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Segre—Veronese variety

Definition (Veronese variety)

The (spherical) Veronese variety is powers of linear forms on the sphere:

Vid = {iﬂd | £ is a linear form in xp,...,xp} NS.
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Segre—Veronese variety

Definition (Veronese variety)

The (spherical) Veronese variety is powers of linear forms on the sphere:

Vid = {:I:Ed | £ is a linear form in xp,...,xp} NS.

Let n=(n,...,n,), d=(di,...,d).

Definition (Segre—Veronese variety)

The (spherical) Segre—Veronese variety is the set of partially symmetric
rank-one tensors, i.e.

Xnd = {:I:K‘fl ® - @ L% | £; is a linear form in xp, . .. >an} nS.
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Segre—Veronese variety

Definition (Veronese variety)

The (spherical) Veronese variety is powers of linear forms on the sphere:

Vid = {:I:Ed | £ is a linear form in xp,...,xp} NS.

Let n=(n,...,n,), d=(di,...,d).

Definition (Segre—Veronese variety)

The (spherical) Segre—Veronese variety is the set of partially symmetric
rank-one tensors, i.e.

Xnd = {:I:K‘fl ® - @ L% | £; is a linear form in xp, . .. >an} nS.

For di = --- = d, =1, we obtain the (spherical) Segre variety, or the set
of rank-one tensors.
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Reach

Definition (Medial axis)

Given a set S C S, the medial axis Med(S) is the set of all points G € S
such that there exist at least two points F1,F> € S with
ds(G, S) = ds(F;, G), i = 1,2.

Figure: The medial axis of a variety (purple). Figure courtesy of Madeline Brandt
and Madeleine Weinstein.
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Reach

Definition (Reach)

The reach of S is defined as

7(S) := égg ds(F, Med(S5)).

Figure: Reach = length of green line.
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Reach

The reach is determined by points of maximal curvature and bottlenecks.

Wl 0

(a) Maximal curvature (p1) (b) Bottlenecks (p2)

The reach of the spherical Segre—Veronese manifold is the minimum of the
two functions

T(de) = min{pl, pg}.
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Maximal curvature

1
Pr= sup{||Pe(7"(0))] | v is a geodesic in X, 4 parametrized by arc length}’

where P is the orthogonal projection onto NgX,, 4.
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Maximal curvature

1

Pr= sup{||Pe(7"(0))] | v is a geodesic in X, 4 parametrized by arc length}’

where P is the orthogonal projection onto NgX,, 4.

Lemma (Kostlan 1993, 2002)

The Bombieri-Weyl inner product on X, 4 is invariant under orthogonal
change of variables; i.e., for orthogonal matrices
Q1 €0(n+1),...,Qr € O(n, + 1) we have

(fio@)® - @(froQr), (810 Q1) ® - ®(8roQr))
:<f1®...®fr7 81X - ®g).
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Maximal curvature

1

Pr= sup{||Pe(7"(0))] | v is a geodesic in X, 4 parametrized by arc length}’

where P is the orthogonal projection onto NgX,, 4.

Lemma (Kostlan 1993, 2002)

The Bombieri-Weyl inner product on X, 4 is invariant under orthogonal
change of variables; i.e., for orthogonal matrices
Q1 €0(n+1),...,Qr € O(n, + 1) we have

(fio@)® - @(froQr), (810 Q1) ® - ®(8roQr))
:<f1®...®fr7 81X - ®g).

Thus, we can take
E ::xg1 ®~-®xg’ € Xngd-
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Maximal curvature

1
— = sup{||Pe(7"(0))]| | v is a geodesic in X,, 4 parametrized by arc length}
P1
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Maximal curvature

1
— = sup{||Pe(7"(0))]| | v is a geodesic in X,, 4 parametrized by arc length}
P1

Geodesics (t) in X, 4 are of the form

Y(t) =n(t) @ @7 (),
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Maximal curvature

1

— = sup{||Pe(7"(0))]| | v is a geodesic in X,, 4 parametrized by arc length}
P1

Geodesics (t) in X, 4 are of the form

Y(t) =n(t) @ @7 (),

where, after rotating as necessary,

ilt) = (COS <d"71/2 a’t> Xo +sin (dflp a,-t> x1>di.

7v(t) parametrized by arc length = >/_, 2% = 1.
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Maximal curvature

1

— = sup{||Pe(7"(0))]| | v is a geodesic in X,, 4 parametrized by arc length}
P1

Geodesics (t) in X, 4 are of the form
Y(t) =m(t) @ - @7 (1),
where, after rotating as necessary,
~i(t) = (cos <di71/2 a;t> Xp + sin <d71/2 a,-t) x1>di.
7v(t) parametrized by arc length = >/_, 2% = 1.

Maximize ||Pe(7"(0))]|| subject to Y 7_, a%? = 1:

amec =% = s {Pe O]} - 2D,
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Bottlenecks

p2 =min {3 ds(F,E) | F € Xpg, F#£E and F—E € NgXpq ®R-E}
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Bottlenecks

p2 =min {3 ds(F,E) | F € Xpg, F#£E and F—E € NgXpq ®R-E}

F-EcNgX,a®R-E < (F-EG)=0 forall Ge TeXpa.
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Bottlenecks

p2 =min {3 ds(F,E) | F € Xpg, F#£E and F—E € NgXpq ®R-E}

F-EcNgX,a®R-E < (F-EG)=0 forall Ge TeXpa.

Write F = (1 @ ... @ (9.
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Bottlenecks

p2 =min {3 ds(F,E) | F € Xpg, F#£E and F—E € NgXpq ®R-E}

F-EcNgX,a®R-E < (F-EG)=0 forall Ge TeXpa.

Write F = (1 @ .- ® (9. We find that

either {; = xg forall i< F=E
or (¢;,xg) = 0 for at least one i < (F,E) = 0.

(F-E,G) =0 <« {
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Bottlenecks

p2 =min {3 ds(F,E) | F € Xpg, F#£E and F—E € NgXpq ®R-E}

F-EcNgX,a®R-E < (F-EG)=0 forall Ge TeXpa.

Write F = (1 @ .- ® (9. We find that

either {; = xg forall i< F=E
or (¢;,xg) = 0 for at least one i < (F,E) = 0.

(F-E,G) =0 <« {

Therefore, the bottlenecks of X, g all have width arccos0 = g

Sarah Eggleston (UOS) Reach of the Segre variety November 14, 2023 8/18



Bottlenecks

p2 =min {3 ds(F,E) | F € Xpg, F#£E and F—E € NgXpq ®R-E}

F-EcNgXpa®R-E & (F-EG)=0 forall Ge& TeXpa.
Write F = (1 @ .- ® (9. We find that

(F-E,G)=0 {eitheréi:xoforalli@F:E

or (¢;,xg) = 0 for at least one i < (F,E) = 0.

Therefore, the bottlenecks of X, g all have width arccos0 = g
1 ™ _=
SOp2=35"2=73"
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Reach of X, 4

Theorem (Breiding-E.)

Letd =(di,...,d,) andn = (ny,...,n,) be r-tuples of positive integers,
and let d :== dj + - -- + d, > 2 be the total degree. The reach of the
(spherical) Segre—Veronese manifold is

z, d<s

T(Xnd) =
’ / d
m, d > 5-

Sarah Eggleston (UOS) Reach of the Segre variety November 14, 2023 9/18



Reach of X, 4

Theorem (Breiding-E.)

Letd =(di,...,d,) andn = (ny,...,n,) be r-tuples of positive integers,
and let d :== dj + - -- + d, > 2 be the total degree. The reach of the
(spherical) Segre—Veronese manifold is

z, d<s

T(Xnd) =
’ / d
m, d > 5-

In particular, the reach only depends on the total degree d and not on the
dimensions of the Veronese varieties V, 4.
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Weyl's tube formula

What is the volume of the tubular neighborhood U(e) of the
Segre—\Veronese variety?
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Weyl's tube formula

What is the volume of the tubular neighborhood U(e) of the
Segre—\Veronese variety?

Let
n=dmX,g=n+---+n, N=dim(S),

6 . .
Ji(e) = / (sin @)V""21 - (cos )™ 2 dp.
t=0
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Weyl's tube formula

What is the volume of the tubular neighborhood U(e) of the
Segre—\Veronese variety?

Let
n=dmX,g=n+---+n, N=dim(S),
6 - .
U = [ (sing)" T (cosi)
t=0
Then
vol(U(e)) = > ki Jile),
0<2i<n
with
R = VO](de) / m2,-(L|:) dF7
FENEde : ||F||:1

where my;(Lg) denotes the sum of the 2j-principal minors of the
Weingarten map Lg in normal direction F.
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Volume of the tubular neighborhood

Evaluating this integral amounts to determining the expected value of the
minors of the Weingarten map Lg.
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Volume of the tubular neighborhood

Evaluating this integral amounts to determining the expected value of the
minors of the Weingarten map Lg.

If F is Gaussian, Lg is a random symmetric matrix with independent blocks

Ll 000 Ll,r Lk ~ \/@GOE(’L%

(ler)T L, Lij~ N(O, In, ® In)
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Perfect matchings in graphs and random determinants

Example

For the Segre manifold with ny = no =2, n3 = ny = 1 and degrees

1=(1,1,1,1), the Weingarten map is given by

0 0 | Fii00 Fi200 | F1o010 | F1001

0 0 | Foio0 F2200 | Fo2o1 | F2001

Fii100 F2i00| O 0 | Foiio | Fozoz

11(2,2,1,1) =
1 ) Fioo0 F2o00| O 0 | Fo2io0 | Fo2o1
Fio10 F2010 | Fo1io0 Fo2i0| O | Foonx
| Fio01 Fo2001 | Foror Fo201 | Foo1z | O
where the entries are all i.i.d. standard Gaussian.
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Perfect matchings in graphs and random determinants

Example

For the Segre manifold with ny = no =2, n3 = ny = 1 and degrees

1=(1,1,1,1), the Weingarten map is given by

0 0 | Fii00 Fi200 | F1o010 | F1001 |

0 0 | Foio0 F2200 | Fo2o1 | F2001

Fii100 F2i00| O Foi10 | Fozo1

11(2,2,1,1) =

1 ) Fioo0 F2o00| O Fo210 | Fo2o1

Fio10 F2010 | Fo1io0 Fo2i0| O | Foonx
| Fio01 Fo2001 | Foror Fo201 | Foozz | 0 |

where the entries are all i.i.d. standard Gaussian.

Expectation is linear, so

where &, is the symmetric group on m elements.
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Perfect matchings in graphs and random determinants

Thus, we can compute [E det/1(2,2,1,1) by counting perfect matchings in
the following graph with ny + ny + n3 + na = 6 vertices and four groups

Zl = {1,2},12 = {374},1.3 = {5},1-4 = {6}

0 0 [l3 liallis
0 0 |f3 laallas

l16

U6

031 f32| 0 0 |f35
la1 lap| O O |las

l36

la6

ls1 l5o|l53 l54| O

l56

ls1 le2|l63 V64 |l65
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Perfect matchings in graphs and random determinants

Thus, we can compute [E det/1(2,2,1,1) by counting perfect matchings in
the following graph with ny + ny + n3 + na = 6 vertices and four groups

Zl = {1,2},12 = {374},1.3 = {5},1-4 = {6}

0 0 51,4

0 0 |[l3 (o4

U5

U5

l16

U6

@ 3200 0

la1 la2| 0O O

U35

U5

l36

la6

ls1 Ul52|l53 (54

0

l56

ls1 62| l63 V64
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Perfect matchings in graphs and random determinants

Thus, we can compute [E det/1(2,2,1,1) by counting perfect matchings in
the following graph with ny + ny + n3 + na = 6 vertices and four groups

Zl = {1,2},12 = {3,4},1.3 = {5},1-4 = {6}

0 0 51,4
0 0 f2,3

U5

U5

l16

U6

53,2 0 0
54,1 0 0

U35

U5

l36

la6

ls1 Ul52|l53 (54

0

l56

ls1 62| l63 V64
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Perfect matchings in graphs and random determinants

Thus, we can compute [E det/1(2,2,1,1) by counting perfect matchings in
the following graph with ny + ny + n3 + na = 6 vertices and four groups
Zl = {1,2},12 = {3,4},1.3 = {5},1-4 = {6}

0 0 51,4 l15 |16
0 0 €2,3f2,5 a6
53,2 0 0 |f35|036
54,1 0 0 |fas5|lap
ls1 l5o|l53 l54| O
b1 lo2|le3 56,4 0
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Perfect matchings in graphs and random determinants

Thus, we can compute [E det/1(2,2,1,1) by counting perfect matchings in
the following graph with ny + ny + n3 + na = 6 vertices and four groups

Zl = {1,2},12 = {374},1.3 = {5},1-4 = {6}

0 0 51,4

0 0 fz,3f2,5

U5

l16

U6

53,2 0 0 |f35|036
ly1 0 0 |fas5|lap
ls1 l5o|l53 l54| O

ls1 62| l63 V64

In total these are 10 matches, which shows that D;(2,2,1,1) = —10.
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Perfect matchings in graphs and random determinants

0.04 | ]

e
o
@

relative frequency
o
o
5

0.01 -

0.00

7:10 7‘20 (; 2‘0
det L 1(2,2,1,1)

Figure: The empirical distribution of det L1(2,2,1,1) for 10° sample points. The
empirical mean of this sample is —9.9995. We showed that the actual mean value
is —10.
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Thanks!

arxiv.org/abs/2307.04224
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Bottlenecks

p2 =min {3 ds(F,E) | F € Xpa, F#E and F—E € NgXpa ®R-E}
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Bottlenecks

p2 =min {3 ds(F,E) | F € Xpa, F#E and F—E € NgXpa ®R-E}

F—EENEdeEBR-E = (F—E,G>:0 for all GETEde

where
TeXna =T o Vna ®X @ Ox++xI @@ T Vo, d-
0
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Bottlenecks

p2 =min {3 ds(F,E) | F € Xp9, F#E and F—E € NgX,q®R-E}

F—EENEdeEBR-E = (F—E,G>:0 for all GETEde
where
TEXn,d = Txdlvnhdl R X6’2 R ® X0r+. . .+Xgl R Xg2 R ® Txg’V””d"
0
Write F = (1 @ .. @ (9.
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Bottlenecks

p2 =min {3 ds(F,E) | F € Xp9, F#E and F—E € NgX,q®R-E}

F—EENEdeEBR-E = (F—E,G>:0 for all GETEde
where
TeXna =T o Vna ®X @ Ox++xI @@ T Vo, d-
0
Write F = (1 @ .. @ (9.
First component: TXle,,Ld1 is spanned by polynomials of the form
0

xgl_lxk forl1 < k < nm.
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Bottlenecks

p2 =min {3 ds(F,E) | F € Xp9, F#E and F—E € NgX,q®R-E}

F—EENEdeEBR-E = (F—E,G>:0 for all GETEde
where
TeXnd = 1o Vindy @ %57 @ @ x5 x5 ©x5° @+ @ T0. Vi g,

0
Write F = (1 @ .. @ (9.
First component: TXle,,hd1 is spanned by polynomials of the form
0

xgl Ly for 1 < k < ny.

FEx" ' oxo - oxf) =F x5 eoxe- - oxf

r r

= (0" xg" i) <e°’ ) = (01, x0) M (1, xe) T (i x0)
= =2
=0Vk e {1, nl} if /1 =xg or <fl,X0> =0.
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Bottlenecks

Iterating, we have

either /; = xg for all i < F =E

(F-E,G)=0 )
or (¢;,xo) = 0 for at least one i < (F,E) = 0.
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Bottlenecks

Iterating, we have

F—E.G) =0 {eitheré,-:xoforalli@F:E

or (¢;,xo) = 0 for at least one i < (F,E) = 0.

p2 =min {3 ds(F,E) | F€Xa9, F#E and F—E € NgX,qg ®R-E}
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Bottlenecks

Iterating, we have

F—E.G) =0 {eitheré,-:xoforalli@F:E

or (¢;,xo) = 0 for at least one i < (F,E) = 0.

p2 =min {3 ds(F,E) | F€Xa9, F#E and F—E € NgX,qg ®R-E}

Therefore, the bottlenecks of X, 4 all have width arccos0 = %
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Bottlenecks

Iterating, we have

F—E.G) =0 {eitheré,-:xoforalli@F:E

or (¢;,xo) = 0 for at least one i < (F,E) = 0.

p2 =min {3 ds(F,E) | F€Xa9, F#E and F—E € NgX,qg ®R-E}

Therefore, the bottlenecks of X, 4 all have width arccos0 = %
1 m_=
SOp2=35"5=%-
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