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Codes in the sum-rank metric ®000

Linear codes and codes in the Hamming metric

k a field (think about k = IF,), H a k-linear vector space endowed with a metric
Linear code C: k-vector subspace of H
Parameters: length n = dimy, H, dimension § = dimy C, minimum distance d (depends on the metric)
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k a field (think about k = IF,), H a k-linear vector space endowed with a metric
Linear code C: k-vector subspace of H
Parameters: length n = dimy, H, dimension § = dimy C, minimum distance d (depends on the metric)

Codes in the Hamming metric: k-vector subspaces of k" endowed with d(x,y) = #{i | x; # yi}
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. F,

X1 X2 AN Xn

RSs(x) == {(P(x1), P(x2),...,P(xa)) | P € Fg[x]<s}
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Codes in the sum-rank metric ®000

Linear codes and codes in the Hamming metric

k a field (think about k = IF,), H a k-linear vector space endowed with a metric
Linear code C: k-vector subspace of H
Parameters: length n = dimy, H, dimension § = dimy C, minimum distance d (depends on the metric)
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« Optimal parameters: 6 +d =n+1
(Singleton bound: § +d < n+1)
/\ Drawback: n < g
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Codes in the sum-rank metric ®000

Linear codes and codes in the Hamming metric

k a field (think about k = IF,), H a k-linear vector space endowed with a metric
Linear code C: k-vector subspace of H
Parameters: length n = dimy, H, dimension § = dimy C, minimum distance d (depends on the metric)

Codes in the Hamming metric: k-vector subspaces of k" endowed with d(x,y) == #{i | x; # yi}

Reed-Solomon (RS) codes: Algebraic Geometry (AG) codes:
fe L(D)
P1/
. ° . F, Pn X
X1 X2 e Xn

RSs(x) == {(P(x1), P(x2), ..., P(xn)) | P € Fq[x]<s}

Cx(P,L(D)) ={(f Pl) f(P2),....f(Pn)) | f € L(D)}

« Optimal parameters: 6 +d =n+1
(Singleton bound: § +d < n+1)

/\ Drawback: n < g
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Codes in the sum-rank metric ®000

Linear codes and codes in the Hamming metric

k a field (think about k = IF,), H a k-linear vector space endowed with a metric

Linear code C: k-vector subspace of H

Parameters: length n = dimy, H, dimension § = dimy C, minimum distance d (depends on the metric)

Codes in the Hamming metric: k-vector subspaces of k" endowed with d(x,y) == #{i | x; # yi}

Reed-Solomon (RS) codes:

° o Py Fq

X]. X2 PR Xn

RSs(x) == {(P(x1), P(x2), ..., P(xn)) | P € Fq[x]<s}

« Optimal parameters: 6 +d =n+1
(Singleton bound: § +d < n+1)

/\ Drawback: n < g

Algebraic Geometry (AG) codes:
feL(D)

P 1 / / \
P, X
\P2
\

Cx(P, L(D)) = {(f(P1), f(P2),...,f(Pa)) | f € L(D)}
¢ Good parameters: n+1—g < d+d < n+1
« Longer codes
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Codes in the sum-rank metric O®0O
General definitions

V =(W,..., Vi) s-uple of k-vector spaces (ni=dimy V;)
H =Endi(V) = Endg(Vh) x -+ x Endg(Vs)
k-vector space of dimension 3%, n? k-linear morphisms V,—V;
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Codes in the sum-rank metric O®00

General definitions
V =(W,..., Vi) s-uple of k-vector spaces (ni=dimy V;)

H = Ende(V) = Ende(V4) x - x Endi(VS)

k-vector space of dimension 3¢ k-linear morphisms V,—V;

rlr

Definition

‘

Let o = (i1,...,9s) € H. The sum-rank weight of o is wen() = > i_; rk(si).
The sum-rank distance between ¢, € H is

srk((p w) - Wsrk( '¢)
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Codes in the sum-rank metric O®00

General definitions

V =(W,..., Vi) s-uple of k-vector spaces (ni=dimy V;)
H =Endi(V) = Endg(Vh) x -+ x Endg(Vs)
k-vector space of dimension 3%, n? k-linear morphisms V,—V;

Definition
Let o = (p1,...,9s) € H. The sum-rank weight of ¢ is wen(p) == Y i_; rk(¢i).
The sum-rank distance between ¢, € H is

dsrk(fv g) = Wsrk(f - y)

A code C in the sum-rank metric is a k—linear subspace of H endowed with the sum-rank
distance.

E. Berardini
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Codes in the sum-rank metric O®00

General definitions

V =(W,..., Vi) s-uple of k-vector spaces (ni=dimy V;)
H =Endi(V) = Endg(Vh) x -+ x Endg(Vs)
k-vector space of dimension 3%, n? k-linear morphisms V,—V;

Definition
Let o = (1,...,9s) € H. The sum-rank weight of @ is we(p) = S rk(i).
The sum-rank distance between ¢, € H is

dsrk(fv g) = Wsrk(f - y)

A code C in the sum-rank metric is a k—linear subspace of H endowed with the sum-rank
distance. lIts length n is > ;_, n?. lts dimension § is dimy C. Its minimum distance is

d ;= min {Wsrk(f) | p € C,g;«ég}.
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General definitions

V =(W,..., Vi) s-uple of k-vector spaces (ni=dimy V;)
H =Endi(V) = Endg(Vh) x -+ x Endg(Vs)
k-vector space of dimension 3%, n? k-linear morphisms V,—V;

Definition
Let o = (p1,...,9s) € H. The sum-rank weight of ¢ is wen(p) == Y i_; rk(¢i).
The sum-rank distance between ¢, € H is

dsrk(fv g) = Wsrk(f - y)

A code C in the sum-rank metric is a k—linear subspace of H endowed with the sum-rank
distance. lIts length n is > ;_, n?. lts dimension § is dimy C. Its minimum distance is

d ;= min {Wsrk(f) | p € C,g;«ég}.

ni=1Vi ~-» codes of length s in the Hamming metric

E. Berardini
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Codes in the sum-rank metric OO @O
Particular case and Singleton bound
£ = finite extension of k of degree r

V =(W,..., Vs),s-uple of ¢-vector spaces (dim, Vi=r) ~ H = Endx(V) is a ¢-vector space
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: . ng == sr {—length
~» {—variants of the parameters: ¢ ) ) g
op =dim,C {—dimension

the minimum distance stays unchanged
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Codes in the sum-rank metric OO®0O

Particular case and Singleton bound

£ = finite extension of k of degree r

V =(W,..., Vs),s-uple of ¢-vector spaces (dim, Vi=r) ~ H = Endx(V) is a ¢-vector space
~» [—linear codes in the sum-rank metric:  ¢-linear subspaces C C H

: . ng == sr {—length
~» {—variants of the parameters: ¢ ) ) g
op =dim,C {—dimension

the minimum distance stays unchanged

Singleton bound

The ¢-parameters of C satisfy

d+dp<ng+1.

Codes with parameters attaining this bound are called Maximum Sum-Rank Distance (MSRD).
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Codes in the sum-rank metric OOO®

Ore polynomials and Linearized Reed—Solomon codes
? field, ® : £ — ¢ a ring homomorphism, (*=1 =k, [(: k] =r,
/

0]
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Codes in the sum-rank metric OOO®

Ore polynomials and Linearized Reed—Solomon codes
? field, ® : £ — ¢ a ring homomorphism, (*=1 =k, [(: k] =r,
/

The ring of Ore polynomials ¢[T; ®] is the ring whose elements are
® polynomials with coefficients in ¢, with usual + and

Txa=®(a)T VYael.
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Codes in the sum-rank metric OOO®

Ore polynomials and Linearized Reed—Solomon codes
? field, ® : £ — ¢ a ring homomorphism, (*=1 =k, [(: k] =r,
/

The ring of Ore polynomials ¢[T; ®] is the ring whose elements are
® polynomials with coefficients in ¢, with usual + and

Txa=®(a)T VYael.

ev: [([T;®] — End(¥)
P — P(®).
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Codes in the sum-rank metric OOO®

Ore polynomials and Linearized Reed—Solomon codes
? field, ® : £ — ¢ a ring homomorphism, (*=1 =k, [(: k] =r,
/

The ring of Ore polynomials ¢[T; ®] is the ring whose elements are
® polynomials with coefficients in ¢, with usual + and

Txa=®(a)T VYael.

forcet
eve: L[T;®] — End(¥)
P — P(cod).
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Codes in the sum-rank metric OOO®

Ore polynomials and Linearized Reed—Solomon codes
? field, ® : £ — ¢ a ring homomorphism, (*=1 =k, [(: k] =r,
/

The ring of Ore polynomials ¢[T; ®] is the ring whose elements are
® polynomials with coefficients in ¢, with usual + and

Txa=®(a)T VYael.

eve: ([T;®] — Endc(£)°
P = (P(a®),...,P(cs?)).
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Codes in the sum-rank metric OOO®

Ore polynomials and Linearized Reed—Solomon codes

? field, ® : £ — ¢ a ring homomorphism, (*=1 =k, [(: k] =r,

The ring of Ore polynomials ¢[T; ®] is the ring whose elements are
® polynomials with coefficients in ¢, with usual + and

Txa=®(a)T VYael.

(Martinez-Pefias, 2018)

forc = (c1,...,65) € £° and 0 € Z consider

eve: U[T;®]ls — Endg(0)°
P — (P(a®),...,P(c:d)).

We define LRS(9, ¢) = evc(4[T; ®]<s)-
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Codes in the sum-rank metric OOO®

Ore polynomials and Linearized Reed—Solomon codes

? field, ® : £ — ¢ a ring homomorphism, (*=1 =k, [(: k] =r,

¢ The ring of Ore polynomials ¢[T; ®] is the ring whose elements are

Jq) polynomials with coefficients in ¢, with usual + and

¥ Txa=®(a)T Vael.

Linearized Reed—Solomon codes (Martinez-Pefias, 2018)

for ¢ = (c1,...,¢) € £° such that Ny, (c;) # Nyji(cj) Vi # j and § € Z such that § < rs consider

| eve: U[T;®]ls — Endg(0)°
P — (P(a®),...,P(c:d)).

We define LRS(, ¢) = evc(4[T; ®]<s). MSRD codes!
= s < Card(k) ~» same problem as Reed—Solomon codes

As in the Hamming case, we can try to overcome the problem using algebraic curves
Main idea: consider Ore polynomials with coefficients in the function field of a curve

Algebraic Geometry codes in the sum-rank metric E. Berardini 5/12



RR spaces over Ore rings ®00

Divisors and Riemann—Roch spaces: classical theory

Let X be a nice curve, K its function field. A divisor on X is a formal finite sum

D= Z npp  with n, € Z almost all zero.
peEX

The group of divisors on X is denoted by Div(X).
D € Dif(X) is positive, D > 0, if n, > 0Vp. The degree of D is degx(D) = 3_,cx np degx(p).
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RR spaces over Ore rings ®00

Divisors and Riemann—Roch spaces: classical theory

Let X be a nice curve, K its function field. A divisor on X is a formal finite sum

D= Z npp  with n, € Z almost all zero.
peEX

The group of divisors on X is denoted by Div(X).
D € Dif(X) is positive, D > 0, if n, > 0Vp. The degree of D is degx(D) = 3_,cx np degx(p).
The Riemann—Roch space associated with D is

Lx(D) ={x e K* | (x)+ D > 0} u {0},

where (x) = >, cx Vp(x) p is the principal divisor associated to a nonzero function x € K.

E. Berardini
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RR spaces over Ore rings 00
Divisors and Riemann—Roch spaces: classical theory
Definition

Let X be a nice curve, K its function field. A divisor on X is a formal finite sum

D= Z npp  with n, € Z almost all zero.
peEX

The group of divisors on X is denoted by Div(X).
D € Dif(X) is positive, D > 0, if n, > 0Vp. The degree of D is degx(D) = 3_,cx np degx(p).
The Riemann—Roch space associated with D is

Lx(D) = {x € K* | (x) + D > 0} U {0},

where (x) = >, cx Vp(x) p is the principal divisor associated to a nonzero function x € K.

Riemann—Roch theorem
Let Kx denotes a canonical divisor on X. For any divisor D € Div(X) we have

dimk LX(D) = degX(D) + 1 — 8x —+ dlmk L)((/’(X*D)7
=0 when degy (D)>2gx—2.

E. Berardini
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RR spaces over Ore rings O®0
Our setting

Y 7 a Galois cover with cyclic Galois group of order r

™ L := k(Y) the fields of functions of Y, Gal(L/K) = (&)
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RR spaces over Ore rings O®0
Our setting

Y 41 ...9m, 7 a Galois cover with cyclic Galois group of order r
lw \/ L := k(Y) the fields of functions of Y, Gal(L/K) = (®)
X p For p € X we have the decomposition L, = K, ®x L ~ Hq‘p Lg.
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RR spaces over Ore rings O®0
Our setting

Y 41 ...9m, 7 a Galois cover with cyclic Galois group of order r
{W \/ L := k(Y) the fields of functions of Y, Gal(L/K) = (®)
X p For p € X we have the decomposition L, = K, ®x L ~ Hq‘p Lg.

For x € K*, consider the algebra
Dy = L[T;®]/(T" —x)
and for all p € X, the algebras Dy, = K, ®k Dy x = Lp[T; ®]/(T" — x).
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RR spaces over Ore rings O®0
Our setting

Y 91 ...9m, 7 a Galois cover with cyclic Galois group of order r

{w \/ L := k() the fields of functions of Y, Gal(L/K) = (®)

X P For p € X we have the decomposition L, := K ®x L =[], L

For x € K*, consider the algebra
Dy = L[T;®]/(T" —x)
and for all p € X, the algebras Dy, = K, ®k Dy x = Lp[T; ®]/(T" — x).

SHOPPING LIST

L] principal divisors associated to f € D;
~~ need to define a valuation

[J Riemann—Roch spaces of Dy

[] a Riemann—Roch theorem

[l equivalent of “evaluate at a rational point

E. Berardini
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RR spaces over Ore rings O®0
Our setting

Y 91 ...9m, 7 a Galois cover with cyclic Galois group of order r

{w \/ L := k() the fields of functions of Y, Gal(L/K) = (®)

X P For p € X we have the decomposition L, := K, ®k L ~ Hq‘p Ly.

For x € K*, consider the algebra
Dy = L[T;®]/(T" —x)
and for all p € X, the algebras Dy, = K, ®k Dy x = Lp[T; ®]/(T" — x).

Define the valuation map wy; x : Dy, x — %Z U{oo}i<j<m,): for f =fo+ AT + -+ f_1 T

Wqx(f) = min (M 4+ @) ’

o<i<r €q

where e, denotes the ramification index of g.

E. Berardini 7/12

Algebraic Geometry codes in the sum-rank metric



RR spaces over Ore rings O®0
Our setting

Y 91 ...9m, 7 a Galois cover with cyclic Galois group of order r

{w \/ L := k() the fields of functions of Y, Gal(L/K) = (®)

X P For p € X we have the decomposition L, := K, ®k L ~ Hq‘p Ly.

For x € K*, consider the algebra
Dy = L[T;®]/(T" —x)
and for all p € X, the algebras Dy, = K, ®k Dy x = Lp[T; ®]/(T" — x).

Define the valuation map wy; x : Dy, x — 1Z U {cc}a<jcm,): for f=fo+ AT+ + f_1 T,

Wqx(f) = min (M 4+ @) ’

o<i<r €q

where e, denotes the ramification index of g.

/\wa = {f (S D/_p’x | ij’x(f) > 0}
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RR spaces over Ore rings O®0
Our setting

Y 91 ...9m, 7 a Galois cover with cyclic Galois group of order r

{w \/ L := k() the fields of functions of Y, Gal(L/K) = (®)

X P For p € X we have the decomposition L, := K, ®k L ~ Hq‘p Ly.

For x € K*, consider the algebra
Dy = L[T;®]/(T" —x)
and for all p € X, the algebras Dy, = K, ®k Dy x = Lp[T; ®]/(T" — x).
Define the valuation map wy; x : Dy, x — %Z U{oo}i<j<m,): for f =fo+ AT + -+ f_1 T

o) ;. 000,

Wox(f) = min | ——= +i- ——=
a.x(f) 0§i<r< € r
where e, denotes the ramification index of g.

/\wa = {f (S D/_p’x | ij’x(f) > 0}

For p € X, epwyx(f) € ﬁZ where by, is the denominator of p, = L:(@ after reduction

E. Berardini 7/12
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RR spaces over Ore rings OO®

Divisors and Riemann—Roch spaces over Ore polynomial rings

Definition (Riemann—Roch spaces of D )

Let E =3 oy nqq € Divg(Y) = Div (Y) ® Q, with ng € 5-Z where p = m(q).
Define the Riemann—Roch space of Dy , associated with E as

ALx(E) = {f € Dpx|eqwqx(f)+nqg >0 forallqe Y}.
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RR spaces over Ore rings OO®

Divisors and Riemann—Roch spaces over Ore polynomial rings

Definition (Riemann—Roch spaces of D )

Let E =3 oy nqq € Divg(Y) = Div (Y) ® Q, with ng € 5-Z where p = m(q).
Define the Riemann—Roch space of Dy , associated with E as

ALx(E) = {f € Dpx|eqwqx(f)+nqg >0 forallqe Y}.

= ALx(E) = @D Ly(E) - T/, where E =Yy [nq + i pa(@y]a €DV(Y) (0 <i<r).
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RR spaces over Ore rings OO®

Divisors and Riemann—Roch spaces over Ore polynomial rings

Definition (Riemann—Roch spaces of D )

Let E =3 oy nqq € Divg(Y) = Div (Y) ® Q, with ng € 5-Z where p = m(q).
Define the Riemann—Roch space of Dy , associated with E as

ALx(E) = {f € Dpx|eqwqx(f)+nqg >0 forallqe Y}.

= ALx(E) = @D Ly(E) - T/, where E =Yy [nq + i pa(@y]a €DV(Y) (0 <i<r).

Lemma: We have Y"/_; degy (E;) = r-degy (E) — r—; D pex %% degx(p).
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RR spaces over Ore rings 00®
Divisors and Riemann—Roch spaces over Ore polynomial rings

Definition (Riemann—Roch spaces of D )
Let E =3 oy nqq € Divg(Y) = Div (Y) ® Q, with ng € 5-Z where p = m(q).
Define the Riemann—Roch space of Dy , associated with E as

ALx(E) = {f € Dpx|eqwqx(f)+nqg >0 forallqe Y}.

= ALx(E) = @D Ly(E) - T/, where E =Yy [nq + i pa(@y]a €DV(Y) (0 <i<r).

Lemma: We have Y"/_; degy (E;) = r-degy (E) — r—; D pex %ﬁ degx(p).

Riemann’s inequality for A, «(E)
For a divisor E ="

nqq € Divg(Y') the space A, «(E) is finite dimensional over k and

) r? b,—1
i A () > r-degy (E) ~ gy ~ 1)~ & 37 2 degy (o)
p€p

peX

qeyY
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Linearized AG codes @00
Code’s construction

Let p € X rational, t, a uniformizer (k,~k((1))), x € K*
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Linearized AG codes @00
Code’s construction

Let p € X rational, t, a uniformizer (x,~k((1))), x € K*

if x is a nonzero norm in L, /Ky, more precisely Ju, = (uq)qp € Ly s.t. x =[]
Vg, vy(ug) = v, then

alp NLq//Kp(U"() and

gt Niyx = Endo,, (Or,)
foo—= f(u®).
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Linearized AG codes @00
Code’s construction

Let p € X rational, t, a uniformizer (k,~k((1))), x € K*

if x is a nonzero norm in Ly /Ky, more precisely Juy = (ug)qpp € Ly s.t. x =[], Niy/k, (uq) and
Vg, vy(ug) = v, then

g ALx — Endo, (On,) % Endi(OL,/t,01,) = Endi(V,)
fo—=  flu®) —  f(up®) mod t,

Algebraic Geometry codes in the sum-rank metric E. Berardini 9/12



Linearized AG codes @00
Code’s construction

Let p € X rational, t, a uniformizer (k,~k((1))), x € K*

if x is a nonzero norm in Ly /Ky, more precisely Juy = (ug)qpp € Ly s.t. x =[], Niy/k, (uq) and
Vg, vy(ug) = v, then

g ALx — Endo, (On,) % Endi(OL,/t,01,) = Endi(V,)
fo—=  flu®) —  f(up®) mod t,

ifp & w(supp(E)) = Ar, «(E) S Ar,
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Linearized AG codes @00
Code’s construction

Let p € X rational, t, a uniformizer (k,~k((1))), x € K*
if x is a nonzero norm in Ly /Ky, more precisely Juy = (ug)qpp € Ly s.t. x =[], Niy/k, (uq) and
Vg, vy(ug) = v, then
g ALx — Endo, (On,) % Endi(OL,/t,01,) = Endi(V,)
fo—=  flu®) —  f(up®) mod t,
it p & m(supp(E)) = A, x(E) € AL, x

Linearized Algebraic Geometry codes (B., Caruso, 2023)

Let £ =3",cy nqq € Divg(Y). Chose x € K and pu,..., ps rational places on X such that the
hypotheses hold. Consider

(672 AL,X(E) — H;‘;:lEndk(VPi)
fo= (5Pi(f))1§i§s'

The code C(x; E; p1,...,ps) is defined as the image of a.
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Linearized AG codes O®O
Code’s parameters

We study the parameters of the k-linear code C in [];_; Endx(V},).
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Linearized AG codes O®O
Code’s parameters

We study the parameters of the k-linear code C in [];_; Endx(V},).

2

The length is n = sr (dimg Vp,=r)

Algebraic Geometry codes in the sum-rank metric E. Berardini 10/12



Linearized AG codes O®0O

Code’s parameters

We study the parameters of the k-linear code C in [];_; Endx(V},).

The length is n = sr? (dimg Vp,=r)

Theorem (B., Caruso, 2023)

Assume degy (E) < sr. Assume the previous hypotheses and that D, , contains no nonzero
divisors. Then, the dimension ¢ and the minimum distance d of C(x; E; p1, ..., ps) satisfy

b,—1
d > r-degy(E) —r-(g y—l)——z bpe
pex PP

degx (p),

d > sr —degy (E).
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Linearized AG codes O®0O

Code’s parameters

We study the parameters of the k-linear code C in [];_; Endx(V},).
2

The length is n = sr (dimg Vp,=r)

Theorem (B., Caruso, 2023)

Assume degy (E) < sr. Assume the previous hypotheses and that D, , contains no nonzero
divisors. Then, the dimension ¢ and the minimum distance d of C(x; E; p1, ..., ps) satisfy

b,—1
d > r-degy(E )—r(gy—l)——z bp
pex 0

degx (p),
d > sr —degy (E).
Singleton bound: rd+d6<n+r

We have: rd+d6>n+r— (r~gy+r2—zzpexﬁ—;:degx(p))
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Linearized AG codes OO @
The case of isotrivial covers

14

® Let ¢ be a finite cyclic extension of k of order r.
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Linearized AG codes OO @
The case of isotrivial covers

14

Let ¢ be a finite cyclic extension of k of order r.

® Take Y = Spec ¢ Xspec k X (cyclic Galois cover of X of degree r)
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Linearized AG codes OO @
The case of isotrivial covers

/
Let ¢ be a finite cyclic extension of k of order r.
® Take Y = Spec ¢ Xspec k X (cyclic Galois cover of X of degree r)
k

Residue field of any place of Y is a (-algebra = the code C(x; E; p1,...,ps) is ¢-linear

Algebraic Geometry codes in the sum-rank metric E. Berardini 11/12



Linearized AG codes OO®
The case of isotrivial covers

L
Let ¢ be a finite cyclic extension of k of order r.
® Take Y = Spec ¢ Xspec k X (cyclic Galois cover of X of degree r)
k

Residue field of any place of Y is a (-algebra = the code C(x; E; p1,...,ps) is ¢-linear

{-parameters of the code

For the code C(x; E; p1,...,ps) with x,p1, ..., ps, E satisfying the hypotheses, we have

® ny = sr,
® 0y >degy(E)—r(gx—1)—3 EpEX b degx(p)
® d > sr—degy(E).
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Linearized AG codes OO @
The case of isotrivial covers

L
Let ¢ be a finite cyclic extension of k of order r.
® Take Y = Spec ¢ Xspec k X (cyclic Galois cover of X of degree r)
k

Residue field of any place of Y is a (-algebra = the code C(x; E; p1,...,ps) is ¢-linear

{-parameters of the code

For the code C(x; E; p1,...,ps) with x,p1, ..., ps, E satisfying the hypotheses, we have
® ny = sr,
® 0y >degy(E)—r(gx—1)—3 EpEX By * degx(p),
® d > sr—degy(E).

X = ]P’i, Y = IF’}, E= éooo € Divg(Y') ~ linearized Reed-Solomon codes!
Our lower bounds = MSRD codes
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Conclusion and further works
Further questions

® linearized AG codes in the general framework of central simple algebras
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Conclusion and further works @O
Further questions

® linearized AG codes in the general framework of central simple algebras

® decoding problem
(decoding algorithm for linearized Reed—Solomon codes ¢ )
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Conclusion and further works @O
Further questions

® linearized AG codes in the general framework of central simple algebras

® decoding problem
(decoding algorithm for linearized Reed—Solomon codes ¢ )

® duality theorem for the codes C(x; E; p1,...,ps)
(require to develop the theory of differential forms and residues in our framework)
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Conclusion and further works @O
Further questions

® linearized AG codes in the general framework of central simple algebras

® decoding problem
(decoding algorithm for linearized Reed—Solomon codes ¢ )

® duality theorem for the codes C(x; E; p1,...,ps)

(require to develop the theory of differential forms and residues in our framework)

_AGC’T '17 AGC?T '19

Merci de votre attention !

Questions?
elena.berardini@math.u-bordeaux.fr

AGC?T 21 AGC?T 23
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Conclusion and further works O®
Remarks on the hypotheses

(H1) the algebra Dy x has no nonzero zero divisor
(H2) for all places q above p, there exists uq € Ly such that vq(ug) = < - vp(x) and

X = H NLq/KP(Uq)

qlp

Lemma

The hypothesis (H1) holds as soon as there exists a place p € X which is inert in Y and at which
vp(x) is coprime with r.

Lemma
We assume that k is a finite field. Let p be a place of X. If p is unramified in Y and v,(x) is
divisible by r, then (H2) holds.
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