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Quick Hello!

Full Name: Jean-Simon Pacaud Lemay,
please feel free to call me JS

I’m from Canada, Quebec (so my first and
main language is not english but french!)

I’m a lecturer/assistant professor at
Macquarie University (Sydney, Australia –
so I’m very jetlagged!)

I’m a category theorist, and I study:

• Differential Categories
• Tangent Categories
• Differential Geometry, Algebraic
Geometry, Differential Algebras
• Traced Monoidal Categories
• Restriction Categories
• Other stuff...

If you find differential categories interesting and would like to chat/work together or even visit our
category theory group at Macquarie: feel free to come to talk to me or reach out by email!
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The Differential Category World: It’s all connected!
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Today’s story

First Half: Differential Categories

Categorical foundations of the algebraic properties of differentiation (derivations, Kähler
differentials, differential algebras, etc.)

Categorical semantics of Differential Linear Logic

Second Half: Cartesian Differential Categories

Categorical foundations of differential calculus over Euclidean spaces

Categorical semantics of differential λ-calculus

Very briefly at the end: Differential Restriction Categories and Tangent Categories.



Differential Categories

Differential Categories: Categorical semantics of Differential Linear Logic

Codifferential Categories: Categorical foundations of the algebraic properties of
differentiation (derivations, Kähler differentials, differential algebras, etc.)

Some introductory references:

Blute, R., Cockett, R., Seely, R.A.G. Differential Categories (2006)

Blute, R., Cockett, R., Seely, R.A.G., Lemay, J.-S. P. Differential categories revisited. (2019)

Ehrhard, T. An introduction to differential linear logic: proof-nets, models and antiderivatives. (2018)

Fiore, M. Differential structure in models of multiplicative biadditive intuitionistic linear logic (2007)



Differential Categories - Definition

A differential category is:

An additive symmetric monoidal category,

With a differential modality = coalgebra modality equipped with a deriving transformation
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Notation for Symmetric Monoidal Categories

For a symmetric monoidal category we denote:

The underlying category as L

The monoidal product by ⊗

The monoidal unit by I

The symmetry isomorphism by σA,B : A⊗ B → B ⊗ A

For simplicity we work in the strict setting, so the unitors and the associators of the
monoidal product are identities.

Being closed does not necessarily play a role in the definition of differential categories. So we
will not assume it here either...

You don’t need products either in the definition of differential categories... but we will add
them in later!
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Main Examples

Example

Let k be a field and and let VECk to be the category of all k-vector spaces and k-linear maps
between them. VECk is symmetric monoidal category where:

The monoidal structure is given by the tensor product of vector spaces ⊗ and the unit is k.

Example

Let REL be the category of sets and relations. Objects are sets X , and maps R : X → Y are
subsets R ⊆ X × Y . REL is a symmetric monoidal category where:

The monoidal structure is given by the Cartesian product of sets.

Unit: {∗}
Tensor product of objects X ⊗ Y := X × Y

Tensor product of relations R ⊂ X × Y and S ⊆ A× B is
R ⊗ S := {((x, a), (y , b)) | (x, y) ∈ R, (y , b) ∈ S} ⊆ (X × A)× (Y × B).



Differential Categories - Definition
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An additive symmetric monoidal category,

With a differential modality = coalgebra modality equipped with a deriving transformation



Coalgebra Modalities

Coalgebra modalities help interpret the exponential modality ! in the categorical semantics of
Linear Logic.

But they don’t capture the whole story, for that you need a monoidal coalgebra modality
(also called a linear exponential modality). We will talk about these later.

But why consider coalgebra modalities?

Answer: Because you don’t necessarily need the monoidal aspect to work with
differentiation. And there any interesting examples of differential categories whose coalgebra
modality is not monoidal...
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Coalgebra Modality

A coalgebra modality ! on a symmetric monoidal category consists of:

An endofunctor ! : L → L

Four natural transformations:

pA : !A→ !!A
Digging

dA : !A→ A
Dereliction

cA : !A→ !A⊗ !A
Contraction

wA : !A→ I
Weakening

such that:

(!, p, d) is a comonad

(!A, cA,wA) is a cocommutative comonoid

The digging p is a comonoid morphism

The dual notion is called an algebra modality S, where in particular S is a monad and each S(A)
is a commutative monoid.
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Coalgebra Modality – Naive Intuition

Let us naively suppose that I = R, and we have some notion of “smooth function” A→ R, with
C∞(A,R) be the set of smooth functions.

Elements of !A can be thought of as distributions, so linear maps C∞(A,R) ( R.

For every x ∈ A, we have the Dirac distribution δx ∈ !A which evaluates a smooth function
at x , δx (f ) = f (x). Then the coalgebra modality structural maps are given by:

pA(δx ) = δδx dA(δx ) = x cA(δx ) = δx ⊗ δx wA(δx ) = 1

Dually, for an algebra modality, we think of S(A) as a subalgebra of smooth functions,
S(A) ⊆ C∞(A,R). The monad structure tells us how to compose smooth functions, while
the monoid structure tells us how to multiply smooth functions.
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Coalgebra Modality - Example I

Example

For a set X , let MX be the free commutative monoid over a set X , equivalently the free
N-module over X , or equivalently the set of finite multisets of X .

Explicitly, for a function f : X → N define supp(f ) := {x ∈ X | f (x) 6= 0}. Then define MX as:

MX = {f : X → N| |supp(f )| <∞}

The monoid structure on MX is defined by point-wise addition, (f + g)(x) = f (x) + g(x), while
the unit is 0 : X → N which maps everything to zero. For each x ∈ X , let ηx : X → N

ηx (y) =

{
1 if x = y

0 if x 6= y

Then !X = MX induces a coalgebra modality on REL where:

dX = {(ηx , x)| x ∈ X} ⊆ MX × X pX =

(f ,F )|
∑

g∈supp(F )

g = f

 ⊆ MX ×MMX

wX = {(0, ∗)} ⊆ MX × {∗} cX = {(f , (g , h)) | f = g + h} ⊆ MX × (MX ×MX )
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Coalgebra Modality - Example II

Example

A commutative monoid in VECk is a commutative k-algebra. Define the algebra modality Sym on
VECk (so a coalgebra modality on VECop

k ) as follows: for a k-vector space V let Sym(V ) be the
free commutative k-algebra over V , also known as the free symmetric algebra on V .

Sym(V ) := k ⊕ V ⊕ (V ⊗sym V )⊕ . . . =
⊕
n∈N

V ⊗sym . . .⊗sym V

where ⊗sym is the symmetrize tensor power of V .

If X = {x1, x2, . . .} is a basis of V , then Sym(V ) ∼= k[X ].

Note that k[X ] is the free k-vector space over MX . In particular for kn, Sym(kn) ∼= k[x1, . . . , xn].

Then the algebra modality structure can be described in terms of polynomials as (which we
extend by linearity):

dV : V → k[X ] pV : k[MX ]→ k[X ]

xi 7→ xi P (p1(~x1), . . . , pn(~xn)) 7→ P (p1(~x1), . . . , pn(~xn))

wV : k → k[X ] cV : k[X ]⊗ k[X ]→ k[X ]

1 7→ 1 p(~x)⊗ q(~y) 7→ p(~x)q(~y)

Therefore, p and d correspond to polynomial composition, while c and w correspond to
polynomial multiplication.



Coalgebra Modality - Example II

Example

A commutative monoid in VECk is a commutative k-algebra. Define the algebra modality Sym on
VECk (so a coalgebra modality on VECop

k ) as follows: for a k-vector space V let Sym(V ) be the
free commutative k-algebra over V , also known as the free symmetric algebra on V .

Sym(V ) := k ⊕ V ⊕ (V ⊗sym V )⊕ . . . =
⊕
n∈N

V ⊗sym . . .⊗sym V

where ⊗sym is the symmetrize tensor power of V .

If X = {x1, x2, . . .} is a basis of V , then Sym(V ) ∼= k[X ].

Note that k[X ] is the free k-vector space over MX . In particular for kn, Sym(kn) ∼= k[x1, . . . , xn].

Then the algebra modality structure can be described in terms of polynomials as (which we
extend by linearity):

dV : V → k[X ] pV : k[MX ]→ k[X ]

xi 7→ xi P (p1(~x1), . . . , pn(~xn)) 7→ P (p1(~x1), . . . , pn(~xn))

wV : k → k[X ] cV : k[X ]⊗ k[X ]→ k[X ]

1 7→ 1 p(~x)⊗ q(~y) 7→ p(~x)q(~y)

Therefore, p and d correspond to polynomial composition, while c and w correspond to
polynomial multiplication.



Differential Categories - Definition
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Additive Symmetric Monoidal Categories - Definition

In short: an additive symmetric monoidal categories are symmetric commutative monoid enriched
monoidal categories.

Definition

An additive category is a category L such that each hom-set L(A,B) is a commutative monoid
with binary operation + and zero 0, that is, we can add parallel maps f + g and there is a zero
map 0, and such that composition preserves the additive structure:

f ◦ (g + h) ◦ k = (f ◦ g ◦ k) + (f ◦ h ◦ k) f ◦ 0 = 0 = 0 ◦ f

Definition

An additive symmetric monoidal category is a symmetric monoidal category which is also an
additive category, such that the tensor product ⊗ preserves the additive structure:

f ⊗ (g + h) = f ⊗ g + f ⊗ h (f + g)⊗ h = f ⊗ h + g ⊗ h

f ⊗ 0 = 0 0⊗ f = 0

Note that this definition does not assume biproducts or negatives.



Additive Symmetric Monoidal Categories - Examples

Example

VECk is additive symmetric monoidal category where:

The sum of k-linear maps f , g : V →W is the standard pointwise sum of linear maps:

(f + g)(v) := f (v) + g(v)

The zero maps 0 : V →W are the k-linear maps which map everything to zero.

Example

REL is an additive symmetric monoidal category where:

The sum of maps R, S ⊆ X × Y is their union R + S := R ∪ S ⊆ X × Y .

The zero maps are the empty subsets 0 := ∅ ⊆ X × Y .

The additive structure in both examples are induced from finite biproducts.



Differential Categories - Definition

A differential category is:

An additive symmetric monoidal category,
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Deriving Transformation

A differential modality ! on an additive symmetric monoidal category is a coalgebra modality !
equipped with a deriving transformation which is a natural transformation:

∂A : !A⊗ A→ !A

satisfying five axioms based on the basic identities from differential calculus.

IDEA: For a coalgebra modality, on distributions:

∂A(δx ⊗ y) = Dx [ ](y)

where for a smooth function f , Dx [f ](y) is the derivative of f at point x in the direction of the
vector y .

For an algebra modality, the deriving transformation ∂A : S(A)→ S(A)⊗A is an actual derivation
from algebra:

f (x) 7→ f ′(x)⊗ dx

and so the five axioms are:

Constant rule: c ′ = 0

Product rule: (f · g)′(x) = f ′(x)g(x) + f (x)g ′(x)

Linear rule: x ′ = 1

Chain rule: (f ◦ g)′(x) = f ′(g(x))g ′(x)

Interchange rule: d2f (x,y)
dxdy

= d2f (x,y)
dydx

But let’s see some examples first!
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Deriving Transformation - Examples

Example

In REL, for the set X the deriving transformation is the subset:

∂X := {((f , x), f + ηx ) | ∀x ∈ X , f ∈ MX} ⊂ (MX × X )×MX

Example

Let V be a k-vector space with basis X = {x1, x2, . . .}.

The deriving transformation can be described in terms of polynomials as follows:

∂V : k[X ]→ k[X ]⊗ V

p(x1, . . . , xn) 7→
n∑

i=1

∂p(x1, . . . , xn)

∂xi
⊗ xi



D.1 - Constant Rule

!A⊗ A
∂A //

0
((

!A

wA

��
A

Example

In Veck , consider kn, so Sym(kn) ∼= k[x1, . . . , xn].

For a constant polynomial p(x1, . . . , xn) = r :

n∑
i=1

∂p

∂xi
(x1, . . . , xn)⊗ xi = 0



D.2 - Product Rule

!A⊗ A

c⊗1

��

∂A // !A

cA

��
!A⊗ !A⊗ A

(1⊗∂A)+(∂A⊗1)◦(1⊗σ)

// !A⊗ !A

Example

In Veck , consider kn, so Sym(kn) ∼= k[x1, . . . , xn].

For polynomials p(x1, . . . , xn) and q(x1, . . . , xn):

n∑
i=1

∂pq

∂xi
(x1, . . . , xn)⊗ xi

=
n∑

i=1

p(x1, . . . , xn)
∂q

∂xi
(x1, . . . , xn)⊗ xi +

n∑
i=1

∂p

∂xi
(x1, . . . , xn)q(x1, . . . , xn)⊗ xi



D.3 - Linear Rule

!A⊗ A
∂A //

wA⊗1
((

!A

dA

��
A

Example

In Veck , consider kn, so Sym(kn) ∼= k[x1, . . . , xn].

For a monomial of degree 1, p(x1, . . . , xn) = xj :

n∑
i=1

∂xj

∂xi
(x1, . . . , xn)⊗ xi = 1⊗ xj



D.4 - Chain Rule

!A⊗ A

cA⊗1

��

∂A // !A

pA

��
!A⊗ !A⊗ A

pA⊗∂A
// !!A⊗ !A

∂!A

// !!A

Example

In Veck , consider kn, so Sym(kn) ∼= k[x1, . . . , xn].

For polynomials p(x1, . . . , xn) and q(x):

n∑
i=1

∂q(p(x1, . . . , xn))

∂xi
(x1, . . . , xn)⊗ xi =

n∑
i=1

∂q

∂x
(p(x1, . . . , xn))

∂q

∂xi
(x1, . . . , xn)⊗ xi



D.5 - Interchange Rule

!A⊗ A⊗ A

1⊗σ

��

∂A // !A⊗ A

∂A

��
!A⊗ A⊗ A

∂A

// !A⊗ A
∂A

// !A

Example

In Veck , consider kn, so Sym(kn) ∼= k[x1, . . . , xn].

For a polynomial p(x1, . . . , xn):

n∑
i=1

n∑
j=1

∂p
∂xi

∂xj
(x1, . . . , xn)⊗ xj ⊗ xi =

n∑
i=1

n∑
j=1

∂p
∂xi

∂xj
(x1, . . . , xn)⊗ xi ⊗ xj



Differential Categories - Definition

A differential category is:

An additive symmetric monoidal category,

With a differential modality = coalgebra modality equipped with a deriving transformation



Getting closer to Differential Linear Logic

Now let’s consider differential categories with a monoidal differential modality.

In this setting, the differential structure can be described in terms of a codereliction.



Monoidal Coalgebra Modality

A monoidal coalgebra modality ! on a symmetric monoidal category is a coalgebra modality !
equipped with a natural transformation and a map:

µA,B : !A⊗ !B → !(A⊗ B) µI : I → !I

such that:

! is a symmetric monoidal functor

p and d are monoidal transformations

c and w are monoidal transformations (which is equivalent to saying that µ and µI are
comonoid morphisms)

c and w are !-coalgebra modalities.

An equivalent way of describing a monoidal coalgebra modality is as a comonad on a symmetric
monoidal category such that the monoidal product becomes a product for its Eilenberg-Moore
category (more generally, this can be described in terms of linear-non-linear adjunctions).

When we have finite products or when we are in additive setting, we have other equivalent ways
of defining monoidal coalgebra modalities...
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When we have finite products or when we are in additive setting, we have other equivalent ways
of defining monoidal coalgebra modalities...



Storage Modality

For a category with finite products, we denote:

The binary product as × and the terminal object as >
The projection maps as π0 : A× B → A and π1 : A× B → B

A storage modality ! on a symmetric monoidal category with finite products is a coalgebra
modality ! such that the canonical maps:

!(A× B)
cA×B // !(A× B)⊗ !(A× B)

!(π0)⊗!(π1) // !A⊗ !B

!>
w> // I

are isomorphisms, so !(A× B) ∼= !A⊗ !B and !> ∼= I , and these are called the Seely
isomorphisms.

Lemma

For a symmetric monoidal category with finite products, to give a monoidal coalgebra modality is
precisely the same thing as giving a storage modality. In other words, every monoidal coalgebra
modality is a storage modality, and vice versa.



Additive Bialgebra Modality

An additive bialgebra modality on ! on an additve symmetric monoidal category is a coalgebra
modality ! equipped with natural transformations:

cA : !A⊗ !A→ !A
Cocontraction

wA : I → !A
Coweakening

such that:

(!A, cA,wA) is a commutative monoid;

!A is a bimonoid;

Some other compatibility relations involving the dereliction and some identities about
bialgebra convolution.

IDEA: On Dirac distributions:

cA(δx ⊗ δy ) = δx+y wA(1) = δ0

Lemma

For an additive symmetric monoidal category to give a monoidal coalgebra modality is precisely
the same thing as giving an additive bialgebra modality (and if we also have finite (bi)products,
also the same as a storage modality). In other words, every monoidal coalgebra modality is an
additive bialgebra modality, and vice versa.

Blute, R., Cockett, R., Seely, R.A.G., Lemay, J.-S. P. Differential categories revisited. (2019)



Codereliction

In an additive symmetric monoidal category, for a monoidal coalgebra modality !, a codereliction
is a natural transformation:

dA : A→ A

such that the following diagrams commutes1:

[dC.1] Constant Rule: [dC.2] Product Rule: [dC.3] Linear Rule:

A

0
))

dA // !A
wA

��
k

A

dA⊗wA+wA⊗dA ))

dA // !A
cA
��

!A⊗ !A

A
dA // !A

dA
��
A

[dC.4′] Alternative Chain Rule: [dC.m] Monoidal Rule:

A

wA⊗dA
��

dA // !A
pA
��

!A⊗ !A
pA⊗d!A

// !!A⊗ !!A
c!A

// !!A

!A⊗ B

dA⊗1B
��

1!A⊗dB // !A⊗ !B

µA,B

��
A⊗ B

dA⊗B

// !(A⊗ B)

1[dC.1] and [dC.2] are redundant



Only one notion of differentiation

Theorem

For a monoidal coalgebra modality !, there is a bijective correspondence between deriving
transformations and coderelictions. Explicitly:

From a deriving transformation we get a codereliction as follows:

A
wA⊗1 // !A⊗ A

∂A // !A

From a codereliction we get a deriving transformastion as follows:

!A⊗ A
1⊗dA // !A⊗ !A

cA // !A

These constructions are inverses of each other.

Blute, R., Cockett, R., Seely, R.A.G., Lemay, J.-S. P. Differential categories revisited. (2019)

So codereliction is precisely given by linearization, which is evaluating the derivative at zero:

dA(y) = D0[ ](y) dA(f ) = f ′(0)x



Codereliction – Examples

Example

In REL, for the set X the codereliction is the subset:

dX := {(x , ηx ) | ∀x ∈ X} ⊂ X ×MX

Example

Let V be a k-vector space with basis X = {x1, x2, . . .}.

The codereliction can be described in terms of polynomials as follows:

dV : k[X ]→ V

p(x1, . . . , xn) 7→
n∑

i=1

∂p

∂xi
(0, . . . , 0)⊗ xi

It picks out the degree 1 terms of p(x1, . . . , xn).



Codereliction for Free Exponential Modalities

A free exponential modality is a monoidal coalgebra modality2 ! such that for each object A, !A
is a cofree cocommutative comonoid over A, that is, if C is a cocommutative comonoid then for

every map C
f−→ A, there exists a unique comonoid morphism which makes the following diagram

commute:

C
∃! f [ //

f ))

!A

dA
��
A

Proposition

Every free exponential modality on an additive symmetric monoidal category with finite
(bi)products has a codereliction has a codereliction. (Every additive Lafont category is a
differential category)

Lemay, J.-S. P. Coderelictions for Free Exponential Modalities. (2021)

Blute, R., Lucyshyn-Wright, R.B.B. and O’NeilL, K. Derivations in codifferential categories. (2016)

Example

Both of our examples so far are free exponential modalities.

2From the universal property, the monoidal coalgebra modality structure can be derived



Uniqueness of codereliction!

Proposition

For a monoidal coalgebra modality !, a codereliction (if it exists) is unique.

Uniqueness of Differentiation in Differential Categories. Talk at Category Theory Octoberfest 2022, Slides:

https://richardblute.files.wordpress.com/2022/10/lemay-ofest.pdf

OPEN QUESTION: For a non-monoidal coalgebra modality !, are deriving transformations
unique?

Looking for a proof of uniqueness

Or, an example of a non-monoidal coalgebra modality ! with two distinct deriving
transformations.

Please help!
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Proposition

For a monoidal coalgebra modality !, a codereliction (if it exists) is unique.

Uniqueness of Differentiation in Differential Categories. Talk at Category Theory Octoberfest 2022, Slides:

https://richardblute.files.wordpress.com/2022/10/lemay-ofest.pdf

OPEN QUESTION: For a non-monoidal coalgebra modality !, are deriving transformations
unique?

Looking for a proof of uniqueness

Or, an example of a non-monoidal coalgebra modality ! with two distinct deriving
transformations.

Please help!



Other examples of differential categories

Example

A C∞-ring is commutative R-algebra A such that for each for smooth map f : Rn → R there is a
function Φf : An → A and such that the Φf satisfy certain coherences between them. For a
smooth manifold M, C∞(M) = {f : M → R| f smooth} is a C∞-ring.

For every R-vector space V , there is a free C∞-ring over V , S∞(V ). This induces an algebra
modality which has a deriving transformation. In particular, S∞(Rn) = C∞(Rn), and:

d : C∞(Rn)→ C∞(Rn)⊗ Rn f 7−→
∑
i

∂f

∂xi
⊗ xi

This example is a non-monoidal coalgebra modality on VECop
R .

Cruttwell, G.S.H., Lemay, J.-S. P. and Lucyshyn-Wright, R.B.B. Integral and differential structure on the free C∞-ring

modality. (2019)

Example

Fininiteness Spaces, Köthe spaces, etc.

Ehrhard, T. An introduction to differential linear logic: proof-nets, models and antiderivatives. (2018)

Convenient vector spaces

Blute, R., Ehrhard, T. and Tasson, C. A convenient differential category (2012)



Differential Categories - Some Algebra you can do with them

Example

Derivations and Kähler differentials

Blute, R., Lucyshyn-Wright, R.B.B. and O’NeilL, K. Derivations in codifferential
categories. (2016)

Example

Hochschild complex, de Rham complex, and (co)homology

O’Neill, K. Smoothness in codifferential categories (PhD Thesis) (2017)

Example

Differentials algebras

Lemay, J.-S.P. Differential algebras in codifferential categories. (2019)



Differential Categories - Smooth Maps

Every differential category has a notion of a smooth map.

A smooth map A→ B is a coKleisli map, that is, a map !A→ B.

Example

Let’s consider our C∞-ring codifferential category example, where !(Rn) := C∞(Rn).

f : Rn → R f is a smooth function
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Differential Categories - Smooth Maps

Every differential category has a notion of a smooth map.

A smooth map A→ B is a coKleisli map, that is, a map !A→ B.

Example

Let’s consider our C∞-ring codifferential category example, where !(Rn) := C∞(Rn).

f : Rn → R f is a smooth function

f ∈ C∞(Rn)



Differential Categories - Smooth Maps

Every differential category has a notion of a smooth map.

A smooth map A→ B is a coKleisli map, that is, a map !A→ B.

Example

Let’s consider our C∞-ring codifferential category example, where !(Rn) := C∞(Rn).

f : Rn → R f is a smooth function

f ∈ C∞(Rn)

qf : R→ C∞(Rn) qf linear map in VECR, qf (1) = f
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Differential Categories - Smooth Maps

Every differential category has a notion of a smooth map.

A smooth map A→ B is a coKleisli map, that is, a map !A→ B.

Example

Let’s consider our C∞-ring differential category example, where !(Rn) := C∞(Rn).

f : Rn → R f is a smooth function

f ∈ C∞(Rn)

qf : R→ C∞(Rn) qf linear map in VECR, qf (1) = f

C∞(Rn)→ R map in VECop
R

!(Rn)→ R



Differential Categories - Smooth Maps

Amongst the smooth maps we have:

The constant maps:

!A
w // I // B

The linear maps:

!A
d // A // B

The product of smooth maps:

!A
c // !A⊗ !A

f⊗g // B ⊗ C

The composition of smooth maps:

!A
p // !!A

!(f ) // !B
g // C

The differential of a smooth map f : !A→ B is then:

!A⊗ A
∂ // !A f // B

So the deriving transformation axioms describe differentiation of constants, identity maps,
composition, etc. in the coKleisli category!

So next we will take a closer look at the coKleisli category of a differential category: Cartesian
Differential Categories!
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!(f ) // !B
g // C

The differential of a smooth map f : !A→ B is then:

!A⊗ A
∂ // !A f // B

So the deriving transformation axioms describe differentiation of constants, identity maps,
composition, etc. in the coKleisli category!

So next we will take a closer look at the coKleisli category of a differential category: Cartesian
Differential Categories!



Cartesian Differential Categories

Categorical foundations of differential calculus over Euclidean spaces

Categorical semantics of differential λ-calculus

Some introductory references:

Blute, R., Cockett, R., Seely, R.A.G. Cartesian Differential Categories (2009)

Garner, R, and Lemay, J-S P. Cartesian differential categories as skew enriched categories.

Manzonetto, G. What is a Categorical Model of the Differential and the Resource λ-Calculi?. (2012)



Cartesian Differential Categories - Definition

A Cartesian differential category is:

A Cartesian left additive category;

With a differential combinator.
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Cartesian Left Additive Category - Definition

A left additive category is a category C which is skew-enriched over commutative monoids:

Campbell, A., 2018. Skew-enriched categories.

Explicitly, every homset is a commutative monoid, so we can add maps and have zero maps:

+ : C(A,B)× C(A,B)→ C(A,B) 0 ∈ C(A,B)

such that composition preserves the addition in the following sense:

(f + g) ◦ x = f ◦ x + g ◦ x 0 ◦ x = 0

A map f is additive if:

f ◦ (x + y) = f ◦ x + f ◦ y f ◦ 0 = 0

A Cartesian left additive category (CLAC) is a left additive category with finite products such
that all projection maps are additive.



Cartesian Left Additive Categories - Examples

Example

Every category with finite biproducts is a CLAC where every map is additive. For example, VECk

is a CLAC.

Example

For any commutative semiring k, let Polyk be the Lawvere theory of polynomials, that is, the
category whose objects are n ∈ N and where a map P : n→ m is a tuple of polynomials:

P = 〈p1(~x), . . . , pm(~x)〉 pi (~x) ∈ R[x1, . . . , xn]

Then Polyk is a CLAC (where n ×m = n + m).

Example

Let SMOOTH be the category of smooth real functions, that is, the category whose objects are
the Euclidean vector spaces Rn and whose maps are smooth function F : Rn → Rm, which is
actually an m-tuple of smooth functions:

F = 〈f1, . . . , fm〉 fi : Rn → R

Then SMOOTH is a CLAC. Note that PolyR is a sub-CLAC of SMOOTH.



Cartesian Differential Categories - Definition

A Cartesian differential category is:

A Cartesian left additive category;

With a differential combinator.



Differential Combinator - Definition

A differential combinator on a Cartesian left additive category C is a combinator D, which is a
family of functions C(A,B)→ C(A× A,B), which written as an inference rule:

f : A→ B

D[f ] : A× A→ B

Before giving the axioms, let’s look at some examples!



Differential Combinator - Main Example

Example

SMOOTH is a Cartesian differential category where the differential combinator is defined as the
total derivative of a smooth function, which is given by the sum of partial derivatives.

For a smooth function F = 〈f1, . . . , fm〉 : Rn → Rm, recall that the Jacobian matrix of F at vector
~x ∈ Rn is the matrix J(F )(~x) of size m × n whose coordinates are the partial derivatives of the fi :

J(F )(~x) :=


∂f1
∂x1

(~x) ∂f1
∂x2

(~x) . . . ∂f1
∂xn

(~x)
∂f2
∂x1

(~x) ∂f2
∂x2

(~x) . . . ∂f2
∂xn

(~x)

...
...

...
...

∂fm
∂x1

(~x) ∂fm
∂x2

(~x) . . . ∂fm
∂xn

(~x)


So for a smooth function F : Rn → Rm, its derivative D[F ] : Rn × Rn → Rm is then defined as:

D[F ](~x , ~y) := J(F )(~x) · ~y =

〈
n∑

i=1

∂f1

∂xi
(~x)yi , . . . ,

n∑
i=1

∂fm

∂xi
(~x)yi

〉

In particular for smooth function f : Rn → R:

D[f ](~x , ~y) =
n∑

i=1

∂f

∂xi
(~x)yi
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Cartesian Differential Categories - Other Main Examples

Example

Any category with finite biproduct ⊕ is a CDC, where for a map f : A→ B:

D[f ] := A⊕ A
π1 // A f // B

For example, VECk is a CDC where D[f ](x , y) = f (y).

Example

POLYk is a CDC where for a map P : n→ m with P = 〈p1(~x), . . . , pm(~x)〉, D[P] : n × n→ m is:

D[P] :=

〈
n∑

i=1

∂p1(~x)

∂xi
yi , . . . ,

n∑
i=1

∂pm(~x)

∂xi
yi

〉

where
n∑

i=1

∂pi (~x)
∂xi

yi ∈ R[x1, . . . , xn, y1, . . . , yn]. Note that POLYR is a sub-CDC of SMOOTH.



Differential Combinator - Definition

A differential combinator on a Cartesian left additive category C is a combinator D, which is a
family of functions C(A,B)→ C(A× A,B), which written as an inference rule:

f : A→ B

D[f ] : A× A→ B

To help us with the axioms, we will use the following notation/proto-term logic:

D[f ](a, b) :=
df (x)

dx
(a) · b

Example

The notation comes from SMOOTH: D[F ](~x , ~y) := J(F )(~x) · ~y .

Remark

There is a sound and complete term logic for Cartesian differential categories. In short: anything
we can prove using the term logic, holds in any Cartesian differential category. So doing proofs in
the term logic is super useful!



CD.1 - Additivity of Combinator & CD.2 - Additivity in Second Argument

Additivity of Combinator:

D[f + g ] = D[f ] + D[g ] D[0] = 0

df (x) + g(x)

dx
(a) · b =

df (x)

dx
(a) · b +

dg(x)

dx
(a) · b

d0

dx
(a) · b = 0

Additivity in Second Argument

D[f ] ◦ 〈a, b + c〉 = D[f ] ◦ 〈a, b〉+ D[f ] ◦ 〈a, c〉 D[f ] ◦ 〈x , 0〉 = 0

df (x)

dx
(a) · (b + c) =

df (x)

dx
(a) · b +

df (x)

dx
(a) · c

df (x)

dx
(a) · 0 = 0



CD.1 - Additivity of Combinator & CD.2 - Additivity in Second Argument

Additivity of Combinator:
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CD.3 - Identities + Projections & CD.4 - Pairings

Identities + Projections

D[1] = π1 D[πi ] = πi ◦ π1

dx

dx
(a) · b = b

dxi

d(x0, x1)
(a0, a1) · (b0, b1) = bi

Pairings

D[〈f , g〉] = 〈D[f ],D[g ]〉

d〈f (x), g(x)〉
dx

(a) · b =

〈
df (x)

dx
(a) · b,

dg(x)

dx
(a) · b

〉

Example

In SMOOTH, if F = 〈f1, . . . , fn〉, then D[F ](~x , ~y) := 〈D[f1](~x , ~y), . . . ,D[fn](~x , ~y)〉.
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Example

In SMOOTH, if F = 〈f1, . . . , fn〉, then D[F ](~x , ~y) := 〈D[f1](~x , ~y), . . . ,D[fn](~x , ~y)〉.



CD.5 - Chain Rule

Chain Rule:

D[g ◦ f ] = D[g ] ◦ 〈f ◦ π0,D[f ]〉

dg(f (x))

dx
(a) · b =

dg(x)

dx
(f (a)) ·

(
df (x)

dx
(a) · b

)



CD.6 - Linearity in Second Argument & CD.7 - Symmetry

f : A→ B

D[f ] : A× A→ B

D [D[f ]] : (A× A)× (A× A)→ B

Linearity in Second Argument

D [D[f ]] ◦ 〈a, 0, 0, b〉 = D[f ] ◦ 〈a, b〉

d df (x)
dx

(y) · z
d(y , z)

(a, 0) · (0, b) =
df (x)

dx
(a) · b

Symmetry

D [D[f ]] ◦ 〈〈a, b〉, 〈c, d〉〉 = D [D[f ]] ◦ 〈〈a, c〉, 〈b, d〉〉

d df (x)
dx

(y) · z
d(y , z)

(a, b) · (c, d) =
d df (x)

dx
(y) · z

d(y , z)
(a, c) · (b, d)

More on these axioms soon!
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D [D[f ]] : (A× A)× (A× A)→ B

Linearity in Second Argument

D [D[f ]] ◦ 〈a, 0, 0, b〉 = D[f ] ◦ 〈a, b〉

d df (x)
dx

(y) · z
d(y , z)

(a, 0) · (0, b) =
df (x)

dx
(a) · b

Symmetry

D [D[f ]] ◦ 〈〈a, b〉, 〈c, d〉〉 = D [D[f ]] ◦ 〈〈a, c〉, 〈b, d〉〉

d df (x)
dx

(y) · z
d(y , z)

(a, b) · (c, d) =
d df (x)

dx
(y) · z

d(y , z)
(a, c) · (b, d)

More on these axioms soon!



CD.6 - Linearity in Second Argument & CD.7 - Symmetry

f : A→ B

D[f ] : A× A→ B

D [D[f ]] : (A× A)× (A× A)→ B

Linearity in Second Argument

D [D[f ]] ◦ 〈a, 0, 0, b〉 = D[f ] ◦ 〈a, b〉

d df (x)
dx

(y) · z
d(y , z)

(a, 0) · (0, b) =
df (x)

dx
(a) · b

Symmetry

D [D[f ]] ◦ 〈〈a, b〉, 〈c, d〉〉 = D [D[f ]] ◦ 〈〈a, c〉, 〈b, d〉〉

d df (x)
dx

(y) · z
d(y , z)

(a, b) · (c, d) =
d df (x)

dx
(y) · z

d(y , z)
(a, c) · (b, d)

More on these axioms soon!



Cartesian Differential Categories - Definition

A Cartesian differential category is:

A Cartesian left additive category;

With a differential combinator.
f : A→ B

D[f ] : A× A→ B

Before we give some more examples: let’s see what we can do within a CDC!
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Partial Derivatives I

Suppose we have a map f : A× B → C and we only want to differentiate with respect to A.

We can zero out in D[f ] : (A× B)× (A× B)→ C to obtain a partial derivative!

Define the partial derivative D0[f ] : (A× B)× A→ C as follows:

D0[f ] := (A× B)× A
(1A×1B )×〈1A,0〉 // (A× B)× (A× B)

D[f ] // C

D0[f ](a, b, c) :=
df (x , b)

dx
(a) · c :=

df (x , y)

d(x , y)
(a, b) · (c, 0)

Similarly, define the partial derivative D1[f ] : (A× B)× B → C as follows:

D1[f ] := (A× B)× B
(1A×1B )×〈0,1B〉 // (A× B)× (A× B)

D[f ] // C

D1[f ](a, b, d) :=
df (a, y)

dy
(b) · d :=

df (x , y)

d(x , y)
(a, b) · (0, d)

You can also do this with maps f : A0 × . . .× An → B.
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Partial Derivatives II

A consequence of [CD.7] symmetry rule is that for f : A× B → C , doing the partial derivative
with respect to A then B is the same as doing the partial derivative with respect to B then A.

d df (x,y)
dy

(b) · d
dx

(a) · c =
d df (x,y)

dx
(a) · c

dy
(b) · d

[CD.2] Additivity in the second argument tells us that for f : A× B → C , D[f ] is the sum of the
partial derivatives:

df (x , y)

d(x , y)
(a, b) · (c, d) =

df (x , y)

d(x , y)
(a, b) · ((c, 0) + (0, d))

=
df (x , y)

d(x , y)
(a, b) · (c, 0) +

df (x , y)

d(x , y)
(a, b) · (0, d)

=
df (x , b)

dx
(a) · c +

df (a, y)

dy
(b) · d

Example

For a smooth map f : Rn → R, D[f ] is the sum of its partial derivatives:

D[f ] : Rn × Rn → R D[f ](~v , ~w) := J(f )(~v) · ~w =
n∑

i=1

∂f

∂xi
(~v)wi
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Linear Maps I

In a Cartesian differential category, there is a natural notion of linear maps. A map f : A→ B is
said to be linear if:

D[f ] := A× A
π1 // A f // B

df (x)

dx
(a) · b = f (b)

Example

In a category with finite biproducts, every map is linear (by definition!).

In POLYk , P = 〈p1, . . . , pm〉 is linear if each pi ∈ k[x1, . . . , xn] is a polynomial of degree 1,

that is, a sum of the form pi =
n∑

j=1
ajxj .

In SMOOTHR, a smooth function F : Rn → Rm is linear in the Cartesian differential sense
precisely when it is R-linear in the classical sense:

F (s~x + t~y) = sF (~x) + tF (~y)

for all s, t ∈ R and ~x , ~y ∈ Rn.

Linear ⇒ Additive, but not necessarily the converse!

(But in the above examples: Additive = Linear)

Identity maps and projection maps are linear by CD.3



Linear Maps II

A map f : A× B → C can also be linear in its second argument if it is linear with respect to its
partial derivative:

D1[f ] := (A× B)× B
π0×1 // A× B

f // C
df (a, y)

dy
(b) · c = f (a, c)

The linearity in the second argument rule, CD.6, says that for any f : A→ B, D[f ] is linear in its
second argument:

d df (x)
dx

(a) · y
dy

(b) · c =
df (x)

dx
(a) · c

Example

For a smooth map f : Rn → R, D[f ] is linear in its second argument:

D[f ] : Rn × Rn → R D[f ](~v , ~w) := J(f )(~v) · ~w =
n∑

i=1

∂f

∂xi
(~v)wi



Cartesian Closed Differential Categories

For a Cartesian closed category, we denote:

The internal hom by [A,B]

The evaluation map by evA,B : A× [A,B]→ B

The curry of map f : C × A→ B by λ(f ) : A→ [C ,B]

A Cartesian closed differential category is a Cartesian differential category which is Cartesian
closed such that the evaluation map evA,B : [A,B]× A→ B is linear in its internal
hom-argument, which is equivalent to saying that for every map f : C × A→ B, the derivative of
its curry λ(f ) : A→ [C ,B] is equal to the curry of the partial of f :

D[λ(f )] = λ (D[f ])
dλx .f (x , u)

du
(a) · b = λx .

df (x , u)

du
(a) · b

Example

Every model of the differential λ-calculus induces a Cartesian closed differential category.
Conversely, every Cartesian closed differential category gives rises to a model of the differential
λ-calculus.

Bucciarelli, A., Ehrhard, T. and Manzonetto. G. Categorical models for simply typed resource calculi. (2010)

Manzonetto, G. What is a Categorical Model of the Differential and the Resource λ-Calculi?. (2012)

J.R.B. Cockett, R. and Gallagher, J. Categorial models of the differential λ-calculus (2019)



Cartesian Differential Categories - Other Examples

Example

Bauer, Johnson, Osborne, Riehl, and Tebbe (BJORT) constructed an Abelian functor calculus
model of a Cartesian differential category. Brenda will talk about this on Thursday!

Bauer, K., Johnson, B., Osborne, C., Riehl, E. and Tebbe, A. Directional derivatives and higher order chain rules for

abelian functor calculus. (2018)

Example

There is a couniversal construction of Cartesian differential categories, known as the Faa di Bruno
construction, that is, for every Cartesian left additive category there is a cofree Cartesian
differential category over it.

Cockett, J.R.B. and Seely, R.A.G. The Faa di bruno construction. (2011)

Garner, R, and Lemay, J-S P. Cartesian differential categories as skew enriched categories.

Lemay, J-S P. A Tangent Category Alternative to the Faa di Bruno Construction.

Lemay, J-S P. Properties and Characterisations of Cofree Cartesian Differential Categories.

Another important source of CDC comes from differential categories!
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The Differential Category World: It’s all connected!

Differential
Categories

Blute, Cockett, Seely - 2006

Cartesian
Differential
Categories

Blute, Cockett, Seely - 2009

Restriction
Differential
Categories

Cockett, Cruttwell, Gallagher - 2011

Tangent
Categories
Rosicky - 1984

Cockett, Cruttwell - 2014
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The coKleisli Category of a Differential Category I

Let L be a differential category with differential modality ! and finite products.

Let L! be the coKleisli category and we are going to use interpretation brackets J−K.

f : A→ B in L!

Jf K : !A→ B

J1K = !A
d // A

JfgK = !A
p // !!A

!(Jf K) // !B
JgK // C

So how do we make L! into a Cartesian differential category?
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The coKleisli Category of a Differential Category II

For the product structure:

On objects, A× B

Projections:

Jπi K := !(A0 × A1)
d // A0 × A1

πi // Ai

For a comonad on a category with finite products, the coKleisli category has finite products.

For the additive structure:

The sum of maps: Jf + gK := Jf K + JgK
Zero maps: J0K := 0

For a comonad on a category with finite biproducts, the coKleisli category is a Cartesian left
additive category.
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The coKleisli Category of a Differential Category III

Recall that earlier we defined the differential of Jf K : !A→ B as:

!A⊗ A
d // !A

Jf K // B

But this is not a coKleisli map!

The differential combinator JD[f ]K : !(A× A)→ B is defined as follows:

!(A× A)
c // !(A× A)⊗ !(A× A)

!(π0)⊗!(π1)// !A⊗ !A
1⊗d // !A⊗ A

∂ // !A
Jf K // B

Theorem

For a differential category with finite products, its coKleisli category is a Cartesian differential
category.

Every coKleisli map of the form !A
dA−−→ A→ B is linear – so every map from the base category

induces a linear map.

This is an if and only if when one has the Seely isomorphisms, in other words, for a differential
storage category L, the subcategory of linear maps of L! is isomorphic to L.
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Some examples

Example

Consider the differential category VECop
k with !(V ) = Sym(V ). Then POLYk is a sub-CDC of the

coKleisli category
(
VECop

k

)
Sym

.

Example

Consider the differential category VECop
R with !(V ) = S∞(V ). Then SMOOTH is a sub-CDC of

the coKleisli category
(
VECop

R
)

S∞ .

More explicit examples are described in:

Bucciarelli, A. and Ehrhard, T. and Manzonetto, G. Categorical models for simply typed resource calculi.

which include the relational model and the finiteness space model.



The other direction: Cartesian differential storage categories

Blute, R., Cockett, J.R.B. and Seely, R.A., 2015. Cartesian differential storage categories.

“... it was not obvious how to pass from Cartesian differential categories back to monoidal
differential categories.This paper provides natural conditions under which the linear maps of a
Cartesian differential category form a monoidal differential category. ... The purpose of this paper
is to make precise the connection between the two types of differential categories. ”

Main idea: While not every Cartesian differential category is the coKleisli category of a differential
category, Cartesian differential storage categories are precisely the coKleisli categories of
differential categories.

Theorem

For a differential storage category, it’s coKleisli category is a Cartesian differential storage
category. Conversely, for a Cartesian differential storage category, its category of linear maps form
a differential storage category.



The other direction: Embedding

Garner, R, and Lemay, J-S P. Cartesian differential categories as skew enriched categories.

Theorem

Every Cartesian differential category embeds into the coKleisli category of a differential category.



What can we do with Cartesian differential categories?

Study and solve differential equations, and also study exponential functions, trigonometric
functions, hyperbolic functions, etc.

Cockett, R., Cruttwel, G., Lemay, J-S. P., Differential equations in a tangent category I: Complete vector fields,

flows, and exponentials.

Lemay, J-S.P., Exponential Functions for Cartesian Differential Categories.

Linearization, Jacobians and gradients:

Cockett, R., Lemay, J-S.P., Linearizing Combinators.

Lemay, J-S.P., Jacobians and Gradients for Cartesian Differential Categories.

Foundations for automatic differentiation and machine learning algorithms via reverse
differentiation.

Cockett, R., Cruttwell, G., Gallagher, J., Lemay, J.-S. P., MacAdam, B., Plotkin, G., & Pronk, D. (2020). Reverse

derivative categories.

Wilson, P., & Zanasi, F. Reverse Derivative Ascent: A Categorical Approach to Learning Boolean Circuits.

Cruttwell, G., Gallagher, J., & Pronk, D. Categorical semantics of a simple differential programming language.

Cruttwell, G., Gavranovic, B., Ghani, N., Wilson, P., & Zanasi, F. Categorical Foundations of Gradient-Based

Learning.



The Differential Category World: It’s all connected!
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A quick word on Differential Restriction Categories

A restriction category is a category equipped with a restriction operator

f : A→ B

f : A→ A

where you should think of f as capturing the domain of definition of f . Restriction categories
allow us to work with partially defined functions.

Lack, S., and Cockett, R. Restriction Categories (I - III).

A differential restriction category is NAIVELY a Cartesian differential category with a restriction
operator such that the differential operator and restriction operator are compatible.

Cockett, R., Cruttwell, G., and Gallagher, J. Differential Restriction Categories.

Example

The category of smooth functions defined on open subsets is a differential restriction
category.

Any Cartesian differential category is a differential restriction category where f = 1, so every
map is total.

Conversly, the subcategory of maps such that f = 1 in a differential restriction category is a
Cartesian differential category.



A quick word on Tangent Categories

Tangent Categories:

Formalize differential calculus on smooth manifold and their tangent bundles

Formalize notions from differential geometry, algebraic geometry, synthetic differential
geometry, etc.

Briefly a tangent category is a category X equipped with an endofunctor T : X→ X, where for an
object A we think of T(A) as the tangent bundle of A – and some natural transformations that
capture the essential properties of the tangent bundle of smooth manifolds.

J. Rosický Abstract tangent functors (1984)

R. Cockett, G. Cruttwell Differential structure, tangent structure, and SDG (2014)

R. Garner An embedding theorem for tangent categories (2018)

Example

The category of finite dimensional smooth manifolds, SMAN is a tangent category where the
tangent bundle functor maps a smooth manifold M to its usual tangent bundle T(M).

The category of commutative rings, CRING, is a tangent category with the tangent functor
which maps a commutative ring R to its ring of dual numbers T(R) = R[ε].



Tangent Categories – Relation to Differential Categories

Proposition

Every Cartesian differential category X with differential combinator D is a tangent category:

T(A) = A× A T(f )(a, b) =

〈
f (a),

df (x)

dx
(a) · b

〉
Conversely, the subcategory of differential objects of a tangent category is a CDC.

Theorem (Cockett, Lemay, Lucyshyn-Wright)

The opposite category of the coEilenberg-Moore category of a differential category is a
tangent category.

If we have enough limits, the coEilenberg-Moore category of a differential category
(representable) tangent category.

R. Cockett, R., Lemay, J-S. P., Lucyshyn-Wright, R. Tangent Categories from the Coalgebras of Differential Categories.
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The Differential Category World: It’s all connected!
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Hope you enjoyed it!
Thanks for listening!

Merci!
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