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Overview

• Arithmétique et Géométrie
• Hyperelliptic curves
• Isogenies
• Isogeny graphs

• Cryptographie
• Hash function
• Cryptanalysis of hash function
• State of genus-two isogeny cryptography
• Cryptanalysis of FESTA
• What is next?
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Arithmétique et Géométrie



Elliptic Curves
An elliptic curve E is a curve in P2(k) given by

E : y2 = cubic in x

P Q R

P + Q
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Hyperelliptic Curves

A hyperelliptic curve (of genus 2) H is a curve in P2(k) given by

H : y2 = sextic or quintic in x
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Hyperelliptic Curves

A hyperelliptic curve (of genus 2) H is a curve in P2(k) given by

H : y2 = sextic or quintic in x
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Jacobians
Group law comes from divisors.

Let E be an elliptic curve.
• Weil divisor: Finite formal sum of points on E

D =
∑
P∈E

nPP ,

where nP ∈ Z. The set of Weil divisors form a group under addition.
• Degree: deg D =

∑
nP .

• Principal divisor: div(f ) =
∑

P∈E ordP(f )P.
• Jacobian of E = Divisors of degree 0 modulo principal divisors (aka Pic0(E )).

Theorem
The map

σ : Pic0(E ) → E
D ∼ (P) − (O) 7→ P

is an isomorphism.
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Hyperelliptic Curves

• Jacobians of hyperelliptic curves are abelian varieties. We are interested in genus
2 hyperelliptic curves which give abelian surfaces.

• Abelian surfaces also include the product of two elliptic curves.
• There is a special property: principal polarisation.
• We want to preserve this.
• There are other properties one can choose to keep that can be useful for other

cryptographic schemes.
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Isogenies and Isogeny Graphs

A morphism f : A → A′ is called an isogeny if it is surjective, with finite kernel.

Fun facts:
• Isogenies are group homomorphisms.
• If ϕ is a separable isogeny, then deg ϕ = # ker ϕ.

Theorem
There is a 1-1 correspondence between finite subgroups K ⊆ A and separable isogenies
f : A → A′.

Recall: Need principal polarisations. So we add a property to the subgroups: isotropy.

ℓ-Isogeny graphs:

Vertices:
Edges:

We will focus on isogeny graphs of Principally Polarised Abelian Surfaces (PPAS).
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(2,2)-isogeny graph
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Cryptographie



Hash function

• Hash function
H : {0, 1}∗ → {0, 1}n .

• Security properties:
1 Collision resistance: Finding x1, x2 such that H(x1) = H(x2) is hard.
2 Pre-image resistance: Given y = H(x), finding x is hard.

• Preview of hash function on isogeny graph:
Input String of bits.

Ouput Vertex on graph.
Method Use input as random walk with random starting vertex.
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Hash function with genus two

• Charles, Goren, and Lauter showed that Brandt matrices1 are Ramanujan [CGL09].

• Hinted at the use of superspecial graphs on hash functions, but proposed a hash
function in genus one [CLG09].

• Takashima outlined a hash function using (2,2)-isogenies on the superspecial
graph of abelian surfaces [Tak18].

• Set a prime p, and a vertex (superspecial abelian surface).
• Use input bits to choose a non-backtracking path at each vertex.
• Output final vertex of path.

• Jordan and Zaytman proved connectedness and expander properties of
superspecial isogeny graph [JZ20].

Security properties:
1 Collision resistance
2 Pre-image resistance

1Connections to supersingular abelian varieties exist, but are beyond the scope of this talk.
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Studying isogenies via subgroups

Proposition
Let H be a hyperelliptic curve of genus 2 over Fq. Let K be a finite, non-trivial,
Fq-rational subgroup of JH(Fq). There exists a PPAS A over Fq, and an isogeny
ϕ : JH → A with kernel K, if and only if K is a maximal ℓ-isotropic subgroup of JH [ℓ]
for some positive integer ℓ.

• Isogenies can be studied by looking at their kernels.
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Kernel Subgroup Structure

Proposition ([FT19])
Let A be a PPAS. The maximal ℓn-isotropic subgroups of A[ℓn] ∼= C4

ℓn are isomorphic to

Cℓn × Cℓn or Cℓn × Cℓn−k × Cℓk or A[ℓm]

where 1 ≤ k ≤ ⌊n/2⌋ and m ≤ n.

Proof.
If K is cyclic, then K ∼= Cℓ ⊆ Cℓ × Cℓ, hence not maximal.
For rank 2: Use maximality of subgroups.
For rank 3: Use symmetry of the kernel of the dual isogeny.

How does structure of subgroup affect isogenies?
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Number of Neighbours

Proposition ([FT19])
Let Gp,ℓ be the (ℓ, ℓ)-isogeny graph of PPAS over F p. Then the number of elements in
the n-sphere, where n > 2, centred around an arbitrary vertex is

ℓ2n−3(ℓ2 + 1)(ℓ + 1)
(

ℓn + ℓ
ℓn−2 − 1

ℓ − 1 + 1
)

if n is even, and

ℓ2n−3(ℓ2 + 1)(ℓ + 1)
(

ℓn + ℓn−1 − 1
ℓ − 1

)
if n is odd.

Proof.
• Count number of ℓn-maximal isotropic subgroups.
• Sum them together.
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Number of Paths I

• Fix primes p and ℓ, and a PPAS A.
• Consider kernel K ⊆ A[ℓn], i.e. fix a ℓn-maximal isotropic subgroup.
• How many ways can we get from A → A/K?

The key observation is that the number of Cℓ × Cℓ isotropic subgroups of K
corresponds with the number choices for the first isogeny.
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Example: Diamond

• Fix p, and a PPAS A.
• Let ℓ = 2 and let

K = ⟨P, Q, R⟩ ∼= C4 × C2 × C2.
• K has order 16, so we expect

A → A/K to be a sequence of 2
(2, 2)-isogenies.

• First step: ⟨[2]P, Q⟩, ⟨[2]P, R⟩,
⟨[2]P, Q + R⟩.

• Second step: No choices.

A

X

(1) (2) (3)

(Q
)

(R
)

(Q
+

R)

(R) (Q
)

(Q
)
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Example: C16 × C8 × C2

(1)

(2) (3) (4)

(8) (10) (11)

(14) (16) (17)

(18)

(0,
1)

(4
,1

) (4, 0)
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Example: C16 × C4 × C4
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Example: 2-sphere

•

• • • • • • • • • • • • • • •
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Number of paths II

Proposition ([FT19])
Let P(n, a) be the number of paths in a (Cℓn × Cℓn−a × Cℓa)-isogeny. Then P(n, a)
satisfies the following recursive equation:

P(n, a) = ℓP(n − 1, a − 1) + P(n − 1, a) ,

where 1 ≤ a < n/2, and with the following boundary conditions:

P(n, 0) = 1, P(2, 1) = ℓ + 1 .

Proof.
Similar to diamond example: consider the number of choices available as the first step,
then obtain the recursive relation.
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Collisions in Hash function

• Easy to encounter collisions if paths contain diamonds

• Castryck, Decru, and Smith [CDS20] proposed a hash function whose paths:

• do not back-track;
• avoid collisions.

Comparing to dimension 1:
• SSECs have three 2-isogenies

, two non-backtracking 2-isogenies.

• PPSSASs have fifteen (2,2)-isogenies

, eight non-backtracking and “good”
(2,2)-isogenies.

Problem: What happens when you hit a product?
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Cryptanalysis in higher genera

• Superspecial graph (g ≥ 2) contains reducible abelian varieties.

• Probability of reducible abelian varieties is O(1/p).

Theorem ([CS20])
Let A, A′ be PPSSAV over Fp of dimension g ≥ 2.

1 There is a classical Õ(pg−1) algorithm which finds an isogeny ϕ : A → A′ in the
superspecial graph.

2 There is a quantum Õ(
√

pg−1) algorithm which finds an isogeny ϕ : A → A′ in the
superspecial graph.

• AIM of attacker: Find reducible ones.
This is finding special vertices in the graph.
E.g. Delfs–Galbraith [DG16] finding E/Fp in the full SSEC graph.

Genus 2 the sweet spot? Can we remove products?
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Superspecial or Supersingular I

Definition
Let k = Fpn , then E/k is supersingular if any one (hence all) of the following is true:
(i) E [pr ] = 0 for one (all) r ≥ 1.
(ii) End(E ), the endomorphism ring over the closure of k is an order in a quaternion

algebra.

Definition
A/k is supersingular if A is isogenous over k to a product of SSEC.
A/k is superspecial if A is isomorphic over k to a product of SSEC.

Theorem (Shioda, Deligne, Oort)
Let A be an abelian variety over a field of characteristic p and of dimension g ≥ 2, and
let E g → A be an isogeny of degree d, where E is a supersingular elliptic curve. If
p ∤ d, then A ∼= E g .
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Superspecial and Supersingular II

Let k be a finite field of characteristic p. Consider the finite group schemes

αp ∼= Spec(k[X ]/Xp) and µp ∼= Spec(k[X ]/(Xp − 1)) .

Let A/k be an abelian variety of dimension g .
• The p-rank of A is given by f = dimFp (Hom(µp, A[p])),
• the a-number of A is given by a = dimk(Hom(αp, A[p])).
• It holds that 0 ≤ f ≤ g and 1 ≤ a + f ≤ g ,
• hence, geometrically, A[p] ∼= (Z/pZ)f .

f a A[p] Type Codim.
2 0 L2 Ordinary 0
1 1 L ⊕ I1,1 Non-ordinary 1
0 1 I2,1 Supersingular 2
0 2 I2

1,1 Superspecial 3
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Moving to supersingular non-superspecial I

Moving to supersingular non-superspecial:

• Working with (ℓ, ℓ)-isogenies for ℓ, p coprime, we do not get reducible surfaces.
• Work over extensions of Fp2 .

Ending on a reducible surface for CDS hash:
• Three strategies for ending on reducible surface:

1 Ignore;
2 Deterministically find a non-reducible neighbour;
3 Glue 2-torsion.

• Raises possibility of failures.
Encountering reducible surfaces en route:

• Simple side-channel analysis would show that.
• Attack using meet-in-the-middle.

See [LTZ22] for more information.
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Moving to supersingular non-superspecial II
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More genus-two in Isogeny cryptography

• G2SIDH: Generalisation of SIDH. [FT19]
• Attacks on G2SIDH. [KTW21, GLT22]
• Failing to hash into isomorphism classes of SSECs. [BBD+22]

• Breaking SIDH using genus-two.
• SQISignHD: Embedding large isogenies over SSEC as higher dimensional isogenies.
• FESTA: Using Kani’s lemma constructively.
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Recover one-bit of FESTA I

• Ongoing work with Sabrina Kunzweiler, Luciano Maino, Lukas Zobernig.
Thanks to Giacomo Pope for help with code.

• Uses a trapdoor function for encryption.
• Decryption function:

Dec(sk, c) = m or ⊥

• Ciphertext (to be choosen by attacker) c = E1, R1, S1, E2, R2, S2.
• Secret key: sk = ⟨K1⟩, ⟨K2⟩, B

⟨K1⟩ and ⟨K2⟩ are secret kernel subgroups
B is a secret 2 × 2 matrix.

• Output: m or ⊥

• Oracle model

O(c, m) =
{

⊥ if Dec(sk, c) ̸= m,

1 if Dec(sk, c) = m.
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Recover one-bit of FESTA II

• Attacker has a pair (m, c).

• Recall:
c = E1, R1, S1, E2, R2, S2.

• Oracle computes

H =
〈(

R1
[α]R2

)
,

(
S1

[β]S2

)〉
⊂ E1 × E2.

• Note that H has many generators:

H =
〈(

R1 + S1
[α]R2 + [β]S2

)
,

(
[λ]S1

[λ][β]S2

)〉
⊂ E1 × E2.
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Recover one-bit of FESTA III

Oracle model

O(c, m) =
{

0 if Dec(sk, c) ̸= m,

1 if Dec(sk, c) = m.

Attacker chooses c:

R ′
1 = [1 + 2n−2]R1, R ′

2 = [1 + 2n−2]R2,

S ′
1 = S1 − [2n−2]R1, S ′

2 = S2 − [2n−2]R2.

Oracle computes

〈(
[1 + 2n−2]R1

[α][1 + 2n−2]R2

)
,

(
S1 − [2n−2]R1

[β](S2 − [2n−2]R2)

)〉

=
〈(

[1 + 2n−2]R1
[α]R2 + [α0][2n−2]R2 + [α1][2n−1]R2

)
,

(
S1 − [2n−2]R1

[β]S2 − [β0][2n−2]R2 + [β1][2n−1]R2

)〉

=



〈(
R1 + S1

[α]R2 + [β]S2

)
,

(
S1 − [2n−2]R1

[β](S2 − [2n−2]R2)

)〉
if (α1, β1) = (0, 0)〈(

R1 + S1

[α]R2 + [β]S2 + [2n−1]R2

)
,

(
S1 − [2n−2]R1

[β](S2 − [2n−2]R2)

)〉
if (α1, β1) = (0, 1)〈(

R1 + S1

[α]R2 + [β]S2 + [2n−1]R2

)
,

(
S1 − [2n−2]R1

[β](S2 − [2n−2]R2)

)〉
if (α1, β1) = (1, 0)〈(

R1 + S1

[α]R2 + [β]S2

)
,

(
S1 − [2n−2]R1

[β](S2 − [2n−2]R2)

)〉
if (α1, β1) = (1, 1)
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Recover one-bit of FESTA IV

• Decryption protected by OAEP.

• Recovered one-bit despite that.
• Recovery of next bit is underway, but thwarted by OAEP so far.
• SHOULD be able to attack trapdoor without OAEP; trapdoor model does not

consider this.
• Attacking a variant of FESTA with diagonal matrices.
• Attacking trapdoor can be made to attack encryption by adding in side-channel

information.
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What is next

• Generalising CSIDH to genus-two.
• Better implementations of isogenies on abelian surfaces.
• Better understanding of endomorphism rings of abelian surfaces.
• Greater understanding on isogeny graph in genus-two.

• Generalising SQISign to genus-two.

• Generalise KLPT to genus-two.
• Computing Deuring correspondence in genus-two.

WARNING: Cryptosystems probably won’t be efficient! But can be fun!
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Conclusion

• Arithmétique et Géométrie
• (Hyper)elliptic curves and jacobians
• Isotropic subgroups

• Cryptographie
• Hash functions, collisions, and patch
• Constructive and destructive applications
• FESTA and one-bit recovery

• Théorie des Codes

• Sorry
Thank you and questions?
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• Théorie des Codes
• Sorry

Thank you and questions?

32 / 32



References I

Jeremy Booher, Ross Bowden, Javad Doliskani, Tako Boris Fouotsa, Steven D. Galbraith, Sabrina
Kunzweiler, Simon-Philipp Merz, Christophe Petit, Benjamin Smith, Katherine E. Stange, Yan Bo
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