## Symmetry in Trigonometric Optimization

*Tobias Metzlaff* University of Kaiserslautern–Landau

Symmetry, Stability, and interactions with Computation Luminy 2023

#### Introductory example

# The goal of trigonometric optimization is to find the global minimum of a function $\mathbb{R}^n \to \mathbb{R}$ such as

 $\begin{array}{l} -1+2/3\left(2\cos(2\pi x)\cos((-2x-2y)\pi)^2\cos(2\pi y)+2\cos(2\pi x)\cos(2\pi y)^2\cos((-2x-2y)\pi)\right. \\ +2\cos(2\pi x)^2\cos((-2x-2y)\pi)^2+\cos((-2x-2y)\pi)^2+\cos((-2x-2y)\pi)^2+\sin(2\pi x)^2\\ \sin((-2x-2y)\pi)^2+\cos(2\pi x)^2\cos((-2x-2y)\pi)^2+\sin(2\pi x)^2\sin((-2x-2y)\pi)^2\\ -\sin(2\pi y)\sin((-2x-2y)\pi)-\cos(2\pi x)\cos((-2x-2y)\pi)^2+\sin(2\pi x)^2\sin((-2x-2y)\pi)\\ -\cos(2\pi x)\cos((-2x-2y)\pi)-\sin(2\pi x)\sin(2\pi y)-\cos((2\pi x)\cos(2\pi x))\sin((-2x-2y)\pi)\\ -\cos(2\pi x)\cos((-2x-2y)\pi)^2+2\cos(2\pi x)\cos(2\pi y)\sin((-2x-2y)\pi)+2\cos(2\pi x)\sin(2\pi y)^2\\ \sin(((-2x-2y)\pi)^2+2\cos(2\pi x)\cos((2\pi y)\cos((-2x-2y)\pi))+2\cos(2\pi x)\sin(2\pi y)\sin((-2x-2y)\pi)\\ +2\sin(2\pi x)\sin(2\pi y)\sin(2\pi y)+2\cos(2\pi x)\cos((-2x-2y)\pi)+2\cos(2\pi x)\sin(2\pi y)\sin((-2x-2y)\pi)\\ \sin(2\pi x)\sin((-2x-2y)\pi)+2\cos(2\pi x)\cos((-2x-2y)\pi)+2\sin(2\pi x)\sin((-2x-2y)\pi)\\ \sin(2\pi x)\sin(2\pi y)\cos((-2x-2y)\pi)+2\cos(2\pi x)\cos((-2x-2y)\pi)\\ \sin(2\pi x)\sin(2\pi y)\cos(2\pi y)\cos((-2x-2y)\pi)+2\sin(2\pi x)\sin((-2x-2y)\pi)\\ \sin((-2x-2y)\pi)+2\cos(2\pi x)\cos((-2x-2y)\pi)+2\sin(2\pi x)\sin((-2x-2y)\pi)\\ \sin((-2x-2y)\pi)+2\sin(2\pi x)\sin(2\pi y)^2\sin((-2x-2y)\pi)+2\sin(2\pi x)\sin((-2x-2y)\pi)^2\sin(2\pi y)\\ \sin((-2x-2y)\pi)+2\sin(2\pi x)\sin(2\pi y)^2\sin((-2x-2y)\pi)+2\sin(2\pi x)\sin((-2x-2y)\pi)^2\sin(2\pi y). \end{array}$ 

By exploiting symmetry, one can often simplify the problem: Here, we can rewrite the function as a polynomial  $6z^2 - 2z - 1$ !

#### Content

- Trigonometric polynomials with symmetry
- O Using Chebyshev polynomials
- O Using symmetry adapted bases

<sup>2</sup> with *Evelyne Hubert, Philippe Moustrou* and *Cordian Riener* and supported by European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Actions, grant agreement 813211 (POEMA).

 $^3$  supported by Deutsche Forschungsgemeinschaft transregional collaborative research centre (SFB–TRR) 195 "Symbolic Tools in Mathematics and their Application".

# Trigonometric polynomials with symmetry

Let  $\Omega = \mathbb{Z} \, \omega_1 \oplus \ldots \oplus \mathbb{Z} \, \omega_n \leq \mathbb{R}^n$  be a lattice and  $\langle \cdot, \cdot \rangle$  be the Euclidean scalar product.

The algebra of trigonometric polynomials For  $\mu \in \Omega$ , define  $\mathfrak{e}^{\mu} : \mathbb{R}^n \to \mathbb{C}$  with  $\mathfrak{e}^{\mu}(u) := \exp(-2\pi i \langle \mu, u \rangle)$ and write  $\mathbb{R}[\Omega] = \mathbb{R}[\mathfrak{e}^{\pm \omega_1}, \dots, \mathfrak{e}^{\pm \omega_n}].$   $e^{\mu} e^{\nu} = e^{\mu+\nu}$  $e^{\mu} e^{-\mu} = e^{0}$ 

 $f = \sum_{\mu} f_{\mu} \, \mathfrak{e}^{\mu} \in \mathbb{R}[\Omega]$ 

 $\mu = \sum_{i} \alpha_{i} \omega_{i} \in \Omega$  $\Rightarrow \mathfrak{e}^{\mu} = \prod_{i} (\mathfrak{e}^{\omega_{i}})^{\alpha_{i}}$ 

The trigonometric optimization problem For  $f = \sum_{\mu} f_{\mu} e^{\mu} \in \mathbb{R}[\Omega]$  with  $f_{\mu} = f_{-\mu} \in \mathbb{R}$ , find  $f^* := \min_{u \in \mathbb{R}^n} f(u)$ .

Example 
$$(\Omega = \mathbb{Z})$$
  
 $f(u) = 2\cos(2\pi u) = \underbrace{\exp(2\pi i u)}_{=e^{-1}(u)} + \underbrace{\exp(-2\pi i u)}_{=e^{1}(u)} \Rightarrow f^* = -2$ 

Let  $\Omega = \mathbb{Z} \, \omega_1 \oplus \ldots \oplus \mathbb{Z} \, \omega_n \leq \mathbb{R}^n$  be a lattice and  $\langle \cdot, \cdot \rangle$  be the Euclidean scalar product.

The algebra of trigonometric polynomials For  $\mu \in \Omega$ , define  $\mathfrak{e}^{\mu} : \mathbb{R}^{n} \to \mathbb{C}$  with  $\mathfrak{e}^{\mu}(u) := \exp(-2\pi i \langle \mu, u \rangle)$ and write  $\mathbb{R}[\Omega] = \mathbb{R}[\mathfrak{e}^{\pm \omega_{1}}, \dots, \mathfrak{e}^{\pm \omega_{n}}].$   $e^{\mu} e^{\nu} = e^{\mu+\nu}$  $e^{\mu} e^{-\mu} = e^{0}$ 

 $f = \sum_{\mu} f_{\mu} \, \mathfrak{e}^{\mu} \in \mathbb{R}[\Omega]$ 

 $\mu = \sum_{i} \alpha_{i} \omega_{i} \in \Omega$  $\Rightarrow \mathfrak{e}^{\mu} = \prod_{i} (\mathfrak{e}^{\omega_{i}})^{\alpha_{i}}$ 

The trigonometric optimization problem For  $f = \sum_{\mu} f_{\mu} e^{\mu} \in \mathbb{R}[\Omega]$  with  $f_{\mu} = f_{-\mu} \in \mathbb{R}$ , find  $f^* := \min_{u \in \mathbb{R}^n} f(u)$ .

Example  $(\Omega = \mathbb{Z})$  $f(u) = 2\cos(2\pi u) = \underbrace{\exp(2\pi i u)}_{=\mathfrak{c}^{-1}(u)} + \underbrace{\exp(-2\pi i u)}_{=\mathfrak{c}^{1}(u)} \Rightarrow f^{*} = -2$ 

Let  $\Omega = \mathbb{Z} \, \omega_1 \oplus \ldots \oplus \mathbb{Z} \, \omega_n \leq \mathbb{R}^n$  be a lattice and  $\langle \cdot, \cdot \rangle$  be the Euclidean scalar product.

The algebra of trigonometric polynomials For  $\mu \in \Omega$ , define  $\mathfrak{e}^{\mu} : \mathbb{R}^{n} \to \mathbb{C}$  with  $\mathfrak{e}^{\mu}(u) := \exp(-2\pi i \langle \mu, u \rangle)$ and write  $\mathbb{R}[\Omega] = \mathbb{R}[\mathfrak{e}^{\pm \omega_{1}}, \dots, \mathfrak{e}^{\pm \omega_{n}}].$   $\mathfrak{e}^{\mu}(u) := \mathfrak{e}^{0}$   $\mathfrak{e}^{\mu}(u) := \exp(-2\pi i \langle \mu, u \rangle)$   $\mu = \sum_{i} \alpha_{i} \omega_{i} \in \Omega$  $\Rightarrow \mathfrak{e}^{\mu} = \prod_{i} (\mathfrak{e}^{\omega_{i}})^{\alpha_{i}}$ 

The trigonometric optimization problem For  $f = \sum_{\mu} f_{\mu} e^{\mu} \in \mathbb{R}[\Omega]$  with  $f_{\mu} = f_{-\mu} \in \mathbb{R}$ , find  $f^* := \min_{u \in \mathbb{R}^n} f(u)$ .

Example 
$$(\Omega = \mathbb{Z})$$
  
 $f(u) = 2\cos(2\pi u) = \underbrace{\exp(2\pi i u)}_{=e^{-1}(u)} + \underbrace{\exp(-2\pi i u)}_{=e^{1}(u)} \Rightarrow f^* = -2$ 

 $e^{\mu}e^{\nu} = e^{\mu+\nu}$ 

Let  $\Omega = \mathbb{Z} \, \omega_1 \oplus \ldots \oplus \mathbb{Z} \, \omega_n \leq \mathbb{R}^n$  be a lattice and  $\langle \cdot, \cdot \rangle$  be the Euclidean scalar product.

The algebra of trigonometric polynomials For  $\mu \in \Omega$ , define  $e^{\mu} : \mathbb{R}^{n} \to \mathbb{C}$  with  $e^{\mu}(u) := \exp(-2\pi i \langle \mu, u \rangle)$ and write  $\mathbb{R}[\Omega] = \mathbb{R}[e^{\pm \omega_{1}}, \dots, e^{\pm \omega_{n}}].$   $e^{\mu}(u) := e^{\mu}(e^{\mu}) = \mathbb{R}[e^{\mu})$   $\mu = \sum_{i} \alpha_{i} \omega_{i} \in \Omega$  $\Rightarrow e^{\mu} = \prod_{i} (e^{\omega_{i}})^{\alpha_{i}}$ 

The trigonometric optimization problem For  $f = \sum_{\mu} f_{\mu} e^{\mu} \in \mathbb{R}[\Omega]$  with  $f_{\mu} = f_{-\mu} \in \mathbb{R}$ , find  $f^* := \min_{u \in \mathbb{R}^n} f(u)$ .

Example 
$$(\Omega = \mathbb{Z})$$
  
 $f(u) = 2\cos(2\pi u) = \underbrace{\exp(2\pi i u)}_{=e^{-1}(u)} + \underbrace{\exp(-2\pi i u)}_{=e^{1}(u)} \Rightarrow f^* = -2$ 

 $e^{\mu}e^{\nu} = e^{\mu+\nu}$ 

Let  $\Omega = \mathbb{Z} \, \omega_1 \oplus \ldots \oplus \mathbb{Z} \, \omega_n \leq \mathbb{R}^n$  be a lattice and  $\langle \cdot, \cdot \rangle$  be the Euclidean scalar product.

The algebra of trigonometric polynomials For  $\mu \in \Omega$ , define  $e^{\mu} : \mathbb{R}^{n} \to \mathbb{C}$  with  $e^{\mu}(u) := \exp(-2\pi i \langle \mu, u \rangle)$ and write  $\mathbb{R}[\Omega] = \mathbb{R}[e^{\pm \omega_{1}}, \dots, e^{\pm \omega_{n}}].$   $e^{\mu} e^{-\mu} = e^{0}$   $f = \sum_{\mu} f_{\mu} e^{\mu} \in \mathbb{R}[\Omega]$   $\mu = \sum_{i} \alpha_{i} \omega_{i} \in \Omega$  $\Rightarrow e^{\mu} = \prod_{i} (e^{\omega_{i}})^{\alpha_{i}}$ 

The trigonometric optimization problem For  $f = \sum_{\mu} f_{\mu} e^{\mu} \in \mathbb{R}[\Omega]$  with  $f_{\mu} = f_{-\mu} \in \mathbb{R}$ , find  $f^* := \min_{u \in \mathbb{R}^n} f(u)$ .

Example  $(\Omega = \mathbb{Z})$  $f(u) = 2\cos(2\pi u) = \underbrace{\exp(2\pi i u)}_{=e^{-1}(u)} + \underbrace{\exp(-2\pi i u)}_{=e^{1}(u)} \Rightarrow f^* = -2$ 

 $e^{\mu}e^{\nu} = e^{\mu+\nu}$ 

Example  $(\Omega = \mathbb{Z} = -\mathbb{Z}, \mathcal{W} = \{\pm 1\})$ 

 $f(u) := 2 \cos(2\pi u) \quad \Rightarrow \quad f(u) = f(-u)$ 

The linear action of  $\mathcal W$  on  $\mathbb R[\Omega]$ 

$$\begin{array}{rcl} \mathcal{W} \times \mathbb{R}[\Omega] & \to & \mathbb{R}[\Omega], \\ (A, \mathfrak{e}^{\mu}) & \mapsto & \mathfrak{e}^{A\,\mu} \end{array}$$

Say f is *W*−invariant, if *W* · f = {f}
ℝ[Ω]<sup>W</sup> the algebra of *W*−invariants

$$A \cdot \sum_{\mu} f_{\mu} e^{\mu} = \sum_{\mu} f_{\mu} e^{A\mu}$$
$$A \cdot (f g) = (A \cdot f)(A \cdot g)$$

Example 
$$(\Omega = \mathbb{Z} = -\mathbb{Z}, W = \{\pm 1\})$$
  
 $f(u) := 2 \cos(2 \pi u) \implies f(u) = f(-u)$ 

The linear action of  $\mathcal W$  on  $\mathbb R[\Omega]$ 

$$\begin{array}{rcl} \mathcal{W} \times \mathbb{R}[\Omega] & \to & \mathbb{R}[\Omega], \\ (A, \mathfrak{e}^{\mu}) & \mapsto & \mathfrak{e}^{A_{\mu}} \end{array}$$

Say f is *W*−invariant, if *W* · f = {f}
ℝ[Ω]<sup>W</sup> the algebra of *W*−invariants

$$A \cdot \sum_{\mu} f_{\mu} e^{\mu} = \sum_{\mu} f_{\mu} e^{A\mu}$$
$$A \cdot (f g) = (A \cdot f)(A \cdot g)$$

Example 
$$(\Omega = \mathbb{Z} = -\mathbb{Z}, \mathcal{W} = \{\pm 1\})$$
  
 $f(u) := 2 \cos(2\pi u) \Rightarrow f(u) = f(-u)$ 

The linear action of  $\mathcal{W}$  on  $\mathbb{R}[\Omega]$ 

$$egin{array}{ccc} \mathcal{W} imes \mathbb{R}[\Omega] & o & \mathbb{R}[\Omega], \ (\mathcal{A},\mathfrak{e}^\mu) & \mapsto & \mathfrak{e}^{\mathcal{A}\,\mu} \end{array}$$

Say f is *W*-invariant, if *W* · f = {f}
ℝ[Ω]<sup>*W*</sup> the algebra of *W*-invariants

$$A \cdot \sum_{\mu} f_{\mu} e^{\mu} = \sum_{\mu} f_{\mu} e^{A\mu}$$
$$A \cdot (f g) = (A \cdot f)(A \cdot g)$$
$$A \cdot (f + g) = A \cdot f + A \cdot g$$

Example 
$$(\Omega = \mathbb{Z} = -\mathbb{Z}, W = \{\pm 1\})$$
  
 $f(u) := 2\cos(2\pi u) \implies f(u) = f(-u)$ 

The linear action of  $\mathcal{W}$  on  $\mathbb{R}[\Omega]$ 

$$\begin{array}{rcl} \mathcal{W} \times \mathbb{R}[\Omega] & \to & \mathbb{R}[\Omega], \\ (\mathcal{A}, \mathfrak{e}^{\mu}) & \mapsto & \mathfrak{e}^{\mathcal{A}\,\mu} \end{array}$$

• Say f is  $\mathcal{W}$ -invariant, if  $\mathcal{W} \cdot f = \{f\}$ •  $\mathbb{R}[\Omega]^{\mathcal{W}}$  the algebra of  $\mathcal{W}$ -invariants

$$A \cdot \sum_{\mu} f_{\mu} \mathfrak{e}^{\mu} = \sum_{\mu} f_{\mu} \mathfrak{e}^{A\mu}$$
$$A \cdot (f g) = (A \cdot f)(A \cdot g)$$
$$A \cdot (f + g) = A \cdot f + A \cdot g$$

#### Lattices with crystallographic symmetry



7/30

1st approach: Using Chebyshev polynomials

## Univariate Chebyshev polynomials

For  $\mu \in \mathbb{Z}$ , define  $T_{\mu} \in \mathbb{R}[z]$ , such that

 $T_{\mu}(\cos(2\pi u)) = \cos(2\pi \mu u).$ 

(Food for thought: Why does this define a polynomial uniquely?)

Then

$$f(u) := 2 \cos(2\pi u) = 2 T_1(\cos(2\pi u))$$

and we have

$$f^* = \min_{u \in \mathbb{R}} f(u) = \min_{z \in \operatorname{im}(\cos(2\pi u))} 2 T_1(z) = \min_{1-z^2 \ge 0} 2 z = -2.$$

#### We require two ingredients:

- Generalization of cosine functions and Chebyshev polynomials
- Description of the image of the cosine functions

## Univariate Chebyshev polynomials

For  $\mu \in \mathbb{Z}$ , define  $T_{\mu} \in \mathbb{R}[z]$ , such that

 $T_{\mu}(\cos(2\pi u)) = \cos(2\pi \mu u).$ 

(Food for thought: Why does this define a polynomial uniquely?)

Then

$$f(u) := 2 \cos(2\pi u) = 2 T_1(\cos(2\pi u))$$

and we have

$$f^* = \min_{u \in \mathbb{R}} f(u) = \min_{z \in \operatorname{im}(\cos(2\pi u))} 2 T_1(z) = \min_{1-z^2 \ge 0} 2 z = -2.$$

#### We require two ingredients:

Generalization of cosine functions and Chebyshev polynomials

Description of the image of the cosine functions

## Univariate Chebyshev polynomials

For  $\mu \in \mathbb{Z}$ , define  $T_{\mu} \in \mathbb{R}[z]$ , such that

 $T_{\mu}(\cos(2\pi u)) = \cos(2\pi \mu u).$ 

(Food for thought: Why does this define a polynomial uniquely?)

Then

$$f(u) := 2 \cos(2\pi u) = 2 T_1(\cos(2\pi u))$$

and we have

$$f^* = \min_{u \in \mathbb{R}} f(u) = \min_{z \in im(\cos(2\pi u))} 2 T_1(z) = \min_{1-z^2 \ge 0} 2 z = -2.$$

#### We require two ingredients:

- Generalization of cosine functions and Chebyshev polynomials
- ② Description of the image of the cosine functions

The generalized cosine functions For  $\mu \in \Omega$ , define  $\mathfrak{c}_{\mu} \in \mathbb{R}[\Omega]^{\mathcal{W}}$  with  $\mathfrak{c}_{\mu}(u) := \frac{1}{|\mathcal{W}|} \sum_{A \in \mathcal{W}} \mathfrak{e}^{A\mu}(u).$ 

$$\Omega = \mathbb{Z}\,\omega_1 \oplus \ldots \oplus \mathbb{Z}\,\omega_n$$
$$\mathbb{R}[\Omega] = \mathbb{R}[\mathfrak{e}^{\pm\omega_1}, \ldots, \mathfrak{e}^{\pm\omega_n}]$$

#### Bourbaki's Theorem

If  $\ensuremath{\mathcal{W}}$  is generated by reflections, then

- the  $\mathfrak{c}_{\omega_1},\ldots,\mathfrak{c}_{\omega_n}$  are algebraically independent and
- $\mathbb{R}[\Omega]^{\mathcal{W}} = \mathbb{R}[\mathfrak{c}_{\omega_1}, \dots, \mathfrak{c}_{\omega_n}]$  is a polynomial algebra.

The generalized Chebyshev polynomial associated to  $\mu \in \Omega$  $T_{\mu} \in \mathbb{R}[z] = \mathbb{R}[z_1, \dots, z_n]$ , so that  $T_{\mu}(\mathfrak{c}_{\omega_1}(u), \dots, \mathfrak{c}_{\omega_n}(u)) = \mathfrak{c}_{\mu}(u)$ .

Example  $(\Omega = \mathbb{Z})$ 

The generalized cosine functions For  $\mu \in \Omega$ , define  $\mathfrak{c}_{\mu} \in \mathbb{R}[\Omega]^{\mathcal{W}}$  with  $\mathfrak{c}_{\mu}(u) := \frac{1}{|\mathcal{W}|} \sum_{A \in \mathcal{W}} \mathfrak{e}^{A\mu}(u).$ 

$$\Omega = \mathbb{Z}\,\omega_1 \oplus \ldots \oplus \mathbb{Z}\,\omega_n$$
$$\mathbb{R}[\Omega] = \mathbb{R}[\mathfrak{e}^{\pm\omega_1}, \ldots, \mathfrak{e}^{\pm\omega_n}]$$

#### Bourbaki's Theorem

If  $\ensuremath{\mathcal{W}}$  is generated by reflections, then

- the  $\mathfrak{c}_{\omega_1}, \ldots, \mathfrak{c}_{\omega_n}$  are algebraically independent and
- $\mathbb{R}[\Omega]^{\mathcal{W}} = \mathbb{R}[\mathbf{c}_{\omega_1}, \dots, \mathbf{c}_{\omega_n}]$  is a polynomial algebra.

The generalized Chebyshev polynomial associated to  $\mu\in \Omega$ 

 $T_{\mu} \in \mathbb{R}[z] = \mathbb{R}[z_1, \ldots, z_n]$ , so that  $T_{\mu}(\mathfrak{c}_{\omega_1}(u), \ldots, \mathfrak{c}_{\omega_n}(u)) = \mathfrak{c}_{\mu}(u)$ .

Example  $(\Omega = \mathbb{Z})$ 

The generalized cosine functions For  $\mu \in \Omega$ , define  $\mathfrak{c}_{\mu} \in \mathbb{R}[\Omega]^{\mathcal{W}}$  with  $\mathfrak{c}_{\mu}(u) := \frac{1}{|\mathcal{W}|} \sum_{A \in \mathcal{W}} \mathfrak{e}^{A\mu}(u).$ 

$$\Omega = \mathbb{Z}\,\omega_1 \oplus \ldots \oplus \mathbb{Z}\,\omega_n$$
$$\mathbb{R}[\Omega] = \mathbb{R}[\mathfrak{e}^{\pm\omega_1}, \ldots, \mathfrak{e}^{\pm\omega_n}]$$

#### Bourbaki's Theorem

If  $\ensuremath{\mathcal{W}}$  is generated by reflections, then

- the  $\mathfrak{c}_{\omega_1}, \ldots, \mathfrak{c}_{\omega_n}$  are algebraically independent and
- $\mathbb{R}[\Omega]^{\mathcal{W}} = \mathbb{R}[\mathfrak{c}_{\omega_1}, \dots, \mathfrak{c}_{\omega_n}]$  is a polynomial algebra.

The generalized Chebyshev polynomial associated to  $\mu \in \Omega$  $T_{\mu} \in \mathbb{R}[z] = \mathbb{R}[z_1, \dots, z_n]$ , so that  $T_{\mu}(\mathfrak{c}_{\omega_1}(u), \dots, \mathfrak{c}_{\omega_n}(u)) = \mathfrak{c}_{\mu}(u)$ .

Example  $(\Omega = \mathbb{Z})$ 

The generalized cosine functions For  $\mu \in \Omega$ , define  $\mathfrak{c}_{\mu} \in \mathbb{R}[\Omega]^{\mathcal{W}}$  with  $\mathfrak{c}_{\mu}(u) := \frac{1}{|\mathcal{W}|} \sum_{A \in \mathcal{W}} \mathfrak{e}^{A\mu}(u).$ 

$$\Omega = \mathbb{Z}\,\omega_1 \oplus \ldots \oplus \mathbb{Z}\,\omega_n$$
$$\mathbb{R}[\Omega] = \mathbb{R}[\mathfrak{e}^{\pm\omega_1}, \ldots, \mathfrak{e}^{\pm\omega_n}]$$

#### Bourbaki's Theorem

If  $\ensuremath{\mathcal{W}}$  is generated by reflections, then

- the  $\mathfrak{c}_{\omega_1}, \ldots, \mathfrak{c}_{\omega_n}$  are algebraically independent and
- $\mathbb{R}[\Omega]^{\mathcal{W}} = \mathbb{R}[\mathfrak{c}_{\omega_1}, \dots, \mathfrak{c}_{\omega_n}]$  is a polynomial algebra.

The generalized Chebyshev polynomial associated to  $\mu\in\Omega$ 

 $T_{\mu} \in \mathbb{R}[z] = \mathbb{R}[z_1, \ldots, z_n]$ , so that  $T_{\mu}(\mathfrak{c}_{\omega_1}(u), \ldots, \mathfrak{c}_{\omega_n}(u)) = \mathfrak{c}_{\mu}(u)$ .

Example  $(\Omega = \mathbb{Z})$ 

#### Rewriting the trigonometric optimization problem



Example  $(\Omega = \mathbb{Z}\omega_1 \oplus \mathbb{Z}\omega_2 \text{ hexagonal lattice, } \mathcal{W} = \mathfrak{D}_{2\cdot 6})$ For  $S := \mathcal{W} \{2\omega_1, \omega_2\}$  and  $f_{2\omega_1} := 1$ ,  $f_{\omega_2} := 2$ , we have

$$\inf_{u \in \mathbb{R}^2} \sum_{\mu \in S} f_{\mu} c_{\mu}(u) = \inf_{z \in \mathcal{T}} T_{2\omega_1}(z) + 2T_{\omega_2}(z) = \inf_{z \in \mathcal{T}} 6 z_1^2 - 2 z_1 - 1 = -\frac{7}{6}$$

The new feasible region is

 $\mathcal{T} := \operatorname{im}(\mathfrak{c}) = \{\mathfrak{c}(u) := (\mathfrak{c}_{\omega_1}(u), \dots, \mathfrak{c}_{\omega_n}(u)) \mid u \in \mathbb{R}^n\}.$ 

#### Rewriting the trigonometric optimization problem



Example  $(\Omega = \mathbb{Z}\omega_1 \oplus \mathbb{Z}\omega_2 \text{ hexagonal lattice, } \mathcal{W} = \mathfrak{D}_{2\cdot 6})$ For  $S := \mathcal{W} \{2\omega_1, \omega_2\}$  and  $f_{2\omega_1} := 1$ ,  $f_{\omega_2} := 2$ , we have

$$\inf_{u \in \mathbb{R}^2} \sum_{\mu \in S} f_{\mu} c_{\mu}(u) = \inf_{z \in \mathcal{T}} T_{2\omega_1}(z) + 2T_{\omega_2}(z) = \inf_{z \in \mathcal{T}} 6 z_1^2 - 2 z_1 - 1 = -\frac{7}{6}$$

The new feasible region is

$$\mathcal{T} := \operatorname{im}(\mathfrak{c}) = \{\mathfrak{c}(u) := (\mathfrak{c}_{\omega_1}(u), \dots, \mathfrak{c}_{\omega_n}(u)) \mid u \in \mathbb{R}^n\}.$$

#### Appearances of $\mathcal{T}$ in the literature



touches the two lines. Let the weight function and r be defined by

Koornwinder'74



6.2 Gauss Lobatto enhature and Chebyshev polynomials of the first kind In the case of  $w_{-\frac{1}{2},-\frac{1}{2}}$ , the change of variables  $t \rightarrow x$  shows that (1.22) leads to a subscare of readegoes 2n - 1 hand on the ranks of  $Y_{2n}$ .

Xu'10

Xu'12



We will need the cases of  $\alpha = -1/2$  and  $\alpha = 1/2$  of the weighted inner product

 $(f,g)_{R^0} := c_R \int -f(z)\overline{g(z)}R^0(z)dx$ 

where  $c_{\theta}$  is a normalization constant,  $c_{\theta} := 1/\int_{M^{1}} w^{\theta}(z) dz$ . The change of variables



Figure 1.5. The equilateral domain  $\Delta$  in (a) maps to the Deboid 4 in (b) under  $t \mapsto z(t)$ .

Continuous orthogonality. Let  $\Phi$  be an irreducible root system on  $V = \mathbb{R}^d$  with an alcove  $\triangle$  being the simplex defined in Lemma 1.21.

Munthe-Kaas'12



 $\operatorname{vel}(\phi(A_v)) = \int d\phi = \frac{(2\sqrt{v})^n}{\Gamma(1+\frac{3}{2})\prod_{i=1}^{n} \binom{n+1}{i}}$ For n = 2 we obtain the area of Steiner's hyporydoid, which is  $4\pi/3.$  For n = 3 we



Koelink'20







## Describing $\mathcal{T}$ for the irreducible cases

Main result (Hubert, M, Riener'22)

For groups  $\mathcal{W}$  of type  $A_{n-1}$ ,  $B_n$ ,  $C_n$ ,  $D_n$  or  $G_2$ , we construct a Hankel matrix polynomial  $H \in \mathbb{R}[z]^{n \times n}$ , such that

 $\mathcal{T} = \{z \in \mathbb{R}^n \,|\, H(z) \succeq 0\}$ 

and give a closed formula in the Chebyshev basis:

$$H = \begin{pmatrix} (T_0 - T_{2\omega_1})/2 & (T_{\omega_1} - T_{3\omega_1})/4 & (T_0 - T_{4\omega_1})/8 & \cdots \\ (T_{\omega_1} - T_{3\omega_1})/4 & (T_0 - T_{4\omega_1})/8 & (2T_{\omega_1} - T_{3\omega_1} - T_{5\omega_1})/16 & \cdots \\ (T_0 - T_{4\omega_1})/8 & (2T_{\omega_1} - T_{3\omega_1} - T_{5\omega_1})/16 & (2T_0 + T_{2\omega_1} - 2T_{4\omega_1} - T_{6\omega_1})/32 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$



#### Describing $\mathcal{T}$ for the irreducible cases



#### From trigonometric to polynomial optimization

Let  $\mathcal{W}$  be a reflection group,  $\Omega$  a  $\mathcal{W}$ -lattice and  $f \in \mathbb{R}[\Omega]^{\mathcal{W}}$ .

Rewriting to a polynomial optimization problem

We seek 
$$f^* = \min_{z \in \mathcal{T}} \sum_{\mu} f_{\mu} T_{\mu}(z) = \min_{H(z) \succeq 0} \sum_{\mu} f_{\mu} T_{\mu}(z).$$

- (Lasserre'01) moment/sums of squares hierarchy for polynomial optimization problems with scalar constraints, based on Putinar's Positivstellensatz'93.
- (Henrion, Lasserre'06) ... with matrix constraints, based on the Hol–Scherer Positivstellensatz'05.

We want to use the natural setup of the problem in the Chebyshev basis.

$$f^* = \min \sum_{\mu} f_{\mu} T_{\mu}(z)$$
  
s.t.  $z \in \mathbb{R}^n, H(z) \succeq 0$ 

$$= \max \quad r$$
  
s.t.  $r \in \mathbb{R}, \forall H(z) \succeq 0:$   
 $\sum_{\mu} f_{\mu} T_{\mu}(z) - r \ge 0.$ 

Write 
$$Q \in SOS(\mathbb{R}[z]^{n \times n})$$
, if  
 $\exists Q_1, \dots, Q_k \in \mathbb{R}[z]^n$ , s.t.  
 $Q(z) = \sum_{i=1}^k Q_i(z) Q_i(z)^t$ 

$$\begin{array}{ll} \geq & \max & r \\ \text{s.t.} & r \in \mathbb{R}, \ q \in \operatorname{SOS}(\mathbb{R}[z]), \ Q \in \operatorname{SOS}(\mathbb{R}[z]^{n \times n}), \\ & \sum_{\mu} f_{\mu} \ T_{\mu} - r = q + \operatorname{tr}(H \ Q) \end{array}$$

For computations, restrict q, Q to finite space  $(d \in \mathbb{N})$  $\mathcal{F}_d := \langle T_\mu | \langle \mu, \rho_0^{\vee} \rangle \leq d \rangle_{\mathbb{R}}$ 

$$T_{\mu} T_{\nu} = \sum_{\langle \omega, \rho_0^{\vee} \rangle \leq \langle \mu + \nu, \rho_0^{\vee} \rangle} t_{\omega} T_{\omega}$$
  
If  $T_{\mu} \in \mathcal{F}_{d_1}$  and  $T_{\nu} \in \mathcal{F}_{d_2}$ ,  
then  $T_{\mu} T_{\nu} \in \mathcal{F}_{d_1+d_2}$ .

$$f^* = \min \sum_{\mu} f_{\mu} T_{\mu}(z)$$
  
s.t.  $z \in \mathbb{R}^n, H(z) \succeq 0$ 

$$= \max \quad r$$
  
s.t.  $r \in \mathbb{R}, \forall H(z) \succeq 0$ :  
 $\sum_{\mu} f_{\mu} T_{\mu}(z) - r \ge 0.$ 

Write 
$$Q \in SOS(\mathbb{R}[z]^{n \times n})$$
, if  
 $\exists Q_1, \dots, Q_k \in \mathbb{R}[z]^n$ , s.t.  
 $Q(z) = \sum_{i=1}^k Q_i(z) Q_i(z)^t$ 

$$\begin{array}{ll} \geq & \max & r \\ \text{s.t.} & r \in \mathbb{R}, \ q \in \operatorname{SOS}(\mathbb{R}[z]), \ Q \in \operatorname{SOS}(\mathbb{R}[z]^{n \times n}), \\ & \sum_{\mu} f_{\mu} \ T_{\mu} - r = q + \operatorname{tr}(H \ Q) \end{array}$$

$$T_{\mu} T_{\nu} = \sum_{\langle \omega, \rho_0^{\vee} \rangle \leq \langle \mu + \nu, \rho_0^{\vee} \rangle} t_{\omega} T_{\omega}$$
  
If  $T_{\mu} \in \mathcal{F}_{d_1}$  and  $T_{\nu} \in \mathcal{F}_{d_2}$ ,  
then  $T_{\mu} T_{\nu} \in \mathcal{F}_{d_1+d_2}$ .

$$f^* = \min \sum_{\mu} f_{\mu} T_{\mu}(z)$$
  
s.t.  $z \in \mathbb{R}^n, H(z) \succeq 0$ 

$$= \max \quad r$$
  
s.t.  $r \in \mathbb{R}, \forall H(z) \succeq 0$ :  
 $\sum_{\mu} f_{\mu} T_{\mu}(z) - r \ge 0.$ 

Write 
$$Q \in SOS(\mathbb{R}[z]^{n \times n})$$
, if  
 $\exists Q_1, \dots, Q_k \in \mathbb{R}[z]^n$ , s.t.  
 $Q(z) = \sum_{i=1}^k Q_i(z) Q_i(z)^t$ 

$$\geq \max r$$
  
s.t.  $r \in \mathbb{R}, q \in SOS(\mathbb{R}[z]), Q \in SOS(\mathbb{R}[z]^{n \times n}),$   
$$\sum_{\mu} f_{\mu} T_{\mu} - r = q + tr(HQ)$$

$$T_{\mu} T_{\nu} = \sum_{\langle \omega, \rho_{0}^{\vee} \rangle \leq \langle \mu + \nu, \rho_{0}^{\vee} \rangle} t_{\omega} T_{\omega}$$
  
If  $T_{\mu} \in \mathcal{F}_{d_{1}}$  and  $T_{\nu} \in \mathcal{F}_{d_{2}}$ ,  
then  $T_{\mu} T_{\nu} \in \mathcal{F}_{d_{1}+d_{2}}$ .

## $\mathsf{Matrix}\ \mathrm{SOS}\ \mathsf{reinforcement}$

$$f^* = \min \sum_{\mu} f_{\mu} T_{\mu}(z)$$
  
s.t.  $z \in \mathbb{R}^n, H(z) \succeq 0$ 

$$= \max \quad r$$
  
s.t.  $r \in \mathbb{R}, \forall H(z) \succeq 0$ :  
$$\sum_{\mu} f_{\mu} T_{\mu}(z) - r \ge 0.$$

Write 
$$Q \in SOS(\mathbb{R}[z]^{n \times n})$$
, if  
 $\exists Q_1, \dots, Q_k \in \mathbb{R}[z]^n$ , s.t.  
 $Q(z) = \sum_{i=1}^k Q_i(z) Q_i(z)^t$ 

$$\geq \max r$$
  
s.t.  $r \in \mathbb{R}, q \in SOS(\mathbb{R}[z]), Q \in SOS(\mathbb{R}[z]^{n \times n}),$   
$$\sum_{\mu} f_{\mu} T_{\mu} - r = q + tr(HQ)$$

$$T_{\mu} T_{\nu} = \sum_{\langle \omega, \rho_0^{\vee} \rangle \leq \langle \mu + \nu, \rho_0^{\vee} \rangle} t_{\omega} T_{\omega}$$
  
If  $T_{\mu} \in \mathcal{F}_{d_1}$  and  $T_{\nu} \in \mathcal{F}_{d_2}$ ,  
then  $T_{\mu} T_{\nu} \in \mathcal{F}_{d_1 + d_2}$ .

$$f^* = \min \sum_{\mu} f_{\mu} T_{\mu}(z)$$
  
s.t.  $z \in \mathbb{R}^n, H(z) \succeq 0$ 

$$= \max \quad r$$
  
s.t.  $r \in \mathbb{R}, \forall H(z) \succeq 0$ :  
 $\sum_{\mu} f_{\mu} T_{\mu}(z) - r \ge 0.$ 

Write 
$$Q \in SOS(\mathbb{R}[z]^{n \times n})$$
, if  
 $\exists Q_1, \dots, Q_k \in \mathbb{R}[z]^n$ , s.t.  
 $Q(z) = \sum_{i=1}^k Q_i(z) Q_i(z)^t$ 

$$\geq \max r$$
  
s.t.  $r \in \mathbb{R}, q \in SOS(\mathbb{R}[z]), Q \in SOS(\mathbb{R}[z]^{n \times n}),$   
$$\sum_{\mu} f_{\mu} T_{\mu} - r = q + tr(HQ)$$

$$\begin{split} T_{\mu} \ T_{\nu} &= \sum_{\langle \omega, \rho_0^{\vee} \rangle \leq \langle \mu + \nu, \rho_0^{\vee} \rangle} t_{\omega} \ T_{\omega} \\ \text{If} \ T_{\mu} &\in \mathcal{F}_{d_1} \text{ and } T_{\nu} \in \mathcal{F}_{d_2}, \\ \text{then} \ T_{\mu} \ T_{\nu} \in \mathcal{F}_{d_1 + d_2}. \end{split}$$

## Semi-definite lower bounds

SOS hierarchy for trigonometric polynomials with W-symmetry For  $d \in \mathbb{N}$  sufficiently large and  $\mathcal{F}_d = \langle T_\mu | \langle \mu, \rho_0^{\vee} \rangle \leq d \rangle_{\mathbb{R}}$ , we have

$$f^* \ge f^d_{\text{Cheby}} := \max r$$
  
s.t.  $r \in \mathbb{R}, q \in \text{SOS}(\mathcal{F}_d), Q \in \text{SOS}(\mathcal{F}_{d-n}^{n \times n}),$   
 $\sum_{\mu} f_{\mu} T_{\mu} - r = q + \text{tr}(HQ).$ 

Then 
$$f^d_{\text{Cheby}} \leq f^{d+1}_{\text{Cheby}}$$
 and  $\lim_{d \to \infty} f^d_{\text{Cheby}} = f^*$ .

Translation to an SDP 
$$\rightarrow$$
 MAPLE  
Compute  $A_0, A_\mu \in \text{Sym}^d$ , such that  
 $f^d_{\text{Cheby}} = \max_{x \in 0} f_0 - \text{tr}(A_0 X)$   
s.t.  $X \in \text{Cheby}_{\geq 0}^d, \forall 0 \neq \mu :$   
 $\text{tr}(A_\mu X) = f_\mu.$ 

$$\begin{array}{l} \textbf{Matrix size:} \\ N^d_{\text{Cheby}} &:= \dim(\mathcal{F}_d) \\ &+ n \dim(\mathcal{F}_{d-n}) \end{array}$$

## Semi-definite lower bounds

SOS hierarchy for trigonometric polynomials with W-symmetry For  $d \in \mathbb{N}$  sufficiently large and  $\mathcal{F}_d = \langle T_\mu | \langle \mu, \rho_0^{\vee} \rangle \leq d \rangle_{\mathbb{R}}$ , we have

$$f^* \ge f^d_{\text{Cheby}} := \max r$$
  
s.t.  $r \in \mathbb{R}, q \in \text{SOS}(\mathcal{F}_d), Q \in \text{SOS}(\mathcal{F}_{d-n}^{n \times n}),$   
 $\sum_{\mu} f_{\mu} T_{\mu} - r = q + \text{tr}(HQ).$ 

Then 
$$f^d_{\text{Cheby}} \leq f^{d+1}_{\text{Cheby}}$$
 and  $\lim_{d \to \infty} f^d_{\text{Cheby}} = f^*$ .

## Translation to an SDP $\rightarrow$ MAPLE Compute $A_0, A_\mu \in \text{Sym}^d$ , such that $f^d_{\text{Cheby}} = \max_{x \in 0} f_0 - \text{tr}(A_0 X)$ s.t. $X \in \text{Cheby}^d_{\geq 0}, \forall 0 \neq \mu :$ $\text{tr}(A_\mu X) = f_\mu.$

$$\begin{array}{l} \text{Matrix size:} \\ N^{d}_{\text{Cheby}} := \dim(\mathcal{F}_{d}) \\ &+ n \dim(\mathcal{F}_{d-n}) \end{array}$$

## Semi-definite lower bounds

SOS hierarchy for trigonometric polynomials with W-symmetry For  $d \in \mathbb{N}$  sufficiently large and  $\mathcal{F}_d = \langle T_\mu | \langle \mu, \rho_0^{\vee} \rangle \leq d \rangle_{\mathbb{R}}$ , we have

$$f^* \ge f^d_{\text{Cheby}} := \max r$$
  
s.t.  $r \in \mathbb{R}, q \in \text{SOS}(\mathcal{F}_d), Q \in \text{SOS}(\mathcal{F}_{d-n}^{n \times n}),$   
 $\sum_{\mu} f_{\mu} T_{\mu} - r = q + \text{tr}(HQ).$ 

Then 
$$f^d_{\text{Cheby}} \leq f^{d+1}_{\text{Cheby}}$$
 and  $\lim_{d \to \infty} f^d_{\text{Cheby}} = f^*$ .

## Translation to an SDP $\rightarrow$ MAPLE Compute $A_0, A_\mu \in \text{Sym}^d$ , such that $f^d_{\text{Cheby}} = \max_{x \in 0} f_0 - \text{tr}(A_0 X)$ s.t. $X \in \text{Cheby}^d_{\geq 0}, \forall 0 \neq \mu :$ $\text{tr}(A_\mu X) = f_\mu.$

Matrix size:  $N_{\text{Cheby}}^d := \dim(\mathcal{F}_d)$  $+ n \dim(\mathcal{F}_{d-n})$ 

#### Comparison with the dense approach

SOHS hierarchy for trigonometric polynomials without symmetry For  $f = \sum_{\mu} f_{\mu} e^{\mu} \in \mathbb{R}[\Omega]$  with  $f_{\mu} = f_{-\mu} \in \mathbb{R}$ , find  $f^* := \min_{u \in \mathbb{R}^n} f(u)$ . (Dumitrescu'07)  $f_{dense}^d := \max\{r \in \mathbb{R} \mid f - r \in \text{SOHS}(d)\} \rightarrow \text{SDP}$ .



2nd approach: Using symmetry adapted bases

#### Remark

In the 1st approach, we

- used symmetry and subsequently
- 2 applied a sums of squares reinforcement.

Now, we do the same thing in reverse order.

#### Denote $\Omega_d := \{ \mu \in \Omega \, | \, \langle \mu, \rho_0^{\vee} \rangle \leq d \}.$



If  $f \in \mathbb{R}[\Omega]$  is supported on  $\Omega_{2d}$ , then we can write

 $f(u) = \overline{\mathbf{E}_d(u)}^t \operatorname{mat}(f) \mathbf{E}_d(u),$ 

where

- **()**  $\mathsf{E}_d(u)$  is the vector of all  $\mathfrak{e}^{\mu}(u)/\sqrt{|\Omega_d|}$  with  $\mu \in \Omega_d$  and
- 2  $mat(f) \in \mathbb{R}^{\Omega_d \times \Omega_d}$  is a symmetric matrix independent of u.

#### Remark

In the 1st approach, we

- used symmetry and subsequently
- 2 applied a sums of squares reinforcement.

Now, we do the same thing in reverse order.

#### Denote $\Omega_d := \{ \mu \in \Omega \, | \, \langle \mu, \rho_0^{\vee} \rangle \leq d \}.$



If  $f \in \mathbb{R}[\Omega]$  is supported on  $\Omega_{2d}$ , then we can write

$$f(u) = \overline{\mathbf{E}_d(u)}^t \operatorname{mat}(f) \mathbf{E}_d(u),$$

where

- **9**  $\mathsf{E}_d(u)$  is the vector of all  $\mathfrak{e}^{\mu}(u)/\sqrt{|\Omega_d|}$  with  $\mu \in \Omega_d$  and
- **2**  $mat(f) \in \mathbb{R}^{\Omega_d \times \Omega_d}$  is a symmetric matrix independent of u.

Example

$$f := \underbrace{\mathfrak{e}^{2} + \mathfrak{e}^{-2}}_{=2 \cos(4\pi u)} - 2\left(\underbrace{\mathfrak{e}^{1} + \mathfrak{e}^{-1}}_{=2 \cos(2\pi u)}\right) + 3$$
$$= \underbrace{\left(\mathfrak{e}^{-1} \quad 1 \quad \mathfrak{e}^{1}\right) / \sqrt{3}}_{=\overline{\mathbf{E}_{1}}^{t}} \underbrace{\begin{pmatrix} 3 & -3 & 3 \\ -3 & 3 & -3 \\ 3 & -3 & 3 \end{pmatrix}}_{=\mathbf{mat}(f)} \underbrace{\left(\mathfrak{e}^{1} \quad 1 \quad \mathfrak{e}^{-1}\right) / \sqrt{3}}_{=\overline{\mathbf{E}_{1}}}$$

is supported on 
$$\Omega_2=\{-2,-1,0,1,2\}.$$

#### Remark

We may always assume that mat(f) is a symm. Toeplitz matrix:

$$\begin{pmatrix} a & b & c \\ d & a & b \\ e & d & a \end{pmatrix} \in \operatorname{Toep}_1 \quad \xrightarrow{f_{\mu} = f_{-\mu}} \quad b = d, \ c = e$$

#### Example

$$f := \underbrace{\mathfrak{e}^{2} + \mathfrak{e}^{-2}}_{=2 \cos(4\pi u)} - 2\left(\underbrace{\mathfrak{e}^{1} + \mathfrak{e}^{-1}}_{=2 \cos(2\pi u)}\right) + 3$$
$$= \underbrace{\left(\mathfrak{e}^{-1} \ 1 \ \mathfrak{e}^{1}\right) / \sqrt{3}}_{=\overline{\mathbf{E}_{1}}^{t}} \underbrace{\begin{pmatrix} 3 & -3 & 3 \\ -3 & 3 & -3 \\ 3 & -3 & 3 \end{pmatrix}}_{=\mathbf{mat}(f)} \underbrace{\left(\mathfrak{e}^{1} \ 1 \ \mathfrak{e}^{-1}\right) / \sqrt{3}}_{=\overline{\mathbf{E}_{1}}}$$
is supported on  $\Omega_{2} = \{-2, -1, 0, 1, 2\}.$ 

We may always assume that mat(f) is a symm. Toeplitz matrix:

$$\begin{pmatrix} a & b & c \\ d & a & b \\ e & d & a \end{pmatrix} \in \operatorname{Toep}_1 \quad \xrightarrow{f_{\mu} = f_{-\mu}} \quad b = d, \ c = e$$



The action of  $\mathcal W$  on Toeplitz matrices  $\begin{array}{ll} \mathcal{W} \times \operatorname{Toep}_{d} & \to & \operatorname{Toep}_{d}, \\ (A, \mathbf{X} = (\mathbf{X}_{\mu\nu})) & \mapsto & A \star \mathbf{X} := (\mathbf{X}_{A^{-1}\mu A^{-1}\nu}). \end{array}$ We have  $f \in \mathbb{R}[\Omega]^{\mathcal{W}}$  if and only if  $mat(f) \in \text{Toep}_{d}^{\mathcal{W}}$ . Example ( $\mathcal{W} = \{\pm 1\}, \Omega_1 = \{-1, 0, 1\}$ ) 

#### Matrix action

The action of  $\ensuremath{\mathcal{W}}$  on Toeplitz matrices

$$\begin{array}{ll} \mathcal{W} \times \operatorname{Toep}_{d} & \to & \operatorname{Toep}_{d}, \\ (A, \mathbf{X} = (\mathbf{X}_{\mu\nu})) & \mapsto & A \star \mathbf{X} := (\mathbf{X}_{A^{-1}\mu A^{-1}\nu}). \end{array}$$

We have  $f \in \mathbb{R}[\Omega]^{\mathcal{W}}$  if and only if  $mat(f) \in \operatorname{Toep}_d^{\mathcal{W}}$ .

#### Induced action by permutation representation

For  $A \in \mathcal{W}$ , let  $\vartheta(A) \in O(\mathbb{R}^{\Omega_d})$  be the permutation matrix with  $(\vartheta(A)\mathbf{x})_{\mu} = \mathbf{x}_{A^{-1}\mu}$  whenever  $\mathbf{x} \in \mathbb{R}^{\Omega_d}$ . For  $\mathbf{X} \in \operatorname{Toep}_d$ , we have

$$A \star \mathbf{X} = \vartheta(A) \, \mathbf{X} \, \vartheta(A)^t.$$

Isotypic decomposition $\mathbb{R}^{\Omega_d} = \bigoplus_{i=1}^h \begin{pmatrix} \mathsf{m}_i \\ \bigoplus_{j=1}^h V_{ij} \end{pmatrix}$ 

$$V_{i1} \cong \ldots \cong V_{im_i}$$
 irred.  $\vartheta$ -submodules  
 $m_i \in \mathbb{N}$  multiplicity  
 $d_i := \dim(V_{ij})$ 

#### Matrix action

#### The action of $\ensuremath{\mathcal{W}}$ on Toeplitz matrices

$$\begin{array}{ll} \mathcal{W} \times \operatorname{Toep}_{d} & \to & \operatorname{Toep}_{d}, \\ (A, \mathbf{X} = (\mathbf{X}_{\mu\nu})) & \mapsto & A \star \mathbf{X} := (\mathbf{X}_{A^{-1}\mu A^{-1}\nu}). \end{array}$$

We have  $f \in \mathbb{R}[\Omega]^{\mathcal{W}}$  if and only if  $mat(f) \in \operatorname{Toep}_d^{\mathcal{W}}$ .

#### Induced action by permutation representation

For  $A \in \mathcal{W}$ , let  $\vartheta(A) \in O(\mathbb{R}^{\Omega_d})$  be the permutation matrix with  $(\vartheta(A)\mathbf{x})_{\mu} = \mathbf{x}_{A^{-1}\mu}$  whenever  $\mathbf{x} \in \mathbb{R}^{\Omega_d}$ . For  $\mathbf{X} \in \operatorname{Toep}_d$ , we have

$$A \star \mathbf{X} = \vartheta(A) \, \mathbf{X} \, \vartheta(A)^t.$$

Isotypic decomposition

$$\mathbb{R}^{\Omega_d} = \bigoplus_{i=1}^h \left( igoplus_{j=1}^{m_i} V_{ij} 
ight)$$

 $V_{i1} \cong \ldots \cong V_{im_i}$  irred.  $\vartheta$ -submodules  $m_i \in \mathbb{N}$  multiplicity  $d_i := \dim(V_{ij})$ 

## Block diagonalization

Isotypic decomposition $\mathbb{R}^{\Omega_d} = \bigoplus_{i=1}^h \left( \bigoplus_{j=1}^{m_i} V_{ij} \right)$ 

 $V_{i\,1} \cong \ldots \cong V_{i\,m_i}$  irred.  $\vartheta$ -submodules  $m_i \in \mathbb{N}$  multiplicity  $d_i := \dim(V_{i\,j})$ 

There is a  $\mathbf{T} \in \mathrm{O}(\mathbb{R}^{\Omega_d})$  that transforms any  $\mathbf{X} \in \mathrm{Toep}_d^{\mathcal{W}}$  into



where each  $\mathbf{X}_i$  consists of  $d_i$  identical blocks  $\tilde{\mathbf{X}}_i$  of size  $m_i \times m_i$ .

**Isotypic decomposition**  $\mathbb{R}^{\Omega_d} = \bigoplus_{i=1}^h \begin{pmatrix} m_i \\ \bigoplus_{j=1}^{m_i} V_{ij} \end{pmatrix}$   $V_{i1} \cong \ldots \cong V_{im_i} \text{ irred. } \vartheta \text{-submodules}$   $m_i \in \mathbb{N} \text{ multiplicity}$   $d_i := \dim(V_{ij})$ 





Example  $(\mathcal{W} = \mathfrak{S}_3, \Omega$  the hexagonal lattice  $\subseteq \mathbb{R}^2)$ 

```
julia> using Oscar;
julia> W = symmetric_group(3);
julia> X = character_table(W);
julia> E = elements(W);
julia> [[X[i](E[s]) for s in 1:length(E)] for i in 1:length(X)]
```

This gives us the character table:

#### Example ( $\mathcal{W} = \mathfrak{S}_3, \Omega$ the hexagonal lattice $\subseteq \mathbb{R}^2$ )

Fixing the order  $d \in \mathbb{N}$  and solving for the multiplicities in

$$\operatorname{tr}(\vartheta(s)) = \operatorname{m}_{1}\chi_{1}(s) + \operatorname{m}_{2}\chi_{2}(s) + \operatorname{m}_{3}\chi_{3}(s)$$

yields

|                       | d = 1 | <i>d</i> = 2 | <i>d</i> = 3 | <i>d</i> = 4 | <i>d</i> = 5 | <i>d</i> = 6 |
|-----------------------|-------|--------------|--------------|--------------|--------------|--------------|
| $m_1$                 | 0     | 1            | 3            | 6            | 10           | 15           |
| <i>m</i> <sub>2</sub> | 2     | 6            | 12           | 20           | 30           | 42           |
| <i>m</i> <sub>3</sub> | 3     | 6            | 10           | 15           | 21           | 28           |

#### Example ( $\mathcal{W} = \mathfrak{S}_3$ , $\Omega$ the hexagonal lattice $\subseteq \mathbb{R}^2$ )

|                       | d = 1 | <i>d</i> = 2 | <i>d</i> = 3 | <i>d</i> = 4 | <i>d</i> = 5 | <i>d</i> = 6 |
|-----------------------|-------|--------------|--------------|--------------|--------------|--------------|
| $m_1$                 | 0     | 1            | 3            | 6            | 10           | 15           |
| <i>m</i> <sub>2</sub> | 2     | 6            | 12           | 20           | 30           | 42           |
| <i>m</i> <sub>3</sub> | 3     | 6            | 10           | 15           | 21           | 28           |

We have  $\Omega_{d=1} = \{0, -\omega_1, \omega_1 - \omega_2, \omega_2, -\omega_2, \omega_2 - \omega_1, \omega_1\}$ . The to be expected block structure is



## Comparison in terms of matrix sizes

#### Symmetry reduction

The property  $f - r \in SOHS(d)$  can be parametrized with positive semidefinite Toeplitz matrices  $\in Toep_d$ . In the SDP

$$(\mathsf{Dumitrescu'07}) \quad f^d_{\mathrm{dense}} := \sup\{r \in \mathbb{R} \mid f - r \in \mathrm{SOHS}(d)\}$$

we may restrict to invariant (block diagonal) matrices  $\in \operatorname{Toep}_d^\mathcal{W}$ .

Number of nonzero matrix entries (d =order of the hierarchy)

• dense: 
$$|\Omega_d|^2$$

• Chebyshev: 
$$\frac{|\Omega_d|^2 + n^2 |\Omega_{d-D}|^2}{|W|^2}$$
  
• Symmetry adapted basis: 
$$\sum_{i=1}^{h} (m_i^{(d)} \alpha_i^{(d)})$$

## Comparison in terms of matrix sizes

#### Symmetry reduction

The property  $f - r \in SOHS(d)$  can be parametrized with positive semidefinite Toeplitz matrices  $\in Toep_d$ . In the SDP

$$(\text{Dumitrescu'07}) \quad f_{\text{dense}}^d := \sup\{r \in \mathbb{R} \mid f - r \in \text{SOHS}(d)\}$$

we may restrict to invariant (block diagonal) matrices  $\in \operatorname{Toep}_d^\mathcal{W}$ .

Number of nonzero matrix entries (d = order of the hierarchy)

• dense:  $|\Omega_d|^2$ 

• Chebyshev: 
$$\frac{|\Omega_d|^2 + n^2 |\Omega_{d-D}|^2}{|W|^2}$$

• Symmetry adapted basis:  $\sum_{i=1}^{h} (m_i^{(d)} d_i)^2$ 

# Thanks for your attention.

- E. Hubert, T. Metzlaff, C. Riener: Orbit spaces of Weyl groups acting on compact tori: a unified and explicit polynomial description https://hal.archives-ouvertes.fr/hal-03590007
- E. Hubert, T. Metzlaff, P. Moustrou, C. Riener: Optimization of trigonometric polynomials with crystallographic symmetry and spectral bounds for set avoiding graphs

https://hal.archives-ouvertes.fr/hal-03768067

- T. Metzlaff: On symmetry adapted bases in trigonometric optimization

https://arxiv.org/abs/2310.05519



T. Metzlaff: Maple2023:GeneralizedChebyshev

https://github.com/TobiasMetzlaff/GeneralizedChebyshev