Böhm Trees and Taylor Expansion

Giulio Manzonetto

gmanzone@irif.fr

IRIF, Université Paris Cité

Université Paris Cité

13 May 2024

Table of contents

Introduction

Böhm Trees

The Resource Calculus

Taylor Expansion and Applications

Conclusions

Böhm Trees and Taylor Expansion

The Big Picture

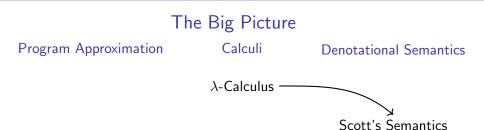
Program Approximation

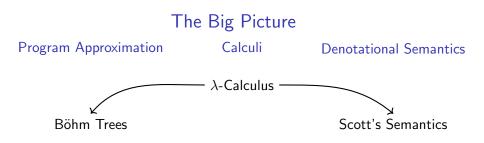
Calculi

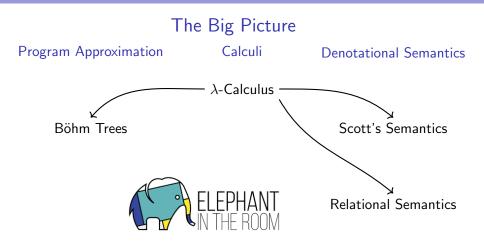
Denotational Semantics

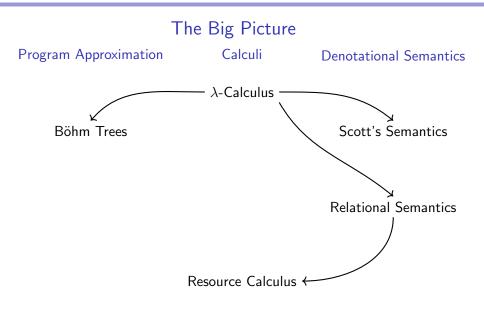
 λ -Calculus

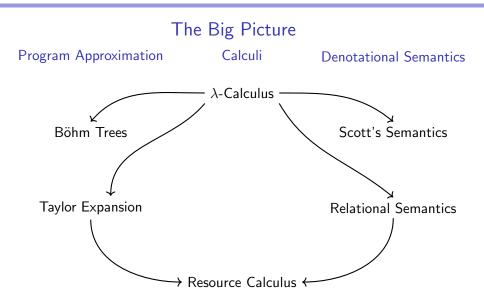
Böhm Trees and Taylor Expansion

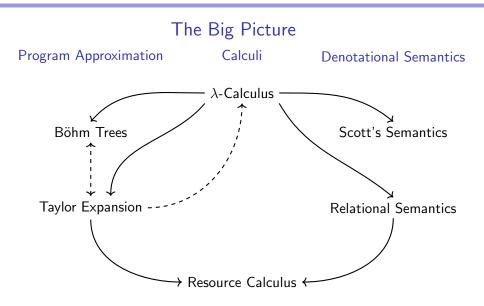












The untyped λ -calculus (Church, 1932)

Based on a primitive notion of function.

 $M, N ::= x \mid \lambda x.M \mid MN$

Computation becomes substitution

$$(\lambda x.M)N \rightarrow_{\beta} M\{N/x\}$$

A program is a closed term $M \in \Lambda^o$.

Some examples

- 1. The identity $I = \lambda x.x$ $IM \rightarrow_{\beta} M$ 2. The projections $K = \lambda xy.x$ and $F = \lambda xy.y$: $KMN \rightarrow_{\beta} (\lambda y.M)N \rightarrow_{\beta} M$
- 3. The self-application $\Delta = \lambda x.xx$

$$\Delta M \rightarrow_{\beta} MM$$

4. The "looping" combinator $\Omega=\Delta\Delta$

$$\Omega = \Delta \Delta \rightarrow_{\beta} \Delta \Delta = \Omega \rightarrow_{\beta} \Omega \rightarrow_{\beta} \cdots$$

The Theory of Program Approximation

How to handle complex programs?

Denotational Semantics

- Model = abstract mathematical structure.
- Define a program interpretation satisfying compositionality.

$$\llbracket MN \rrbracket = \llbracket M \rrbracket \bullet \llbracket N \rrbracket.$$

Systems of Approximants

- Decompose a program into elementary "bricks"
- Retrieve the whole program behaviour performing some "limit" of its (finite) approximants.

$$M = \bigvee \{A \mid A \text{ is an approximant of } M\}$$

Denotational vs Operational Models

Continuous Semantics (Scott, 1969) \mathcal{D}_{∞} : First denotational model of λ -calculus.

Böhm tree semantics (Barendregt, 1977)

Tree-like representation for program execution. "Syntactic model" of λ -calculus.

Scott's topology

Let $\mathcal{D} = (D, \leq, \perp)$ be a complete partial ordering: $d \leq d' \iff$ the datum d is less defined than d'

The Scott topology on \mathcal{D} is defined as follows: O is Scott-open if 1. O is upward closed: $\forall d \in O, d' \in D . [d \leq d' \Rightarrow d' \in O]$ 2. $\forall A \subseteq O . A$ directed and $\bigvee A \in O \Rightarrow A \cap O \neq \emptyset$ directed = non-empty, downward closed, closed under finite \lor .

Examples. Let \mathcal{D} be a cpo, $d \in D$. The following sets are open:

 $\{x \in D \mid x \neq \bot\}$ $\{x \in D \mid x \nleq d\}$

The Scott topology is T_0 : all points are topologically distinguishable.

Scott continuity

Proposition. Let \mathcal{D} be a cpo. A function

 $f:D\to D$

is Scott continuous if and only if, for every directed subset $\mathcal{I} \subseteq D$,

$$f(\bigvee \mathcal{I}) = \bigvee f(\mathcal{I}).$$

A function is Scott continuous means

"A finite portion of the output of a program must be generated by a finite portion of its input."

The Crucial Point — How to Handle Recursion?

Kleene Fixed Point Theorem Let $\mathcal{D} = (D, \leq, \perp)$ be a domain. Every Scott-continuous function

 $f:\mathcal{D}\to\mathcal{D}$

has a least fixed point lfp(f) that can be calculated as follows:

$$\mathrm{lfp}(f) = \bigvee_{n \in \mathbb{N}} f^n(\bot)$$

The Kleene Fixed Point Theorem is used in denotational semantics, to give meaning to recursive function definitions in programming languages.

Fixed Point Combinators

1. A λ -term X is a fixed point of a λ -term M if

$$MX =_{\beta} X$$

Open Problem. Define

$$\operatorname{Fix}(M) = \{ [X]_{\beta} \mid X \in \Lambda^{o} . MX =_{\beta} X \}$$

Conjecture. For all $M \in \Lambda^o$ either |Fix(M)| = 1 or $Fix(M) = \aleph_0$.

Fixed Point Combinators

1. A λ -term X is a fixed point of a λ -term M if

$$MX =_{\beta} X$$

2. One can define fixed point combinators:

$$\mathsf{Y} = \lambda \mathsf{f}.(\lambda \mathsf{x}.\mathsf{f}(\mathsf{x}\mathsf{x}))(\lambda \mathsf{x}.\mathsf{f}(\mathsf{x}\mathsf{x}))$$

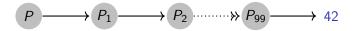
Lemma. For all $M \in \Lambda$, YM is a fixed point of M:

$$\begin{array}{lll} \mathsf{Y}\mathsf{M} &=& (\lambda f.(\lambda x.f(xx))(\lambda x.f(xx)))\mathsf{M} \\ & \to_{\beta} & (\lambda x.\mathcal{M}(xx))(\lambda x.\mathcal{M}(xx)) \\ & \to_{\beta} & \mathcal{M}((\lambda x.\mathcal{M}(xx))(\lambda x.\mathcal{M}(xx))) \ _{\beta} \leftarrow \ \mathcal{M}(\mathsf{Y}\mathsf{M}) \end{array}$$

_

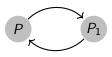
Possible behaviours of a program

Classification	Behaviour	Result
β -normalizable	$P \rightarrow P_1 \rightarrow P_2 \twoheadrightarrow_{97} P_{99} \rightarrow 42$	completely defined



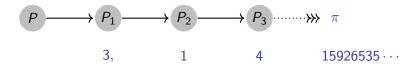
Possible behaviours of a program

Classification	Behaviour	Result
β -normalizable	$P \rightarrow P_1 \rightarrow P_2 \twoheadrightarrow_{97} P_{99} \rightarrow 42$	completely defined
unsolvable	$P \rightarrow P_1 \rightarrow P \twoheadrightarrow_{97} P_1 \rightarrow \cdots$	undefined



Possible behaviours of a program

Classification	Behaviour	Result
β -normalizable	$P \rightarrow P_1 \rightarrow P_2 \twoheadrightarrow_{97} P_{99} \rightarrow 42$	completely defined
unsolvable	$P \rightarrow P_1 \rightarrow P \twoheadrightarrow_{97} P_1 \rightarrow \cdots$	undefined
solvable	$P \rightarrow o_1 P_1 \rightarrow o_1(o_2 P_2) \rightarrow \cdots$ $\twoheadrightarrow_{\infty} o_1(o_2(o_3(\cdots o_n))\cdots)$	stable parts (infinitary)



The Böhm Tree Semantics (Barendregt'77)

Given a λ -term M, its Böhm tree BT(M) is defined as follows: If M is unsolvable (completely undefined), then

 $\operatorname{BT}(M) = \bot$

• Otherwise $M \twoheadrightarrow_{\beta} \lambda x_1 \dots x_n . y \ M_1 \cdots M_k$ and BT $(M) = \lambda x_1 \dots x_n . y$

 $BT(M_1) \cdots BT(M_k)$

One of the first coinductive definition!

The Böhm Tree Semantics (Barendregt'77)

Given a λ -term M, its Böhm tree BT(M) is defined as follows: If M is unsolvable (completely undefined), then

 $\operatorname{BT}(M) = \bot$

• Otherwise $M \rightarrow_{\beta} \lambda x_1 \dots x_n y M_1 \dots M_k$ and $BT(M) = \lambda x_1 \dots x_n y$ $BT(M_1) \dots BT(M_k)$

One of the first coinductive definition!

Example - Fixed point combinator Y

$$Y = \lambda f.(\lambda x.f(xx))(\lambda x.f(xx))$$

$$\rightarrow_{\beta} \quad \lambda f.f((\lambda x.f(xx))(\lambda x.f(xx))))$$

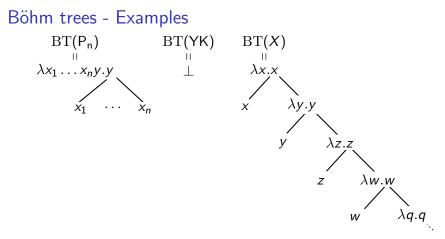
$$\rightarrow_{\beta} \quad \lambda f.f(f((\lambda x.f(xx))(\lambda x.f(xx)))))$$

$$\rightarrow_{\beta} \quad \lambda f.f(f(f((\lambda x.f(xx))(\lambda x.f(xx))))))$$

$$\twoheadrightarrow_{\beta} \quad \lambda f.f^{n}((\lambda x.f(xx))(\lambda x.f(xx))))$$

 $\twoheadrightarrow_{\beta} \cdots$





where

$$\mathsf{P}_{\mathsf{n}} = \lambda \mathsf{x}_1 \dots \mathsf{x}_{\mathsf{n}} \mathsf{y}.\mathsf{y} \mathsf{x}_1 \cdots \mathsf{x}_{\mathsf{n}}$$
$$\mathsf{F}_{\mathsf{n}} = \mathsf{Y}(\lambda \mathsf{y} \mathsf{x}.\mathsf{x} \mathsf{x} \mathsf{y})$$

The Böhm tree semantics is "infinitary"

There are λ -terms M, N with the same Böhm tree, that cannot be equated by any "finite" reduction.

1. Take a λ -term M satisfying:

$$M \twoheadrightarrow_{\beta} \lambda z x. x(Mz)$$

2. Take a variable y. Then, $BT(My) = \lambda_{X.X} = \lambda_{X.X}$ $\begin{vmatrix} & & \\ & & \\ & & \\ & & BT(My) & \lambda_{X.X} \end{vmatrix}$

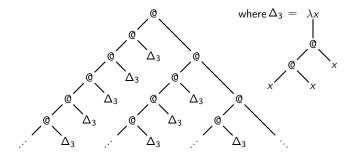
3. For
$$y \neq z$$
, we have $My \neq_{\beta} Mz$
but $BT(My) = BT(Mz)$.

Digression - Böhm trees as infinitary normal forms

Generate Λ^{∞} by taking the grammar of λ -calculus coinductively:

$$T, U ::=_{\text{co-ind}} x \mid \lambda x.T \mid TU$$

Example:



Digression - Böhm trees as infinitary normal forms Take the infinitary λ -calculus Λ^{∞}_{\perp} with \perp :

$$T, U ::=_{\mathsf{co-ind}} \bot \mid x \mid \lambda x.T \mid TU$$

Reduction is now coinductive:

$$\frac{T \twoheadrightarrow_{\beta} x}{T \twoheadrightarrow_{\beta\perp} x} \qquad \frac{T \twoheadrightarrow_{\beta\perp} \lambda x. U' \quad U' \twoheadrightarrow_{\beta\perp} U}{T \twoheadrightarrow_{\beta\perp} \lambda x. U}$$
$$\frac{T \twoheadrightarrow_{\beta\perp} U' V' \quad U' \twoheadrightarrow_{\beta\perp} U \quad V' \twoheadrightarrow_{\beta\perp} V}{T \twoheadrightarrow_{\beta\perp} UV}$$
$$\frac{T \text{ has no hnf } T \neq \bot}{T \twoheadrightarrow_{\beta\perp} \bot} (\bot)$$

Theorem. $(\Lambda_{\perp}^{\infty}, \twoheadrightarrow_{\beta \perp})$ is confluent and strongly normalizing. For all $M \in \Lambda$: BT $(M) = nf_{\beta \perp}^{\infty}(M)$.

That was scary... can we go back to induction?

- Finite trees are pieces of "output" that can be obtained in a finite amount of time.
- Böhm trees are naturally ordered, as follows:

$$\perp \ \sqsubseteq \ \lambda f.f \ \sqsubseteq \ \lambda f.f$$

 \bot

Finite Approximants

The set \mathcal{A} of finite approximants is defined as follows:

$$(\mathcal{A}) \qquad A, A_i ::= \perp \mid \lambda x_1 \dots x_n . y A_1 \dots A_k$$

The Scott-ordering \sqsubseteq on $\mathcal A$ is defined by:

$$\frac{A \sqsubseteq A'}{\perp \sqsubseteq A} \qquad \frac{A \sqsubseteq A'}{\lambda x.A \sqsubseteq \lambda x.A'} \qquad \frac{A_1 \sqsubseteq A'_1 \cdots A_n \sqsubseteq A'_n}{xA_1 \cdots A_n \sqsubseteq xA_1 \cdots A_n}$$

The corresponding "sup" $A \sqcup A'$ is inductively given by:

Direct approximation

The direct approximant $\omega(M) \in \mathcal{A}$ of $M \in \Lambda$ is inductively defined:

$$\omega(\lambda x_1 \dots x_n . yM_1 \cdots M_k) = \lambda x_1 \dots x_n . y\omega(M_1) \cdots \omega(M_k),$$

$$\omega(\lambda x_1 \dots x_n . (\lambda y . P)QM_1 \cdots M_k) = \bot.$$

The set of finite approximants of a λ -term M is defined by:

$$\mathcal{A}(M) = \{\omega(N) \mid N =_{\beta} M\} \downarrow$$

Lemma.

1.
$$M \rightarrow_{\beta} N$$
 implies $\omega(M) \sqsubseteq \omega(N)$.
2. If $M =_{\beta} N$ then $\mathcal{A}(M) = \mathcal{A}(N)$.

Lemma. The set $\mathcal{A}(M)$ is an ideal w.r.t. \sqsubseteq :

1. $\perp \in \mathcal{A}(M)$;

2. if $A_1, A_2 \in \mathcal{A}(M)$ then $A_1 \sqcup A_2 \in \mathcal{A}(M)$;

3. downward closed: $A_1 \sqsubseteq A_2 \in \mathcal{A}(M) \implies A_1 \in \mathcal{A}(M)$. Proof. (1) and (3) hold trivially.

Lemma. The set $\mathcal{A}(M)$ is an ideal w.r.t. \sqsubseteq :

1.
$$\perp \in \mathcal{A}(M)$$
;

2. if $A_1, A_2 \in \mathcal{A}(M)$ then $A_1 \sqcup A_2 \in \mathcal{A}(M)$;

3. downward closed: $A_1 \sqsubseteq A_2 \in \mathcal{A}(M) \implies A_1 \in \mathcal{A}(M).$

Proof. (1) and (3) hold trivially. 2) If $A_1, A_2 \in \mathcal{A}(M)$ then $A_1 \sqsubseteq \omega(N_1)$ and $A_2 \sqsubseteq \omega(N_2)$ for some

$$N_1 =_{eta} M =_{eta} N_2$$

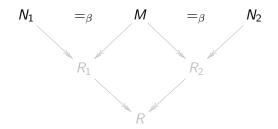
Lemma. The set $\mathcal{A}(M)$ is an ideal w.r.t. \sqsubseteq :

1.
$$\perp \in \mathcal{A}(M)$$
;

2. if $A_1, A_2 \in \mathcal{A}(M)$ then $A_1 \sqcup A_2 \in \mathcal{A}(M)$;

3. downward closed: $A_1 \sqsubseteq A_2 \in \mathcal{A}(M) \implies A_1 \in \mathcal{A}(M).$

Proof. (1) and (3) hold trivially. 2) If $A_1, A_2 \in \mathcal{A}(M)$ then $A_1 \sqsubseteq \omega(N_1)$ and $A_2 \sqsubseteq \omega(N_2)$ for some



Conclude since direct approximants increase along reduction.

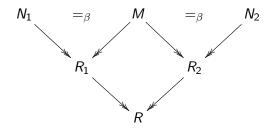
Lemma. The set $\mathcal{A}(M)$ is an ideal w.r.t. \sqsubseteq :

1.
$$\perp \in \mathcal{A}(M);$$

2. if $A_1, A_2 \in \mathcal{A}(M)$ then $A_1 \sqcup A_2 \in \mathcal{A}(M)$;

3. downward closed: $A_1 \sqsubseteq A_2 \in \mathcal{A}(M) \implies A_1 \in \mathcal{A}(M).$

Proof. (1) and (3) hold trivially. 2) If $A_1, A_2 \in \mathcal{A}(M)$ then $A_1 \sqsubseteq \omega(N_1)$ and $A_2 \sqsubseteq \omega(N_2)$ for some



Conclude since direct approximants increase along reduction.

The Syntactic Approximation Theorem

```
For all M \in \Lambda,
                           \mathrm{BT}(M) = \big| \ \big| \mathcal{A}(M)
   • \mathcal{A}(\Omega) = \{\perp\}, \text{ for } \Omega = (\lambda x.xx)(\lambda x.xx),
   \blacktriangleright \mathcal{A}(\mathbf{Y}) = \{ \bot, \}
                                      \lambda f.f \perp,
                                      \lambda f.f(f\perp),
                                      \lambda f.f(f(f\perp)),\ldots,
                                      \lambda f.f^n(\perp),\ldots\}
```

BT(Y) $\lambda f.f$

For all
$$M \in \Lambda$$
, $\operatorname{BT}(M) = \bigsqcup \mathcal{A}(M)$

Examples:

$$\mathcal{A}(\Omega) = \{\bot\}, \text{ for } \Omega = (\lambda x.xx)(\lambda x.xx),$$

$$\mathcal{A}(\mathsf{Y}) = \{ \begin{array}{c} \bot, \\ \lambda f.f \bot, \\ \lambda f.f(f \bot), \\ \lambda f.f(f(\bot)), \ldots, \\ \lambda f.f^n(\bot), \ldots \} \end{array}$$

For all
$$M \in \Lambda$$
,

$$BT(M) = \bigsqcup \mathcal{A}(M)$$
Examples:
• $\mathcal{A}(\Omega) = \{\bot\}$, for $\Omega = (\lambda x.xx)(\lambda x.xx)$,
• $\mathcal{A}(Y) = \{ \bot, \\ \lambda f.f(\bot, \\ \lambda f.f(f \bot)), \\ \lambda f.f(f(\bot)), \dots, \\ \lambda f.f^n(\bot), \dots \}$

Example BT(Y) $\downarrow \downarrow$ $\lambda f.f$

For all
$$M \in \Lambda$$
,

$$BT(M) = \bigsqcup \mathcal{A}(M)$$
Examples:
• $\mathcal{A}(\Omega) = \{\bot\}$, for $\Omega = (\lambda x.xx)(\lambda x.xx)$,
• $\mathcal{A}(Y) = \{ \bot, \\ \lambda f.f(\bot, \\ \lambda f.f(f\bot), \\ \lambda f.f(f(\bot)), \dots, \\ \lambda f.f^n(\bot), \dots \}$

Example BT(Y) \downarrow $\lambda f.f$ ff \downarrow \bot

For all
$$M \in \Lambda$$
,

$$BT(M) = \bigsqcup \mathcal{A}(M)$$
Examples:
• $\mathcal{A}(\Omega) = \{\bot\}$, for $\Omega = (\lambda x.xx)(\lambda x.xx)$,
• $\mathcal{A}(Y) = \{ \bot, \\\lambda f.f(f\bot), \\\lambda f.f(f(f\bot)), \ldots, \\\lambda f.f(f(f\bot)), \ldots, \\\lambda f.f^n(\bot), \ldots \}$

Example BT(Y) \downarrow $\lambda f.f$ fflf \downarrow

For all
$$M \in \Lambda$$
,

$$BT(M) = \bigsqcup \mathcal{A}(M)$$

$$BT(M) = \bigsqcup \mathcal{A}(M)$$

$$H$$

$$Examples:$$

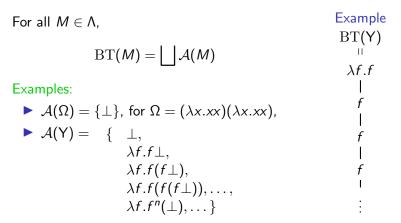
$$A(\Omega) = \{\bot\}, \text{ for } \Omega = (\lambda x.xx)(\lambda x.xx),$$

$$A(Y) = \{ \bot, \\ \lambda f.f(f\bot), \\ \lambda f.f(f(\bot)), \dots, \\ \lambda f.f(f(f\bot)), \dots, \\ \lambda f.f(n(\bot), \dots\}$$

$$Example BT(Y)$$

$$H$$

$$A(Y) = \{ \bot, \\ \lambda f.f(f(\bot)), \dots, \\ \downarrow$$



There is a 1-to-1 correspondence between $\mathcal{A}(M)$ and $\mathrm{BT}(M)$.

Böhm Trees and Taylor Expansion Böhm Trees

The Böhm-tree semantics

How to prove that the equivalence

$$M =_{\mathcal{B}} N \iff \operatorname{BT}(M) = \operatorname{BT}(N)$$

is an equational theory of λ -calculus? We need to check:

- $\blacktriangleright =_{\mathcal{B}} \text{ contains } =_{\beta}. \tag{done}$
- ▶ for all contexts C[], $M =_{\mathcal{B}} N \Rightarrow C[M] =_{\mathcal{B}} C[N]$. (difficult)

Problem. If I give you BT(M) and BT(N), what can you tell me of BT(MN)?

The topological approach

Consider the map

 $\operatorname{BT}(-): \Lambda \to \operatorname{B\"ohm}$ trees.

Böhm trees are an algebraic cpo endowed with Scott topology.

The inverse image of Scott topology defines a topology on $\Lambda.$

- 1. $\{M \mid M \text{ solvable}\}$ is open.
- 2. $\{M \mid M \text{ unsolvable}\}$ is closed.
- 3. Unsolvables are compactification point:

The only open set containing all unsolvables is the whole set Λ .

4. Every β -normalizable *M* is an isolated point:

 $\{N \mid M =_{\beta} N\}$ is an open set.

5. The application and λ -abstraction on Λ are Scott continuous. See [§14.2,Barendregt84.]

Böhm trees contextuality - Method 1.

Theorem. $=_{\mathcal{B}}$ is compatible with the application.

Proof. Let $N =_{\mathcal{B}} N'$, we want to prove $MN =_{\mathcal{B}} MN'$. Assume that $MN \neq_{\mathcal{B}} MN'$, i.e., $BT(MN) \neq BT(MN')$, towards a contradiction.

- Since Scott's topology is T₀, there is a Scott open O containing, say, MN but not MN'.
- By continuity of application there exists an open set U containing N' such that {MX | X ∈ U} ⊆ O.

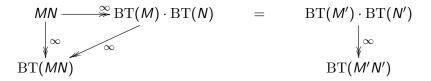
In conclusion:

$$\operatorname{BT}(N) = \operatorname{BT}(N') \quad \Rightarrow \quad N' \in \{MX \mid X \in U\} \subseteq O \text{ (absurd)}.$$

Böhm trees contextuality

Method 2. Use Λ_{\perp}^{∞} with infinitary ordinal reduction $\twoheadrightarrow_{\infty}$.

Assume BT(M) = BT(M') and BT(N) = BT(N').



Conclude BT(MN) = BT(M'N') by the unicity of normal forms.

The Genericity Lemma

Genericity. Let *M* be a λ -term, *U* an unsolvable and *N* a β -nf.

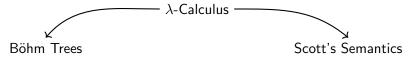
$$MU =_{\beta} N \quad \Rightarrow \quad \forall L \in \Lambda . ML =_{\beta} N.$$

Proof.

- 1. We have seen that $\{P \mid P =_{\beta} N\}$ is Scott open.
- 2. By continuity of $M \mapsto MN$, the set $O = \{P \mid MP =_{\beta} N\}$ is also a Scott open containing U.
- 3. The leftmost strategy is normalizable, whence

 $MU =_{\beta} N \iff MU =_{\mathcal{B}} N \iff MV =_{\mathcal{B}} N, \forall V$ unsolvable

- 4. So O contains all unsolvables.
- 5. But the unique open set including all unsolvables is Λ .



(Relational Semantics)

Resource Calculus

Böhm Trees and Taylor Expansion

The Resource Calculus

Lambda Calculus is not resource conscious

In one step of β -reduction

$$(\lambda x.M)N \rightarrow_{\beta} M\{N/x\}$$

the argument N can be:

- Erased: $(\lambda xy.y)N \rightarrow_{\beta} \lambda y.y$
- ▶ Duplicated: $(\lambda x.xx)N \rightarrow_{\beta} NN$
- Copied an arbitrary number of times:

 $(\lambda fz.f(f(\cdots f(z)))) \mathbb{N} \rightarrow_{\beta} \lambda z.\mathbb{N}(\mathbb{N}(\cdots \mathbb{N}(z)))$

Linear Logic is resource sensitive

Linear Logic decomposes the intuitionistic arrow

$$A \to B$$
 as $!A \multimap B$

and this suggests that one step of β -reduction

$$(\lambda x.M)N \rightarrow_{\beta} M\{N/x\}$$

should be decomposable into more elementary steps.

Linear Lambda Calculus is stupid extremely basic

The naïve calculus arising from linearity

 $\lambda x.M \Rightarrow x$ occurs exactly once in M

is not very interesting from the operational point of view.

 $\lambda xyz.xyz, \lambda xyz.yzx, \lambda xyz.zxy, \lambda xyz.x(\lambda f.yf)(\lambda g.gz), \dots$

It can be interesting from a combinatorial perspective:

- Noam Zeilberger. Counting isomorphism classes of β-normal linear lambda terms. arXiv:1509.07596 (2015)
- Noam Zeilberger: Linear lambda terms as invariants of rooted trivalent maps. J. Funct. Program. 26: e21 (2016)

The Resource Calculus

It is a resource sensitive version of $\lambda\text{-calculus}$ where

- variables can occur multiple times in its programs,
- resources cannot be erased nor copied during the reduction.

Introduced in

T. Ehrhard, L. Regnier: The differential lambda-calculus. Theor. Comput. Sci. 309(1-3): 1-41 (2003)

More understandable syntax in

M. Pagani, P. Tranquilli: Parallel Reduction in Resource Lambda-Calculus. APLAS 2009: 226-242

Ancestor

G. Boudol: The Lambda-Calculus with Multiplicities. CONCUR 1993: 1-6

Its syntax

Syntactic categories:

Terms	s, t, u	::=	$x \mid \lambda x.t \mid tb$	Λ^r
Bags	Ь	::=	$[t_1,\ldots,t_n], \text{ for } n \geq 0,$	Λ^b
Formal sums	$\mathbb{S},\mathbb{T},\mathbb{U}$::=	$0 \mid t + \mathbb{T}$	$\mathbb{N}\langle \Lambda^r \rangle$

Intuitively

- Terms are the protagonists of our calculus.
- Bags are multisets of linear resources.
- Sums represent non-deterministic choice between terms

$$s + t \rightarrow s$$
 $s + t \rightarrow t$

but the choice is never actually made.

Assumptions

On formal sums

- The operator + is associative and commutative.
- As usual, we write $\sum_{i=1}^{k} t_i = t_1 + \cdots + t_k$

Bags are multisets represented in multiplicative notation.

- 1 is the empty bag.
- $b_1 \cdot b_2$ represents the multiset union of b_1 and b_2 .
- Structural induction on bags, becomes:
 - 1, base case.
 - ▶ [t] · b, induction step.

Sums of bags $\mathbb{B} \in \mathbb{N}\langle \Lambda^b \rangle$ are useful but not important.

All constructors are linear

In this context

"linearity" $\,\simeq\,$ commutation with sums

Notation.

For sums in $\mathbb{N}\langle \Lambda^r \rangle$, we introduce a syntactic sugar:

$$\begin{aligned} \lambda x. \sum_{i=1}^{n} t_i &:= \sum_{i=1}^{n} \lambda x. t_i \\ (\sum_{i=1}^{n} t_i) b &:= \sum_{i=1}^{n} t_i b \\ t(\sum_{i=1}^{n} b_i) &:= \sum_{i=1}^{n} tb_i \end{aligned}$$

In other words, sums can always be pushed to surface.

Remark. A subterm 0 annihilates the whole term:

$$\lambda x.0 = t0 = 0b = 0$$
 and $[0] \cdot b = 0$

All constructors are linear

In this context

"linearity" $\,\simeq\,$ commutation with sums

Notation.

For sums in $\mathbb{N}\langle \Lambda^r \rangle$, we introduce a syntactic sugar:

$$\begin{array}{rcl} \lambda x.\sum_{i=1}^{n}t_{i} & := & \sum_{i=1}^{n}\lambda x.t_{i}\\ (\sum_{i=1}^{n}t_{i})b & := & \sum_{i=1}^{n}t_{i}b\\ t(\sum_{i=1}^{n}b_{i}) & := & \sum_{i=1}^{n}tb_{i} \end{array}$$

In other words, sums can always be pushed to surface. Remark. A subterm 0 annihilates the whole term:

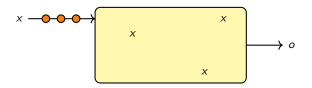
$$\lambda x.0 = t0 = 0b = 0 \quad \text{and} \quad [0] \cdot b = 0$$

Böhm Trees and Taylor Expansion

LIts syntax and operational semantics

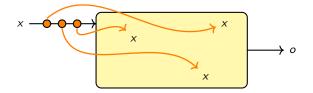
Its operational semantics - the idea

 $(\lambda x.t)[s_1, s_2, s_3] \rightarrow ?$



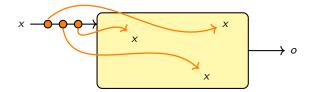
Its operational semantics - the idea

$$(\lambda x.t)[s_1, s_2, s_3] \rightarrow t \langle s_1/x_1, s_2/x_2, s_3/x_3 \rangle$$



Its operational semantics - the idea

$$(\lambda x.t)[s_1, s_2, s_3]
ightarrow \sum_{\sigma \in \mathfrak{S}_3} t \langle s_1/x_{\sigma(1)}, s_2/x_{\sigma(2)}, s_3/x_{\sigma(3)} \rangle$$

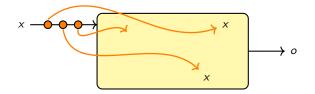


Böhm Trees and Taylor Expansion

LIts syntax and operational semantics

Its operational semantics - the idea

 $(\lambda x.t)[s_1, s_2, s_3] \rightarrow ?$



$\deg_x(x)$	=	1	$\deg_x(y)$	=	0
$\deg_x(\lambda y.t)$	=	$\deg_x(t)$	$\deg_x(tb)$	=	$\deg_{\scriptscriptstyle X}(t) + \deg_{\scriptscriptstyle X}(b)$
$\deg_x(1)$	=	0	$\deg_{\scriptscriptstyle X}([t]\cdot b)$	=	$\deg_{\scriptscriptstyle X}(t) + \deg_{\scriptscriptstyle X}(b)$

Böhm Trees and Taylor Expansion

LIts syntax and operational semantics

Its operational semantics - the idea

 $(\lambda \mathbf{x}.t)[\mathbf{s}_1,\mathbf{s}_2,\mathbf{s}_3] \rightarrow 0$



$\deg_x(x)$	=	1	$\deg_x(y)$	=	0
$\deg_x(\lambda y.t)$	=	$\deg_x(t)$	$\deg_x(tb)$	=	$\deg_{\scriptscriptstyle X}(t) + \deg_{\scriptscriptstyle X}(b)$
$\deg_x(1)$	=	0	$\deg_x([t] \cdot b)$	=	$\deg_{\scriptscriptstyle X}(t) + \deg_{\scriptscriptstyle X}(b)$

Linear substitution For $s, t \in \Lambda^r$, define $t\langle s/x \rangle \in \mathbb{N} \langle \Lambda^r \rangle$ aka the

linear substitution of s for one occurrence of x in t

$$y\langle s/x\rangle = \begin{cases} s, & \text{if } x = y, \\ 0, & \text{otherwise,} \end{cases}$$
$$(\lambda y.t)\langle s/x\rangle = \lambda y.t\langle s/x\rangle \qquad (\text{wlog. } x \neq y)$$
$$(tb)\langle s/x\rangle = t\langle s/x\rangle b + t(b\langle s/x\rangle)$$

on bags:

$$\begin{aligned} 1\langle s/x \rangle &= 0\\ [t]\langle s/x \rangle &= [t\langle s/x \rangle]\\ (b_1 \cdot b_2)\langle s/x \rangle &= b_1\langle s/x \rangle \cdot b_2 + b_1 \cdot (b_2\langle s/x \rangle) \end{aligned}$$

Linear substitution For $s, t \in \Lambda^r$, define $t\langle s/x \rangle \in \mathbb{N} \langle \Lambda^r \rangle$ aka the

linear substitution of s for one occurrence of x in t

$$y\langle s/x \rangle = \begin{cases} s, & \text{if } x = y, \\ 0, & \text{otherwise,} \end{cases}$$
$$(\lambda y.t)\langle s/x \rangle = \lambda y.t\langle s/x \rangle \qquad (\text{wlog. } x \neq y)$$
$$(tb)\langle s/x \rangle = t\langle s/x \rangle b + t(b\langle s/x \rangle)$$

on bags:

Its operational semantics

Baby-step. Define
$$\rightarrow_{b} \subseteq \Lambda^{r} \times \mathbb{N}\langle \Lambda^{r} \rangle$$
 by
 $(\lambda x.t)([s] \cdot b) \rightarrow_{b} (\lambda x.t \langle s/x \rangle)b$
 $(\lambda x.t)1 \rightarrow_{b} \begin{cases} t, & \text{if } x \notin fv(t), \\ 0, & \text{otherwise.} \end{cases}$

Normal step. Define $\rightarrow_r \subseteq \Lambda^r \times \mathbb{N}\langle \Lambda^r \rangle$ by

$$(\lambda x.t)[s_1,\ldots,s_n] \to_{\mathsf{r}} \begin{cases} \sum_{\sigma \in \mathfrak{G}_n} t\{s_1/x_{\sigma(1)},\ldots,s_n/x_{\sigma(n)}\}, & \text{if } \deg_x(t) = n, \\ 0, & \text{otherwise.} \end{cases}$$

Examples of reductions

Both notions of reduction extend to $\rightarrow \subseteq \mathbb{N}\langle \Lambda^r \rangle \times \mathbb{N}\langle \Lambda^r \rangle$ by

$$t
ightarrow t' \quad \Rightarrow \quad t + \mathbb{T}
ightarrow t' + \mathbb{T}$$

Baby-steps:

 $(\lambda xy.x[y,y])[a][b,b]$

$$\rightarrow_{\mathsf{b}} (\lambda xy.a[y,y])1[b,b]$$

$$\rightarrow_{\mathsf{b}} (\lambda y.a[y,y])[b,b]$$

- $\rightarrow_{\mathsf{b}} (\lambda y.a[b,y])[b] + (\lambda y.a[y,b])[b] = 2.(\lambda y.a[b,y])[b]$
- $\rightarrow_{b} (\lambda y.a[b,b])1 + (\lambda y.a[b,y])[b]$
- \rightarrow_{b} 2.($\lambda y.a[b, b]$)1
- $\stackrel{2}{\rightarrow}_{b} \quad 2.a[b,b] = a[b,b] + a[b,b]$

Examples of reductions

Both notions of reduction extend to $\rightarrow \subseteq \mathbb{N}\langle \Lambda^r \rangle \times \mathbb{N}\langle \Lambda^r \rangle$ by

$$t
ightarrow t' \quad \Rightarrow \quad t + \mathbb{T}
ightarrow t' + \mathbb{T}$$

Baby-steps:

$$\begin{array}{l} (\lambda xy.x[y,y])[a][b,b]\\ \rightarrow_{b} \quad (\lambda xy.a[y,y])1[b,b]\\ \rightarrow_{b} \quad (\lambda y.a[y,y])[b,b]\\ \rightarrow_{b} \quad (\lambda y.a[b,y])[b] + (\lambda y.a[y,b])[b] = 2.(\lambda y.a[b,y])[b]\\ \rightarrow_{b} \quad (\lambda y.a[b,b])1 + (\lambda y.a[b,y])[b]\\ \rightarrow_{b} \quad (\lambda y.a[b,b])1 + (\lambda y.a[b,y])[b]\\ \rightarrow_{b} \quad 2.(\lambda y.a[b,b])1\\ \stackrel{2}{\rightarrow}_{b} \quad 2.a[b,b] = a[b,b] + a[b,b]\end{array}$$

Examples of reductions

Both notions of reduction extend to $\rightarrow \subseteq \mathbb{N}\langle \Lambda^r \rangle \times \mathbb{N}\langle \Lambda^r \rangle$ by

$$t
ightarrow t' \quad \Rightarrow \quad t + \mathbb{T}
ightarrow t' + \mathbb{T}$$

Normal-steps:

$$(\lambda xy.x[y,y])[a][b,b] \rightarrow_{\mathsf{r}} (\lambda y.a[y,y])[b,b]$$

 $\rightarrow_{\mathsf{r}} 2.a[b,b]$

Theorem (Equivalence baby \leftrightarrow normal reductions)

$$t \twoheadrightarrow_{\mathsf{b}} \mathbb{T} \iff t \twoheadrightarrow_{\mathsf{r}} \mathbb{T}$$

Main Properties – Strong Normalization

Theorem. The resource calculus is strongly normalizing (SN).

Proof Define:

▶ the size $\#t \in \mathbb{N}$ of a term *t*, as you imagine.

▶ the size of a sum $\#(t_1 + \cdots + t_n) = [\#t_1, \ldots, \#t_n] \in \mathcal{M}_f(\mathbb{N})$ Check that # decreases along a reduction

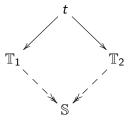
$$(\lambda x.t)[s_1, \dots, s_n] \rightarrow_{b} \begin{cases} t \langle s_1/x_1, \dots, s_n/x_n \rangle ? & \deg_x(t) = n \\ 0 \checkmark & otherwise \end{cases}$$

w.r.t. the multiset ordering $<_m$.

Main Properties - Confluence

Theorem. The resource calculus is confluent.

Proof. The resource calculus is *locally confluent*, i.e., $t \to_r \mathbb{T}_1$ and $t \to_r \mathbb{T}_2$ imply $\exists \mathbb{S}$ such that $\mathbb{T}_1 \twoheadrightarrow_r \mathbb{S}$ and $\mathbb{T}_2 \twoheadrightarrow_r \mathbb{S}$.



Conclude by Newmann's Lemma. A term rewriting system is confluent if it is SN and locally confluent.

Main Properties - Linearity

 $(\lambda x.x[x])[\lambda x.x[x], \lambda x.x[x]] \rightarrow_{\mathsf{r}} 2.(\lambda x.x[x])[\lambda x.x[x]] \rightarrow_{\mathsf{r}} 0$

Surfeit:

 $(\lambda fgx.f[g[x]])[h][b,c] \rightarrow_r (\lambda gx.h[g[x]])[b,c] \rightarrow_r 0$

Non-determinism:

 $(\lambda x.x[x])[f,g] \rightarrow_{\mathsf{r}} f[g] + g[f]$

Böhm Trees and Taylor Expansion — The Resource Calculus — Main properties

Main Properties – Summary The Resource Calculus

$$t ::= x | \lambda x.t | t b$$

$$b ::= [t_1, \dots, t_n] \quad \text{where } n \ge 0$$

$$\mathbb{T} ::= t_1 + \dots + t_n$$

Reduction:

$$(\lambda x.t)[s_1,\ldots,s_n] \twoheadrightarrow_r \mathbb{T} \neq 0 \qquad \Rightarrow$$

$$t \twoheadrightarrow_{\mathsf{r}} c(0) = 0 \quad \leftarrow$$

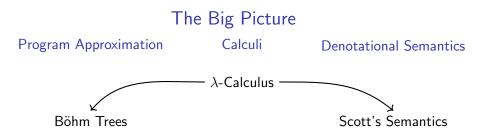
- t must use each s_i exactly once in the reduction to a value.
- otherwise, the whole program t becomes an empty program 0.

Main Properties

Strong Normalization: Confluence: Linearity: Trivial, because there is no duplication. Locally confluent + strongly normalizing. Nothing gets erased in a non-zero reduction. Böhm Trees and Taylor Expansion

Main properties

Its expressive power



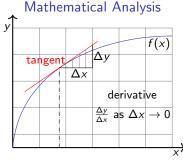
Taylor Expansion

(Relational Semantics)

Resource Calculus

Is the Resource Calculus of any interest?

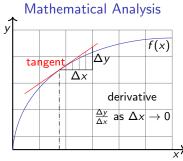
Towards a differential theory of program approximations



Taylor expansion

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

Towards a differential theory of program approximations



Taylor expansion

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

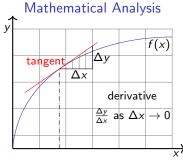
Theory of Programming Languages

The differential λ -calculus

 $D(\lambda x.M) \cdot N \rightarrow \lambda x. (\frac{\partial M}{\partial x} \cdot N)$

linear substitution of Nfor one occurrence of x in M

Towards a differential theory of program approximations



Taylor expansion

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

Theory of Programming Languages

The differential λ -calculus

 $D(\lambda x.M) \cdot N \rightarrow \lambda x. (\frac{\partial M}{\partial x} \cdot N)$

linear substitution of Nfor one occurrence of x in M

Taylor expansion $\mathcal{T}(-)$

$$\mathsf{P} x = \sum_{n=0}^{\infty} \frac{1}{n!} (\mathsf{D}^n(\mathsf{P}) \cdot (x, \dots, x)) \mathsf{0}$$

The ambitious goal

Replace the theory of program approximation based on Scott-continuity and Böhm trees

with the theory of

resource consumption based on Taylor expansion.

Resource calculus = Target language of Taylor expansion

Taylor Expansion

 $\mathcal{T}(-): \Lambda \rightarrow$ power series of resource approximants

$$\mathcal{T}(x) = x$$

$$\mathcal{T}(\lambda x.M) = \lambda x.\mathcal{T}(M)$$

$$\mathcal{T}(MN) = \sum_{k \in \mathbb{N}} \frac{1}{k!} \mathcal{T}(M) [\underbrace{\mathcal{T}(N), \dots, \mathcal{T}(N)}_{k \text{ times}}]$$

Taylor Expansion

$$\begin{aligned} \mathcal{T}(-): & \Lambda & \to \quad \text{sets of resource approximants} \\ \mathcal{T}(x) &= \{x\} \\ \mathcal{T}(\lambda x.M) &= \{\lambda x.t \mid t \in \mathcal{T}(M)\} \\ \mathcal{T}(MN) &= \bigcup_{k \in \mathbb{N}} \left\{ t[s_1, \dots, s_k] \mid t \in \mathcal{T}(M), s_1, \dots, s_k \in \mathcal{T}(N) \right\} \end{aligned}$$

Examples

$$\begin{array}{l} \blacktriangleright \ \mathcal{T}(I) = \{\lambda x.x\}, \\ \blacktriangleright \ \mathcal{T}(\Delta) = \{\lambda x.x1, \lambda x.x[x], \lambda x.x[x,x], \lambda x.x[x,x,x], \dots\}, \\ = \{\lambda x.x[n.x] \mid n \geq 0\}, \\ \blacktriangleright \ \mathcal{T}(\Omega) = \{(\lambda x.x[n.x])[\lambda x.x[n_1.x], \dots, \lambda x.x[n_k.x]] \mid n, k, n_i \geq 0\}. \end{array}$$

The Dynamics of Taylor Expansion

The Taylor expansion is a "static" operation

 $\blacktriangleright \ M = x \qquad \Rightarrow \quad t \in \mathcal{T}(M) \text{ has the shape of a variable,}$

• $M = \lambda x.N \Rightarrow t \in \mathcal{T}(M)$ has the shape of an abstraction,

- M = PQ \Rightarrow $t \in \mathcal{T}(M)$ has the shape of an application,
- $M = (\lambda x.P)Q \Rightarrow t \in \mathcal{T}(M)$ has the shape of a redex.

As the Resource Calculus enjoys SN, we can define:

$$\operatorname{NF}(\mathcal{T}(M)) = \bigcup \{ \operatorname{nf}(t) \mid t \in \mathcal{T}(M) \}$$

Böhm Trees and Taylor Expansion Laylor Expansion and Applications Dynamic behaviour

Normalizing the Taylor Expansion

 $\operatorname{NF}(\mathcal{T}(\Omega)) = \emptyset$

More generally:

M is unsolvable \Rightarrow NF($\mathcal{T}(M)$) = \emptyset

(We'll prove it later)

Böhm Trees and Taylor Expansion — Taylor Expansion and Applications — Dynamic behaviour

Normalizing the Taylor Expansion

 $\operatorname{NF}(\mathcal{T}(\Omega)) = \emptyset$

- ► For every $t \in \mathcal{T}(\Omega)$, check $t \twoheadrightarrow_r 0$.
- Conclude $\mathcal{T}(\Omega) = \emptyset$.

More generally:

M is unsolvable \Rightarrow NF($\mathcal{T}(M)$) = \emptyset

(We'll prove it later)

Böhm Trees and Taylor Expansion — Taylor Expansion and Applications — Dynamic behaviour

Normalizing the Taylor Expansion

 $NF(\mathcal{T}(Y)) = ?$

Böhm Trees and Taylor Expansion Laylor Expansion and Applications Dynamic behaviour

Normalizing the Taylor Expansion

 $NF(\mathcal{T}(Y)) = ?$

Let us look at its shape:

$$\mathsf{Y} = \lambda \mathsf{f}.(\lambda \mathsf{x}.\mathsf{f}(\mathsf{x}\mathsf{x}))(\lambda \mathsf{x}.\mathsf{f}(\mathsf{x}\mathsf{x}))$$

Böhm Trees and Taylor Expansion — Taylor Expansion and Applications — Dynamic behaviour

Normalizing the Taylor Expansion

 $NF(\mathcal{T}(Y)) = ?$

Let us look at its shape:

 $\mathsf{Y} = \lambda \mathsf{f}.(\lambda \mathsf{x}.\mathsf{f}(\mathsf{x}\mathsf{x}))(\lambda \mathsf{x}.\mathsf{f}(\mathsf{x}\mathsf{x}))$

Problem! That's a toughy...

Böhm Trees and Taylor Expansion Taylor Expansion and Applications Taylor Expansion vs Böhm Trees

We know how to compute its Böhm tree

$$BT(Y) = \lambda f.f(f(f(f(\cdots))))$$

since

$$\mathcal{A}(\mathsf{Y}) = \{\lambda \mathsf{f}.\mathsf{f}\bot, \lambda \mathsf{f}.\mathsf{f}(\mathsf{f}\bot), \lambda \mathsf{f}.\mathsf{f}(\mathsf{f}(\mathsf{f}\bot)), \lambda \mathsf{f}.\mathsf{f}(\mathsf{f}(\mathsf{f}(\mathsf{f}\bot))), \dots\}$$

Böhm Trees and Taylor Expansion Taylor Expansion and Applications Taylor Expansion vs Böhm Trees

Can we Taylor expand a Böhm tree?

For an approximant A, define:

$$\begin{array}{lll} \mathcal{T}(\bot) &=& \emptyset, \\ \mathcal{T}(x) &=& \{x\}, \\ \mathcal{T}(\lambda x.A) &=& \{\lambda x.t \mid t \in \mathcal{T}(A)\}, \\ \mathcal{T}(A_1A_2) &=& \bigcup_{k \in \mathbb{N}} \left\{ t[s_1, \ldots, s_k] \mid t \in \mathcal{T}(A_1), s_1, \ldots, s_k \in \mathcal{T}(A_2) \right\}. \end{array}$$

Then, we can simply define

$$\mathcal{T}(\mathrm{BT}(M)) = \bigcup_{A \in \mathcal{A}(M)} \mathcal{T}(A)$$

Commutation Taylor / Böhm

Theorem (Ehrhard & Regnier 2003) For every λ -term M, we have:

$$\operatorname{NF}(\mathcal{T}(M)) = \mathcal{T}(\operatorname{BT}(M))$$

Thanks! $\mathcal{T}(BT(Y)) = \{\lambda f.f1, \lambda f.f[\lambda f.f1], \lambda f.f[\lambda f.f1, \lambda f.f1], \dots\}$

Commutation Taylor / Böhm

Theorem (Ehrhard & Regnier 2003) For every λ -term *M*, we have:

$$\operatorname{NF}(\mathcal{T}(M)) = \mathcal{T}(\operatorname{BT}(M))$$

Corollary 1

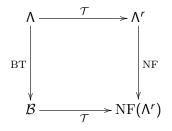
$$M$$
 is unsolvable \iff NF $(\mathcal{T}(M)) = \emptyset$

Corollary 2

 $\operatorname{BT}(M) = \operatorname{BT}(N) \iff \operatorname{NF}(\mathcal{T}(M)) = \operatorname{NF}(\mathcal{T}(N))$

Böhm Trees and Taylor Expansion Taylor Expansion and Applications Taylor Expansion vs Böhm Trees

Taylor Expansion vs Böhm Trees



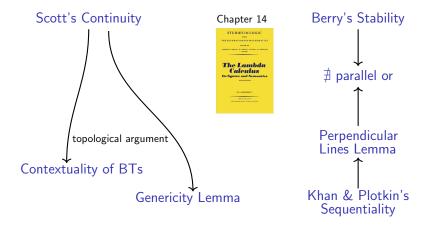
Advantages:

- 1. Approximants are closed under application.
- 2. Enjoy Strong Normalization + Linearity.
- 3. Generalizable to the mainstream languages.

Disadvantage:

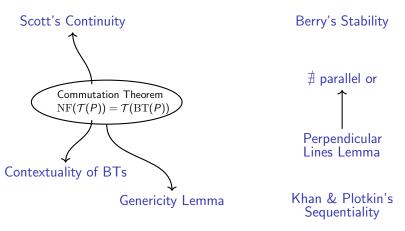
1. lots of indices arise from the linearization.

Classic results



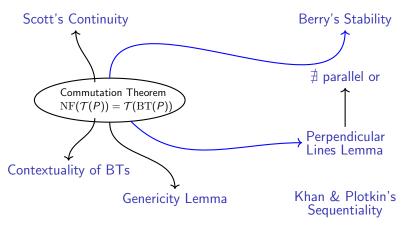
D. Barbarossa and G. Manzonetto. Taylor Subsumes Scott, Berry, Kahn and Plotkin. PACMPL Vol. 4, pp. 1:1-1:23, 2020.

Classic results with simpler inductive proofs



D. Barbarossa and G. Manzonetto. Taylor Subsumes Scott, Berry, Kahn and Plotkin. PACMPL Vol. 4, pp. 1:1-1:23, 2020.

Classic results with simpler inductive proofs



D. Barbarossa and G. Manzonetto. Taylor Subsumes Scott, Berry, Kahn and Plotkin. PACMPL Vol. 4, pp. 1:1-1:23, 2020.

Contextuality of $=_{\mathcal{B}}$ via Taylor Expansion

 $\operatorname{BT}(N) = \operatorname{BT}(N') \quad \Rightarrow \quad \forall M \; . \; \operatorname{BT}(MN) = \operatorname{BT}(MN')$

Proof. More precisely:

 $\operatorname{BT}(N) \sqsubseteq \operatorname{BT}(N') \quad \Rightarrow \quad \forall M \; . \; \operatorname{BT}(MN) \sqsubseteq \operatorname{BT}(MN')$

Equivalently, by Corollary 2: let

 $\operatorname{NF}(\mathcal{T}(N)) \subseteq \operatorname{NF}(\mathcal{T}(N'))$

we have to prove:

 $\operatorname{NF}(\mathcal{T}(MN)) \subseteq \operatorname{NF}(\mathcal{T}(MN'))$

A proof of context closure via Taylor Expansion

 $\operatorname{NF}(\mathcal{T}(N)) \subseteq \operatorname{NF}(\mathcal{T}(N')) \Rightarrow \operatorname{NF}(\mathcal{T}(MN)) \subseteq \operatorname{NF}(\mathcal{T}(MN'))$

Proof. Take $t \in NF(\mathcal{T}(MN))$, then $\exists t' \in \mathcal{T}(MN)$ such that

$$t' = s_1[u_1, \ldots, u_k] \longrightarrow t + \mathbb{T}$$

with $s_1 \in \mathcal{T}(M)$ and $u_1, \ldots, u_k \in \mathcal{T}(N)$.

A proof of context closure via Taylor Expansion

 $\operatorname{NF}(\mathcal{T}(N)) \subseteq \operatorname{NF}(\mathcal{T}(N')) \Rightarrow \operatorname{NF}(\mathcal{T}(MN)) \subseteq \operatorname{NF}(\mathcal{T}(MN'))$

Proof. Take $t \in NF(\mathcal{T}(MN))$, then $\exists t' \in \mathcal{T}(MN)$ such that

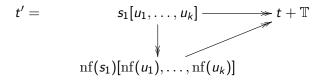
$$t' = s_1[u_1, \ldots, u_k] \longrightarrow t + \mathbb{T}$$

with $nf(s_1) \in NF(\mathcal{T}(M))$ and $nf(u_1), \dots, nf(u_k) \in NF(\mathcal{T}(N))$

A proof of context closure via Taylor Expansion

 $\operatorname{NF}(\mathcal{T}(N)) \subseteq \operatorname{NF}(\mathcal{T}(N')) \Rightarrow \operatorname{NF}(\mathcal{T}(MN)) \subseteq \operatorname{NF}(\mathcal{T}(MN'))$

Proof. Take $t \in NF(\mathcal{T}(MN))$, then $\exists t' \in \mathcal{T}(MN)$ such that



with $nf(s_1) \in NF(\mathcal{T}(M))$ and $nf(u_1), \dots, nf(u_k) \in NF(\mathcal{T}(N)) = NF(\mathcal{T}(N'))$. We conclude that $t \in NF(\mathcal{T}(MN'))$.

Some Taylor approximants are "just like" Böhm's

A resource term t is called

- linearized if every bag in t has cardinality 1.
- affined if every bag in t has cardinality at most 1.

Every affined normal $t \in \Lambda^r$ can be sent to an approximant $|t| \in \mathcal{A}$:

$$\begin{aligned} |x| &= x, \\ |\lambda x.t| &= \lambda x.|t|, \\ |s[t]| &= |s||t|, \\ |s[]| &= |s| \perp. \end{aligned}$$

Some Taylor approximants are "just like" Böhm's

A resource term t is called

linearized if every bag in t has cardinality 1.

affined if every bag in t has cardinality at most 1.

Every approximant $A \neq \bot$, can be sent to an affined $A^{\circ} \in \Lambda^r$:

$$\begin{array}{rcl} x^{\circ} & = & x, \\ (\lambda x.A)^{\circ} & = & \lambda x.A^{\circ}, \\ (A_1A_2)^{\circ} & = & A_1^{\circ}[A_2^{\circ}] \\ (A \bot)^{\circ} & = & A^{\circ}[]. \end{array}$$

Properties

For all A ∈ A − {⊥} and t ∈ Λ^r, we have:
$$|P^{\circ}| = P$$
and

$$|t|^\circ = t.$$

For all M there exists a unique linearized t such that

 $t \in NF(\mathcal{T}(M)) \iff M$ is β -normalizable.

In this case, we have $nf_{\beta}(M) = |t|$.

Let *M* unsolvable. C[M] has a β -nf $\Rightarrow \forall N \cdot C[M] =_{\beta} C[N]$. Standard proof: Topological method.

Compactification points in the tree topology are precisely the unsolvables.

Several proofs in the literature:

- Masako Takahashi: A Simple Proof of the Genericity Lemma. Logic, Language and Computation 1994: 117-118
- Jan Kuper: Proving the Genericity Lemma by Leftmost Reduction is Simple. RTA 1995: 271-278

Let *M* unsolvable. C[M] has a β -nf $\Rightarrow \forall N \cdot C[M] =_{\beta} C[N]$. **Proof.** As C[M] normalizable, $\exists ! t \in NF(\mathcal{T}(C[M]))$ linearized s.t.

$$|t| = \operatorname{nf}(C[M])$$

So, there exist $t' \in \mathcal{T}(C[M])$ such that:

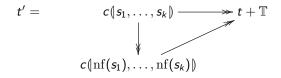
$$t' = c(s_1, \ldots, s_k) \longrightarrow t + \mathbb{T}$$

for some $c(-) \in \mathcal{T}(C[-])$ and $s_1, \ldots, s_k \in \mathcal{T}(M)$.

Let *M* unsolvable. C[M] has a β -nf $\Rightarrow \forall N \cdot C[M] =_{\beta} C[N]$. **Proof.** As C[M] normalizable, $\exists ! t \in NF(\mathcal{T}(C[M]))$ linearized s.t.

$$|t| = \operatorname{nf}(C[M])$$

So, there exist $t' \in \mathcal{T}(C[M])$ such that:

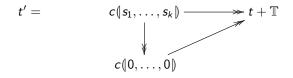


for some $c(-) \in \mathcal{T}(C[-])$ and $s_1, \ldots, s_k \in \mathcal{T}(M)$. (By Confluence and Strong Normalization.)

Let *M* unsolvable. C[M] has a β -nf $\Rightarrow \forall N \cdot C[M] =_{\beta} C[N]$. **Proof.** As C[M] normalizable, $\exists ! t \in NF(\mathcal{T}(C[M]))$ linearized s.t.

$$|t| = \operatorname{nf}(C[M])$$

So, there exist $t' \in \mathcal{T}(C[M])$ such that:

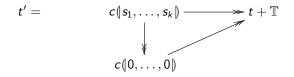


for some $c(-) \in \mathcal{T}(C[-])$ and $s_1, \ldots, s_k \in \mathcal{T}(M)$. Now, M unsolvable entails $nf(s_i) = 0$.

Let *M* unsolvable. C[M] has a β -nf $\Rightarrow \forall N \cdot C[M] =_{\beta} C[N]$. **Proof.** As C[M] normalizable, $\exists ! t \in NF(\mathcal{T}(C[M]))$ linearized s.t.

$$|t| = \operatorname{nf}(C[M])$$

So, there exist $t' \in \mathcal{T}(C[M])$ such that:



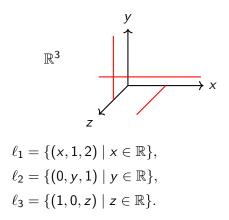
for some $c([-]) \in \mathcal{T}(C[-])$ and $s_1, \ldots, s_k \in \mathcal{T}(M)$. Now, M unsolvable entails $nf(s_i) = 0$. Thus, ([-]) cannot occur in c([-]) so we get:

$$c(s_1,\ldots,s_k) \in \mathcal{T}(C[N]) \Rightarrow t \in NF(\mathcal{T}(C[N]))$$

and since t is linearized we obtain $nf_{\beta}(C[N]) = |t|$.

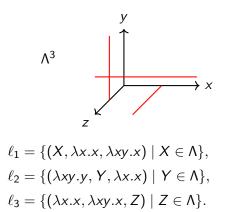
Perpendicular Lines Lemma

PLL: If a context $C[-_1, ..., -_n] : \Lambda^n \to \Lambda$ is constant on *n* perpendicular lines, then it must be constant everywhere.



Perpendicular Lines Lemma

PLL: If a context $C[-_1, ..., -_n] : \Lambda^n \to \Lambda$ is constant on *n* perpendicular lines, then it must be constant everywhere.



Known results

Perpendicular Lines Lemma	β	${\mathcal B}$
open term model	\checkmark	\checkmark
closed term model	X	?

- ► M(B) ⊨ PLL, Barendregt's Book 1982, Proof technique: Sequentiality.
- $\mathcal{M}^{o}(\mathcal{B}) \models \mathsf{PLL}?$
- M^o(β) ⊭ PLL, by Barendregt & Statman 1999. Proof: Counterexample via Plotkin's terms.
- *M*(β) |= PLL, by De Vrijer & Endrullis 2008.
 Proof: via Reduction under Substitution.

Perpendicular Lines Lemma

$$\forall Z \begin{cases} C[Z, M_{12}, \dots, M_{1n}] =_{\mathcal{B}} N_{1} \\ C[M_{21}, Z, \dots, M_{2n}] =_{\mathcal{B}} N_{2} \\ \vdots \\ C[M_{n1}, \dots, M_{n(n-1)}, Z] =_{\mathcal{B}} N_{n} \\ \downarrow \\ \forall \vec{Z} \cdot C[Z_{1}, \dots, Z_{n}] =_{\mathcal{B}} N_{1} =_{\mathcal{B}} \dots =_{\mathcal{B}} N_{n} \end{cases}$$

Perpendicular Lines Lemma

$$\forall Z \begin{cases} C[Z, M_{12}, \dots, M_{1n}] =_{\mathcal{B}} N_{1} \\ C[M_{21}, Z, \dots, M_{2n}] =_{\mathcal{B}} N_{2} \\ \vdots \\ C[M_{n1}, \dots, M_{n(n-1)}, Z] =_{\mathcal{B}} N_{n} \\ & \downarrow \\ \forall \vec{Z} \cdot C[Z_{1}, \dots, Z_{n}] =_{\mathcal{B}} N_{1} =_{\mathcal{B}} \dots =_{\mathcal{B}} N_{n} \end{cases}$$

In \mathcal{B} a context C[-] can be constant for several reasons:

- 1. C does not contain the hole in the first place (the trivial case);
- 2. the hole is erased during its reduction;
- 3. the hole is "hidden" behind an unsolvable;
- 4. the hole is never erased but "pushed into infinity".

$$\forall Z \begin{cases} C[Z, M_{12}, \dots, M_{1n}] =_{\mathcal{B}} N_1 \\ C[M_{21}, Z, \dots, M_{2n}] =_{\mathcal{B}} N_2 \\ \vdots \\ C[M_{n1}, \dots, M_{n(n-1)}, Z] =_{\mathcal{B}} N_n \\ \downarrow \\ \end{bmatrix}$$

$$\forall \vec{Z} . C[Z_1, \ldots, Z_n] =_{\mathcal{B}} N_1 =_{\mathcal{B}} \cdots =_{\mathcal{B}} N_n$$

An approximant $c \in \mathcal{T}(C[-])$ such that $nf(c) \neq 0$ can be constant for only one reason:

- 1. c does not contain the hole in the first place (the trivial case);
- 2. the hole is erased during its reduction ;
- 3. the hole is "hidden" behind an unsolvable;
- 4. the hole is never erased but "pushed into infinity".

$$\forall Z \begin{cases} C[Z, M_{12}, \dots, M_{1n}] =_{\mathcal{B}} N_{1} \\ C[M_{21}, Z, \dots, M_{2n}] =_{\mathcal{B}} N_{2} \\ \vdots \\ C[M_{n1}, \dots, M_{n(n-1)}, Z] =_{\mathcal{B}} N_{n} \\ \downarrow \\ \end{bmatrix}$$

$$\forall \vec{Z} \cdot C[Z_1, \ldots, Z_n] =_{\mathcal{B}} N_1 =_{\mathcal{B}} \cdots =_{\mathcal{B}} N_n$$

An approximant $c \in \mathcal{T}(C[-])$ such that $nf(c) \neq 0$ can be constant for only one reason:

- 1. c does not contain the hole in the first place (the trivial case);
- 2. the hole is erased during its reduction (linearity);
- 3. the hole is "hidden" behind an unsolvable;
- 4. the hole is never erased but "pushed into infinity".

$$\forall Z \begin{cases} C[Z, M_{12}, \dots, M_{1n}] =_{\mathcal{B}} N_{1} \\ C[M_{21}, Z, \dots, M_{2n}] =_{\mathcal{B}} N_{2} \\ \vdots \\ C[M_{n1}, \dots, M_{n(n-1)}, Z] =_{\mathcal{B}} N_{n} \\ \downarrow \\ \end{bmatrix}$$

$$\forall \vec{Z} \cdot C[Z_1, \ldots, Z_n] =_{\mathcal{B}} N_1 =_{\mathcal{B}} \cdots =_{\mathcal{B}} N_n$$

An approximant $c \in \mathcal{T}(C[-])$ such that $nf(c) \neq 0$ can be constant for only one reason:

1. c does not contain the hole in the first place (the trivial case);

- 2. the hole is erased during its reduction (linearity);
- 3. the hole is "hidden" behind an unsolvable (SN);
- 4. the hole is never erased but "pushed into infinity".

Perpendicular Lines Lemma

$$\forall Z \begin{cases} C[Z, M_{12}, \dots, M_{1n}] =_{\mathcal{B}} N_{1} \\ C[M_{21}, Z, \dots, M_{2n}] =_{\mathcal{B}} N_{2} \\ \vdots \\ C[M_{n1}, \dots, M_{n(n-1)}, Z] =_{\mathcal{B}} N_{n} \\ \psi \end{cases}$$

$$\forall \vec{Z} \cdot C[Z_1, \ldots, Z_n] =_{\mathcal{B}} N_1 =_{\mathcal{B}} \cdots =_{\mathcal{B}} N_n$$

An approximant $c \in \mathcal{T}(C[-])$ such that $nf(c) \neq 0$ can be constant for only one reason:

- 1. c does not contain the hole in the first place (the trivial case);
- 2. the hole is erased during its reduction (linearity);
- 3. the hole is "hidden" behind an unsolvable (SN);
- 4. the hole is never erased but "pushed into infinity" (finiteness).

$$\forall Z \begin{cases} C[Z, M_{12}, \dots, M_{1n}] =_{\mathcal{B}} N_{1} \\ C[M_{21}, Z, \dots, M_{2n}] =_{\mathcal{B}} N_{2} \\ \vdots \\ C[M_{n1}, \dots, M_{n(n-1)}, Z] =_{\mathcal{B}} N_{n} \\ & \downarrow \\ \forall \vec{Z} \cdot C[Z_{1}, \dots, Z_{n}] =_{\mathcal{B}} N_{1} =_{\mathcal{B}} \dots =_{\mathcal{B}} N_{n} \end{cases}$$

Claim.

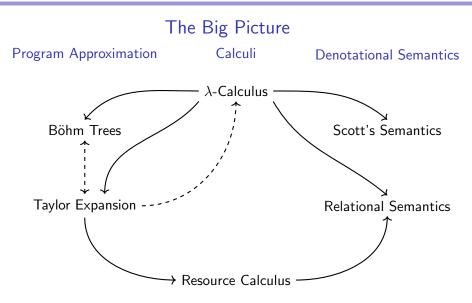
 $\forall c \in \mathcal{T}(C[-_1, \dots, -_n]), \operatorname{nf}(c) \neq 0 \Rightarrow c \text{ cannot contain any hole.}$ By induction on the size of c, using all the properties above.

$$\forall Z \begin{cases} C[Z, M_{12}, \dots, M_{1n}] =_{\mathcal{B}} N_1 \\ C[M_{21}, Z, \dots, M_{2n}] =_{\mathcal{B}} N_2 \\ \vdots \\ C[M_{n1}, \dots, M_{n(n-1)}, Z] =_{\mathcal{B}} N_n \\ \psi \\ \forall \vec{Z} \cdot C[Z_1, \dots, Z_n] =_{\mathcal{B}} N_1 =_{\mathcal{B}} \dots =_{\mathcal{B}} N_n \end{cases}$$

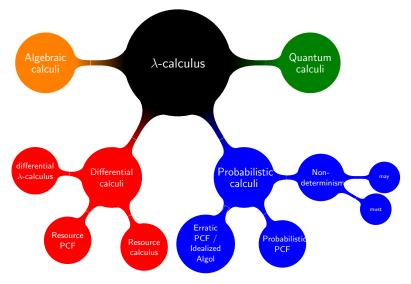
Our proof does not need open terms! $\mathcal{M}^{o}(\mathcal{B}) \models \mathsf{PLL} \quad \checkmark$

This completes the picture!

Perpendicular Lines Lemma	β	\mathcal{B}
open term model	✓	1
closed term model	X	\checkmark



Advantage: These techniques scale to many languages



Extensionality

Extensional BT's.

Nakajima, Hyland, Wadsworth, Lévy.

- Degrees of extensionality in BT. Intrigila, Manzonetto and Polonsky.
- Extensional Taylor Expansion.
 Blondeau-Patissier, Clairambault, Vaux Auclair.

Call-by-value

CbV Böhm Tree.

Kerinec, Manzonetto, Pagani. Accattoli, Lancelot, Faggian.

CbV Taylor Expansion.
 Ehrhard, Guerrieri.

Meaningfulness

- Berarducci Trees
 Berarducci.
- CbV solvability Accattoli, Guerrieri.
- Magnificent Böhm approximant Arrial, Kesner, Guerrieri.

Approximations for Λ^∞

- Infinitary Linear Logic.
 Baelde, Doumane, Kuperberg, Saurin.
 Ehrhard.
- Taylor Expansion for Λ[∞].
 Cerda, Vaux Auclair.

