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Periods are rational integrals

∫γ

A
Pk

Ω

Some integration domain

without boundary

 defines a smooth 

complex projective hypersurface


P

𝒳 = V(P) = {P = 0}

 is the volume 

form of 

Ω
ℙn

 is homogeneous of 

degree 

A
k deg P − deg Ω
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The period matrix
We chose generating families  and .γ1, …, γr ∈ Hn(𝒳) ω1, …, ωr ∈ Hn

DR(𝒳)

Define the period matrix

Π = ∫γj

ωi
1 ≤ i ≤ r
1 ≤ j ≤ r

It is an invertible matrix that describes the isomorphism between DeRham cohomology and homology.

Our goal is to find a way, given , to compute the period matrix of .P 𝒳 = V(P)

3
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Why are periods interesting?
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The period matrix of  contains information about fine algebraic invariants . 

Torelli-type theorems : the period matrix of  determines its isomorphism class (in certain 

cases).

𝒳 𝒳
𝒳

Feynman integrals are relative periods that give scattering amplitudes of particle 
interactions in quantum field theory.
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Previous works
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Sertöz 2019: compute the period matrix by deformation:

We wish to compute . 


 introduce a parameter , look at , 


 is a solution of         and        we have analytic formulae for  [Pham]

∫γ

Ω
X3 + Y3 + Z3 + XYZ

→ t πt = ∫γ

Ω
X3 + Y3 + Z3 + tXYZ

πt (t3 + 27)∂2
t + 3t2∂t + t π0

0
1

ℂ

π0 π1

[Deconinck,van Hoeij 2001], [Bruin, Sijsling, Zotine 2018], [Molin, Neurohr 2017]: 

algebraic curves (Riemann surfaces)

• Computationally expensive: the differential equations we need to integrate quickly get out of hand

• Not easily generalisable: need to know periods of some variety (  in example)V(X3 + Y3 + Z3)

Our goal: get a description of the cycles that is well adapted to integration

Using numerical analytic continuation [Mezzarobba] we can recover .π1
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Contributions
New method for computing periods with very high numerical precision


 implementation in Sagemath (using OreAlgebra)


 efficient enough to tackle new varieties (generic quartic surfaces)


 byproduct: homology of complex projective varieties


 generalisable to other types of varieties (e.g. complete intersections, singular varieties)

→

→

→

→

6

100s of digits

coming soon!
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First example: algebraic curves

7

t1 t2
ℂ

ℓ

f −1(t1) f −1(t2)

Let  be the elliptic curve defined by  

and let .

𝒳 P = y3 + x3 + 1 = 0
f : (x, y) ↦ y/(2x + 1)

The fiber above  is 

.


It deforms continuously with respect to .

t ∈ ℂ 𝒳t = f −1(t)
= {(x, t(2x + 1)) ∣ P (x, t(2x + 1)) = 0}

tIn dimension 1, we are looking for 

closed paths in , up to deformation (1-cycles).𝒳

ℂ

ℓ


f(loop)
= loop

 ?f −1(loop) = loop
Not always, see next slide

Values of  for which 
 

has double roots (critical values)

t
P(x, t(2x + 1)) = t3(2x + 1)3 + x3 + 1
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What happens when you loop around a critical point?

8

f −1(t1)

t1

ℂ

ℓ

A loop  in  pointed at  induces a permutation of .ℓ ℂ t1 𝒳t1

This permutation is called the action of monodromy along  on . It is denoted 

If  is a simple loop around a critical value,  is a transposition.

ℓ 𝒳t1 ℓ*
ℓ ℓ*
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ℂ

b

Δ1

Δ2

Δ3

ℓ1

ℓ2ℓ3

The lift of the simple loop  around a critical value  that has boundary in  is called the thimble of .ℓ c 𝒳b c

Thimbles serve as building blocks for the closed paths of .𝒳

Indeed, to find a loop that lifts to , we just need to take glue thimbles so that the 
boundaries cancel.

𝒳

Simple loop 

around c1

c1

Fact: all (homology classes of) loops of  can be obtained this way.𝒳

Computing periods of algebraic curves

c2
c3
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Computing periods of algebraic curves

10

b

ℂ

1. Pick simple loops  around the critical values — basis of ℓ1, …, ℓ#crit. π1(ℂ∖{crit. values})
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2. For every  compute the action of monodromy along  on  (transposition)i ℓi 𝒳b

𝒳b

t1

ℂ

ℓ

Computing periods of algebraic curves

1. Pick simple loops  around the critical values — basis of ℓ1, …, ℓ#crit. π1(ℂ∖{crit. values})
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2. For every  compute the action of monodromy along  on  (transposition)i ℓi 𝒳b

3. This gives the thimble . Its border is the two points of  that get permuted.Δi 𝒳b

b

ℂ

ℓ

Computing periods of algebraic curves

1. Pick simple loops  around the critical values — basis of ℓ1, …, ℓ#crit. π1(ℂ∖{crit. values})
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2. For every  compute the action of monodromy along  on  (transposition)i ℓi 𝒳b

3. This gives the thimble . Its border is the two points of  that get permuted.Δi 𝒳b

4. Compute sums of thimbles without boundary

ℂ

b

Δ1

Δ2

Δ3

ℓ1

ℓ2ℓ3

c1

Computing periods of algebraic curves

1. Pick simple loops  around the critical values — basis of ℓ1, …, ℓ#crit. π1(ℂ∖{crit. values})

c2
c3
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2. For every  compute the action of monodromy along  on  (transposition)i ℓi 𝒳b

3. This gives the thimble . Its border is the two points of  that get permuted.Δi 𝒳b

4. Compute sums of thimbles without boundary  loops in → 𝒳

5. Periods are integrals along these loops 

 we have an explicit parametrisation of the path  numerical integration.→ →

∫γ
ω = ∫ℓ

ωt

Computing periods of algebraic curves

1. Pick simple loops  around the critical values — basis of ℓ1, …, ℓ#crit. π1(ℂ∖{crit. values})



/20

Insight into higher dimensions: surfaces
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The fibre  is a variety of  dimension 1. 

It deforms continuously with respect to .

𝒳t
t

γ′￼

γ

𝒳t1

t1 t2
ℂ

ℓ

∫τ
f(x, y)dxdy = ∫ℓ ∫γy

f(x, y)dx dy

τ

Period of algebraic curve

Period of algebraic surface
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Comparison with dimension 1
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The monodromy along a loop  is an 
isomorphism of 


(induced by a permutation of  )

ℓ
H0(𝒳b)

𝒳b

The monodromy along a loop  is 
an isomorphism on 

ℓ
H1(𝒳b)

Thimbles are paths obtained by 

extending points along loops.

Thimbles are tubes (pink) obtained 
by extending 1-cycles (green) along 

loops.

looking for loops in 𝒳 looking for closed 

2-manifolds in 𝒳

γ

𝒳b

t1

ℂ

ℓ

γ′￼

There is one thimble per 
critical point.

We get every possible loop up to 
deformation by gluing thimbles.

We obtain the periods as integrals 
parametrised on a path.

Dimension 1 Dimension 2

Picard-Lefschetz 
theoryComplex analysis

We get almost every possible 2-
cycle by gluing thimble tubes.

τ
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Computing monodromy
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π1(ℂ∖{critical values}) → GL(Hn−1(Xb))

γ1

γ2

ℓ*γ1

ℓ*γ2

b bℓ

Hn−1(Xb)
Hn−1(Xb)

Tools we use: 


• induction on dimension — we know cycles of 


• Isomorphism between homology and DeRham cohomology  we gain analytical structure


• Monodromy of a differential operator (Picard-Fuchs equation) [Mezzarobba]

Hn−1(Xb)

→

Given by 

periods!
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Results and perspectives
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holomorphic periods of quartic surfaces in an hour (previously unfeasible in most cases).

A singular example: Tardigrade family (a very generic family of quartic K3 surfaces). 
[Doran, Harder, Vanhove 2023, Appendix by EPP] 


 able to embed Néron-Severi lattice in standard K3 lattice→

Found smooth quartic surface in  with Picard rank 2
ℙ3

𝒳 = V (
X4 − X2Y2 − XY3 − Y4 + X2YZ + XY2Z + X2Z2 − XYZ2 + XZ3

−X3W − X2YW + XY2W − Y3W + Y2ZW − XZ2W + YZ2W − Z3W + XYW2

+Y2W2 − XZW2 − XW3 + YW3 + ZW3 + W4 )
This approach can be applied to more general types of varieties, e.g. complete intersections

Bottleneck for accessing higher dimensions is still the order/degree of the differential operators
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Results and perspectives
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holomorphic periods of quartic surfaces in an hour (previously unfeasible in most cases).

A singular example: Tardigrade family (a very generic family of quartic K3 surfaces). 
[Doran, Harder, Vanhove 2023, Appendix by EPP] 


 able to embed Néron-Severi lattice in standard K3 lattice→

Found smooth quartic surface in  with Picard rank 2
ℙ3

𝒳 = V (
X4 − X2Y2 − XY3 − Y4 + X2YZ + XY2Z + X2Z2 − XYZ2 + XZ3

−X3W − X2YW + XY2W − Y3W + Y2ZW − XZ2W + YZ2W − Z3W + XYW2

+Y2W2 − XZW2 − XW3 + YW3 + ZW3 + W4 )
This approach can be applied to more general types of varieties, e.g. complete intersections

Bottleneck for accessing higher dimensions is still the order/degree of the differential operators

Thank you!
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Diagram chasing to recover  from thimblesHn(X)
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ℙ1

∞

b

<latexit sha1_base64="treFZ94DXg3NK8jyPyyURruViuo=">AAACTXicbVHPTxQxGO0sIrigLnr00rAxgYObGUKUI8HLHjFxAbNdJp3ON9Bsf4ztNySbyfyDXky48V9w8aAxxu4wBwG/pMnre99rv75mpZIe4/gm6q08WX26tv6sv7H5/MXLwdarE28rJ2AirLLuLOMelDQwQYkKzkoHXGcKTrP5x6V+egXOS2s+46KEmeYXRhZScAxUOsjHqdn5skuZlxq+0naXZrvMlqrylBWOi5rNwVGWg0Le1EEBx9E6wzXUUjeUIa/OTcqkKXBBm846Tmvzbq9pT0sHw3gUt0Ufg6QDQ9LVcTq4ZrkVlQaDQnHvp0lc4qzmDqVQ0PRZ5aHkYs4vYBrgchQ/q9s0Gvo2MDktrAvLIG3Zfx01194vdBY6NcdL/1Bbkv/TphUWB7NamrJCMOLuoqJSFC1dRktz6UCgWgTAhZNhVioueUgQwwf0QwjJwyc/Bid7o+T9aP/T/vDwqItjnbwh22SHJOQDOSRjckwmRJBv5Jb8JL+i79GP6Hf05661F3We1+Re9db+AlS9tKY=</latexit>

Hn(Y ) ' Hn(Yb)�
ker �

im ⌧n1
�Hn�2(Yb)


