ARTŪRAS DUBICKAS — Vilnius University

Title: On the Fractional and Integral Parts of Geometric Progression

Abstract: Let $\xi \neq 0$ and $\alpha > 1$ be two real numbers. We review some results concerning the distribution of the sequence $\xi \alpha^n$, $n = 0, 1, 2, \ldots$, which is an infinite geometric progression. The distribution of this sequence modulo 1 and the divisibility properties of its integral parts $|\xi \alpha^n|$ have been investigated for a long time. There is almost no progress in both problems for transcendental numbers α (except for the metrical results of Weyl (1916) and Koksma (1935)), so we will only consider algebraic numbers α . Although the sequence of fractional parts should be nicely (in fact, uniformly) distributed for 'most' ξ and α , its behaviour can be quite chaotic for some pairs ξ, α . In particular, some large regions of the interval [0, 1] can be free from the elements of this sequence at all. We are mainly interested in these two problems when α is a fixed rational number. Then, the main open question related to the sequence of fractional parts is that of Mahler (1968) when $\alpha = 3/2$ and ξ is a positive real number. In the case of the sequence of integral parts $\lfloor \xi \alpha^n \rfloor$, $n = 0, 1, 2, \ldots$, the divisibility questions become nontrivial already for rational integers $\alpha \geq 2$.