
Isogeny-based cryptography on the (abelian) surface

Yan Bo Ti, DSO Singapore

DSO Singapore

8 June 2023

1 / 32



Isogeny-based cryptography on the (abelian) surface
What to do with your life when SIDH breaks?

Yan Bo Ti, DSO Singapore

DSO Singapore

8 June 2023

1 / 32



Overview

• Arithmétique et Géométrie
• Hyperelliptic curves
• Isogenies
• Isogeny graphs

• Cryptographie
• Hash function
• Cryptanalysis of hash function
• State of genus-two isogeny cryptography
• Cryptanalysis of FESTA
• What is next?

2 / 32



Arithmétique et Géométrie



Elliptic Curves
An elliptic curve E is a curve in P2(k) given by

E : y2 = cubic in x

P Q R

P + Q

3 / 32



Elliptic Curves
An elliptic curve E is a curve in P2(k) given by

E : y2 = cubic in x

P Q

R

P + Q

3 / 32



Elliptic Curves
An elliptic curve E is a curve in P2(k) given by

E : y2 = cubic in x

P Q R

P + Q

3 / 32



Elliptic Curves
An elliptic curve E is a curve in P2(k) given by

E : y2 = cubic in x

P Q R

P + Q

3 / 32



Hyperelliptic Curves

A hyperelliptic curve (of genus 2) H is a curve in P2(k) given by

H : y2 = sextic or quintic in x

4 / 32



Hyperelliptic Curves

A hyperelliptic curve (of genus 2) H is a curve in P2(k) given by

H : y2 = sextic or quintic in x

P1

P2 Q1

Q2

4 / 32



Hyperelliptic Curves

A hyperelliptic curve (of genus 2) H is a curve in P2(k) given by

H : y2 = sextic or quintic in x

P1

P2 Q1

Q2

R1

R2

4 / 32



Hyperelliptic Curves

A hyperelliptic curve (of genus 2) H is a curve in P2(k) given by

H : y2 = sextic or quintic in x

P1

P2 Q1

Q2

R1

R2

(P + Q)1

(P + Q)2

4 / 32



Jacobians
Group law comes from divisors.

Let E be an elliptic curve.
• Weil divisor: Finite formal sum of points on E

D =
∑
P∈E

nPP ,

where nP ∈ Z. The set of Weil divisors form a group under addition.
• Degree: deg D =

∑
nP .

• Principal divisor: div(f ) =
∑

P∈E ordP(f )P.
• Jacobian of E = Divisors of degree 0 modulo principal divisors (aka Pic0(E )).

Theorem
The map

σ : Pic0(E ) → E
D ∼ (P) − (O) 7→ P

is an isomorphism.

5 / 32



Jacobians
Group law comes from divisors.
Let E be an elliptic curve.

• Weil divisor: Finite formal sum of points on E
D =

∑
P∈E

nPP ,

where nP ∈ Z. The set of Weil divisors form a group under addition.
• Degree: deg D =

∑
nP .

• Principal divisor: div(f ) =
∑

P∈E ordP(f )P.
• Jacobian of E = Divisors of degree 0 modulo principal divisors (aka Pic0(E )).

Theorem
The map

σ : Pic0(E ) → E
D ∼ (P) − (O) 7→ P

is an isomorphism.

5 / 32



Jacobians
Group law comes from divisors.
Let E be an elliptic curve.

• Weil divisor: Finite formal sum of points on E
D =

∑
P∈E

nPP ,

where nP ∈ Z. The set of Weil divisors form a group under addition.

• Degree: deg D =
∑

nP .
• Principal divisor: div(f ) =

∑
P∈E ordP(f )P.

• Jacobian of E = Divisors of degree 0 modulo principal divisors (aka Pic0(E )).

Theorem
The map

σ : Pic0(E ) → E
D ∼ (P) − (O) 7→ P

is an isomorphism.

5 / 32



Jacobians
Group law comes from divisors.
Let E be an elliptic curve.

• Weil divisor: Finite formal sum of points on E
D =

∑
P∈E

nPP ,

where nP ∈ Z. The set of Weil divisors form a group under addition.
• Degree: deg D =

∑
nP .

• Principal divisor: div(f ) =
∑

P∈E ordP(f )P.
• Jacobian of E = Divisors of degree 0 modulo principal divisors (aka Pic0(E )).

Theorem
The map

σ : Pic0(E ) → E
D ∼ (P) − (O) 7→ P

is an isomorphism.

5 / 32



Jacobians
Group law comes from divisors.
Let E be an elliptic curve.

• Weil divisor: Finite formal sum of points on E
D =

∑
P∈E

nPP ,

where nP ∈ Z. The set of Weil divisors form a group under addition.
• Degree: deg D =

∑
nP .

• Principal divisor: div(f ) =
∑

P∈E ordP(f )P.

• Jacobian of E = Divisors of degree 0 modulo principal divisors (aka Pic0(E )).

Theorem
The map

σ : Pic0(E ) → E
D ∼ (P) − (O) 7→ P

is an isomorphism.

5 / 32



Jacobians
Group law comes from divisors.
Let E be an elliptic curve.

• Weil divisor: Finite formal sum of points on E
D =

∑
P∈E

nPP ,

where nP ∈ Z. The set of Weil divisors form a group under addition.
• Degree: deg D =

∑
nP .

• Principal divisor: div(f ) =
∑

P∈E ordP(f )P.
• Jacobian of E = Divisors of degree 0 modulo principal divisors (aka Pic0(E )).

Theorem
The map

σ : Pic0(E ) → E
D ∼ (P) − (O) 7→ P

is an isomorphism.

5 / 32



Jacobians
Group law comes from divisors.
Let E be an elliptic curve.

• Weil divisor: Finite formal sum of points on E
D =

∑
P∈E

nPP ,

where nP ∈ Z. The set of Weil divisors form a group under addition.
• Degree: deg D =

∑
nP .

• Principal divisor: div(f ) =
∑

P∈E ordP(f )P.
• Jacobian of E = Divisors of degree 0 modulo principal divisors (aka Pic0(E )).

Theorem
The map

σ : Pic0(E ) → E
D ∼ (P) − (O) 7→ P

is an isomorphism.
5 / 32



Hyperelliptic Curves

• Jacobians of hyperelliptic curves are abelian varieties. We are interested in genus
2 hyperelliptic curves which give abelian surfaces.

• Abelian surfaces also include the product of two elliptic curves.
• There is a special property: principal polarisation.
• We want to preserve this.
• There are other properties one can choose to keep that can be useful for other

cryptographic schemes.

6 / 32



Hyperelliptic Curves

• Jacobians of hyperelliptic curves are abelian varieties. We are interested in genus
2 hyperelliptic curves which give abelian surfaces.

• Abelian surfaces also include the product of two elliptic curves.

• There is a special property: principal polarisation.
• We want to preserve this.
• There are other properties one can choose to keep that can be useful for other

cryptographic schemes.

6 / 32



Hyperelliptic Curves

• Jacobians of hyperelliptic curves are abelian varieties. We are interested in genus
2 hyperelliptic curves which give abelian surfaces.

• Abelian surfaces also include the product of two elliptic curves.
• There is a special property: principal polarisation.

• We want to preserve this.
• There are other properties one can choose to keep that can be useful for other

cryptographic schemes.

6 / 32



Hyperelliptic Curves

• Jacobians of hyperelliptic curves are abelian varieties. We are interested in genus
2 hyperelliptic curves which give abelian surfaces.

• Abelian surfaces also include the product of two elliptic curves.
• There is a special property: principal polarisation.
• We want to preserve this.

• There are other properties one can choose to keep that can be useful for other
cryptographic schemes.

6 / 32



Hyperelliptic Curves

• Jacobians of hyperelliptic curves are abelian varieties. We are interested in genus
2 hyperelliptic curves which give abelian surfaces.

• Abelian surfaces also include the product of two elliptic curves.
• There is a special property: principal polarisation.
• We want to preserve this.
• There are other properties one can choose to keep that can be useful for other

cryptographic schemes.

6 / 32



Isogenies and Isogeny Graphs

A morphism f : A → A′ is called an isogeny if it is surjective, with finite kernel.

Fun facts:
• Isogenies are group homomorphisms.
• If ϕ is a separable isogeny, then deg ϕ = # ker ϕ.

Theorem
There is a 1-1 correspondence between finite subgroups K ⊆ A and separable isogenies
f : A → A′.

Recall: Need principal polarisations. So we add a property to the subgroups: isotropy.

ℓ-Isogeny graphs:

Vertices:
Edges:

We will focus on isogeny graphs of Principally Polarised Abelian Surfaces (PPAS).

7 / 32



Isogenies and Isogeny Graphs

A morphism f : A → A′ is called an isogeny if it is surjective, with finite kernel.
Fun facts:

• Isogenies are group homomorphisms.
• If ϕ is a separable isogeny, then deg ϕ = # ker ϕ.

Theorem
There is a 1-1 correspondence between finite subgroups K ⊆ A and separable isogenies
f : A → A′.

Recall: Need principal polarisations. So we add a property to the subgroups: isotropy.

ℓ-Isogeny graphs:

Vertices:
Edges:

We will focus on isogeny graphs of Principally Polarised Abelian Surfaces (PPAS).

7 / 32



Isogenies and Isogeny Graphs

A morphism f : A → A′ is called an isogeny if it is surjective, with finite kernel.
Fun facts:

• Isogenies are group homomorphisms.
• If ϕ is a separable isogeny, then deg ϕ = # ker ϕ.

Theorem
There is a 1-1 correspondence between finite subgroups K ⊆ A and separable isogenies
f : A → A′.

Recall: Need principal polarisations. So we add a property to the subgroups: isotropy.

ℓ-Isogeny graphs:

Vertices:
Edges:

We will focus on isogeny graphs of Principally Polarised Abelian Surfaces (PPAS).

7 / 32



Isogenies and Isogeny Graphs

A morphism f : A → A′ is called an isogeny if it is surjective, with finite kernel.
Fun facts:

• Isogenies are group homomorphisms.
• If ϕ is a separable isogeny, then deg ϕ = # ker ϕ.

Theorem
There is a 1-1 correspondence between finite subgroups K ⊆ A and separable isogenies
f : A → A′.

Recall: Need principal polarisations. So we add a property to the subgroups: isotropy.

ℓ-Isogeny graphs:

Vertices:
Edges:

We will focus on isogeny graphs of Principally Polarised Abelian Surfaces (PPAS).

7 / 32



Isogenies and Isogeny Graphs

A morphism f : A → A′ is called an isogeny if it is surjective, with finite kernel.
Fun facts:

• Isogenies are group homomorphisms.
• If ϕ is a separable isogeny, then deg ϕ = # ker ϕ.

Theorem
There is a 1-1 correspondence between finite subgroups K ⊆ A and separable isogenies
f : A → A′.

Recall: Need principal polarisations. So we add a property to the subgroups: isotropy.

ℓ-Isogeny graphs:
Vertices: Abelian varieties
Edges: Separable ℓ-isogenies

We will focus on isogeny graphs of Principally Polarised Abelian Surfaces (PPAS).

7 / 32



Isogenies and Isogeny Graphs

A morphism f : A → A′ is called an isogeny if it is surjective, with finite kernel.
Fun facts:

• Isogenies are group homomorphisms.
• If ϕ is a separable isogeny, then deg ϕ = # ker ϕ.

Theorem
There is a 1-1 correspondence between finite subgroups K ⊆ A and separable isogenies
f : A → A′.

Recall: Need principal polarisations. So we add a property to the subgroups: isotropy.

ℓ-Isogeny graphs:
Vertices: Abelian varieties
Edges: Separable ℓ-isogenies

We will focus on isogeny graphs of Principally Polarised Abelian Surfaces (PPAS).

7 / 32



Isogenies and Isogeny Graphs

A morphism f : A → A′ is called an isogeny if it is surjective, with finite kernel.
Fun facts:

• Isogenies are group homomorphisms.
• If ϕ is a separable isogeny, then deg ϕ = # ker ϕ.

Theorem
There is a 1-1 correspondence between finite subgroups K ⊆ A and separable isogenies
f : A → A′.

Recall: Need principal polarisations. So we add a property to the subgroups: isotropy.

ℓ-Isogeny graphs:
Vertices: Isomorphism classes of PPASs
Edges: (ℓ, ℓ)-isogenies

We will focus on isogeny graphs of Principally Polarised Abelian Surfaces (PPAS).

7 / 32



(2,2)-isogeny graph

8 / 32



Cryptographie



Hash function

• Hash function
H : {0, 1}∗ → {0, 1}n .

• Security properties:
1 Collision resistance: Finding x1, x2 such that H(x1) = H(x2) is hard.
2 Pre-image resistance: Given y = H(x), finding x is hard.

• Preview of hash function on isogeny graph:
Input String of bits.

Ouput Vertex on graph.
Method Use input as random walk with random starting vertex.

9 / 32



Hash function

• Hash function
H : {0, 1}∗ → {0, 1}n .

• Security properties:
1 Collision resistance: Finding x1, x2 such that H(x1) = H(x2) is hard.
2 Pre-image resistance: Given y = H(x), finding x is hard.

• Preview of hash function on isogeny graph:
Input String of bits.

Ouput Vertex on graph.
Method Use input as random walk with random starting vertex.

9 / 32



Hash function

• Hash function
H : {0, 1}∗ → {0, 1}n .

• Security properties:
1 Collision resistance: Finding x1, x2 such that H(x1) = H(x2) is hard.
2 Pre-image resistance: Given y = H(x), finding x is hard.

• Preview of hash function on isogeny graph:
Input String of bits.

Ouput Vertex on graph.
Method Use input as random walk with random starting vertex.

9 / 32



Hash function with genus two

• Charles, Goren, and Lauter showed that Brandt matrices1 are Ramanujan [CGL09].

• Hinted at the use of superspecial graphs on hash functions, but proposed a hash
function in genus one [CLG09].

• Takashima outlined a hash function using (2,2)-isogenies on the superspecial
graph of abelian surfaces [Tak18].

• Set a prime p, and a vertex (superspecial abelian surface).
• Use input bits to choose a non-backtracking path at each vertex.
• Output final vertex of path.

• Jordan and Zaytman proved connectedness and expander properties of
superspecial isogeny graph [JZ20].

Security properties:
1 Collision resistance
2 Pre-image resistance

1Connections to supersingular abelian varieties exist, but are beyond the scope of this talk.
10 / 32



Hash function with genus two

• Charles, Goren, and Lauter showed that Brandt matrices1 are Ramanujan [CGL09].
• Hinted at the use of superspecial graphs on hash functions, but proposed a hash

function in genus one [CLG09].

• Takashima outlined a hash function using (2,2)-isogenies on the superspecial
graph of abelian surfaces [Tak18].

• Set a prime p, and a vertex (superspecial abelian surface).
• Use input bits to choose a non-backtracking path at each vertex.
• Output final vertex of path.

• Jordan and Zaytman proved connectedness and expander properties of
superspecial isogeny graph [JZ20].

Security properties:
1 Collision resistance
2 Pre-image resistance

1Connections to supersingular abelian varieties exist, but are beyond the scope of this talk.
10 / 32



Hash function with genus two

• Charles, Goren, and Lauter showed that Brandt matrices1 are Ramanujan [CGL09].
• Hinted at the use of superspecial graphs on hash functions, but proposed a hash

function in genus one [CLG09].
• Takashima outlined a hash function using (2,2)-isogenies on the superspecial

graph of abelian surfaces [Tak18].

• Set a prime p, and a vertex (superspecial abelian surface).
• Use input bits to choose a non-backtracking path at each vertex.
• Output final vertex of path.

• Jordan and Zaytman proved connectedness and expander properties of
superspecial isogeny graph [JZ20].

Security properties:
1 Collision resistance
2 Pre-image resistance

1Connections to supersingular abelian varieties exist, but are beyond the scope of this talk.
10 / 32



Hash function with genus two

• Charles, Goren, and Lauter showed that Brandt matrices1 are Ramanujan [CGL09].
• Hinted at the use of superspecial graphs on hash functions, but proposed a hash

function in genus one [CLG09].
• Takashima outlined a hash function using (2,2)-isogenies on the superspecial

graph of abelian surfaces [Tak18].
• Set a prime p, and a vertex (superspecial abelian surface).

• Use input bits to choose a non-backtracking path at each vertex.
• Output final vertex of path.

• Jordan and Zaytman proved connectedness and expander properties of
superspecial isogeny graph [JZ20].

Security properties:
1 Collision resistance
2 Pre-image resistance

1Connections to supersingular abelian varieties exist, but are beyond the scope of this talk.
10 / 32



Hash function with genus two

• Charles, Goren, and Lauter showed that Brandt matrices1 are Ramanujan [CGL09].
• Hinted at the use of superspecial graphs on hash functions, but proposed a hash

function in genus one [CLG09].
• Takashima outlined a hash function using (2,2)-isogenies on the superspecial

graph of abelian surfaces [Tak18].
• Set a prime p, and a vertex (superspecial abelian surface).
• Use input bits to choose a non-backtracking path at each vertex.

• Output final vertex of path.
• Jordan and Zaytman proved connectedness and expander properties of

superspecial isogeny graph [JZ20].
Security properties:

1 Collision resistance
2 Pre-image resistance

1Connections to supersingular abelian varieties exist, but are beyond the scope of this talk.
10 / 32



Hash function with genus two

• Charles, Goren, and Lauter showed that Brandt matrices1 are Ramanujan [CGL09].
• Hinted at the use of superspecial graphs on hash functions, but proposed a hash

function in genus one [CLG09].
• Takashima outlined a hash function using (2,2)-isogenies on the superspecial

graph of abelian surfaces [Tak18].
• Set a prime p, and a vertex (superspecial abelian surface).
• Use input bits to choose a non-backtracking path at each vertex.
• Output final vertex of path.

• Jordan and Zaytman proved connectedness and expander properties of
superspecial isogeny graph [JZ20].

Security properties:
1 Collision resistance
2 Pre-image resistance

1Connections to supersingular abelian varieties exist, but are beyond the scope of this talk.
10 / 32



Hash function with genus two

• Charles, Goren, and Lauter showed that Brandt matrices1 are Ramanujan [CGL09].
• Hinted at the use of superspecial graphs on hash functions, but proposed a hash

function in genus one [CLG09].
• Takashima outlined a hash function using (2,2)-isogenies on the superspecial

graph of abelian surfaces [Tak18].
• Set a prime p, and a vertex (superspecial abelian surface).
• Use input bits to choose a non-backtracking path at each vertex.
• Output final vertex of path.

• Jordan and Zaytman proved connectedness and expander properties of
superspecial isogeny graph [JZ20].

Security properties:
1 Collision resistance
2 Pre-image resistance

1Connections to supersingular abelian varieties exist, but are beyond the scope of this talk.
10 / 32



Hash function with genus two

• Charles, Goren, and Lauter showed that Brandt matrices1 are Ramanujan [CGL09].
• Hinted at the use of superspecial graphs on hash functions, but proposed a hash

function in genus one [CLG09].
• Takashima outlined a hash function using (2,2)-isogenies on the superspecial

graph of abelian surfaces [Tak18].
• Set a prime p, and a vertex (superspecial abelian surface).
• Use input bits to choose a non-backtracking path at each vertex.
• Output final vertex of path.

• Jordan and Zaytman proved connectedness and expander properties of
superspecial isogeny graph [JZ20].

Security properties:
1 Collision resistance
2 Pre-image resistance

1Connections to supersingular abelian varieties exist, but are beyond the scope of this talk.
10 / 32



Hash function with genus two

• Charles, Goren, and Lauter showed that Brandt matrices1 are Ramanujan [CGL09].
• Hinted at the use of superspecial graphs on hash functions, but proposed a hash

function in genus one [CLG09].
• Takashima outlined a hash function using (2,2)-isogenies on the superspecial

graph of abelian surfaces [Tak18].
• Set a prime p, and a vertex (superspecial abelian surface).
• Use input bits to choose a non-backtracking path at each vertex.
• Output final vertex of path.

• Jordan and Zaytman proved connectedness and expander properties of
superspecial isogeny graph [JZ20].

Security properties:
1 Collision resistance
2 Pre-image resistance

1Connections to supersingular abelian varieties exist, but are beyond the scope of this talk.
10 / 32



Studying isogenies via subgroups

Proposition
Let H be a hyperelliptic curve of genus 2 over Fq. Let K be a finite, non-trivial,
Fq-rational subgroup of JH(Fq). There exists a PPAS A over Fq, and an isogeny
ϕ : JH → A with kernel K, if and only if K is a maximal ℓ-isotropic subgroup of JH [ℓ]
for some positive integer ℓ.

• Isogenies can be studied by looking at their kernels.

11 / 32



Kernel Subgroup Structure

Proposition ([FT19])
Let A be a PPAS. The maximal ℓn-isotropic subgroups of A[ℓn] ∼= C4

ℓn are isomorphic to

Cℓn × Cℓn or Cℓn × Cℓn−k × Cℓk or A[ℓm]

where 1 ≤ k ≤ ⌊n/2⌋ and m ≤ n.

Proof.
If K is cyclic, then K ∼= Cℓ ⊆ Cℓ × Cℓ, hence not maximal.
For rank 2: Use maximality of subgroups.
For rank 3: Use symmetry of the kernel of the dual isogeny.

How does structure of subgroup affect isogenies?

12 / 32



Kernel Subgroup Structure

Proposition ([FT19])
Let A be a PPAS. The maximal ℓn-isotropic subgroups of A[ℓn] ∼= C4

ℓn are isomorphic to

Cℓn × Cℓn or Cℓn × Cℓn−k × Cℓk or A[ℓm]

where 1 ≤ k ≤ ⌊n/2⌋ and m ≤ n.

Proof.
If K is cyclic, then K ∼= Cℓ ⊆ Cℓ × Cℓ, hence not maximal.
For rank 2: Use maximality of subgroups.
For rank 3: Use symmetry of the kernel of the dual isogeny.

How does structure of subgroup affect isogenies?

12 / 32



Kernel Subgroup Structure

Proposition ([FT19])
Let A be a PPAS. The maximal ℓn-isotropic subgroups of A[ℓn] ∼= C4

ℓn are isomorphic to

Cℓn × Cℓn or Cℓn × Cℓn−k × Cℓk or A[ℓm]

where 1 ≤ k ≤ ⌊n/2⌋ and m ≤ n.

Proof.
If K is cyclic, then K ∼= Cℓ ⊆ Cℓ × Cℓ, hence not maximal.
For rank 2: Use maximality of subgroups.
For rank 3: Use symmetry of the kernel of the dual isogeny.

How does structure of subgroup affect isogenies?

12 / 32



Number of Neighbours

Proposition ([FT19])
Let Gp,ℓ be the (ℓ, ℓ)-isogeny graph of PPAS over F p. Then the number of elements in
the n-sphere, where n > 2, centred around an arbitrary vertex is

ℓ2n−3(ℓ2 + 1)(ℓ + 1)
(

ℓn + ℓ
ℓn−2 − 1

ℓ − 1 + 1
)

if n is even, and

ℓ2n−3(ℓ2 + 1)(ℓ + 1)
(

ℓn + ℓn−1 − 1
ℓ − 1

)
if n is odd.

Proof.
• Count number of ℓn-maximal isotropic subgroups.
• Sum them together.

13 / 32



Number of Neighbours

Proposition ([FT19])
Let Gp,ℓ be the (ℓ, ℓ)-isogeny graph of PPAS over F p. Then the number of elements in
the n-sphere, where n > 2, centred around an arbitrary vertex is

ℓ2n−3(ℓ2 + 1)(ℓ + 1)
(

ℓn + ℓ
ℓn−2 − 1

ℓ − 1 + 1
)

if n is even, and

ℓ2n−3(ℓ2 + 1)(ℓ + 1)
(

ℓn + ℓn−1 − 1
ℓ − 1

)
if n is odd.

Proof.
• Count number of ℓn-maximal isotropic subgroups.
• Sum them together.

13 / 32



Number of Paths I

• Fix primes p and ℓ, and a PPAS A.
• Consider kernel K ⊆ A[ℓn], i.e. fix a ℓn-maximal isotropic subgroup.
• How many ways can we get from A → A/K?

The key observation is that the number of Cℓ × Cℓ isotropic subgroups of K
corresponds with the number choices for the first isogeny.

14 / 32



Number of Paths I

• Fix primes p and ℓ, and a PPAS A.
• Consider kernel K ⊆ A[ℓn], i.e. fix a ℓn-maximal isotropic subgroup.
• How many ways can we get from A → A/K?

The key observation is that the number of Cℓ × Cℓ isotropic subgroups of K
corresponds with the number choices for the first isogeny.

14 / 32



Example: Diamond

• Fix p, and a PPAS A.
• Let ℓ = 2 and let

K = ⟨P, Q, R⟩ ∼= C4 × C2 × C2.
• K has order 16, so we expect

A → A/K to be a sequence of 2
(2, 2)-isogenies.

• First step: ⟨[2]P, Q⟩, ⟨[2]P, R⟩,
⟨[2]P, Q + R⟩.

• Second step: No choices.

A

X

(1) (2) (3)

(Q
)

(R
)

(Q
+

R)

(R) (Q
)

(Q
)

15 / 32



Example: Diamond

• Fix p, and a PPAS A.
• Let ℓ = 2 and let

K = ⟨P, Q, R⟩ ∼= C4 × C2 × C2.
• K has order 16, so we expect

A → A/K to be a sequence of 2
(2, 2)-isogenies.

• First step: ⟨[2]P, Q⟩, ⟨[2]P, R⟩,
⟨[2]P, Q + R⟩.

• Second step: No choices.

A

X

(1) (2) (3)

(Q
)

(R
)

(Q
+

R)

(R) (Q
)

(Q
)

15 / 32



Example: Diamond

• Fix p, and a PPAS A.
• Let ℓ = 2 and let

K = ⟨P, Q, R⟩ ∼= C4 × C2 × C2.
• K has order 16, so we expect

A → A/K to be a sequence of 2
(2, 2)-isogenies.

• First step: ⟨[2]P, Q⟩, ⟨[2]P, R⟩,
⟨[2]P, Q + R⟩.

• Second step: No choices.

A

X

(1) (2) (3)

(Q
)

(R
)

(Q
+

R)

(R) (Q
)

(Q
)

15 / 32



Example: C16 × C8 × C2

(1)

(2) (3) (4)

(8) (10) (11)

(14) (16) (17)

(18)

(0,
1)

(4
,1

) (4, 0)

(4
,0

)

(0,
1)

(0, 1)
(2,

1)

(2
,0

)

(2
,0

)
(0,

1)
(0, 1)

(1,
0)

(1
,1

)

(1, 0) (0
,1

)
(0,

1)

16 / 32



Example: C16 × C4 × C4

(1)

(2) (3) (4)

(5) (6) (7) (8) (9) (10) (11)

(13)(12) (14)

(15)

(2,
0)

(2
,2

) (0, 2)

(1
, 0

) (0, 2)(1
,2

)

(2
,0

)

(1
, 1

) (1,−1) (2,
0)

(0
,1

) (2, 1)

(0, 2) (1,
0)

(0
,2

)

(1
,1

)(1,−1) (1
, 1

) (0, 1) (2
,0

)

(2
, 0

)

(0, 1) (0
,1

)
(1,

0)

17 / 32



Example: 2-sphere

•

• • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

18 / 32



Number of paths II

Proposition ([FT19])
Let P(n, a) be the number of paths in a (Cℓn × Cℓn−a × Cℓa)-isogeny. Then P(n, a)
satisfies the following recursive equation:

P(n, a) = ℓP(n − 1, a − 1) + P(n − 1, a) ,

where 1 ≤ a < n/2, and with the following boundary conditions:

P(n, 0) = 1, P(2, 1) = ℓ + 1 .

Proof.
Similar to diamond example: consider the number of choices available as the first step,
then obtain the recursive relation.

19 / 32



Number of paths II

Proposition ([FT19])
Let P(n, a) be the number of paths in a (Cℓn × Cℓn−a × Cℓa)-isogeny. Then P(n, a)
satisfies the following recursive equation:

P(n, a) = ℓP(n − 1, a − 1) + P(n − 1, a) ,

where 1 ≤ a < n/2, and with the following boundary conditions:

P(n, 0) = 1, P(2, 1) = ℓ + 1 .

Proof.
Similar to diamond example: consider the number of choices available as the first step,
then obtain the recursive relation.

19 / 32



Collisions in Hash function

• Easy to encounter collisions if paths contain diamonds

• Castryck, Decru, and Smith [CDS20] proposed a hash function whose paths:

• do not back-track;
• avoid collisions.

Comparing to dimension 1:
• SSECs have three 2-isogenies

, two non-backtracking 2-isogenies.

• PPSSASs have fifteen (2,2)-isogenies

, eight non-backtracking and “good”
(2,2)-isogenies.

Problem: What happens when you hit a product?

20 / 32



Collisions in Hash function

• Easy to encounter collisions if paths contain diamonds
• Castryck, Decru, and Smith [CDS20] proposed a hash function whose paths:

• do not back-track;
• avoid collisions.

Comparing to dimension 1:
• SSECs have three 2-isogenies

, two non-backtracking 2-isogenies.

• PPSSASs have fifteen (2,2)-isogenies

, eight non-backtracking and “good”
(2,2)-isogenies.

Problem: What happens when you hit a product?

20 / 32



Collisions in Hash function

• Easy to encounter collisions if paths contain diamonds
• Castryck, Decru, and Smith [CDS20] proposed a hash function whose paths:

• do not back-track;
• avoid collisions.

Comparing to dimension 1:
• SSECs have three 2-isogenies

, two non-backtracking 2-isogenies.

• PPSSASs have fifteen (2,2)-isogenies

, eight non-backtracking and “good”
(2,2)-isogenies.

Problem: What happens when you hit a product?

20 / 32



Collisions in Hash function

• Easy to encounter collisions if paths contain diamonds
• Castryck, Decru, and Smith [CDS20] proposed a hash function whose paths:

• do not back-track;
• avoid collisions.

Comparing to dimension 1:

• SSECs have three 2-isogenies

, two non-backtracking 2-isogenies.

• PPSSASs have fifteen (2,2)-isogenies

, eight non-backtracking and “good”
(2,2)-isogenies.

Problem: What happens when you hit a product?

20 / 32



Collisions in Hash function

• Easy to encounter collisions if paths contain diamonds
• Castryck, Decru, and Smith [CDS20] proposed a hash function whose paths:

• do not back-track;
• avoid collisions.

Comparing to dimension 1:
• SSECs have three 2-isogenies

, two non-backtracking 2-isogenies.
• PPSSASs have fifteen (2,2)-isogenies

, eight non-backtracking and “good”
(2,2)-isogenies.

Problem: What happens when you hit a product?

20 / 32



Collisions in Hash function

• Easy to encounter collisions if paths contain diamonds
• Castryck, Decru, and Smith [CDS20] proposed a hash function whose paths:

• do not back-track;
• avoid collisions.

Comparing to dimension 1:
• SSECs have three 2-isogenies, two non-backtracking 2-isogenies.

• PPSSASs have fifteen (2,2)-isogenies

, eight non-backtracking and “good”
(2,2)-isogenies.

Problem: What happens when you hit a product?

20 / 32



Collisions in Hash function

• Easy to encounter collisions if paths contain diamonds
• Castryck, Decru, and Smith [CDS20] proposed a hash function whose paths:

• do not back-track;
• avoid collisions.

Comparing to dimension 1:
• SSECs have three 2-isogenies, two non-backtracking 2-isogenies.
• PPSSASs have fifteen (2,2)-isogenies

, eight non-backtracking and “good”
(2,2)-isogenies.

Problem: What happens when you hit a product?

20 / 32



Collisions in Hash function

• Easy to encounter collisions if paths contain diamonds
• Castryck, Decru, and Smith [CDS20] proposed a hash function whose paths:

• do not back-track;
• avoid collisions.

Comparing to dimension 1:
• SSECs have three 2-isogenies, two non-backtracking 2-isogenies.
• PPSSASs have fifteen (2,2)-isogenies, eight non-backtracking and “good”

(2,2)-isogenies.

Problem: What happens when you hit a product?

20 / 32



Collisions in Hash function

• Easy to encounter collisions if paths contain diamonds
• Castryck, Decru, and Smith [CDS20] proposed a hash function whose paths:

• do not back-track;
• avoid collisions.

Comparing to dimension 1:
• SSECs have three 2-isogenies, two non-backtracking 2-isogenies.
• PPSSASs have fifteen (2,2)-isogenies, eight non-backtracking and “good”

(2,2)-isogenies.
Problem: What happens when you hit a product?

20 / 32



Cryptanalysis in higher genera

• Superspecial graph (g ≥ 2) contains reducible abelian varieties.

• Probability of reducible abelian varieties is O(1/p).

Theorem ([CS20])
Let A, A′ be PPSSAV over Fp of dimension g ≥ 2.

1 There is a classical Õ(pg−1) algorithm which finds an isogeny ϕ : A → A′ in the
superspecial graph.

2 There is a quantum Õ(
√

pg−1) algorithm which finds an isogeny ϕ : A → A′ in the
superspecial graph.

• AIM of attacker: Find reducible ones.
This is finding special vertices in the graph.
E.g. Delfs–Galbraith [DG16] finding E/Fp in the full SSEC graph.

Genus 2 the sweet spot? Can we remove products?

21 / 32



Cryptanalysis in higher genera

• Superspecial graph (g ≥ 2) contains reducible abelian varieties.
• Probability of reducible abelian varieties is O(1/p).

Theorem ([CS20])
Let A, A′ be PPSSAV over Fp of dimension g ≥ 2.

1 There is a classical Õ(pg−1) algorithm which finds an isogeny ϕ : A → A′ in the
superspecial graph.

2 There is a quantum Õ(
√

pg−1) algorithm which finds an isogeny ϕ : A → A′ in the
superspecial graph.

• AIM of attacker: Find reducible ones.
This is finding special vertices in the graph.
E.g. Delfs–Galbraith [DG16] finding E/Fp in the full SSEC graph.

Genus 2 the sweet spot? Can we remove products?

21 / 32



Cryptanalysis in higher genera

• Superspecial graph (g ≥ 2) contains reducible abelian varieties.
• Probability of reducible abelian varieties is O(1/p).

Theorem ([CS20])
Let A, A′ be PPSSAV over Fp of dimension g ≥ 2.

1 There is a classical Õ(pg−1) algorithm which finds an isogeny ϕ : A → A′ in the
superspecial graph.

2 There is a quantum Õ(
√

pg−1) algorithm which finds an isogeny ϕ : A → A′ in the
superspecial graph.

• AIM of attacker: Find reducible ones.
This is finding special vertices in the graph.
E.g. Delfs–Galbraith [DG16] finding E/Fp in the full SSEC graph.

Genus 2 the sweet spot? Can we remove products?

21 / 32



Cryptanalysis in higher genera

• Superspecial graph (g ≥ 2) contains reducible abelian varieties.
• Probability of reducible abelian varieties is O(1/p).

Theorem ([CS20])
Let A, A′ be PPSSAV over Fp of dimension g ≥ 2.

1 There is a classical Õ(pg−1) algorithm which finds an isogeny ϕ : A → A′ in the
superspecial graph.

2 There is a quantum Õ(
√

pg−1) algorithm which finds an isogeny ϕ : A → A′ in the
superspecial graph.

• AIM of attacker: Find reducible ones.
This is finding special vertices in the graph.
E.g. Delfs–Galbraith [DG16] finding E/Fp in the full SSEC graph.

Genus 2 the sweet spot? Can we remove products?

21 / 32



Cryptanalysis in higher genera

• Superspecial graph (g ≥ 2) contains reducible abelian varieties.
• Probability of reducible abelian varieties is O(1/p).

Theorem ([CS20])
Let A, A′ be PPSSAV over Fp of dimension g ≥ 2.

1 There is a classical Õ(pg−1) algorithm which finds an isogeny ϕ : A → A′ in the
superspecial graph.

2 There is a quantum Õ(
√

pg−1) algorithm which finds an isogeny ϕ : A → A′ in the
superspecial graph.

• AIM of attacker: Find reducible ones.
This is finding special vertices in the graph.
E.g. Delfs–Galbraith [DG16] finding E/Fp in the full SSEC graph.

Genus 2 the sweet spot?

Can we remove products?

21 / 32



Cryptanalysis in higher genera

• Superspecial graph (g ≥ 2) contains reducible abelian varieties.
• Probability of reducible abelian varieties is O(1/p).

Theorem ([CS20])
Let A, A′ be PPSSAV over Fp of dimension g ≥ 2.

1 There is a classical Õ(pg−1) algorithm which finds an isogeny ϕ : A → A′ in the
superspecial graph.

2 There is a quantum Õ(
√

pg−1) algorithm which finds an isogeny ϕ : A → A′ in the
superspecial graph.

• AIM of attacker: Find reducible ones.
This is finding special vertices in the graph.
E.g. Delfs–Galbraith [DG16] finding E/Fp in the full SSEC graph.

Genus 2 the sweet spot? Can we remove products?

21 / 32



Superspecial or Supersingular I

Definition
Let k = Fpn , then E/k is supersingular if any one (hence all) of the following is true:
(i) E [pr ] = 0 for one (all) r ≥ 1.
(ii) End(E ), the endomorphism ring over the closure of k is an order in a quaternion

algebra.

Definition
A/k is supersingular if A is isogenous over k to a product of SSEC.
A/k is superspecial if A is isomorphic over k to a product of SSEC.

Theorem (Shioda, Deligne, Oort)
Let A be an abelian variety over a field of characteristic p and of dimension g ≥ 2, and
let E g → A be an isogeny of degree d, where E is a supersingular elliptic curve. If
p ∤ d, then A ∼= E g .

22 / 32



Superspecial or Supersingular I

Definition
Let k = Fpn , then E/k is supersingular if any one (hence all) of the following is true:
(i) E [pr ] = 0 for one (all) r ≥ 1.
(ii) End(E ), the endomorphism ring over the closure of k is an order in a quaternion

algebra.

Definition
A/k is supersingular if A is isogenous over k to a product of SSEC.
A/k is superspecial if A is isomorphic over k to a product of SSEC.

Theorem (Shioda, Deligne, Oort)
Let A be an abelian variety over a field of characteristic p and of dimension g ≥ 2, and
let E g → A be an isogeny of degree d, where E is a supersingular elliptic curve. If
p ∤ d, then A ∼= E g .

22 / 32



Superspecial or Supersingular I

Definition
Let k = Fpn , then E/k is supersingular if any one (hence all) of the following is true:
(i) E [pr ] = 0 for one (all) r ≥ 1.
(ii) End(E ), the endomorphism ring over the closure of k is an order in a quaternion

algebra.

Definition
A/k is supersingular if A is isogenous over k to a product of SSEC.
A/k is superspecial if A is isomorphic over k to a product of SSEC.

Theorem (Shioda, Deligne, Oort)
Let A be an abelian variety over a field of characteristic p and of dimension g ≥ 2, and
let E g → A be an isogeny of degree d, where E is a supersingular elliptic curve. If
p ∤ d, then A ∼= E g .

22 / 32



Superspecial and Supersingular II

Let k be a finite field of characteristic p. Consider the finite group schemes

αp ∼= Spec(k[X ]/Xp) and µp ∼= Spec(k[X ]/(Xp − 1)) .

Let A/k be an abelian variety of dimension g .
• The p-rank of A is given by f = dimFp (Hom(µp, A[p])),
• the a-number of A is given by a = dimk(Hom(αp, A[p])).
• It holds that 0 ≤ f ≤ g and 1 ≤ a + f ≤ g ,
• hence, geometrically, A[p] ∼= (Z/pZ)f .

f a A[p] Type Codim.
2 0 L2 Ordinary 0
1 1 L ⊕ I1,1 Non-ordinary 1
0 1 I2,1 Supersingular 2
0 2 I2

1,1 Superspecial 3

23 / 32



Superspecial and Supersingular II

Let k be a finite field of characteristic p. Consider the finite group schemes

αp ∼= Spec(k[X ]/Xp) and µp ∼= Spec(k[X ]/(Xp − 1)) .

Let A/k be an abelian variety of dimension g .

• The p-rank of A is given by f = dimFp (Hom(µp, A[p])),
• the a-number of A is given by a = dimk(Hom(αp, A[p])).
• It holds that 0 ≤ f ≤ g and 1 ≤ a + f ≤ g ,
• hence, geometrically, A[p] ∼= (Z/pZ)f .

f a A[p] Type Codim.
2 0 L2 Ordinary 0
1 1 L ⊕ I1,1 Non-ordinary 1
0 1 I2,1 Supersingular 2
0 2 I2

1,1 Superspecial 3

23 / 32



Superspecial and Supersingular II

Let k be a finite field of characteristic p. Consider the finite group schemes

αp ∼= Spec(k[X ]/Xp) and µp ∼= Spec(k[X ]/(Xp − 1)) .

Let A/k be an abelian variety of dimension g .
• The p-rank of A is given by f = dimFp (Hom(µp, A[p])),

• the a-number of A is given by a = dimk(Hom(αp, A[p])).
• It holds that 0 ≤ f ≤ g and 1 ≤ a + f ≤ g ,
• hence, geometrically, A[p] ∼= (Z/pZ)f .

f a A[p] Type Codim.
2 0 L2 Ordinary 0
1 1 L ⊕ I1,1 Non-ordinary 1
0 1 I2,1 Supersingular 2
0 2 I2

1,1 Superspecial 3

23 / 32



Superspecial and Supersingular II

Let k be a finite field of characteristic p. Consider the finite group schemes

αp ∼= Spec(k[X ]/Xp) and µp ∼= Spec(k[X ]/(Xp − 1)) .

Let A/k be an abelian variety of dimension g .
• The p-rank of A is given by f = dimFp (Hom(µp, A[p])),
• the a-number of A is given by a = dimk(Hom(αp, A[p])).

• It holds that 0 ≤ f ≤ g and 1 ≤ a + f ≤ g ,
• hence, geometrically, A[p] ∼= (Z/pZ)f .

f a A[p] Type Codim.
2 0 L2 Ordinary 0
1 1 L ⊕ I1,1 Non-ordinary 1
0 1 I2,1 Supersingular 2
0 2 I2

1,1 Superspecial 3

23 / 32



Superspecial and Supersingular II

Let k be a finite field of characteristic p. Consider the finite group schemes

αp ∼= Spec(k[X ]/Xp) and µp ∼= Spec(k[X ]/(Xp − 1)) .

Let A/k be an abelian variety of dimension g .
• The p-rank of A is given by f = dimFp (Hom(µp, A[p])),
• the a-number of A is given by a = dimk(Hom(αp, A[p])).
• It holds that 0 ≤ f ≤ g and 1 ≤ a + f ≤ g ,

• hence, geometrically, A[p] ∼= (Z/pZ)f .

f a A[p] Type Codim.
2 0 L2 Ordinary 0
1 1 L ⊕ I1,1 Non-ordinary 1
0 1 I2,1 Supersingular 2
0 2 I2

1,1 Superspecial 3

23 / 32



Superspecial and Supersingular II

Let k be a finite field of characteristic p. Consider the finite group schemes

αp ∼= Spec(k[X ]/Xp) and µp ∼= Spec(k[X ]/(Xp − 1)) .

Let A/k be an abelian variety of dimension g .
• The p-rank of A is given by f = dimFp (Hom(µp, A[p])),
• the a-number of A is given by a = dimk(Hom(αp, A[p])).
• It holds that 0 ≤ f ≤ g and 1 ≤ a + f ≤ g ,
• hence, geometrically, A[p] ∼= (Z/pZ)f .

f a A[p] Type Codim.
2 0 L2 Ordinary 0
1 1 L ⊕ I1,1 Non-ordinary 1
0 1 I2,1 Supersingular 2
0 2 I2

1,1 Superspecial 3

23 / 32



Superspecial and Supersingular II

Let k be a finite field of characteristic p. Consider the finite group schemes

αp ∼= Spec(k[X ]/Xp) and µp ∼= Spec(k[X ]/(Xp − 1)) .

Let A/k be an abelian variety of dimension g .
• The p-rank of A is given by f = dimFp (Hom(µp, A[p])),
• the a-number of A is given by a = dimk(Hom(αp, A[p])).
• It holds that 0 ≤ f ≤ g and 1 ≤ a + f ≤ g ,
• hence, geometrically, A[p] ∼= (Z/pZ)f .

f a A[p] Type Codim.
2 0 L2 Ordinary 0
1 1 L ⊕ I1,1 Non-ordinary 1
0 1 I2,1 Supersingular 2
0 2 I2

1,1 Superspecial 3

23 / 32



Moving to supersingular non-superspecial I

Moving to supersingular non-superspecial:

• Working with (ℓ, ℓ)-isogenies for ℓ, p coprime, we do not get reducible surfaces.
• Work over extensions of Fp2 .

Ending on a reducible surface for CDS hash:
• Three strategies for ending on reducible surface:

1 Ignore;
2 Deterministically find a non-reducible neighbour;
3 Glue 2-torsion.

• Raises possibility of failures.
Encountering reducible surfaces en route:

• Simple side-channel analysis would show that.
• Attack using meet-in-the-middle.

See [LTZ22] for more information.

24 / 32



Moving to supersingular non-superspecial I

Moving to supersingular non-superspecial:
• Working with (ℓ, ℓ)-isogenies for ℓ, p coprime, we do not get reducible surfaces.

• Work over extensions of Fp2 .
Ending on a reducible surface for CDS hash:

• Three strategies for ending on reducible surface:

1 Ignore;
2 Deterministically find a non-reducible neighbour;
3 Glue 2-torsion.

• Raises possibility of failures.
Encountering reducible surfaces en route:

• Simple side-channel analysis would show that.
• Attack using meet-in-the-middle.

See [LTZ22] for more information.

24 / 32



Moving to supersingular non-superspecial I

Moving to supersingular non-superspecial:
• Working with (ℓ, ℓ)-isogenies for ℓ, p coprime, we do not get reducible surfaces.
• Work over extensions of Fp2 .

Ending on a reducible surface for CDS hash:
• Three strategies for ending on reducible surface:

1 Ignore;
2 Deterministically find a non-reducible neighbour;
3 Glue 2-torsion.

• Raises possibility of failures.
Encountering reducible surfaces en route:

• Simple side-channel analysis would show that.
• Attack using meet-in-the-middle.

See [LTZ22] for more information.

24 / 32



Moving to supersingular non-superspecial I

Moving to supersingular non-superspecial:
• Working with (ℓ, ℓ)-isogenies for ℓ, p coprime, we do not get reducible surfaces.
• Work over extensions of Fp2 .

Ending on a reducible surface for CDS hash:

• Three strategies for ending on reducible surface:

1 Ignore;
2 Deterministically find a non-reducible neighbour;
3 Glue 2-torsion.

• Raises possibility of failures.
Encountering reducible surfaces en route:

• Simple side-channel analysis would show that.
• Attack using meet-in-the-middle.

See [LTZ22] for more information.

24 / 32



Moving to supersingular non-superspecial I

Moving to supersingular non-superspecial:
• Working with (ℓ, ℓ)-isogenies for ℓ, p coprime, we do not get reducible surfaces.
• Work over extensions of Fp2 .

Ending on a reducible surface for CDS hash:
• Three strategies for ending on reducible surface:

1 Ignore;
2 Deterministically find a non-reducible neighbour;
3 Glue 2-torsion.

• Raises possibility of failures.
Encountering reducible surfaces en route:

• Simple side-channel analysis would show that.
• Attack using meet-in-the-middle.

See [LTZ22] for more information.

24 / 32



Moving to supersingular non-superspecial I

Moving to supersingular non-superspecial:
• Working with (ℓ, ℓ)-isogenies for ℓ, p coprime, we do not get reducible surfaces.
• Work over extensions of Fp2 .

Ending on a reducible surface for CDS hash:
• Three strategies for ending on reducible surface:

1 Ignore;

2 Deterministically find a non-reducible neighbour;
3 Glue 2-torsion.

• Raises possibility of failures.
Encountering reducible surfaces en route:

• Simple side-channel analysis would show that.
• Attack using meet-in-the-middle.

See [LTZ22] for more information.

24 / 32



Moving to supersingular non-superspecial I

Moving to supersingular non-superspecial:
• Working with (ℓ, ℓ)-isogenies for ℓ, p coprime, we do not get reducible surfaces.
• Work over extensions of Fp2 .

Ending on a reducible surface for CDS hash:
• Three strategies for ending on reducible surface:

1 Ignore;
2 Deterministically find a non-reducible neighbour;

3 Glue 2-torsion.
• Raises possibility of failures.

Encountering reducible surfaces en route:
• Simple side-channel analysis would show that.
• Attack using meet-in-the-middle.

See [LTZ22] for more information.

24 / 32



Moving to supersingular non-superspecial I

Moving to supersingular non-superspecial:
• Working with (ℓ, ℓ)-isogenies for ℓ, p coprime, we do not get reducible surfaces.
• Work over extensions of Fp2 .

Ending on a reducible surface for CDS hash:
• Three strategies for ending on reducible surface:

1 Ignore;
2 Deterministically find a non-reducible neighbour;
3 Glue 2-torsion.

• Raises possibility of failures.
Encountering reducible surfaces en route:

• Simple side-channel analysis would show that.
• Attack using meet-in-the-middle.

See [LTZ22] for more information.

24 / 32



Moving to supersingular non-superspecial I

Moving to supersingular non-superspecial:
• Working with (ℓ, ℓ)-isogenies for ℓ, p coprime, we do not get reducible surfaces.
• Work over extensions of Fp2 .

Ending on a reducible surface for CDS hash:
• Three strategies for ending on reducible surface:

1 Ignore;
2 Deterministically find a non-reducible neighbour;
3 Glue 2-torsion.

• Raises possibility of failures.

Encountering reducible surfaces en route:
• Simple side-channel analysis would show that.
• Attack using meet-in-the-middle.

See [LTZ22] for more information.

24 / 32



Moving to supersingular non-superspecial I

Moving to supersingular non-superspecial:
• Working with (ℓ, ℓ)-isogenies for ℓ, p coprime, we do not get reducible surfaces.
• Work over extensions of Fp2 .

Ending on a reducible surface for CDS hash:
• Three strategies for ending on reducible surface:

1 Ignore;
2 Deterministically find a non-reducible neighbour;
3 Glue 2-torsion.

• Raises possibility of failures.
Encountering reducible surfaces en route:

• Simple side-channel analysis would show that.
• Attack using meet-in-the-middle.

See [LTZ22] for more information.

24 / 32



Moving to supersingular non-superspecial I

Moving to supersingular non-superspecial:
• Working with (ℓ, ℓ)-isogenies for ℓ, p coprime, we do not get reducible surfaces.
• Work over extensions of Fp2 .

Ending on a reducible surface for CDS hash:
• Three strategies for ending on reducible surface:

1 Ignore;
2 Deterministically find a non-reducible neighbour;
3 Glue 2-torsion.

• Raises possibility of failures.
Encountering reducible surfaces en route:

• Simple side-channel analysis would show that.

• Attack using meet-in-the-middle.
See [LTZ22] for more information.

24 / 32



Moving to supersingular non-superspecial I

Moving to supersingular non-superspecial:
• Working with (ℓ, ℓ)-isogenies for ℓ, p coprime, we do not get reducible surfaces.
• Work over extensions of Fp2 .

Ending on a reducible surface for CDS hash:
• Three strategies for ending on reducible surface:

1 Ignore;
2 Deterministically find a non-reducible neighbour;
3 Glue 2-torsion.

• Raises possibility of failures.
Encountering reducible surfaces en route:

• Simple side-channel analysis would show that.
• Attack using meet-in-the-middle.

See [LTZ22] for more information.

24 / 32



Moving to supersingular non-superspecial I

Moving to supersingular non-superspecial:
• Working with (ℓ, ℓ)-isogenies for ℓ, p coprime, we do not get reducible surfaces.
• Work over extensions of Fp2 .

Ending on a reducible surface for CDS hash:
• Three strategies for ending on reducible surface:

1 Ignore;
2 Deterministically find a non-reducible neighbour;
3 Glue 2-torsion.

• Raises possibility of failures.
Encountering reducible surfaces en route:

• Simple side-channel analysis would show that.
• Attack using meet-in-the-middle.

See [LTZ22] for more information.

24 / 32



Moving to supersingular non-superspecial II

25 / 32



More genus-two in Isogeny cryptography

• G2SIDH: Generalisation of SIDH. [FT19]
• Attacks on G2SIDH. [KTW21, GLT22]
• Failing to hash into isomorphism classes of SSECs. [BBD+22]

• Breaking SIDH using genus-two.
• SQISignHD: Embedding large isogenies over SSEC as higher dimensional isogenies.
• FESTA: Using Kani’s lemma constructively.

26 / 32



More genus-two in Isogeny cryptography

• G2SIDH: Generalisation of SIDH. [FT19]
• Attacks on G2SIDH. [KTW21, GLT22]
• Failing to hash into isomorphism classes of SSECs. [BBD+22]

• Breaking SIDH using genus-two.
• SQISignHD: Embedding large isogenies over SSEC as higher dimensional isogenies.
• FESTA: Using Kani’s lemma constructively.

26 / 32



More genus-two in Isogeny cryptography

• G2SIDH: Generalisation of SIDH. [FT19]
• Attacks on G2SIDH. [KTW21, GLT22]
• Failing to hash into isomorphism classes of SSECs. [BBD+22]
• Breaking SIDH using genus-two.

• SQISignHD: Embedding large isogenies over SSEC as higher dimensional isogenies.
• FESTA: Using Kani’s lemma constructively.

26 / 32



More genus-two in Isogeny cryptography

• G2SIDH: Generalisation of SIDH. [FT19]
• Attacks on G2SIDH. [KTW21, GLT22]
• Failing to hash into isomorphism classes of SSECs. [BBD+22]
• Breaking SIDH using genus-two.

• SQISignHD: Embedding large isogenies over SSEC as higher dimensional isogenies.
• FESTA: Using Kani’s lemma constructively.

26 / 32



More genus-two in Isogeny cryptography

• G2SIDH: Generalisation of SIDH. [FT19]
• Attacks on G2SIDH. [KTW21, GLT22]
• Failing to hash into isomorphism classes of SSECs. [BBD+22]
• Breaking SIDH using genus-two.
• SQISignHD: Embedding large isogenies over SSEC as higher dimensional isogenies.

• FESTA: Using Kani’s lemma constructively.

26 / 32



More genus-two in Isogeny cryptography

• G2SIDH: Generalisation of SIDH. [FT19]
• Attacks on G2SIDH. [KTW21, GLT22]
• Failing to hash into isomorphism classes of SSECs. [BBD+22]
• Breaking SIDH using genus-two.
• SQISignHD: Embedding large isogenies over SSEC as higher dimensional isogenies.
• FESTA: Using Kani’s lemma constructively.

26 / 32



Recover one-bit of FESTA I

• Ongoing work with Sabrina Kunzweiler, Luciano Maino, Lukas Zobernig.
Thanks to Giacomo Pope for help with code.

• Uses a trapdoor function for encryption.
• Decryption function:

Dec(sk, c) = m or ⊥

• Ciphertext (to be choosen by attacker) c = E1, R1, S1, E2, R2, S2.
• Secret key: sk = ⟨K1⟩, ⟨K2⟩, B

⟨K1⟩ and ⟨K2⟩ are secret kernel subgroups
B is a secret 2 × 2 matrix.

• Output: m or ⊥

• Oracle model

O(c, m) =
{

⊥ if Dec(sk, c) ̸= m,

1 if Dec(sk, c) = m.

27 / 32



Recover one-bit of FESTA I

• Ongoing work with Sabrina Kunzweiler, Luciano Maino, Lukas Zobernig.
Thanks to Giacomo Pope for help with code.

• Uses a trapdoor function for encryption.

• Decryption function:
Dec(sk, c) = m or ⊥

• Ciphertext (to be choosen by attacker) c = E1, R1, S1, E2, R2, S2.
• Secret key: sk = ⟨K1⟩, ⟨K2⟩, B

⟨K1⟩ and ⟨K2⟩ are secret kernel subgroups
B is a secret 2 × 2 matrix.

• Output: m or ⊥

• Oracle model

O(c, m) =
{

⊥ if Dec(sk, c) ̸= m,

1 if Dec(sk, c) = m.

27 / 32



Recover one-bit of FESTA I

• Ongoing work with Sabrina Kunzweiler, Luciano Maino, Lukas Zobernig.
Thanks to Giacomo Pope for help with code.

• Uses a trapdoor function for encryption.
• Decryption function:

Dec(sk, c) = m or ⊥

• Ciphertext (to be choosen by attacker) c = E1, R1, S1, E2, R2, S2.
• Secret key: sk = ⟨K1⟩, ⟨K2⟩, B

⟨K1⟩ and ⟨K2⟩ are secret kernel subgroups
B is a secret 2 × 2 matrix.

• Output: m or ⊥
• Oracle model

O(c, m) =
{

⊥ if Dec(sk, c) ̸= m,

1 if Dec(sk, c) = m.

27 / 32



Recover one-bit of FESTA I

• Ongoing work with Sabrina Kunzweiler, Luciano Maino, Lukas Zobernig.
Thanks to Giacomo Pope for help with code.

• Uses a trapdoor function for encryption.
• Decryption function:

Dec(sk, c) = m or ⊥

• Ciphertext (to be choosen by attacker) c = E1, R1, S1, E2, R2, S2.

• Secret key: sk = ⟨K1⟩, ⟨K2⟩, B
⟨K1⟩ and ⟨K2⟩ are secret kernel subgroups
B is a secret 2 × 2 matrix.

• Output: m or ⊥
• Oracle model

O(c, m) =
{

⊥ if Dec(sk, c) ̸= m,

1 if Dec(sk, c) = m.

27 / 32



Recover one-bit of FESTA I

• Ongoing work with Sabrina Kunzweiler, Luciano Maino, Lukas Zobernig.
Thanks to Giacomo Pope for help with code.

• Uses a trapdoor function for encryption.
• Decryption function:

Dec(sk, c) = m or ⊥

• Ciphertext (to be choosen by attacker) c = E1, R1, S1, E2, R2, S2.
• Secret key: sk = ⟨K1⟩, ⟨K2⟩, B

⟨K1⟩ and ⟨K2⟩ are secret kernel subgroups
B is a secret 2 × 2 matrix.

• Output: m or ⊥
• Oracle model

O(c, m) =
{

⊥ if Dec(sk, c) ̸= m,

1 if Dec(sk, c) = m.

27 / 32



Recover one-bit of FESTA I

• Ongoing work with Sabrina Kunzweiler, Luciano Maino, Lukas Zobernig.
Thanks to Giacomo Pope for help with code.

• Uses a trapdoor function for encryption.
• Decryption function:

Dec(sk, c) = m or ⊥

• Ciphertext (to be choosen by attacker) c = E1, R1, S1, E2, R2, S2.
• Secret key: sk = ⟨K1⟩, ⟨K2⟩, B

⟨K1⟩ and ⟨K2⟩ are secret kernel subgroups
B is a secret 2 × 2 matrix.

• Output: m or ⊥

• Oracle model

O(c, m) =
{

⊥ if Dec(sk, c) ̸= m,

1 if Dec(sk, c) = m.

27 / 32



Recover one-bit of FESTA I

• Ongoing work with Sabrina Kunzweiler, Luciano Maino, Lukas Zobernig.
Thanks to Giacomo Pope for help with code.

• Uses a trapdoor function for encryption.
• Decryption function:

Dec(sk, c) = m or ⊥

• Ciphertext (to be choosen by attacker) c = E1, R1, S1, E2, R2, S2.
• Secret key: sk = ⟨K1⟩, ⟨K2⟩, B

⟨K1⟩ and ⟨K2⟩ are secret kernel subgroups
B is a secret 2 × 2 matrix.

• Output: m or ⊥
• Oracle model

O(c, m) =
{

⊥ if Dec(sk, c) ̸= m,

1 if Dec(sk, c) = m.

27 / 32



Recover one-bit of FESTA II

• Attacker has a pair (m, c).

• Recall:
c = E1, R1, S1, E2, R2, S2.

• Oracle computes

H =
〈(

R1
[α]R2

)
,

(
S1

[β]S2

)〉
⊂ E1 × E2.

• Note that H has many generators:

H =
〈(

R1 + S1
[α]R2 + [β]S2

)
,

(
[λ]S1

[λ][β]S2

)〉
⊂ E1 × E2.

28 / 32



Recover one-bit of FESTA II

• Attacker has a pair (m, c).
• Recall:

c = E1, R1, S1, E2, R2, S2.

• Oracle computes

H =
〈(

R1
[α]R2

)
,

(
S1

[β]S2

)〉
⊂ E1 × E2.

• Note that H has many generators:

H =
〈(

R1 + S1
[α]R2 + [β]S2

)
,

(
[λ]S1

[λ][β]S2

)〉
⊂ E1 × E2.

28 / 32



Recover one-bit of FESTA II

• Attacker has a pair (m, c).
• Recall:

c = E1, R1, S1, E2, R2, S2.

• Oracle computes

H =
〈(

R1
[α]R2

)
,

(
S1

[β]S2

)〉
⊂ E1 × E2.

• Note that H has many generators:

H =
〈(

R1 + S1
[α]R2 + [β]S2

)
,

(
[λ]S1

[λ][β]S2

)〉
⊂ E1 × E2.

28 / 32



Recover one-bit of FESTA II

• Attacker has a pair (m, c).
• Recall:

c = E1, R1, S1, E2, R2, S2.

• Oracle computes

H =
〈(

R1
[α]R2

)
,

(
S1

[β]S2

)〉
⊂ E1 × E2.

• Note that H has many generators:

H =
〈(

R1 + S1
[α]R2 + [β]S2

)
,

(
[λ]S1

[λ][β]S2

)〉
⊂ E1 × E2.

28 / 32



Recover one-bit of FESTA III

Oracle model

O(c, m) =
{

0 if Dec(sk, c) ̸= m,

1 if Dec(sk, c) = m.

Attacker chooses c:

R ′
1 = [1 + 2n−2]R1, R ′

2 = [1 + 2n−2]R2,

S ′
1 = S1 − [2n−2]R1, S ′

2 = S2 − [2n−2]R2.

Oracle computes

〈(
[1 + 2n−2]R1

[α][1 + 2n−2]R2

)
,

(
S1 − [2n−2]R1

[β](S2 − [2n−2]R2)

)〉

=
〈(

[1 + 2n−2]R1
[α]R2 + [α0][2n−2]R2 + [α1][2n−1]R2

)
,

(
S1 − [2n−2]R1

[β]S2 − [β0][2n−2]R2 + [β1][2n−1]R2

)〉

=



〈(
R1 + S1

[α]R2 + [β]S2

)
,

(
S1 − [2n−2]R1

[β](S2 − [2n−2]R2)

)〉
if (α1, β1) = (0, 0)〈(

R1 + S1

[α]R2 + [β]S2 + [2n−1]R2

)
,

(
S1 − [2n−2]R1

[β](S2 − [2n−2]R2)

)〉
if (α1, β1) = (0, 1)〈(

R1 + S1

[α]R2 + [β]S2 + [2n−1]R2

)
,

(
S1 − [2n−2]R1

[β](S2 − [2n−2]R2)

)〉
if (α1, β1) = (1, 0)〈(

R1 + S1

[α]R2 + [β]S2

)
,

(
S1 − [2n−2]R1

[β](S2 − [2n−2]R2)

)〉
if (α1, β1) = (1, 1)

29 / 32



Recover one-bit of FESTA III

Oracle model

O(c, m) =
{

0 if Dec(sk, c) ̸= m,

1 if Dec(sk, c) = m.

Attacker chooses c:

R ′
1 = [1 + 2n−2]R1, R ′

2 = [1 + 2n−2]R2,

S ′
1 = S1 − [2n−2]R1, S ′

2 = S2 − [2n−2]R2.

Oracle computes

〈(
[1 + 2n−2]R1

[α][1 + 2n−2]R2

)
,

(
S1 − [2n−2]R1

[β](S2 − [2n−2]R2)

)〉

=
〈(

[1 + 2n−2]R1
[α]R2 + [α0][2n−2]R2 + [α1][2n−1]R2

)
,

(
S1 − [2n−2]R1

[β]S2 − [β0][2n−2]R2 + [β1][2n−1]R2

)〉

=



〈(
R1 + S1

[α]R2 + [β]S2

)
,

(
S1 − [2n−2]R1

[β](S2 − [2n−2]R2)

)〉
if (α1, β1) = (0, 0)〈(

R1 + S1

[α]R2 + [β]S2 + [2n−1]R2

)
,

(
S1 − [2n−2]R1

[β](S2 − [2n−2]R2)

)〉
if (α1, β1) = (0, 1)〈(

R1 + S1

[α]R2 + [β]S2 + [2n−1]R2

)
,

(
S1 − [2n−2]R1

[β](S2 − [2n−2]R2)

)〉
if (α1, β1) = (1, 0)〈(

R1 + S1

[α]R2 + [β]S2

)
,

(
S1 − [2n−2]R1

[β](S2 − [2n−2]R2)

)〉
if (α1, β1) = (1, 1)

29 / 32



Recover one-bit of FESTA III

Oracle model

O(c, m) =
{

0 if Dec(sk, c) ̸= m,

1 if Dec(sk, c) = m.

Attacker chooses c:

R ′
1 = [1 + 2n−2]R1, R ′

2 = [1 + 2n−2]R2,

S ′
1 = S1 − [2n−2]R1, S ′

2 = S2 − [2n−2]R2.

Oracle computes

〈(
[1 + 2n−2]R1

[α][1 + 2n−2]R2

)
,

(
S1 − [2n−2]R1

[β](S2 − [2n−2]R2)

)〉

=
〈(

[1 + 2n−2]R1
[α]R2 + [α0][2n−2]R2 + [α1][2n−1]R2

)
,

(
S1 − [2n−2]R1

[β]S2 − [β0][2n−2]R2 + [β1][2n−1]R2

)〉

=



〈(
R1 + S1

[α]R2 + [β]S2

)
,

(
S1 − [2n−2]R1

[β](S2 − [2n−2]R2)

)〉
if (α1, β1) = (0, 0)〈(

R1 + S1

[α]R2 + [β]S2 + [2n−1]R2

)
,

(
S1 − [2n−2]R1

[β](S2 − [2n−2]R2)

)〉
if (α1, β1) = (0, 1)〈(

R1 + S1

[α]R2 + [β]S2 + [2n−1]R2

)
,

(
S1 − [2n−2]R1

[β](S2 − [2n−2]R2)

)〉
if (α1, β1) = (1, 0)〈(

R1 + S1

[α]R2 + [β]S2

)
,

(
S1 − [2n−2]R1

[β](S2 − [2n−2]R2)

)〉
if (α1, β1) = (1, 1)

29 / 32



Recover one-bit of FESTA III

Oracle model

O(c, m) =
{

0 if Dec(sk, c) ̸= m,

1 if Dec(sk, c) = m.

Attacker chooses c:

R ′
1 = [1 + 2n−2]R1, R ′

2 = [1 + 2n−2]R2,

S ′
1 = S1 − [2n−2]R1, S ′

2 = S2 − [2n−2]R2.

Oracle computes〈(
[1 + 2n−2]R1

[α][1 + 2n−2]R2

)
,

(
S1 − [2n−2]R1

[β](S2 − [2n−2]R2)

)〉

=
〈(

[1 + 2n−2]R1
[α]R2 + [α0][2n−2]R2 + [α1][2n−1]R2

)
,

(
S1 − [2n−2]R1

[β]S2 − [β0][2n−2]R2 + [β1][2n−1]R2

)〉

=



〈(
R1 + S1

[α]R2 + [β]S2

)
,

(
S1 − [2n−2]R1

[β](S2 − [2n−2]R2)

)〉
if (α1, β1) = (0, 0)〈(

R1 + S1

[α]R2 + [β]S2 + [2n−1]R2

)
,

(
S1 − [2n−2]R1

[β](S2 − [2n−2]R2)

)〉
if (α1, β1) = (0, 1)〈(

R1 + S1

[α]R2 + [β]S2 + [2n−1]R2

)
,

(
S1 − [2n−2]R1

[β](S2 − [2n−2]R2)

)〉
if (α1, β1) = (1, 0)〈(

R1 + S1

[α]R2 + [β]S2

)
,

(
S1 − [2n−2]R1

[β](S2 − [2n−2]R2)

)〉
if (α1, β1) = (1, 1)

29 / 32



Recover one-bit of FESTA III

Oracle model

O(c, m) =
{

0 if Dec(sk, c) ̸= m,

1 if Dec(sk, c) = m.

Attacker chooses c:

R ′
1 = [1 + 2n−2]R1, R ′

2 = [1 + 2n−2]R2,

S ′
1 = S1 − [2n−2]R1, S ′

2 = S2 − [2n−2]R2.

Oracle computes〈(
[1 + 2n−2]R1

[α][1 + 2n−2]R2

)
,

(
S1 − [2n−2]R1

[β](S2 − [2n−2]R2)

)〉

=
〈(

[1 + 2n−2]R1
[α]R2 + [α0][2n−2]R2 + [α1][2n−1]R2

)
,

(
S1 − [2n−2]R1

[β]S2 − [β0][2n−2]R2 + [β1][2n−1]R2

)〉

=



〈(
R1 + S1

[α]R2 + [β]S2

)
,

(
S1 − [2n−2]R1

[β](S2 − [2n−2]R2)

)〉
if (α1, β1) = (0, 0)〈(

R1 + S1

[α]R2 + [β]S2 + [2n−1]R2

)
,

(
S1 − [2n−2]R1

[β](S2 − [2n−2]R2)

)〉
if (α1, β1) = (0, 1)〈(

R1 + S1

[α]R2 + [β]S2 + [2n−1]R2

)
,

(
S1 − [2n−2]R1

[β](S2 − [2n−2]R2)

)〉
if (α1, β1) = (1, 0)〈(

R1 + S1

[α]R2 + [β]S2

)
,

(
S1 − [2n−2]R1

[β](S2 − [2n−2]R2)

)〉
if (α1, β1) = (1, 1)

29 / 32



Recover one-bit of FESTA III

Oracle model

O(c, m) =
{

0 if Dec(sk, c) ̸= m,

1 if Dec(sk, c) = m.

Attacker chooses c:

R ′
1 = [1 + 2n−2]R1, R ′

2 = [1 + 2n−2]R2,

S ′
1 = S1 − [2n−2]R1, S ′

2 = S2 − [2n−2]R2.

Oracle computes〈(
[1 + 2n−2]R1

[α][1 + 2n−2]R2

)
,

(
S1 − [2n−2]R1

[β](S2 − [2n−2]R2)

)〉

=
〈(

[1 + 2n−2]R1
[α]R2 + [α0][2n−2]R2 + [α1][2n−1]R2

)
,

(
S1 − [2n−2]R1

[β]S2 − [β0][2n−2]R2 + [β1][2n−1]R2

)〉

=



〈(
R1 + S1

[α]R2 + [β]S2

)
,

(
S1 − [2n−2]R1

[β](S2 − [2n−2]R2)

)〉
if (α1, β1) = (0, 0)〈(

R1 + S1

[α]R2 + [β]S2 + [2n−1]R2

)
,

(
S1 − [2n−2]R1

[β](S2 − [2n−2]R2)

)〉
if (α1, β1) = (0, 1)〈(

R1 + S1

[α]R2 + [β]S2 + [2n−1]R2

)
,

(
S1 − [2n−2]R1

[β](S2 − [2n−2]R2)

)〉
if (α1, β1) = (1, 0)〈(

R1 + S1

[α]R2 + [β]S2

)
,

(
S1 − [2n−2]R1

[β](S2 − [2n−2]R2)

)〉
if (α1, β1) = (1, 1)

29 / 32



Recover one-bit of FESTA IV

• Decryption protected by OAEP.

• Recovered one-bit despite that.
• Recovery of next bit is underway, but thwarted by OAEP so far.
• SHOULD be able to attack trapdoor without OAEP; trapdoor model does not

consider this.
• Attacking a variant of FESTA with diagonal matrices.
• Attacking trapdoor can be made to attack encryption by adding in side-channel

information.

30 / 32



Recover one-bit of FESTA IV

• Decryption protected by OAEP.
• Recovered one-bit despite that.

• Recovery of next bit is underway, but thwarted by OAEP so far.
• SHOULD be able to attack trapdoor without OAEP; trapdoor model does not

consider this.
• Attacking a variant of FESTA with diagonal matrices.
• Attacking trapdoor can be made to attack encryption by adding in side-channel

information.

30 / 32



Recover one-bit of FESTA IV

• Decryption protected by OAEP.
• Recovered one-bit despite that.
• Recovery of next bit is underway, but thwarted by OAEP so far.

• SHOULD be able to attack trapdoor without OAEP; trapdoor model does not
consider this.

• Attacking a variant of FESTA with diagonal matrices.
• Attacking trapdoor can be made to attack encryption by adding in side-channel

information.

30 / 32



Recover one-bit of FESTA IV

• Decryption protected by OAEP.
• Recovered one-bit despite that.
• Recovery of next bit is underway, but thwarted by OAEP so far.
• SHOULD be able to attack trapdoor without OAEP; trapdoor model does not

consider this.

• Attacking a variant of FESTA with diagonal matrices.
• Attacking trapdoor can be made to attack encryption by adding in side-channel

information.

30 / 32



Recover one-bit of FESTA IV

• Decryption protected by OAEP.
• Recovered one-bit despite that.
• Recovery of next bit is underway, but thwarted by OAEP so far.
• SHOULD be able to attack trapdoor without OAEP; trapdoor model does not

consider this.
• Attacking a variant of FESTA with diagonal matrices.

• Attacking trapdoor can be made to attack encryption by adding in side-channel
information.

30 / 32



Recover one-bit of FESTA IV

• Decryption protected by OAEP.
• Recovered one-bit despite that.
• Recovery of next bit is underway, but thwarted by OAEP so far.
• SHOULD be able to attack trapdoor without OAEP; trapdoor model does not

consider this.
• Attacking a variant of FESTA with diagonal matrices.
• Attacking trapdoor can be made to attack encryption by adding in side-channel

information.

30 / 32



What is next

• Generalising CSIDH to genus-two.
• Better implementations of isogenies on abelian surfaces.
• Better understanding of endomorphism rings of abelian surfaces.
• Greater understanding on isogeny graph in genus-two.

• Generalising SQISign to genus-two.

• Generalise KLPT to genus-two.
• Computing Deuring correspondence in genus-two.

WARNING: Cryptosystems probably won’t be efficient! But can be fun!

31 / 32



What is next

• Generalising CSIDH to genus-two.
• Better implementations of isogenies on abelian surfaces.
• Better understanding of endomorphism rings of abelian surfaces.
• Greater understanding on isogeny graph in genus-two.

• Generalising SQISign to genus-two.
• Generalise KLPT to genus-two.
• Computing Deuring correspondence in genus-two.

WARNING: Cryptosystems probably won’t be efficient! But can be fun!

31 / 32



What is next

• Generalising CSIDH to genus-two.
• Better implementations of isogenies on abelian surfaces.
• Better understanding of endomorphism rings of abelian surfaces.
• Greater understanding on isogeny graph in genus-two.

• Generalising SQISign to genus-two.
• Generalise KLPT to genus-two.
• Computing Deuring correspondence in genus-two.

WARNING: Cryptosystems probably won’t be efficient!

But can be fun!

31 / 32



What is next

• Generalising CSIDH to genus-two.
• Better implementations of isogenies on abelian surfaces.
• Better understanding of endomorphism rings of abelian surfaces.
• Greater understanding on isogeny graph in genus-two.

• Generalising SQISign to genus-two.
• Generalise KLPT to genus-two.
• Computing Deuring correspondence in genus-two.

WARNING: Cryptosystems probably won’t be efficient! But can be fun!

31 / 32



Conclusion

• Arithmétique et Géométrie
• (Hyper)elliptic curves and jacobians
• Isotropic subgroups

• Cryptographie
• Hash functions, collisions, and patch
• Constructive and destructive applications
• FESTA and one-bit recovery

• Théorie des Codes

• Sorry
Thank you and questions?

32 / 32



Conclusion

• Arithmétique et Géométrie
• (Hyper)elliptic curves and jacobians
• Isotropic subgroups

• Cryptographie
• Hash functions, collisions, and patch
• Constructive and destructive applications
• FESTA and one-bit recovery

• Théorie des Codes
• Sorry

Thank you and questions?

32 / 32



Conclusion

• Arithmétique et Géométrie
• (Hyper)elliptic curves and jacobians
• Isotropic subgroups

• Cryptographie
• Hash functions, collisions, and patch
• Constructive and destructive applications
• FESTA and one-bit recovery

• Théorie des Codes
• Sorry

Thank you and questions?

32 / 32



References I

Jeremy Booher, Ross Bowden, Javad Doliskani, Tako Boris Fouotsa, Steven D. Galbraith, Sabrina
Kunzweiler, Simon-Philipp Merz, Christophe Petit, Benjamin Smith, Katherine E. Stange, Yan Bo
Ti, Christelle Vincent, José Felipe Voloch, Charlotte Weitkämper, and Lukas Zobernig.
Failing to hash into supersingular isogeny graphs.
IACR Cryptol. ePrint Arch., page 518, 2022.

Wouter Castryck, Thomas Decru, and Benjamin Smith.
Hash functions from superspecial genus-2 curves using richelot isogenies.
J. Math. Cryptol., 14(1):268–292, 2020.

Denis Charles, Eyal Goren, and Kristin Lauter.
Families of ramanujan graphs and quaternion algebras.
Groups and symmetries, CRM Proc. Lecture Notes, 47:53–80, 2009.

Denis Xavier Charles, Kristin E. Lauter, and Eyal Z. Goren.
Cryptographic hash functions from expander graphs.
J. Cryptology, 22(1):93–113, 2009.



References II

Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes.
CSIDH: an efficient post-quantum commutative group action.
In Thomas Peyrin and Steven D. Galbraith, editors, Advances in Cryptology - ASIACRYPT 2018 -
24th International Conference on the Theory and Application of Cryptology and Information
Security, Brisbane, QLD, Australia, December 2-6, 2018, Proceedings, Part III, volume 11274 of
Lecture Notes in Computer Science, pages 395–427. Springer, 2018.

Craig Costello and Benjamin Smith.
The supersingular isogeny problem in genus 2 and beyond.
In Jintai Ding and Jean-Pierre Tillich, editors, Post-Quantum Cryptography - 11th International
Conference, PQCrypto 2020, Paris, France, April 15-17, 2020, Proceedings, volume 12100 of
Lecture Notes in Computer Science, pages 151–168. Springer, 2020.

Christina Delfs and Steven D. Galbraith.
Computing isogenies between supersingular elliptic curves over ℧p.
Des. Codes Cryptogr., 78(2):425–440, 2016.



References III

E. Victor Flynn and Yan Bo Ti.
Genus two isogeny cryptography.
In Jintai Ding and Rainer Steinwandt, editors, Post-Quantum Cryptography - 10th International
Conference, PQCrypto 2019, Chongqing, China, May 8-10, 2019 Revised Selected Papers, volume
11505 of Lecture Notes in Computer Science, pages 286–306. Springer, 2019.

Ariana Goh, Chu-Wee Lim, and Yan Bo Ti.
Generalising fault attacks to genus two isogeny cryptosystems.
In Workshop on Fault Detection and Tolerance in Cryptography, FDTC 2022, Virtual Event /
Italy, September 16, 2022, pages 38–49. IEEE, 2022.

Bruce W. Jordan and Yevgeny Zaytman.
Isogeny graphs of superspecial abelian varieties and generalized brandt matrices.
arXiv: Number Theory, 2020.



References IV

Sabrina Kunzweiler, Yan Bo Ti, and Charlotte Weitkämper.
Secret keys in genus-2 SIDH.
In Riham AlTawy and Andreas Hülsing, editors, Selected Areas in Cryptography - 28th
International Conference, SAC 2021, Virtual Event, September 29 - October 1, 2021, Revised
Selected Papers, volume 13203 of Lecture Notes in Computer Science, pages 483–507. Springer,
2021.

Jason T. LeGrow, Yan Bo Ti, and Lukas Zobernig.
Supersingular non-superspecial abelian surfaces in cryptography.
IACR Cryptol. ePrint Arch., page 650, 2022.

Katsuyuki Takashima.
Efficient Algorithms for Isogeny Sequences and Their Cryptographic Applications, pages 97–114.
2018.


	Arithmétique et Géométrie
	Curves and Surfaces
	Isogenies and Graphs

	Cryptographie

