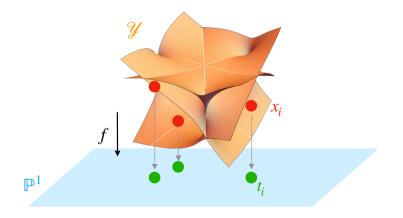
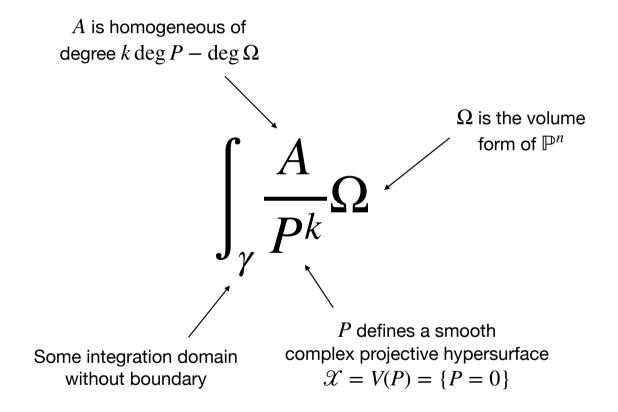
Eric Pichon-Pharabod

Computing periods of hypersurfaces

Joint work with Pierre Lairez and Pierre Vanhove



Periods are rational integrals



The period matrix

We chose generating families $\gamma_1, ..., \gamma_r \in H_n(\mathcal{X})$ and $\omega_1, ..., \omega_r \in H_{DR}^n(\mathcal{X})$.

Define the period matrix $\Pi = \left(\int_{\gamma_j} \omega_i \right)_{\substack{1 \le i \le r \\ 1 \le i \le r}}$

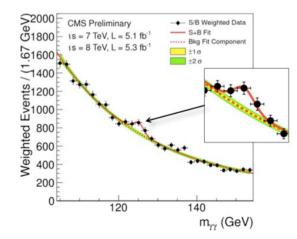
It is an **invertible** matrix that describes the isomorphism between DeRham cohomology and homology.

Our goal is to find a way, given P, to compute the period matrix of $\mathcal{X} = V(P)$.

Why are periods interesting?

The period matrix of \mathscr{X} contains information about fine **algebraic invariants** \mathscr{X} . **Torelli-type theorems** : the period matrix of \mathscr{X} determines its isomorphism class (in certain cases).

Feynman integrals are relative periods that give scattering amplitudes of particle interactions in quantum field theory.



Previous works

[Deconinck,van Hoeij 2001], [Bruin, Sijsling, Zotine 2018], [Molin, Neurohr 2017]: algebraic curves (Riemann surfaces)

Sertöz 2019: compute the period matrix by deformation:

We wish to compute $\int_{\gamma} \frac{\Omega}{X^3 + Y^3 + Z^3 + XYZ}$ \rightarrow introduce a parameter *t*, look at $\pi_t = \int_{\gamma} \frac{\Omega}{X^3 + Y^3 + Z^3 + tXYZ}$, π_t is a solution of $(t^3 + 27)\partial_t^2 + 3t^2\partial_t + t$ and we have analytic formulae for π_0 [Pham]

Using numerical analytic continuation [Mezzarobba] we can recover π_1 .

- Computationally expensive: the differential equations we need to integrate quickly get out of hand
- Not easily generalisable: need to know periods of some variety ($V(X^3 + Y^3 + Z^3)$ in example)

Contributions

100s of digits

New method for computing periods with very high numerical precision

 \rightarrow implementation in Sagemath (using OreAlgebra)

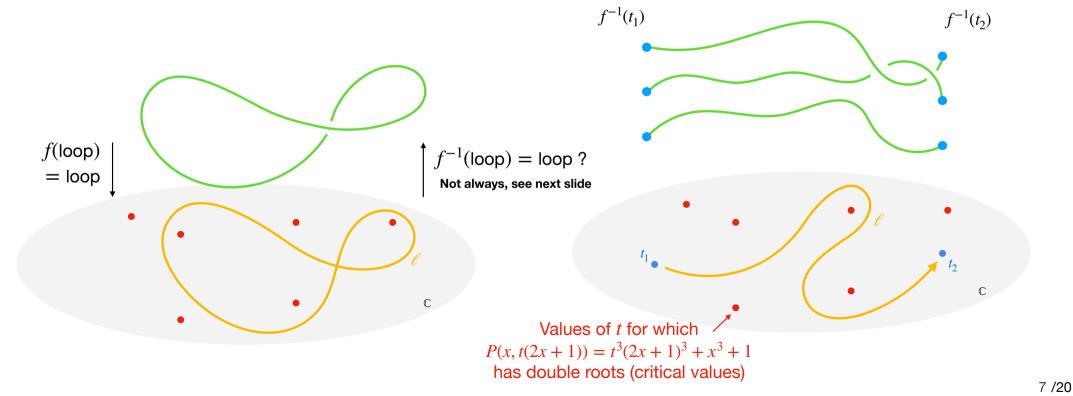
- \rightarrow efficient enough to tackle new varieties (generic quartic surfaces)
- \rightarrow byproduct: homology of complex projective varieties
- \rightarrow generalisable to other types of varieties (e.g. complete intersections, singular varieties)

First example: algebraic curves

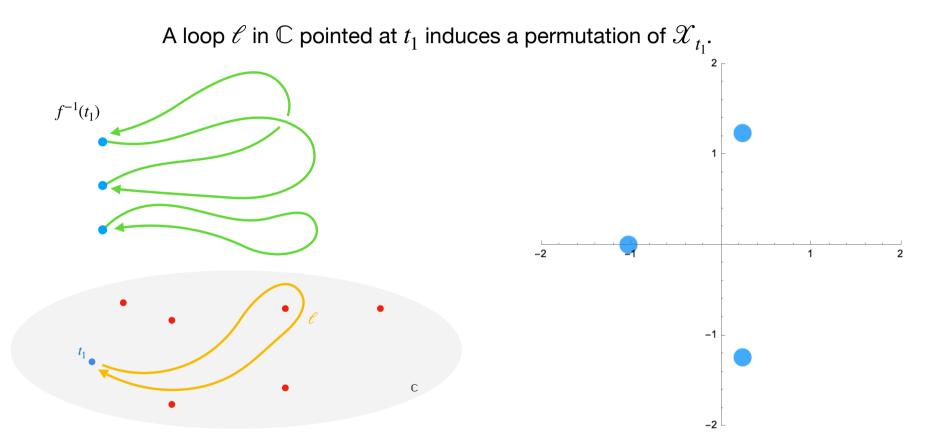
Let \mathscr{X} be the elliptic curve defined by $P = y^3 + x^3 + 1 = 0$ and let $f: (x, y) \mapsto y/(2x + 1)$.

In dimension 1, we are looking for closed paths in \mathcal{X} , up to deformation (1-cycles).

The fiber above $t \in \mathbb{C}$ is $\mathscr{X}_t = f^{-1}(t)$ = {(x, t(2x + 1)) | P(x, t(2x + 1)) = 0}. It deforms continuously with respect to t.

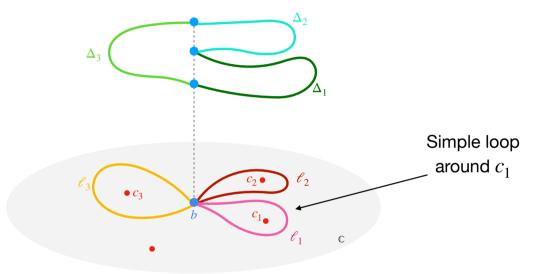


What happens when you loop around a critical point?



This permutation is called the **action of monodromy along** ℓ on \mathscr{X}_{t_1} . It is denoted ℓ_* If ℓ is a simple loop around a critical value, ℓ_* is a transposition.

The lift of the simple loop ℓ around a critical value *c* that has boundary in \mathcal{X}_b is called the **thimble** of *c*.

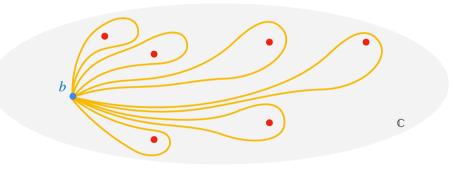


Thimbles serve as building blocks for the closed paths of \mathcal{X} .

Indeed, to find a loop that lifts to \mathcal{X} , we just need to take glue thimbles so that the boundaries cancel.

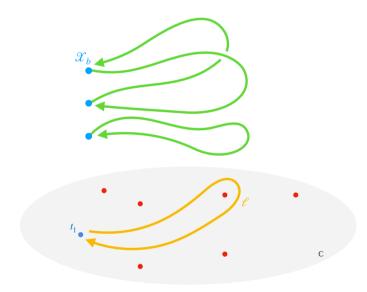
Fact: all (homology classes of) loops of $\mathcal X$ can be obtained this way.

1. Pick simple loops $\ell_1, \ldots, \ell_{\text{\#Crit.}}$ around the critical values - basis of $\pi_1(\mathbb{C} \setminus \{\text{crit. values}\})$



1. Pick simple loops $\ell_1, ..., \ell_{\text{#Crit.}}$ around the critical values - basis of $\pi_1(\mathbb{C} \setminus \{\text{crit. values}\})$

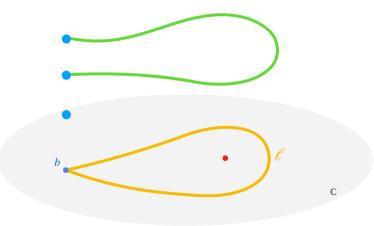
2. For every *i* compute the action of monodromy along \mathscr{C}_i on \mathscr{X}_b (transposition)



1. Pick simple loops $\ell_1, ..., \ell_{\text{#Crit.}}$ around the critical values - basis of $\pi_1(\mathbb{C} \setminus \{\text{crit. values}\})$

2. For every *i* compute the action of monodromy along \mathscr{C}_i on \mathscr{X}_h (transposition)

3. This gives the thimble Δ_i . Its border is the two points of \mathscr{X}_h that get permuted.

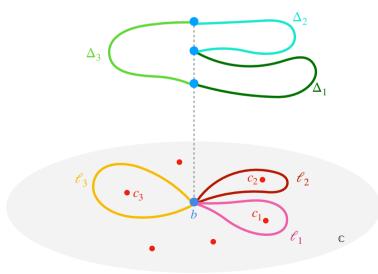


1. Pick simple loops $\ell_1, ..., \ell_{\text{#Crit.}}$ around the critical values - basis of $\pi_1(\mathbb{C} \setminus \{\text{crit. values}\})$

2. For every *i* compute the action of monodromy along \mathscr{C}_i on \mathscr{X}_h (transposition)

3. This gives the thimble Δ_i . Its border is the two points of \mathscr{X}_h that get permuted.

4. Compute sums of thimbles without boundary



1. Pick simple loops $\ell_1, \ldots, \ell_{\text{\#Crit.}}$ around the critical values - basis of $\pi_1(\mathbb{C} \setminus \{\text{crit. values}\})$

2. For every *i* compute the action of monodromy along ℓ_i on \mathcal{X}_h (transposition)

3. This gives the thimble Δ_i . Its border is the two points of \mathscr{X}_h that get permuted.

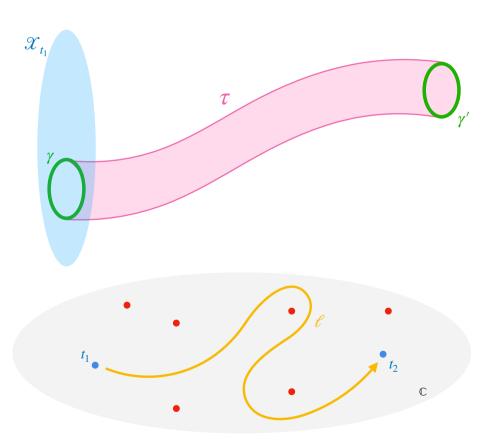
4. Compute sums of thimbles without boundary \rightarrow loops in \mathcal{X}

5. Periods are integrals along these loops \rightarrow we have an explicit parametrisation of the path \rightarrow numerical integration.

$$\int_{\gamma} \omega = \int_{\ell} \omega_t$$

Insight into higher dimensions: surfaces

The fibre \mathscr{X}_t is a variety of dimension 1. It deforms continuously with respect to *t*.

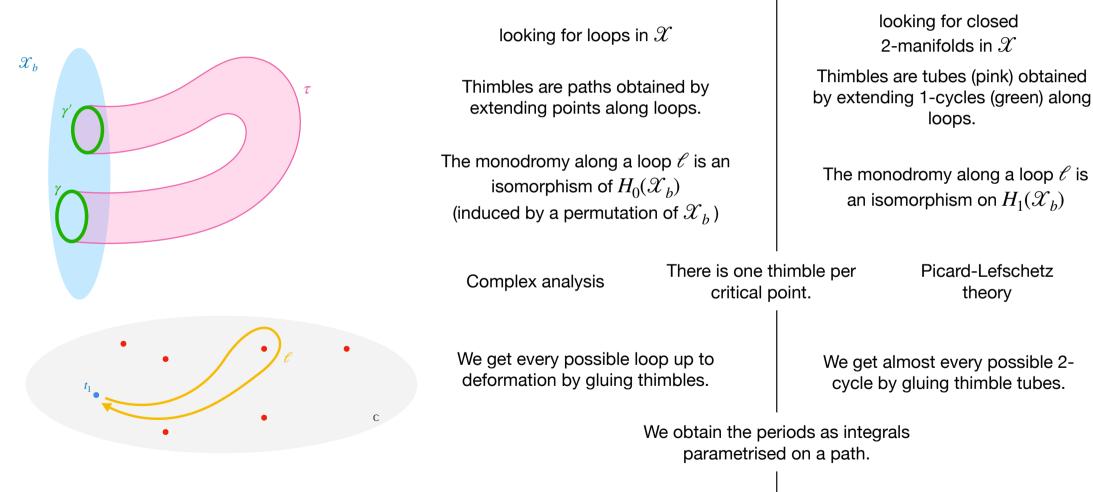


Period of algebraic surface $\int_{\tau} f(x, y) dx dy = \int_{\ell} \left(\int_{\gamma_y} f(x, y) dx \right) dy$ Period of algebraic curve

Comparison with dimension 1

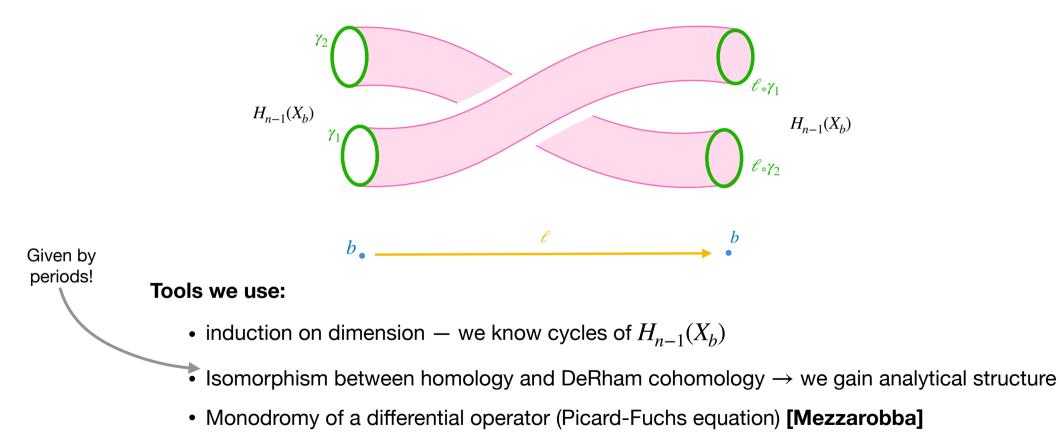
Dimension 1

Dimension 2



Computing monodromy

 $\pi_1(\mathbb{C} \setminus \{ \text{critical values} \}) \to GL(H_{n-1}(X_b))$



Results and perspectives

holomorphic periods of quartic surfaces in an hour (previously unfeasible in most cases).

A singular example: Tardigrade family (a very generic family of quartic K3 surfaces). [Doran, Harder, Vanhove 2023, Appendix by EPP]

 \rightarrow able to embed Néron-Severi lattice in standard K3 lattice

Found smooth quartic surface in
$$\mathbb{P}^3$$
 with Picard rank 2

$$\mathcal{X} = V \begin{pmatrix} X^4 - X^2Y^2 - XY^3 - Y^4 + X^2YZ + XY^2Z + X^2Z^2 - XYZ^2 + XZ^3 \\ -X^3W - X^2YW + XY^2W - Y^3W + Y^2ZW - XZ^2W + YZ^2W - Z^3W + XYW^2 \\ +Y^2W^2 - XZW^2 - XW^3 + YW^3 + ZW^3 + W^4 \end{pmatrix}$$

This approach can be applied to more general types of varieties, e.g. complete intersections

Bottleneck for accessing higher dimensions is still the order/degree of the differential operators

FIGURE 13. The tardigrade graph

Results and perspectives

holomorphic periods of quartic surfaces in an hour (previously unfeasible in most cases).

A singular example: Tardigrade family (a very generic family of quartic K3 surfaces). [Doran, Harder, Vanhove 2023, Appendix by EPP]

 \rightarrow able to embed Néron-Severi lattice in standard K3 lattice

Found smooth quartic surface in
$$\mathbb{P}^3$$
 with Picard rank 2

$$\mathcal{X} = V \begin{pmatrix} X^4 - X^2Y^2 - XY^3 - Y^4 + X^2YZ + XY^2Z + X^2Z^2 - XYZ^2 + XZ^3 \\ -X^3W - X^2YW + XY^2W - Y^3W + Y^2ZW - XZ^2W + YZ^2W - Z^3W + XYW^2 \\ +Y^2W^2 - XZW^2 - XW^3 + YW^3 + ZW^3 + W^4 \end{pmatrix}$$

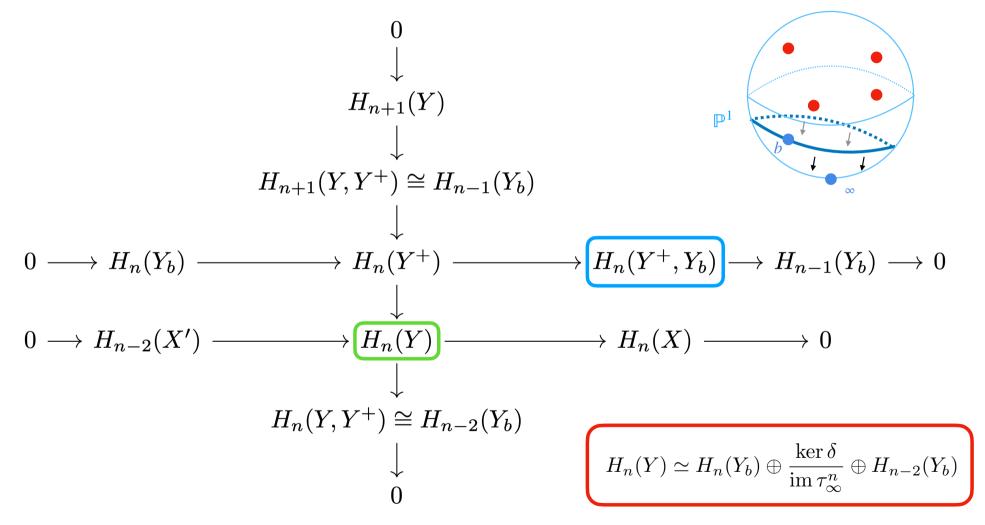
This approach can be applied to more general types of varieties, e.g. complete intersections

Bottleneck for accessing higher dimensions is still the order/degree of the differential operators

Thank you!

FIGURE 13. The tardigrade graph

Diagram chasing to recover $H_n(X)$ from thimbles



20/20