Lemma.

1. M →β N implies ω(M) ⊑ ω(N).

2. If M =β N then A(M) = A(N).

Böhm Trees and Taylor Expansion

Böhm Trees

Approximation theory

Lemma. The set A(M) is an ideal w.r.t. ⊑:
1. ⊥ ∈ A(M);

2. if A1,A2 ∈ A(M) then A1 ⊔ A2 ∈ A(M);

3. downward closed: A1 ⊑ A2 ∈ A(M) ⇒ A1 ∈ A(M).

Proof. (1) and (3) hold trivially.

2) If A1,A2 ∈ A(M) then A1 ⊑ ω(N1) and A2 ⊑ ω(N2) for some

N1 =β M =β N2

R1

    ~~~~
R2

    ~~~~

R
    ~~~~

Conclude since direct approximants increase along reduction. □



Böhm Trees and Taylor Expansion

Böhm Trees

Approximation theory

Lemma. The set A(M) is an ideal w.r.t. ⊑:
1. ⊥ ∈ A(M);

2. if A1,A2 ∈ A(M) then A1 ⊔ A2 ∈ A(M);

3. downward closed: A1 ⊑ A2 ∈ A(M) ⇒ A1 ∈ A(M).

Proof. (1) and (3) hold trivially.
2) If A1,A2 ∈ A(M) then A1 ⊑ ω(N1) and A2 ⊑ ω(N2) for some

N1 =β M =β N2

R1

    ~~~~
R2

    ~~~~

R
    ~~~~

Conclude since direct approximants increase along reduction. □

Böhm Trees and Taylor Expansion

Böhm Trees

Approximation theory

Lemma. The set A(M) is an ideal w.r.t. ⊑:
1. ⊥ ∈ A(M);

2. if A1,A2 ∈ A(M) then A1 ⊔ A2 ∈ A(M);

3. downward closed: A1 ⊑ A2 ∈ A(M) ⇒ A1 ∈ A(M).

Proof. (1) and (3) hold trivially.
2) If A1,A2 ∈ A(M) then A1 ⊑ ω(N1) and A2 ⊑ ω(N2) for some

N1 =β M =β N2

R1

    ~~~~
R2

    ~~~~

R
    ~~~~

Conclude since direct approximants increase along reduction. □



Böhm Trees and Taylor Expansion

Böhm Trees

Approximation theory

Lemma. The set A(M) is an ideal w.r.t. ⊑:
1. ⊥ ∈ A(M);

2. if A1,A2 ∈ A(M) then A1 ⊔ A2 ∈ A(M);

3. downward closed: A1 ⊑ A2 ∈ A(M) ⇒ A1 ∈ A(M).

Proof. (1) and (3) hold trivially.
2) If A1,A2 ∈ A(M) then A1 ⊑ ω(N1) and A2 ⊑ ω(N2) for some

N1 =β M =β N2

R1

    ~~~~
R2

    ~~~~

R
    ~~~~

Conclude since direct approximants increase along reduction. □

Böhm Trees and Taylor Expansion

Böhm Trees

Approximation theory

The Syntactic Approximation Theorem

For all M ∈ Λ,

BT(M) =
⊔
A(M)

Examples:

▶ A(Ω) = {⊥}, for Ω = (λx .xx)(λx .xx),

▶ A(Y) = { ⊥,
λf .f⊥,
λf .f (f⊥),
λf .f (f (f⊥)), . . . ,
λf .f n(⊥), . . . }

Example

BT(Y)
q

λf .f

f

f

f

...

There is a 1-to-1 correspondence between A(M) and BT(M).

Böhm Trees and Taylor Expansion

Böhm Trees

Approximation theory

The Syntactic Approximation Theorem

For all M ∈ Λ,

BT(M) =
⊔
A(M)

Examples:

▶ A(Ω) = {⊥}, for Ω = (λx .xx)(λx .xx),

▶ A(Y) = { ⊥,
λf .f⊥,
λf .f (f⊥),
λf .f (f (f⊥)), . . . ,
λf .f n(⊥), . . . }

Example

BT(Y)
q

λf .f

f

f

f

...

⊥

There is a 1-to-1 correspondence between A(M) and BT(M).

Böhm Trees and Taylor Expansion

Böhm Trees

Approximation theory

The Syntactic Approximation Theorem

For all M ∈ Λ,

BT(M) =
⊔
A(M)

Examples:

▶ A(Ω) = {⊥}, for Ω = (λx .xx)(λx .xx),

▶ A(Y) = { ⊥,
λf .f⊥,
λf .f (f⊥),
λf .f (f (f⊥)), . . . ,
λf .f n(⊥), . . . }

Example

BT(Y)
q

λf .f

f

f

f

...

⊥

There is a 1-to-1 correspondence between A(M) and BT(M).

Böhm Trees and Taylor Expansion

Böhm Trees

Approximation theory

The Syntactic Approximation Theorem

For all M ∈ Λ,

BT(M) =
⊔
A(M)

Examples:

▶ A(Ω) = {⊥}, for Ω = (λx .xx)(λx .xx),

▶ A(Y) = { ⊥,
λf .f⊥,
λf .f (f⊥),
λf .f (f (f⊥)), . . . ,
λf .f n(⊥), . . . }

Example

BT(Y)
q

λf .f

f

f

f

...

⊥

There is a 1-to-1 correspondence between A(M) and BT(M).

Böhm Trees and Taylor Expansion

Böhm Trees

Approximation theory

The Syntactic Approximation Theorem

For all M ∈ Λ,

BT(M) =
⊔
A(M)

Examples:

▶ A(Ω) = {⊥}, for Ω = (λx .xx)(λx .xx),

▶ A(Y) = { ⊥,
λf .f⊥,
λf .f (f⊥),
λf .f (f (f⊥)), . . . ,
λf .f n(⊥), . . . }

Example

BT(Y)
q

λf .f

f

f

f

...

⊥

There is a 1-to-1 correspondence between A(M) and BT(M).

Böhm Trees and Taylor Expansion

Böhm Trees

Approximation theory

The Syntactic Approximation Theorem

For all M ∈ Λ,

BT(M) =
⊔
A(M)

Examples:

▶ A(Ω) = {⊥}, for Ω = (λx .xx)(λx .xx),

▶ A(Y) = { ⊥,
λf .f⊥,
λf .f (f⊥),
λf .f (f (f⊥)), . . . ,
λf .f n(⊥), . . . }

Example

BT(Y)
q

λf .f

f

f

f

...
⊥

There is a 1-to-1 correspondence between A(M) and BT(M).

Böhm Trees and Taylor Expansion

Böhm Trees

Approximation theory

The Syntactic Approximation Theorem

For all M ∈ Λ,

BT(M) =
⊔
A(M)

Examples:

▶ A(Ω) = {⊥}, for Ω = (λx .xx)(λx .xx),

▶ A(Y) = { ⊥,
λf .f⊥,
λf .f (f⊥),
λf .f (f (f⊥)), . . . ,
λf .f n(⊥), . . . }

Example

BT(Y)
q

λf .f

f

f

f

...

There is a 1-to-1 correspondence between A(M) and BT(M).

Böhm Trees and Taylor Expansion

Böhm Trees

Approximation theory

The Böhm-tree semantics

How to prove that the equivalence

M =B N ⇐⇒ BT(M) = BT(N)

is an equational theory of λ-calculus? We need to check:

▶ =B contains =β. (done)

▶ for all contexts C [], M =B N ⇒ C [M] =B C [N]. (difficult)

Problem. If I give you BT(M) and BT(N), what can you tell me of

BT(MN)?

Böhm Trees and Taylor Expansion

Böhm Trees

The tree topology

The topological approach

Consider the map
BT(−) : Λ→ Böhm trees.

Böhm trees are an algebraic cpo endowed with Scott topology.

The inverse image of Scott topology defines a topology on Λ.

1. {M | M solvable} is open.
2. {M | M unsolvable} is closed.
3. Unsolvables are compactification point:

The only open set containing all unsolvables is the whole set Λ.

4. Every β-normalizable M is an isolated point:
{N | M =β N} is an open set.

5. The application and λ-abstraction on Λ are Scott continuous.
See [§14.2,Barendregt84.]

Böhm Trees and Taylor Expansion

Böhm Trees

The tree topology

Böhm trees contextuality - Method 1.

Theorem. =B is compatible with the application.

Proof. Let N =B N ′, we want to prove MN =B MN ′. Assume that
MN ̸=B MN ′, i.e., BT(MN) ̸= BT(MN ′), towards a contradiction.

▶ Since Scott’s topology is T0, there is a Scott open O
containing, say, MN but not MN ′.

▶ By continuity of application there exists an open set U
containing N ′ such that {MX | X ∈ U} ⊆ O.

In conclusion:

BT(N) = BT(N ′) ⇒ N ′ ∈ {MX | X ∈ U} ⊆ O (absurd).

Böhm Trees and Taylor Expansion

Böhm Trees

Λ∞ applications

Böhm trees contextuality

Method 2. Use Λ∞
⊥ with infinitary ordinal reduction ↠∞.

Assume BT(M) = BT(M ′) and BT(N) = BT(N ′).

MN

∞
����

∞// // BT(M) · BT(N)

∞vvvv

= BT(M ′) · BT(N ′)

∞
����

BT(MN) BT(M ′N ′)

Conclude BT(MN) = BT(M ′N ′) by the unicity of normal forms.

Böhm Trees and Taylor Expansion

Böhm Trees

Genericity

The Genericity Lemma

Genericity. Let M be a λ-term, U an unsolvable and N a β-nf.

MU =β N ⇒ ∀L ∈ Λ .ML =β N.

Proof.

1. We have seen that {P | P =β N} is Scott open.
2. By continuity of M 7→ MN, the set O = {P | MP =β N} is

also a Scott open containing U.

3. The leftmost strategy is normalizable, whence

MU =β N ⇐⇒ MU =B N ⇐⇒ MV =B N,∀V unsolvable

4. So O contains all unsolvables.

5. But the unique open set including all unsolvables is Λ.

Böhm Trees and Taylor Expansion

Böhm Trees

The Big Picture

The Big Picture

CalculiProgram Approximation Denotational Semantics

λ-Calculus

Resource Calculus

Scott’s Semantics

(Relational Semantics)

Böhm Trees

Böhm Trees and Taylor Expansion

The Resource Calculus

The Resource Calculus

Böhm Trees and Taylor Expansion

The Resource Calculus

Introduction

Lambda Calculus is not resource conscious

In one step of β-reduction

(λx .M)N →β M{N/x}

the argument N can be:

▶ Erased: (λxy .y)N →β λy .y

▶ Duplicated: (λx .xx)N →β NN

▶ Copied an arbitrary number of times:

(λfz .f (f (· · · f (z))))N →β λz .N(N(· · ·N(z)))

Böhm Trees and Taylor Expansion

The Resource Calculus

Introduction

Linear Logic is resource sensitive

Linear Logic decomposes the intuitionistic arrow

A→ B as !A ⊸ B

and this suggests that one step of β-reduction

(λx .M)N →β M{N/x}

should be decomposable into more elementary steps.

Böhm Trees and Taylor Expansion

The Resource Calculus

Introduction

Linear Lambda Calculus is stupid extremely basic

The näıve calculus arising from linearity

λx .M ⇒ x occurs exactly once in M

is not very interesting from the operational point of view.

λxyz .xyz , λxyz .yzx , λxyz .zxy , λxyz .x(λf .yf)(λg .gz), . . .

It can be interesting from a combinatorial perspective:

Noam Zeilberger. Counting isomorphism classes of β-normal
linear lambda terms. arXiv:1509.07596 (2015)

Noam Zeilberger: Linear lambda terms as invariants of rooted
trivalent maps. J. Funct. Program. 26: e21 (2016)

Böhm Trees and Taylor Expansion

The Resource Calculus

Introduction

The Resource Calculus

It is a resource sensitive version of λ-calculus where

▶ variables can occur multiple times in its programs,

▶ resources cannot be erased nor copied during the reduction.

Introduced in

T. Ehrhard, L. Regnier: The differential lambda-calculus.
Theor. Comput. Sci. 309(1-3): 1-41 (2003)

More understandable syntax in

M. Pagani, P. Tranquilli: Parallel Reduction in Resource
Lambda-Calculus. APLAS 2009: 226-242

Ancestor

G. Boudol: The Lambda-Calculus with Multiplicities.
CONCUR 1993: 1-6

Böhm Trees and Taylor Expansion

The Resource Calculus

Its syntax and operational semantics

Its syntax

Syntactic categories:

Terms s, t, u ::= x | λx .t | tb Λr

Bags b ::= [t1, . . . , tn], for n ≥ 0, Λb

Formal sums S,T,U ::= 0 | t + T N⟨Λr ⟩

Intuitively

▶ Terms are the protagonists of our calculus.

▶ Bags are multisets of linear resources.

▶ Sums represent non-deterministic choice between terms

s + t → s s + t → t

but the choice is never actually made.

Böhm Trees and Taylor Expansion

The Resource Calculus

Its syntax and operational semantics

Assumptions

On formal sums

▶ The operator + is associative and commutative.

▶ As usual, we write
∑k

i=1 ti = t1 + · · ·+ tk

Bags are multisets represented in multiplicative notation.

▶ 1 is the empty bag.

▶ b1 · b2 represents the multiset union of b1 and b2.
▶ Structural induction on bags, becomes:

▶ 1, base case.
▶ [t] · b, induction step.

Sums of bags B ∈ N⟨Λb⟩ are useful but not important.

Böhm Trees and Taylor Expansion

The Resource Calculus

Its syntax and operational semantics

All constructors are linear
In this context

“linearity” ≃ commutation with sums

Notation.
For sums in N⟨Λr ⟩, we introduce a syntactic sugar:

λx .
∑n

i=1 ti :=
∑n

i=1 λx .ti

(
∑n

i=1 ti)b :=
∑n

i=1 tib

t(
∑n

i=1 bi) :=
∑n

i=1 tbi

In other words, sums can always be pushed to surface.

Remark. A subterm 0 annihilates the whole term:

λx .0 = t0 = 0b = 0 and [0] · b = 0

Böhm Trees and Taylor Expansion

The Resource Calculus

Its syntax and operational semantics

All constructors are linear
In this context

“linearity” ≃ commutation with sums

Notation.
For sums in N⟨Λr ⟩, we introduce a syntactic sugar:

λx .
∑n

i=1 ti :=
∑n

i=1 λx .ti

(
∑n

i=1 ti)b :=
∑n

i=1 tib

t(
∑n

i=1 bi) :=
∑n

i=1 tbi

In other words, sums can always be pushed to surface.

Remark. A subterm 0 annihilates the whole term:

λx .0 = t0 = 0b = 0 and [0] · b = 0

Böhm Trees and Taylor Expansion

The Resource Calculus

Its syntax and operational semantics

Its operational semantics – the idea

(λx .t)[s1, s2, s3]→ ?

x

o
x

x

x

Confluent LinearStrongly Normalizable

degx(x) = 1 degx(y) = 0

degx(λy .t) = degx(t) degx(tb) = degx(t) + degx(b)

degx(1) = 0 degx([t] · b) = degx(t) + degx(b)

Böhm Trees and Taylor Expansion

The Resource Calculus

Its syntax and operational semantics

Its operational semantics – the idea

(λx .t)[s1, s2, s3]→ t⟨s1/x1, s2/x2, s3/x3⟩

x

o
x

x

x

Confluent LinearStrongly Normalizable

degx(x) = 1 degx(y) = 0

degx(λy .t) = degx(t) degx(tb) = degx(t) + degx(b)

degx(1) = 0 degx([t] · b) = degx(t) + degx(b)

Böhm Trees and Taylor Expansion

The Resource Calculus

Its syntax and operational semantics

Its operational semantics – the idea

(λx .t)[s1, s2, s3]→
∑
σ∈S3

t⟨s1/xσ(1), s2/xσ(2), s3/xσ(3)⟩

x

o
x

x

x

Confluent LinearStrongly Normalizable

degx(x) = 1 degx(y) = 0

degx(λy .t) = degx(t) degx(tb) = degx(t) + degx(b)

degx(1) = 0 degx([t] · b) = degx(t) + degx(b)

Böhm Trees and Taylor Expansion

The Resource Calculus

Its syntax and operational semantics

Its operational semantics – the idea

(λx .t)[s1, s2, s3]→ ?

x

o

x

x

Confluent LinearStrongly Normalizable

degx(x) = 1 degx(y) = 0

degx(λy .t) = degx(t) degx(tb) = degx(t) + degx(b)

degx(1) = 0 degx([t] · b) = degx(t) + degx(b)

Böhm Trees and Taylor Expansion

The Resource Calculus

Its syntax and operational semantics

Its operational semantics – the idea

(λx .t)[s1, s2, s3]→ 0

x

o

x

x

Confluent LinearStrongly Normalizable

degx(x) = 1 degx(y) = 0

degx(λy .t) = degx(t) degx(tb) = degx(t) + degx(b)

degx(1) = 0 degx([t] · b) = degx(t) + degx(b)

Böhm Trees and Taylor Expansion

The Resource Calculus

Its syntax and operational semantics

Linear substitution
For s, t ∈ Λr , define t⟨s/x⟩ ∈ N⟨Λr ⟩ aka the

linear substitution of s for one occurrence of x in t

y⟨s/x⟩ =

{
s, if x = y ,

0, otherwise,

(λy .t)⟨s/x⟩ = λy .t⟨s/x⟩ (wlog. x ̸= y)

(tb)⟨s/x⟩ = t⟨s/x⟩b + t(b⟨s/x⟩)
on bags:

1⟨s/x⟩ = 0

[t]⟨s/x⟩ = [t⟨s/x⟩]
(b1 · b2)⟨s/x⟩ = b1⟨s/x⟩ · b2 + b1 · (b2⟨s/x⟩)

Böhm Trees and Taylor Expansion

The Resource Calculus

Its syntax and operational semantics

Linear substitution
For s, t ∈ Λr , define t⟨s/x⟩ ∈ N⟨Λr ⟩ aka the

linear substitution of s for one occurrence of x in t

y⟨s/x⟩ =

{
s, if x = y ,

0, otherwise,

(λy .t)⟨s/x⟩ = λy .t⟨s/x⟩ (wlog. x ̸= y)

(tb)⟨s/x⟩ = t⟨s/x⟩b + t(b⟨s/x⟩)
on bags:

1⟨s/x⟩ = 0

[t]⟨s/x⟩ = [t⟨s/x⟩]
(b1 · b2)⟨s/x⟩ = b1⟨s/x⟩ · b2 + b1 · (b2⟨s/x⟩)

Böhm Trees and Taylor Expansion

The Resource Calculus

Its syntax and operational semantics

Its operational semantics

Baby-step. Define →b⊆ Λr × N⟨Λr ⟩ by

(λx .t)([s] · b) →b (λx .t⟨s/x⟩)b

(λx .t)1 →b

{
t, if x /∈ fv(t),

0, otherwise.

Normal step. Define →r⊆ Λr × N⟨Λr ⟩ by

(λx .t)[s1, . . . , sn]→r


∑
σ∈Gn

t{s1/xσ(1), . . . , sn/xσ(n)}, if degx(t) = n,

0, otherwise.

Böhm Trees and Taylor Expansion

The Resource Calculus

Its syntax and operational semantics

Examples of reductions

Both notions of reduction extend to → ⊆ N⟨Λr ⟩ × N⟨Λr ⟩ by

t → t ′ ⇒ t + T→ t ′ + T

▶ Baby-steps:

(λxy .x [y , y])[a][b, b]

→b (λxy .a[y , y])1[b, b]

→b (λy .a[y , y])[b, b]

→b (λy .a[b, y])[b] + (λy .a[y , b])[b] = 2.(λy .a[b, y])[b]

→b (λy .a[b, b])1 + (λy .a[b, y])[b]

→b 2.(λy .a[b, b])1
2→b 2.a[b, b] = a[b, b] + a[b, b]

Böhm Trees and Taylor Expansion

The Resource Calculus

Its syntax and operational semantics

Examples of reductions

Both notions of reduction extend to → ⊆ N⟨Λr ⟩ × N⟨Λr ⟩ by

t → t ′ ⇒ t + T→ t ′ + T

▶ Baby-steps:

(λxy .x [y , y])[a][b, b]

→b (λxy .a[y , y])1[b, b]

→b (λy .a[y , y])[b, b]

→b (λy .a[b, y])[b] + (λy .a[y , b])[b] = 2.(λy .a[b, y])[b]

→b (λy .a[b, b])1 + (λy .a[b, y])[b]

→b 2.(λy .a[b, b])1
2→b 2.a[b, b] = a[b, b] + a[b, b]

Böhm Trees and Taylor Expansion

The Resource Calculus

Its syntax and operational semantics

Examples of reductions

Both notions of reduction extend to → ⊆ N⟨Λr ⟩ × N⟨Λr ⟩ by

t → t ′ ⇒ t + T→ t ′ + T

▶ Normal-steps:

(λxy .x [y , y])[a][b, b] →r (λy .a[y , y])[b, b]

→r 2.a[b, b]

Theorem (Equivalence baby ↔ normal reductions)

▶ If t →r T then t ↠b T.
▶ For T = t1 + · · ·+ tn with each ti in normal form, we have:

t ↠b T ⇐⇒ t ↠r T

Böhm Trees and Taylor Expansion

The Resource Calculus

Main properties

Main Properties – Strong Normalization

Theorem. The resource calculus is strongly normalizing (SN).

Proof Define:

▶ the size #t ∈ N of a term t, as you imagine.

▶ the size of a sum #(t1 + · · ·+ tn) = [#t1, . . . ,#tn] ∈Mf (N)
Check that # decreases along a reduction

(λx .t)[s1, . . . , sn]→b

{
t⟨s1/x1, . . . , sn/xn⟩ ? degx(t) = n

0 ✓ otherwise

w.r.t. the multiset ordering <m.

Böhm Trees and Taylor Expansion

The Resource Calculus

Main properties

Main Properties – Confluence

Theorem. The resource calculus is confluent.

Proof. The resource calculus is locally confluent, i.e., t →r T1 and
t →r T2 imply ∃S such that T1 ↠r S and T2 ↠r S.

t

~~
T1

�� ��

T2

����
S

Conclude by Newmann’s Lemma. A term rewriting system is
confluent if it is SN and locally confluent. □

Böhm Trees and Taylor Expansion

The Resource Calculus

Main properties

Main Properties – Linearity

▶ Starvation:

(λx .x [x])[λx .x [x], λx .x [x]]→r 2.(λx .x [x])[λx .x [x]]→r 0

▶ Surfeit:

(λfgx .f [g [x]])[h][b, c]→r (λgx .h[g [x]])[b, c]→r 0

▶ Non-determinism:

(λx .x [x])[f , g]→r f [g] + g [f]

Böhm Trees and Taylor Expansion

The Resource Calculus

Main properties

Main Properties – Summary
The Resource Calculus

t ::= x | λx .t | t b
b ::= [t1, . . . , tn] where n ≥ 0

T ::= t1 + · · ·+ tn

Reduction:

(λx .t)[s1, . . . , sn] ↠r T ̸= 0 ⇒ t must use each si exactly once
in the reduction to a value.

t ↠r cL0M = 0 ⇐ otherwise, the whole program t
becomes an empty program 0.

Main Properties
Strong Normalization: Trivial, because there is no duplication. ✓

Confluence: Locally confluent + strongly normalizing. ✓

Linearity: Nothing gets erased in a non-zero reduction. ✓

Böhm Trees and Taylor Expansion

The Resource Calculus

Main properties

Its expressive power

Böhm Trees and Taylor Expansion

The Resource Calculus

The Big Picture

The Big Picture

CalculiProgram Approximation Denotational Semantics

λ-Calculus

Resource Calculus

Scott’s Semantics

(Relational Semantics)

Böhm Trees

Taylor Expansion

Böhm Trees and Taylor Expansion

The Resource Calculus

The Big Picture

Is the Resource Calculus
of any interest?

t⟨s/x⟩ ∼=
∂t

∂x
· s

Böhm Trees and Taylor Expansion

Taylor Expansion and Applications

Introduction

Towards a differential theory of program approximations

tangent
∆x

∆y

x

y

f (x)

derivative
∆y
∆x

as ∆x → 0

Mathematical Analysis

Taylor expansion

f (x) =
∞∑
n=0

f (n)(a)

n!
(x − a)n

Theory of Programming Languages

The differential λ-calculus

D(λx .M) · N →

λx .
(
∂M
∂x · N

)
linear substitution of N

for one occurrence of x in M

Taylor expansion T (−)

P x =
∞∑
n=0

1

n!

(
Dn(P) · (x , . . . , x)

)
0

Böhm Trees and Taylor Expansion

Taylor Expansion and Applications

Introduction

Towards a differential theory of program approximations

tangent
∆x

∆y

x

y

f (x)

derivative
∆y
∆x

as ∆x → 0

Mathematical Analysis

Taylor expansion

f (x) =
∞∑
n=0

f (n)(a)

n!
(x − a)n

Theory of Programming Languages

The differential λ-calculus

D(λx .M) · N →

λx .
(
∂M
∂x · N

)
linear substitution of N

for one occurrence of x in M

Taylor expansion T (−)

P x =
∞∑
n=0

1

n!

(
Dn(P) · (x , . . . , x)

)
0

Böhm Trees and Taylor Expansion

Taylor Expansion and Applications

Introduction

Towards a differential theory of program approximations

tangent
∆x

∆y

x

y

f (x)

derivative
∆y
∆x

as ∆x → 0

Mathematical Analysis

Taylor expansion

f (x) =
∞∑
n=0

f (n)(a)

n!
(x − a)n

Theory of Programming Languages

The differential λ-calculus

D(λx .M) · N →

λx .
(
∂M
∂x · N

)
linear substitution of N

for one occurrence of x in M

Taylor expansion T (−)

P x =
∞∑
n=0

1

n!

(
Dn(P) · (x , . . . , x)

)
0

Böhm Trees and Taylor Expansion

Taylor Expansion and Applications

Introduction

The ambitious goal

Replace the theory of program approximation based on

Scott-continuity and Böhm trees

with the theory of

resource consumption based on Taylor expansion.

Resource calculus = Target language of Taylor expansion

Böhm Trees and Taylor Expansion

Taylor Expansion and Applications

Definition

Taylor Expansion

T (−) : Λ → power series of resource approximants

T (x) = x

T (λx .M) = λx .T (M)

T (MN) =
∑
k∈N

1

k!
T (M)[T (N), . . . , T (N)︸ ︷︷ ︸

k times

]

Examples

▶ T (I) = {λx.x},
▶ T (∆) = {λx.x1, λx.x[x], λx.x[x, x], λx.x[x, x, x], . . . },

= {λx .x [n.x] | n ≥ 0},
▶ T (Ω) = {(λx.x[n.x])[λx.x[n1.x], . . . , λx.x[nk.x]] | n, k, ni ≥ 0}.

Böhm Trees and Taylor Expansion

Taylor Expansion and Applications

Definition

Taylor Expansion

T (−) : Λ → sets of resource approximants

T (x) = {x}
T (λx .M) = {λx .t | t ∈ T (M)}

T (MN) =
⋃
k∈N

{
t[s1, . . . , sk] | t ∈ T (M), s1, . . . , sk ∈ T (N)

}
Examples

▶ T (I) = {λx.x},
▶ T (∆) = {λx.x1, λx.x[x], λx.x[x, x], λx.x[x, x, x], . . . },

= {λx .x [n.x] | n ≥ 0},
▶ T (Ω) = {(λx.x[n.x])[λx.x[n1.x], . . . , λx.x[nk.x]] | n, k, ni ≥ 0}.

Böhm Trees and Taylor Expansion

Taylor Expansion and Applications

Dynamic behaviour

The Dynamics of Taylor Expansion

The Taylor expansion is a “static” operation

▶ M = x ⇒ t ∈ T (M) has the shape of a variable,

▶ M = λx .N ⇒ t ∈ T (M) has the shape of an abstraction,

▶ M = PQ ⇒ t ∈ T (M) has the shape of an application,

▶ M = (λx .P)Q ⇒ t ∈ T (M) has the shape of a redex.

As the Resource Calculus enjoys SN, we can define:

NF(T (M)) =
⋃
{nf(t) | t ∈ T (M)}

Böhm Trees and Taylor Expansion

Taylor Expansion and Applications

Dynamic behaviour

Normalizing the Taylor Expansion

NF(T (Ω)) = ∅

▶ For every t ∈ T (Ω), check t ↠r 0.

▶ Conclude T (Ω) = ∅.

More generally:

M is unsolvable ⇒ NF(T (M)) = ∅

(We’ll prove it later)

Böhm Trees and Taylor Expansion

Taylor Expansion and Applications

Dynamic behaviour

Normalizing the Taylor Expansion

NF(T (Ω)) = ∅

▶ For every t ∈ T (Ω), check t ↠r 0.

▶ Conclude T (Ω) = ∅.

More generally:

M is unsolvable ⇒ NF(T (M)) = ∅

(We’ll prove it later)

Böhm Trees and Taylor Expansion

Taylor Expansion and Applications

Dynamic behaviour

Normalizing the Taylor Expansion

NF(T (Y)) = ?

▶ Mmm. . .

Let us look at its shape:

Y = λf.(λx.f(xx))(λx.f(xx))

▶ Mmm. . .

Problem! That’s a toughy. . .

Böhm Trees and Taylor Expansion

Taylor Expansion and Applications

Dynamic behaviour

Normalizing the Taylor Expansion

NF(T (Y)) = ?

▶ Mmm. . .

Let us look at its shape:

Y = λf.(λx.f(xx))(λx.f(xx))

▶ Mmm. . .

Problem! That’s a toughy. . .

Böhm Trees and Taylor Expansion

Taylor Expansion and Applications

Dynamic behaviour

Normalizing the Taylor Expansion

NF(T (Y)) = ?

▶ Mmm. . .

Let us look at its shape:

Y = λf.(λx.f(xx))(λx.f(xx))

▶ Mmm. . .

Problem! That’s a toughy. . .

Böhm Trees and Taylor Expansion

Taylor Expansion and Applications

Taylor Expansion vs Böhm Trees

We know how to compute its Böhm tree

BT(Y) = λf.f(f(f(f(· · ·))))

since

A(Y) = {λf.f⊥, λf.f(f⊥), λf.f(f(f⊥)), λf.f(f(f(f⊥))), . . . }

Böhm Trees and Taylor Expansion

Taylor Expansion and Applications

Taylor Expansion vs Böhm Trees

Can we Taylor expand a Böhm tree?

For an approximant A, define:

T (⊥) = ∅,
T (x) = {x},
T (λx .A) = {λx .t | t ∈ T (A)},

T (A1A2) =
⋃
k∈N

{
t[s1, . . . , sk] | t ∈ T (A1), s1, . . . , sk ∈ T (A2)

}
.

Then, we can simply define

T (BT(M)) =
⋃

A∈A(M)

T (A)

Böhm Trees and Taylor Expansion

Taylor Expansion and Applications

Taylor Expansion vs Böhm Trees

Commutation Taylor / Böhm

Theorem (Ehrhard & Regnier 2003)

For every λ-term M, we have:

NF(T (M)) = T (BT(M))

Thanks! T (BT(Y)) = {λf.f1, λf.f[λf.f1], λf.f[λf.f1, λf.f1], . . . }

Corollary 1

M is unsolvable ⇐⇒ NF(T (M)) = ∅

Corollary 2

BT(M) = BT(N) ⇐⇒ NF(T (M)) = NF(T (N))

Böhm Trees and Taylor Expansion

Taylor Expansion and Applications

Taylor Expansion vs Böhm Trees

Commutation Taylor / Böhm

Theorem (Ehrhard & Regnier 2003)

For every λ-term M, we have:

NF(T (M)) = T (BT(M))

Thanks! T (BT(Y)) = {λf.f1, λf.f[λf.f1], λf.f[λf.f1, λf.f1], . . . }

Corollary 1

M is unsolvable ⇐⇒ NF(T (M)) = ∅

Corollary 2

BT(M) = BT(N) ⇐⇒ NF(T (M)) = NF(T (N))

Böhm Trees and Taylor Expansion

Taylor Expansion and Applications

Taylor Expansion vs Böhm Trees

Taylor Expansion vs Böhm Trees

Λ

BT

��

T // Λr

NF

��
B

T
// NF(Λr)

Advantages:

1. Approximants are closed under application.

2. Enjoy Strong Normalization + Linearity.

3. Generalizable to the mainstream languages.

Disadvantage:

1. lots of indices arise from the linearization.

Böhm Trees and Taylor Expansion

Taylor Expansion and Applications

Applications

Classic results

Chapter 14Scott’s Continuity Berry’s Stability

Khan & Plotkin’s
Sequentiality

Contextuality of BTs

Genericity Lemma

∄ parallel or

Perpendicular
Lines Lemma

topological argument

Commutation Theorem
NF(T (P)) = T (BT(P))

D. Barbarossa and G. Manzonetto. Taylor Subsumes Scott, Berry, Kahn and Plotkin.
PACMPL Vol. 4, pp. 1:1-1:23, 2020.

Böhm Trees and Taylor Expansion

Taylor Expansion and Applications

Applications

Classic results with simpler inductive proofs

Scott’s Continuity Berry’s Stability

Khan & Plotkin’s
Sequentiality

Contextuality of BTs

Genericity Lemma

∄ parallel or

Perpendicular
Lines Lemma

topological argument

Commutation Theorem
NF(T (P)) = T (BT(P))

D. Barbarossa and G. Manzonetto. Taylor Subsumes Scott, Berry, Kahn and Plotkin.
PACMPL Vol. 4, pp. 1:1-1:23, 2020.

Böhm Trees and Taylor Expansion

Taylor Expansion and Applications

Applications

Classic results with simpler inductive proofs

Scott’s Continuity Berry’s Stability

Khan & Plotkin’s
Sequentiality

Contextuality of BTs

Genericity Lemma

∄ parallel or

Perpendicular
Lines Lemma

topological argument

Commutation Theorem
NF(T (P)) = T (BT(P))

D. Barbarossa and G. Manzonetto. Taylor Subsumes Scott, Berry, Kahn and Plotkin.
PACMPL Vol. 4, pp. 1:1-1:23, 2020.

Böhm Trees and Taylor Expansion

Taylor Expansion and Applications

Applications

Contextuality of =B via Taylor Expansion

BT(N) = BT(N ′) ⇒ ∀M . BT(MN) = BT(MN ′)

Proof. More precisely:

BT(N) ⊑ BT(N ′) ⇒ ∀M . BT(MN) ⊑ BT(MN ′)

Equivalently, by Corollary 2: let

NF(T (N)) ⊆ NF(T (N ′))

we have to prove:

NF(T (MN)) ⊆ NF(T (MN ′))

Böhm Trees and Taylor Expansion

Taylor Expansion and Applications

Applications

A proof of context closure via Taylor Expansion

NF(T (N)) ⊆ NF(T (N ′)) ⇒ NF(T (MN)) ⊆ NF(T (MN ′))

Proof. Take t ∈ NF(T (MN)), then ∃t ′ ∈ T (MN) such that

t ′ = s1[u1, . . . , uk] // // t + T

nf(s1)[nf(u1), . . . ,nf(uk)]

with s1 ∈ T (M)

and u1, . . . , uk ∈ T (N).

We conclude that
t ∈ NF(T (MN ′)). □

Böhm Trees and Taylor Expansion

Taylor Expansion and Applications

Applications

A proof of context closure via Taylor Expansion

NF(T (N)) ⊆ NF(T (N ′)) ⇒ NF(T (MN)) ⊆ NF(T (MN ′))

Proof. Take t ∈ NF(T (MN)), then ∃t ′ ∈ T (MN) such that

t ′ = s1[u1, . . . , uk] // // t + T

nf(s1)[nf(u1), . . . ,nf(uk)]

with nf(s1) ∈ NF(T (M))

and nf(u1), . . . ,nf(uk) ∈ NF(T (N))

= NF(T (N ′)).
We conclude that t ∈ NF(T (MN ′)). □

Böhm Trees and Taylor Expansion

Taylor Expansion and Applications

Applications

A proof of context closure via Taylor Expansion

NF(T (N)) ⊆ NF(T (N ′)) ⇒ NF(T (MN)) ⊆ NF(T (MN ′))

Proof. Take t ∈ NF(T (MN)), then ∃t ′ ∈ T (MN) such that

t ′ = s1[u1, . . . , uk] // //

����

t + T

nf(s1)[nf(u1), . . . ,nf(uk)]

55 55

with nf(s1) ∈ NF(T (M))

and nf(u1), . . . ,nf(uk) ∈ NF(T (N)) = NF(T (N ′)).
We conclude that t ∈ NF(T (MN ′)). □

Böhm Trees and Taylor Expansion

Taylor Expansion and Applications

Applications

Some Taylor approximants are “just like” Böhm’s

A resource term t is called

▶ linearized if every bag in t has cardinality 1.

▶ affined if every bag in t has cardinality at most 1.

Every affined normal t ∈ Λr can be sent to an approximant |t| ∈ A:

|x | = x ,

|λx .t| = λx .|t|,
|s[t]| = |s| |t|,
|s[]| = |s| ⊥.

Böhm Trees and Taylor Expansion

Taylor Expansion and Applications

Applications

Some Taylor approximants are “just like” Böhm’s

A resource term t is called

▶ linearized if every bag in t has cardinality 1.

▶ affined if every bag in t has cardinality at most 1.

Every approximant A ̸= ⊥, can be sent to an affined A◦ ∈ Λr :

x◦ = x ,

(λx .A)◦ = λx .A◦,

(A1A2)
◦ = A◦

1[A
◦
2],

(A⊥)◦ = A◦[].

Böhm Trees and Taylor Expansion

Taylor Expansion and Applications

Applications

Properties

▶ For all A ∈ A− {⊥} and t ∈ Λr , we have:

|P◦| = P

and
|t|◦ = t.

▶ For all M there exists a unique linearized t such that

t ∈ NF(T (M)) ⇐⇒ M is β-normalizable.

In this case, we have nfβ(M) = |t|.

Böhm Trees and Taylor Expansion

Taylor Expansion and Applications

Applications

The Genericity Lemma
Let M unsolvable. C [M] has a β-nf ⇒ ∀N .C [M] =β C [N].

Standard proof: Topological method.

Compactification points in the tree topology are precisely the
unsolvables.

Several proofs in the literature:

Masako Takahashi: A Simple Proof of the Genericity Lemma.
Logic, Language and Computation 1994: 117-118

Jan Kuper: Proving the Genericity Lemma by Leftmost
Reduction is Simple. RTA 1995: 271-278

Proof. As C [M] normalizable, ∃!t ∈ NF(T (C [M])) linearized s.t.

|t| = nf(C [M])

So, there exist t ′ ∈ T (C [M]) such that:

t ′ = cLs1, . . . , sk M // // t + T

for some cL−M ∈ T (C [−]) and s1, . . . , sk ∈ T (M).

Thus, L−M cannot
occur in cL−M so we get:

cLs1, . . . , sk M ∈ T (C [N]) ⇒ t ∈ NF(T (C [N]))

and since t is linearized we obtain nfβ(C [N]) = |t|. □

Böhm Trees and Taylor Expansion

Taylor Expansion and Applications

Applications

The Genericity Lemma
Let M unsolvable. C [M] has a β-nf ⇒ ∀N .C [M] =β C [N].

Proof. As C [M] normalizable, ∃!t ∈ NF(T (C [M])) linearized s.t.

|t| = nf(C [M])

So, there exist t ′ ∈ T (C [M]) such that:

t ′ = cLs1, . . . , sk M // // t + T

for some cL−M ∈ T (C [−]) and s1, . . . , sk ∈ T (M).

Thus, L−M cannot
occur in cL−M so we get:

cLs1, . . . , sk M ∈ T (C [N]) ⇒ t ∈ NF(T (C [N]))

and since t is linearized we obtain nfβ(C [N]) = |t|. □

Böhm Trees and Taylor Expansion

Taylor Expansion and Applications

Applications

The Genericity Lemma
Let M unsolvable. C [M] has a β-nf ⇒ ∀N .C [M] =β C [N].

Proof. As C [M] normalizable, ∃!t ∈ NF(T (C [M])) linearized s.t.

|t| = nf(C [M])

So, there exist t ′ ∈ T (C [M]) such that:

t ′ = cLs1, . . . , sk M // //

����

t + T

cLnf(s1), . . . ,nf(sk)M

66 66

for some cL−M ∈ T (C [−]) and s1, . . . , sk ∈ T (M). (By Confluence and
Strong Normalization.)

Thus, L−M cannot occur in cL−M so we get:

cLs1, . . . , sk M ∈ T (C [N]) ⇒ t ∈ NF(T (C [N]))

and since t is linearized we obtain nfβ(C [N]) = |t|. □

Böhm Trees and Taylor Expansion

Taylor Expansion and Applications

Applications

The Genericity Lemma
Let M unsolvable. C [M] has a β-nf ⇒ ∀N .C [M] =β C [N].

Proof. As C [M] normalizable, ∃!t ∈ NF(T (C [M])) linearized s.t.

|t| = nf(C [M])

So, there exist t ′ ∈ T (C [M]) such that:

t ′ = cLs1, . . . , sk M // //

����

t + T

cL0, . . . , 0M

66 66

for some cL−M ∈ T (C [−]) and s1, . . . , sk ∈ T (M). Now, M unsolvable
entails nf(si) = 0.

Thus, L−M cannot occur in cL−M so we get:

cLs1, . . . , sk M ∈ T (C [N]) ⇒ t ∈ NF(T (C [N]))

and since t is linearized we obtain nfβ(C [N]) = |t|. □

Böhm Trees and Taylor Expansion

Taylor Expansion and Applications

Applications

The Genericity Lemma
Let M unsolvable. C [M] has a β-nf ⇒ ∀N .C [M] =β C [N].

Proof. As C [M] normalizable, ∃!t ∈ NF(T (C [M])) linearized s.t.

|t| = nf(C [M])

So, there exist t ′ ∈ T (C [M]) such that:

t ′ = cLs1, . . . , sk M // //

����

t + T

cL0, . . . , 0M

66 66

for some cL−M ∈ T (C [−]) and s1, . . . , sk ∈ T (M). Now, M unsolvable
entails nf(si) = 0. Thus, L−M cannot occur in cL−M so we get:

cLs1, . . . , sk M ∈ T (C [N]) ⇒ t ∈ NF(T (C [N]))

and since t is linearized we obtain nfβ(C [N]) = |t|. □

Böhm Trees and Taylor Expansion

Taylor Expansion and Applications

Applications

Perpendicular Lines Lemma
PLL: If a context C [−1, . . . ,−n] : Λ

n → Λ is constant on n
perpendicular lines, then it must be constant everywhere.

x

y

z

R3

ℓ1 = {(x , 1, 2) | x ∈ R},
ℓ2 = {(0, y , 1) | y ∈ R},
ℓ3 = {(1, 0, z) | z ∈ R}.

Böhm Trees and Taylor Expansion

Taylor Expansion and Applications

Applications

Perpendicular Lines Lemma
PLL: If a context C [−1, . . . ,−n] : Λ

n → Λ is constant on n
perpendicular lines, then it must be constant everywhere.

x

y

z

Λ3

ℓ1 = {(X , λx .x , λxy .x) | X ∈ Λ},
ℓ2 = {(λxy .y ,Y , λx .x) | Y ∈ Λ},
ℓ3 = {(λx .x , λxy .x ,Z) | Z ∈ Λ}.

Böhm Trees and Taylor Expansion

Taylor Expansion and Applications

Applications

Known results

Perpendicular Lines Lemma β B
open term model ✓ ✓

closed term model ✗ ?

▶ M(B) |= PLL, Barendregt’s Book 1982,
Proof technique: Sequentiality.

▶ Mo(B) |= PLL?

▶ Mo(β) ̸|= PLL, by Barendregt & Statman 1999.
Proof: Counterexample via Plotkin’s terms.

▶ M(β) |= PLL, by De Vrijer & Endrullis 2008.
Proof: via Reduction under Substitution.

Böhm Trees and Taylor Expansion

Taylor Expansion and Applications

Applications

Perpendicular Lines Lemma

∀Z


C [Z ,M12, ,M1n] =B N1

C [M21,Z , ,M2n] =B N2

. . .
...

...
C [Mn1, . . . ,Mn(n−1),Z] =B Nn

⇓
∀Z⃗ .C [Z1, . . . ,Zn] =B N1 =B · · · =B Nn

Böhm Trees and Taylor Expansion

Taylor Expansion and Applications

Applications

Perpendicular Lines Lemma

∀Z


C [Z ,M12, ,M1n] =B N1

C [M21,Z , ,M2n] =B N2

. . .
...

...
C [Mn1, . . . ,Mn(n−1),Z] =B Nn

⇓

∀Z⃗ .C [Z1, . . . ,Zn] =B N1 =B · · · =B Nn

In B a context C [−] can be constant for several reasons:

1. C does not contain the hole in the first place (the trivial case);

2. the hole is erased during its reduction;

3. the hole is “hidden” behind an unsolvable;

4. the hole is never erased but “pushed into infinity”.

Böhm Trees and Taylor Expansion

Taylor Expansion and Applications

Applications

Perpendicular Lines Lemma

∀Z


C [Z ,M12, ,M1n] =B N1

C [M21,Z , ,M2n] =B N2

. . .
...

...
C [Mn1, . . . ,Mn(n−1),Z] =B Nn

⇓

∀Z⃗ .C [Z1, . . . ,Zn] =B N1 =B · · · =B Nn

An approximant c ∈ T (C [−]) such that nf(c) ̸= 0 can be
constant for only one reason:

1. c does not contain the hole in the first place (the trivial case);

2. the hole is erased during its reduction ;

3. the hole is “hidden” behind an unsolvable;

4. the hole is never erased but “pushed into infinity”.

Böhm Trees and Taylor Expansion

Taylor Expansion and Applications

Applications

Perpendicular Lines Lemma

∀Z


C [Z ,M12, ,M1n] =B N1

C [M21,Z , ,M2n] =B N2

. . .
...

...
C [Mn1, . . . ,Mn(n−1),Z] =B Nn

⇓

∀Z⃗ .C [Z1, . . . ,Zn] =B N1 =B · · · =B Nn

An approximant c ∈ T (C [−]) such that nf(c) ̸= 0 can be
constant for only one reason:

1. c does not contain the hole in the first place (the trivial case);

2. the hole is erased during its reduction (linearity);

3. the hole is “hidden” behind an unsolvable;

4. the hole is never erased but “pushed into infinity”.

Böhm Trees and Taylor Expansion

Taylor Expansion and Applications

Applications

Perpendicular Lines Lemma

∀Z


C [Z ,M12, ,M1n] =B N1

C [M21,Z , ,M2n] =B N2

. . .
...

...
C [Mn1, . . . ,Mn(n−1),Z] =B Nn

⇓

∀Z⃗ .C [Z1, . . . ,Zn] =B N1 =B · · · =B Nn

An approximant c ∈ T (C [−]) such that nf(c) ̸= 0 can be
constant for only one reason:

1. c does not contain the hole in the first place (the trivial case);

2. the hole is erased during its reduction (linearity);

3. the hole is “hidden” behind an unsolvable (SN);

4. the hole is never erased but “pushed into infinity”.

Böhm Trees and Taylor Expansion

Taylor Expansion and Applications

Applications

Perpendicular Lines Lemma

∀Z


C [Z ,M12, ,M1n] =B N1

C [M21,Z , ,M2n] =B N2

. . .
...

...
C [Mn1, . . . ,Mn(n−1),Z] =B Nn

⇓

∀Z⃗ .C [Z1, . . . ,Zn] =B N1 =B · · · =B Nn

An approximant c ∈ T (C [−]) such that nf(c) ̸= 0 can be
constant for only one reason:

1. c does not contain the hole in the first place (the trivial case);

2. the hole is erased during its reduction (linearity);

3. the hole is “hidden” behind an unsolvable (SN);

4. the hole is never erased but “pushed into infinity” (finiteness).

Böhm Trees and Taylor Expansion

Taylor Expansion and Applications

Applications

Perpendicular Lines Lemma

∀Z


C [Z ,M12, ,M1n] =B N1

C [M21,Z , ,M2n] =B N2

. . .
...

...
C [Mn1, . . . ,Mn(n−1),Z] =B Nn

⇓

∀Z⃗ .C [Z1, . . . ,Zn] =B N1 =B · · · =B Nn

Claim.
∀c ∈ T (C [−1, . . . ,−n]), nf(c) ̸= 0⇒ c cannot contain any hole.

By induction on the size of c, using all the properties above.

Böhm Trees and Taylor Expansion

Taylor Expansion and Applications

Applications

Perpendicular Lines Lemma

∀Z


C [Z ,M12, ,M1n] =B N1

C [M21,Z , ,M2n] =B N2

. . .
...

...
C [Mn1, . . . ,Mn(n−1),Z] =B Nn

⇓

∀Z⃗ .C [Z1, . . . ,Zn] =B N1 =B · · · =B Nn

Our proof does not need open terms!

Mo(B) |= PLL ✓

Böhm Trees and Taylor Expansion

Taylor Expansion and Applications

Applications

This completes the picture!

Perpendicular Lines Lemma β B
open term model ✓ ✓

closed term model ✗ ✓

Böhm Trees and Taylor Expansion

Taylor Expansion and Applications

Applications

The Big Picture

CalculiProgram Approximation Denotational Semantics

λ-Calculus

Resource Calculus

Scott’s Semantics

Relational Semantics

Böhm Trees

Taylor Expansion

Böhm Trees and Taylor Expansion

Taylor Expansion and Applications

Applications

Advantage: These techniques scale to many languages

λ-calculus Quantum
calculi

Probabilistic
calculi

Non-
determinism

may

must

Probabilistic
PCF

Erratic
PCF /
Idealized
Algol

Differential
calculi

Resource
calculus

Resource
PCF

differential
λ-calculus

Algebraic
calculi

Böhm Trees and Taylor Expansion

Taylor Expansion and Applications

Applications

Extensionality
▶ Extensional BT’s.

Nakajima, Hyland, Wadsworth, Lévy.

▶ Degrees of extensionality in BT.
Intrigila, Manzonetto and Polonsky.

▶ Extensional Taylor Expansion.
Blondeau-Patissier, Clairambault, Vaux Auclair.

Meaningfulness
▶ Berarducci Trees

Berarducci.

▶ CbV solvability
Accattoli, Guerrieri.

▶ Magnificent Böhm approximant
Arrial, Kesner, Guerrieri.

Call-by-value

▶ CbV Böhm Tree.
Kerinec, Manzonetto, Pagani.

Accattoli, Lancelot, Faggian.

▶ CbV Taylor Expansion.
Ehrhard, Guerrieri.

Approximations for Λ∞

▶ Infinitary Linear Logic.
Baelde, Doumane, Kuperberg, Saurin.

Ehrhard.

▶ Taylor Expansion for Λ∞.
Cerda, Vaux Auclair.

Böhm Trees and Taylor Expansion

Conclusions

	Introduction
	-calculus
	Scott's continuity
	Operational semantics

	Böhm Trees
	Definition
	Examples
	
	Approximation theory
	The tree topology
	 applications
	Genericity
	The Big Picture

	The Resource Calculus
	Introduction
	Its syntax and operational semantics
	Main properties
	The Big Picture

	Taylor Expansion and Applications
	Introduction
	Definition
	Dynamic behaviour
	Taylor Expansion vs Böhm Trees
	Applications

	Conclusions

