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Periods are rational integrals

A is homogeneous of
degree kdeg P — deg Q2

\ Q) is the volume
A / form of P

Pk
/ P defines a smooth

Some integration domain complex projective hypersurface
without boundary 2 =V(P)={P =0}

2 /20



The period matrix

We chose generating families yy, ..., 7, € H,(X) and @y, ..., ®, € H} ().

Define the period matrix

It is an invertible matrix that describes the isomorphism between DeRham cohomology and homology.

Our goal is to find a way, given P, to compute the period matrix of 2~ = V(P).
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Why are periods interesting?

The period matrix of 2" contains information about fine algebraic invariants 2.

Torelli-type theorems : the period matrix of & determines its isomorphism class (in certain
cases).

Feynman integrals are relative periods that give scattering amplitudes of particle
interactions in quantum field theory.
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Previous works

[Deconinck,van Hoeij 2001], [Bruin, Sijsling, Zotine 2018], [Molin, Neurohr 2017]:
algebraic curves (Riemann surfaces)

Sert6z 2019: compute the period matrix by deformation:

Q

X3+ YV + P+ XYZ o .

Q L] C
— introduce a parameter #, look at 7, = [ 3 3 3 :
y X+ Y +72°+1XYZ

7, is a solution of (#° +27)07 + 3t°0,+t  and we have analytic formulae for 7, [Pham]

We wish to compute [

Using numerical analytic continuation [Mezzarobba] we can recover 7;.

« Computationally expensive: the differential equations we need to integrate quickly get out of hand
* Not easily generalisable: need to know periods of some variety (V(X? + Y? + Z%) in example)

Our goal: get a description of the cycles that is well adapted to integration
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Contributions

100s of digits

/

New method for computing periods with very high numerical precision ,
coming soon!

— implementation in Sagemath (using OreAlgebra) J

— efficient enough to tackle new varieties (generic quartic surfaces)
— byproduct: homology of complex projective varieties

— generalisable to other types of varieties (e.g. complete intersections, singular varieties)
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First example: algebraic curves

Let 2 be the elliptic curve definedby P =y> + x> +1 =0 The fiber above t € Cis I, = (1)
and letf: (x,y) = y/(2x + 1). = {(x,12x+ 1)) | P (x,12x + 1)) = 0}.

In dimension 1, we are looking for It deforms continuously with respect to 7.

closed paths in 2, up to deformation (1-cycles).
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= loop Not always, see next slide
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[ ]
Values of f for which v
P, t2x+ 1) =Cx+ 1P +x3+ 1

has double roots (critical values)
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What happens when you loop around a critical point?

A loop Z in C pointed at t; induces a permutation of Sl",l.

2 -

@)

P @ j :

2oL

This permutation is called the action of monodromy along £ on & - It is denoted £«

If £ is a simple loop around a critical value, £ is a transposition.
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Computing periods of algebraic curves

The lift of the simple loop £ around a critical value ¢ that has boundary in Sl”b is called the thimble of c.

¢

Simple loop
around ¢,

Thimbles serve as building blocks for the closed paths of 2.

Indeed, to find a loop that lifts to 2, we just need to take glue thimbles so that the
boundaries cancel.

Fact: all (homology classes of) loops of 2 can be obtained this way:.
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Computing periods of algebraic curves

1. Pick simple loops £}, ..., Cucrit. @round the critical values — basis of 7;(C\ { crit. values})
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Computing periods of algebraic curves

1. Pick simple loops £}, ..., Cucrit. @round the critical values — basis of 7;(C\ { crit. values})

2. For every i compute the action of monodromy along z,”l- on ,fl"b (transposition)

t%‘ /
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Computing periods of algebraic curves

1. Pick simple loops £}, ..., Cucrit. @round the critical values — basis of 7;(C\ { crit. values})
2. For every i compute the action of monodromy along z,”l- on ,fl"b (transposition)

3. This gives the thimble A;. Its border is the two points of %b that get permuted.
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Computing periods of algebraic curves

1. Pick simple loops £}, ..., Cucrit. @round the critical values — basis of 7;(C\ { crit. values})
2. For every i compute the action of monodromy along z,”l- on ,fl"b (transposition)

3. This gives the thimble A;. Its border is the two points of %b that get permuted.

4. Compute sums of thimbles without boundary

,
®cs ;
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Computing periods of algebraic curves

1. Pick simple loops £}, ..., Cucrit. @round the critical values — basis of 7;(C\ { crit. values})
2. For every i compute the action of monodromy along z,”l- on fl"b (transposition)
3. This gives the thimble A;. Its border is the two points of %b that get permuted.

4. Compute sums of thimbles without boundary — loops in X

5. Periods are integrals along these loops
— we have an explicit parametrisation of the path — numerical integration.

o]
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Insight into higher dimensions: surfaces

The fibre ', is a variety of dimension 1.
It deforms continuously with respect to 7.

Period of algebraic surface

(f) f(x y)dxdy = f(x, y)dx] dy

7

Period of algebraic curve
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Comparison with dimension 1

Dimension 1 Dimension 2

looking for closed
2-manifolds in &

Thimbles are tubes (pink) obtained
by extending 1-cycles (green) along
loops.

looking for loops in 2

Thimbles are paths obtained by
extending points along loops.

The monodromy along a loop  is an

Th | | i
isomorphism of Hy(Zp) e monodromy along a loop ¢’ is

an isomorphism on H{(Z
(induced by a permutation of 2,) P 1(Zp)

, There is one thimble per Picard-Lefschetz
Complex analysis i .
critical point. theory
. We get every possilgle qup up to We get almost every possible 2-
0y deformation by gluing thimbles. cycle by gluing thimble tubes.
[ ] C
J We obtain the periods as integrals

parametrised on a path.
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Computing monodromy

7;(C\{critical values}) - GL(H,_(X}))

72

H,_ (X
Y1 n—l( b)
9%

Given by .
periods!

Hn— 1 (Xb)

Tools we use:

« induction on dimension — we know cycles of H, _(X})

* Isomorphism between homology and DeRham cohomology — we gain analytical structure

 Monodromy of a differential operator (Picard-Fuchs equation) [Mezzarobbal
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Results and perspectives

holomorphic periods of quartic surfaces in an hour (previously unfeasible in most cases).

A singular example: Tardigrade family (a very generic family of quartic K3 surfaces).
[Doran, Harder, Vanhove 2023, Appendix by EPP]

— able to embed Néron-Severi lattice in standard K3 lattice \]]/

FIGURE 13. The tardigrade graph

Found smooth quartic surface in P> with Picard rank 2
X4 = X2Y? - XY? = YA+ XYZ + XY?Z + X?Z? - XY7? + X7?
X =V —X3W = X2YW + XYW = V’W + Y2ZW — XZ2W + YZ2W — Z3W + XYW?
+Y?W? — XZW? — XW3 + YW? + ZW3 + w*

This approach can be applied to more general types of varieties, e.g. complete intersections

Bottleneck for accessing higher dimensions is still the order/degree of the differential operators
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Results and perspectives

holomorphic periods of quartic surfaces in an hour (previously unfeasible in most cases).

A singular example: Tardigrade family (a very generic family of quartic K3 surfaces).
[Doran, Harder, Vanhove 2023, Appendix by EPP]

— able to embed Néron-Severi lattice in standard K3 lattice \]]/

FIGURE 13. The tardigrade graph

Found smooth quartic surface in P> with Picard rank 2
X4 = X2Y? - XY? = YA+ XYZ + XY?Z + X?Z? - XY7? + X7?
X =V —X3W = X2YW + XYW = V’W + Y2ZW — XZ2W + YZ2W — Z3W + XYW?
+Y?W? — XZW? — XW3 + YW? + ZW3 + w*

This approach can be applied to more general types of varieties, e.g. complete intersections

Bottleneck for accessing higher dimensions is still the order/degree of the differential operators

Thank you!
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Diagram chasing to recover H,(X) from thimbles




