
Exploiting sparsity in polynomial
optimization

Victor Magron
LAAS CNRS

https://homepages.laas.fr/vmagron/SparsePOPJNCF23.pdf

Journées Nationales de Calcul Formel 6-10 March 2023

6

4

5

1

23

1

x2
1

x2
2

x2
3

x2
4

x2
5

https://homepages.laas.fr/vmagron/SparsePOPJNCF23.pdf

What is sparse polynomial optimization?

Looks like a regular polynomial optimization problem (POP):

inf f (x)

s.t. x ∈ X = {x ∈ Rn : gj(x) ⩾ 0}

But the input data f , gj are “SPARSE”!

Correlative sparsity: few products between each
variable and the others in f , gj
⇝ f (x) = x1x2 + x2x3 + . . . x99x100 1 2 3 10099

Term sparsity: few terms in f , gj
⇝ f (x) = x99

1 x2 + x1x100
2

Ideal sparsity: constraints
⇝ x1x2 = x2x3 = 0

PERFORMANCE VS ACCURACY

Victor Magron Exploiting sparsity in polynomial optimization 1 / 80

What is sparse polynomial optimization?

Looks like a regular polynomial optimization problem (POP):

inf f (x)

s.t. x ∈ X = {x ∈ Rn : gj(x) ⩾ 0}
But the input data f , gj are “SPARSE”!

Correlative sparsity: few products between each
variable and the others in f , gj
⇝ f (x) = x1x2 + x2x3 + . . . x99x100 1 2 3 10099

Term sparsity: few terms in f , gj
⇝ f (x) = x99

1 x2 + x1x100
2

Ideal sparsity: constraints
⇝ x1x2 = x2x3 = 0

PERFORMANCE VS ACCURACY

Victor Magron Exploiting sparsity in polynomial optimization 1 / 80

What is sparse polynomial optimization?

Looks like a regular polynomial optimization problem (POP):

inf f (x)

s.t. x ∈ X = {x ∈ Rn : gj(x) ⩾ 0}
But the input data f , gj are “SPARSE”!

Correlative sparsity: few products between each
variable and the others in f , gj

⇝ f (x) = x1x2 + x2x3 + . . . x99x100 1 2 3 10099

Term sparsity: few terms in f , gj
⇝ f (x) = x99

1 x2 + x1x100
2

Ideal sparsity: constraints
⇝ x1x2 = x2x3 = 0

PERFORMANCE VS ACCURACY

Victor Magron Exploiting sparsity in polynomial optimization 1 / 80

What is sparse polynomial optimization?

Looks like a regular polynomial optimization problem (POP):

inf f (x)

s.t. x ∈ X = {x ∈ Rn : gj(x) ⩾ 0}
But the input data f , gj are “SPARSE”!

Correlative sparsity: few products between each
variable and the others in f , gj
⇝ f (x) = x1x2 + x2x3 + . . . x99x100 1 2 3 10099

Term sparsity: few terms in f , gj
⇝ f (x) = x99

1 x2 + x1x100
2

Ideal sparsity: constraints
⇝ x1x2 = x2x3 = 0

PERFORMANCE VS ACCURACY

Victor Magron Exploiting sparsity in polynomial optimization 1 / 80

What is sparse polynomial optimization?

Looks like a regular polynomial optimization problem (POP):

inf f (x)

s.t. x ∈ X = {x ∈ Rn : gj(x) ⩾ 0}
But the input data f , gj are “SPARSE”!

Correlative sparsity: few products between each
variable and the others in f , gj
⇝ f (x) = x1x2 + x2x3 + . . . x99x100 1 2 3 10099

Term sparsity: few terms in f , gj

⇝ f (x) = x99
1 x2 + x1x100

2

Ideal sparsity: constraints
⇝ x1x2 = x2x3 = 0

PERFORMANCE VS ACCURACY

Victor Magron Exploiting sparsity in polynomial optimization 1 / 80

What is sparse polynomial optimization?

Looks like a regular polynomial optimization problem (POP):

inf f (x)

s.t. x ∈ X = {x ∈ Rn : gj(x) ⩾ 0}
But the input data f , gj are “SPARSE”!

Correlative sparsity: few products between each
variable and the others in f , gj
⇝ f (x) = x1x2 + x2x3 + . . . x99x100 1 2 3 10099

Term sparsity: few terms in f , gj
⇝ f (x) = x99

1 x2 + x1x100
2

Ideal sparsity: constraints
⇝ x1x2 = x2x3 = 0

PERFORMANCE VS ACCURACY

Victor Magron Exploiting sparsity in polynomial optimization 1 / 80

What is sparse polynomial optimization?

Looks like a regular polynomial optimization problem (POP):

inf f (x)

s.t. x ∈ X = {x ∈ Rn : gj(x) ⩾ 0}
But the input data f , gj are “SPARSE”!

Correlative sparsity: few products between each
variable and the others in f , gj
⇝ f (x) = x1x2 + x2x3 + . . . x99x100 1 2 3 10099

Term sparsity: few terms in f , gj
⇝ f (x) = x99

1 x2 + x1x100
2

Ideal sparsity: constraints

⇝ x1x2 = x2x3 = 0

PERFORMANCE VS ACCURACY

Victor Magron Exploiting sparsity in polynomial optimization 1 / 80

What is sparse polynomial optimization?

Looks like a regular polynomial optimization problem (POP):

inf f (x)

s.t. x ∈ X = {x ∈ Rn : gj(x) ⩾ 0}
But the input data f , gj are “SPARSE”!

Correlative sparsity: few products between each
variable and the others in f , gj
⇝ f (x) = x1x2 + x2x3 + . . . x99x100 1 2 3 10099

Term sparsity: few terms in f , gj
⇝ f (x) = x99

1 x2 + x1x100
2

Ideal sparsity: constraints
⇝ x1x2 = x2x3 = 0

PERFORMANCE VS ACCURACY

Victor Magron Exploiting sparsity in polynomial optimization 1 / 80

What is sparse polynomial optimization?

Looks like a regular polynomial optimization problem (POP):

inf f (x)

s.t. x ∈ X = {x ∈ Rn : gj(x) ⩾ 0}
But the input data f , gj are “SPARSE”!

Correlative sparsity: few products between each
variable and the others in f , gj
⇝ f (x) = x1x2 + x2x3 + . . . x99x100 1 2 3 10099

Term sparsity: few terms in f , gj
⇝ f (x) = x99

1 x2 + x1x100
2

Ideal sparsity: constraints
⇝ x1x2 = x2x3 = 0

PERFORMANCE VS ACCURACY

Victor Magron Exploiting sparsity in polynomial optimization 1 / 80

Where do we find sparse POPs?

Everywhere (almost)!

Deep learning
⇝ robustness, computer vision

Output

Hidden

Input

Power systems
⇝ AC optimal power-flow, stability

Quantum Systems
⇝ condensed matter, entanglement

Victor Magron Exploiting sparsity in polynomial optimization 2 / 80

Where do we find sparse POPs?

Everywhere (almost)!

Deep learning
⇝ robustness, computer vision

Output

Hidden

Input

Power systems
⇝ AC optimal power-flow, stability

Quantum Systems
⇝ condensed matter, entanglement

Victor Magron Exploiting sparsity in polynomial optimization 2 / 80

Where do we find sparse POPs?

Everywhere (almost)!

Deep learning
⇝ robustness, computer vision

Output

Hidden

Input

Power systems
⇝ AC optimal power-flow, stability

Quantum Systems
⇝ condensed matter, entanglement

Victor Magron Exploiting sparsity in polynomial optimization 2 / 80

Where do we find sparse POPs?

Everywhere (almost)!

Deep learning
⇝ robustness, computer vision

Output

Hidden

Input

Power systems
⇝ AC optimal power-flow, stability

Quantum Systems
⇝ condensed matter, entanglement

Victor Magron Exploiting sparsity in polynomial optimization 2 / 80

Where do we find sparse POPs?

Everywhere (almost)!

Deep learning
⇝ robustness, computer vision

Output

Hidden

Input

Power systems
⇝ AC optimal power-flow, stability

Quantum Systems
⇝ condensed matter, entanglement

Victor Magron Exploiting sparsity in polynomial optimization 2 / 80

The Moment-SOS Hierarchy for POP

NP-hard NON CONVEX Problem fmin = inf f (x)

Theory

(Primal) (Dual)

inf
∫

f dµ sup λ

with µ proba ⇒ INFINITE LP ⇐ with f − λ ⩾ 0

LASSERRE’S HIERARCHY of CONVEX PROBLEMS ↑ fmin

[Lasserre ’01]

degree r & n vars =⇒ (n+2r
n) SDP VARIABLES

HOW TO OVERCOME THIS NO-FREE LUNCH RULE?

Victor Magron Exploiting sparsity in polynomial optimization 3 / 80

The Moment-SOS Hierarchy for POP

NP-hard NON CONVEX Problem fmin = inf f (x)

Practice

(Primal Relaxation) (Dual Strengthening)

moments
∫

xα dµ f − λ = sum of squares

finite number ⇒ SDP ⇐ fixed degree

LASSERRE’S HIERARCHY of CONVEX PROBLEMS ↑ fmin

[Lasserre ’01]

degree r & n vars =⇒ (n+2r
n) SDP VARIABLES

HOW TO OVERCOME THIS NO-FREE LUNCH RULE?

Victor Magron Exploiting sparsity in polynomial optimization 3 / 80

The Moment-SOS Hierarchy for POP

NP-hard NON CONVEX Problem fmin = inf f (x)

Practice

(Primal Relaxation) (Dual Strengthening)

moments
∫

xα dµ f − λ = sum of squares

finite number ⇒ SDP ⇐ fixed degree

LASSERRE’S HIERARCHY of CONVEX PROBLEMS ↑ fmin

[Lasserre ’01]

degree r & n vars =⇒ (n+2r
n) SDP VARIABLES

HOW TO OVERCOME THIS NO-FREE LUNCH RULE?
Victor Magron Exploiting sparsity in polynomial optimization 3 / 80

An example

NP hard General Problem: fmin := min
x∈X

f (x)

Semialgebraic set X = {x ∈ Rn : gj(x) ⩾ 0}

X = [0, 1]2 = {x ∈ R2 : x1(1 − x1) ⩾ 0, x2(1 − x2) ⩾ 0}

f︷︸︸︷
x1x2 =

−1
8
+

σ0︷ ︸︸ ︷
1
2

(
x1 + x2 −

1
2

)2

+

σ1︷︸︸︷
1
2

g1︷ ︸︸ ︷
x1(1 − x1) +

σ2︷︸︸︷
1
2

g2︷ ︸︸ ︷
x2(1 − x2)

Sums of squares (SOS) σj

Quadratic module: M(X)r =
{

σ0 + ∑j σjgj, deg σj gj ⩽ 2r
}

Victor Magron Exploiting sparsity in polynomial optimization 4 / 80

An example

NP hard General Problem: fmin := min
x∈X

f (x)

Semialgebraic set X = {x ∈ Rn : gj(x) ⩾ 0}
X = [0, 1]2 = {x ∈ R2 : x1(1 − x1) ⩾ 0, x2(1 − x2) ⩾ 0}

f︷︸︸︷
x1x2 =

−1
8
+

σ0︷ ︸︸ ︷
1
2

(
x1 + x2 −

1
2

)2

+

σ1︷︸︸︷
1
2

g1︷ ︸︸ ︷
x1(1 − x1) +

σ2︷︸︸︷
1
2

g2︷ ︸︸ ︷
x2(1 − x2)

Sums of squares (SOS) σj

Quadratic module: M(X)r =
{

σ0 + ∑j σjgj, deg σj gj ⩽ 2r
}

Victor Magron Exploiting sparsity in polynomial optimization 4 / 80

An example

NP hard General Problem: fmin := min
x∈X

f (x)

Semialgebraic set X = {x ∈ Rn : gj(x) ⩾ 0}
X = [0, 1]2 = {x ∈ R2 : x1(1 − x1) ⩾ 0, x2(1 − x2) ⩾ 0}

f︷︸︸︷
x1x2 =

−1
8
+

σ0︷ ︸︸ ︷
1
2

(
x1 + x2 −

1
2

)2

+

σ1︷︸︸︷
1
2

g1︷ ︸︸ ︷
x1(1 − x1) +

σ2︷︸︸︷
1
2

g2︷ ︸︸ ︷
x2(1 − x2)

Sums of squares (SOS) σj

Quadratic module: M(X)r =
{

σ0 + ∑j σjgj, deg σj gj ⩽ 2r
}

Victor Magron Exploiting sparsity in polynomial optimization 4 / 80

An example

NP hard General Problem: fmin := min
x∈X

f (x)

Semialgebraic set X = {x ∈ Rn : gj(x) ⩾ 0}
X = [0, 1]2 = {x ∈ R2 : x1(1 − x1) ⩾ 0, x2(1 − x2) ⩾ 0}

f︷︸︸︷
x1x2 =

−1
8
+

σ0︷ ︸︸ ︷
1
2

(
x1 + x2 −

1
2

)2

+

σ1︷︸︸︷
1
2

g1︷ ︸︸ ︷
x1(1 − x1) +

σ2︷︸︸︷
1
2

g2︷ ︸︸ ︷
x2(1 − x2)

Sums of squares (SOS) σj

Quadratic module: M(X)r =
{

σ0 + ∑j σjgj, deg σj gj ⩽ 2r
}

Victor Magron Exploiting sparsity in polynomial optimization 4 / 80

An example

NP hard General Problem: fmin := min
x∈X

f (x)

Semialgebraic set X = {x ∈ Rn : gj(x) ⩾ 0}
X = [0, 1]2 = {x ∈ R2 : x1(1 − x1) ⩾ 0, x2(1 − x2) ⩾ 0}

f︷︸︸︷
x1x2 =

−1
8
+

σ0︷ ︸︸ ︷
1
2

(
x1 + x2 −

1
2

)2

+

σ1︷︸︸︷
1
2

g1︷ ︸︸ ︷
x1(1 − x1) +

σ2︷︸︸︷
1
2

g2︷ ︸︸ ︷
x2(1 − x2)

Sums of squares (SOS) σj

Quadratic module: M(X)r =
{

σ0 + ∑j σjgj, deg σj gj ⩽ 2r
}

Victor Magron Exploiting sparsity in polynomial optimization 4 / 80

The Moment-SOS Hierarchy for POP

NP-hard NON CONVEX Problem fmin = infx∈X f (x)
space M+(X) of probability measures supported on X
quadratic module Q(X) =

{
σ0 + ∑j σjgj, with σj SOS

}
Infinite-dimensional linear programs (LP)

(Primal) (Dual)

inf
∫

X
f dµ = sup λ

s.t. µ ∈ M+(X) s.t. λ ∈ R

f − λ ∈ Q(X)

Pseudo-moment sequences y up to order r
Truncated quadratic module Q(X)r

Finite-dimensional semidefinite programs (SDP)

(Moment) (SOS)

inf ∑
α

fα yα = sup λ

s.t. Mr−rj(gj y) ≽ 0 s.t. λ ∈ R

y0 = 1 f − λ ∈ Q(X)r

Primal-dual “SPARSE” variants?

Victor Magron Exploiting sparsity in polynomial optimization 5 / 80

The Moment-SOS Hierarchy for POP

NP-hard NON CONVEX Problem fmin = infx∈X f (x)

Pseudo-moment sequences y up to order r

Truncated quadratic module Q(X)r

Finite-dimensional semidefinite programs (SDP)

(Moment) (SOS)

inf ∑
α

fα yα = sup λ

s.t. Mr−rj(gj y) ≽ 0 s.t. λ ∈ R

y0 = 1 f − λ ∈ Q(X)r

Primal-dual “SPARSE” variants?

Victor Magron Exploiting sparsity in polynomial optimization 5 / 80

The Moment-SOS Hierarchy for POP

NP-hard NON CONVEX Problem fmin = infx∈X f (x)

Pseudo-moment sequences y up to order r

Truncated quadratic module Q(X)r

Finite-dimensional semidefinite programs (SDP)

(Moment) (SOS)

inf ∑
α

fα yα = sup λ

s.t. Mr−rj(gj y) ≽ 0 s.t. λ ∈ R

y0 = 1 f − λ ∈ Q(X)r

Primal-dual “SPARSE” variants?

Victor Magron Exploiting sparsity in polynomial optimization 5 / 80

Sparse SDP

Correlative sparsity

Term sparsity

Ideal sparsity

Tutorial session

Sparse SDP

Correlative sparsity

Term sparsity

Ideal sparsity

Tutorial session

Sparse matrices

Symmetric matrices indexed by graph vertices

1 2 3

no edge between 1 and 3 ⇐⇒ 0 entry in the (1, 3) entry

cycle =
1 2

34

chord = edge between two nonconsecutive vertices in a cycle

chordal graph = all cycles of length ⩾ 4 have at least one chord
1 2

34
clique = a fully connected subset of vertices

Victor Magron Exploiting sparsity in polynomial optimization 6 / 80

Sparse matrices

Symmetric matrices indexed by graph vertices

1 2 3

no edge between 1 and 3 ⇐⇒ 0 entry in the (1, 3) entry

cycle =
1 2

34

chord = edge between two nonconsecutive vertices in a cycle

chordal graph = all cycles of length ⩾ 4 have at least one chord
1 2

34
clique = a fully connected subset of vertices

Victor Magron Exploiting sparsity in polynomial optimization 6 / 80

Sparse matrices

Symmetric matrices indexed by graph vertices

1 2 3

no edge between 1 and 3 ⇐⇒ 0 entry in the (1, 3) entry

cycle =
1 2

34

chord = edge between two nonconsecutive vertices in a cycle

chordal graph = all cycles of length ⩾ 4 have at least one chord
1 2

34
clique = a fully connected subset of vertices

Victor Magron Exploiting sparsity in polynomial optimization 6 / 80

Sparse matrices

Symmetric matrices indexed by graph vertices

1 2 3

no edge between 1 and 3 ⇐⇒ 0 entry in the (1, 3) entry

cycle =
1 2

34

chord = edge between two nonconsecutive vertices in a cycle

chordal graph = all cycles of length ⩾ 4 have at least one chord
1 2

34
clique = a fully connected subset of vertices

Victor Magron Exploiting sparsity in polynomial optimization 6 / 80

Sparse matrices

Symmetric matrices indexed by graph vertices

1 2 3

no edge between 1 and 3 ⇐⇒ 0 entry in the (1, 3) entry

cycle =
1 2

34

chord = edge between two nonconsecutive vertices in a cycle

chordal graph = all cycles of length ⩾ 4 have at least one chord
1 2

34

clique = a fully connected subset of vertices

Victor Magron Exploiting sparsity in polynomial optimization 6 / 80

Sparse matrices

Symmetric matrices indexed by graph vertices

1 2 3

no edge between 1 and 3 ⇐⇒ 0 entry in the (1, 3) entry

cycle =
1 2

34

chord = edge between two nonconsecutive vertices in a cycle

chordal graph = all cycles of length ⩾ 4 have at least one chord
1 2

34
clique = a fully connected subset of vertices

Victor Magron Exploiting sparsity in polynomial optimization 6 / 80

Chordal extensions

1 2

34

Fact
Any non-chordal graph can always be extended to a chordal
graph, by adding appropriate edges

Chordal extension is not unique!
1 2

34

1 2

34

1 2

34

approximately minimal maximal
Theorem [Gavril ’72, Vandenberghe & Andersen ’15]

The maximal cliques of a chordal graph can be enumerated in
linear time in the number of nodes and edges.

Victor Magron Exploiting sparsity in polynomial optimization 7 / 80

Chordal extensions

1 2

34

Fact
Any non-chordal graph can always be extended to a chordal
graph, by adding appropriate edges

Chordal extension is not unique!
1 2

34

1 2

34

1 2

34

approximately minimal maximal
Theorem [Gavril ’72, Vandenberghe & Andersen ’15]

The maximal cliques of a chordal graph can be enumerated in
linear time in the number of nodes and edges.

Victor Magron Exploiting sparsity in polynomial optimization 7 / 80

Chordal extensions

1 2

34

Fact
Any non-chordal graph can always be extended to a chordal
graph, by adding appropriate edges

Chordal extension is not unique!

1 2

34

1 2

34

1 2

34

approximately minimal maximal
Theorem [Gavril ’72, Vandenberghe & Andersen ’15]

The maximal cliques of a chordal graph can be enumerated in
linear time in the number of nodes and edges.

Victor Magron Exploiting sparsity in polynomial optimization 7 / 80

Chordal extensions

1 2

34

Fact
Any non-chordal graph can always be extended to a chordal
graph, by adding appropriate edges

Chordal extension is not unique!
1 2

34

1 2

34

1 2

34

approximately minimal maximal
Theorem [Gavril ’72, Vandenberghe & Andersen ’15]

The maximal cliques of a chordal graph can be enumerated in
linear time in the number of nodes and edges.

Victor Magron Exploiting sparsity in polynomial optimization 7 / 80

Running intersection property (RIP)

RIP Theorem for chordal graphs [Blair & Peyton ’93]
For a chordal graph with maximal cliques I1, . . . , Ip:

(RIP) ∀k < p Ik+1 ∩
⋃
j⩽k

Ij ⊆ Ii for some i ⩽ k

(possibly after reordering)

RIP always holds for p = 2

RIP holds for chains 1 2 3 10099

RIP holds for numerous applications!

Victor Magron Exploiting sparsity in polynomial optimization 8 / 80

Running intersection property (RIP)

RIP Theorem for chordal graphs [Blair & Peyton ’93]
For a chordal graph with maximal cliques I1, . . . , Ip:

(RIP) ∀k < p Ik+1 ∩
⋃
j⩽k

Ij ⊆ Ii for some i ⩽ k

(possibly after reordering)

RIP always holds for p = 2

RIP holds for chains 1 2 3 10099

RIP holds for numerous applications!

Victor Magron Exploiting sparsity in polynomial optimization 8 / 80

Running intersection property (RIP)

RIP Theorem for chordal graphs [Blair & Peyton ’93]
For a chordal graph with maximal cliques I1, . . . , Ip:

(RIP) ∀k < p Ik+1 ∩
⋃
j⩽k

Ij ⊆ Ii for some i ⩽ k

(possibly after reordering)

RIP always holds for p = 2

RIP holds for chains 1 2 3 10099

RIP holds for numerous applications!

Victor Magron Exploiting sparsity in polynomial optimization 8 / 80

Running intersection property (RIP)

RIP Theorem for chordal graphs [Blair & Peyton ’93]
For a chordal graph with maximal cliques I1, . . . , Ip:

(RIP) ∀k < p Ik+1 ∩
⋃
j⩽k

Ij ⊆ Ii for some i ⩽ k

(possibly after reordering)

RIP always holds for p = 2

RIP holds for chains 1 2 3 10099

RIP holds for numerous applications!

Victor Magron Exploiting sparsity in polynomial optimization 8 / 80

Semidefinite Programming (SDP)

min
y

c
⊤

y

s.t. ∑
i

Fi yi ≽ F0

Linear cost c

Symmetric matrices F0, Fi

Linear matrix inequalities “F ≽ 0”
(F has nonnegative eigenvalues)

Spectrahedron

Victor Magron Exploiting sparsity in polynomial optimization 9 / 80

Sparse SDP matrices

Theorem [Griewank Toint ’84, Agler et al. ’88]

Chordal graph G with n vertices & maximal cliques I1, I2

QG ≽ 0 with nonzero entries corresponding to edges of G
=⇒ QG = P1

TQ1P1 + P2
TQ2P2 with Qk ≽ 0 indexed by Ik

1 2 3 1 2 2 3

What are P1, P2? P1 ∈ R|I1|×n P(i, j) =

{
1 if I(i) = j

0 otherwise

I1 = (1, 2) ⇒ P1 =

(
1 0 0
0 1 0

)
I2 = (2, 3) ⇒ P2 =

(
0 1 0
0 0 1

)
P1

TQ1P1 inflates a |I1| × |I1| matrix Q1 into a sparse n × n matrix

Victor Magron Exploiting sparsity in polynomial optimization 10 / 80

Sparse SDP matrices

Theorem [Griewank Toint ’84, Agler et al. ’88]

Chordal graph G with n vertices & maximal cliques I1, I2

QG ≽ 0 with nonzero entries corresponding to edges of G
=⇒ QG = P1

TQ1P1 + P2
TQ2P2 with Qk ≽ 0 indexed by Ik

1 2 3 1 2 2 3

What are P1, P2?

P1 ∈ R|I1|×n P(i, j) =

{
1 if I(i) = j

0 otherwise

I1 = (1, 2) ⇒ P1 =

(
1 0 0
0 1 0

)
I2 = (2, 3) ⇒ P2 =

(
0 1 0
0 0 1

)
P1

TQ1P1 inflates a |I1| × |I1| matrix Q1 into a sparse n × n matrix

Victor Magron Exploiting sparsity in polynomial optimization 10 / 80

Sparse SDP matrices

Theorem [Griewank Toint ’84, Agler et al. ’88]

Chordal graph G with n vertices & maximal cliques I1, I2

QG ≽ 0 with nonzero entries corresponding to edges of G
=⇒ QG = P1

TQ1P1 + P2
TQ2P2 with Qk ≽ 0 indexed by Ik

1 2 3 1 2 2 3

What are P1, P2? P1 ∈ R|I1|×n P(i, j) =

{
1 if I(i) = j

0 otherwise

I1 = (1, 2) ⇒ P1 =

(
1 0 0
0 1 0

)
I2 = (2, 3) ⇒ P2 =

(
0 1 0
0 0 1

)
P1

TQ1P1 inflates a |I1| × |I1| matrix Q1 into a sparse n × n matrix

Victor Magron Exploiting sparsity in polynomial optimization 10 / 80

Sparse SDP matrices

Theorem [Griewank Toint ’84, Agler et al. ’88]

Chordal graph G with n vertices & maximal cliques I1, I2

QG ≽ 0 with nonzero entries corresponding to edges of G
=⇒ QG = P1

TQ1P1 + P2
TQ2P2 with Qk ≽ 0 indexed by Ik

1 2 3 1 2 2 3

What are P1, P2? P1 ∈ R|I1|×n P(i, j) =

{
1 if I(i) = j

0 otherwise

I1 = (1, 2) ⇒ P1 =

(
1 0 0
0 1 0

)

I2 = (2, 3) ⇒ P2 =

(
0 1 0
0 0 1

)
P1

TQ1P1 inflates a |I1| × |I1| matrix Q1 into a sparse n × n matrix

Victor Magron Exploiting sparsity in polynomial optimization 10 / 80

Sparse SDP matrices

Theorem [Griewank Toint ’84, Agler et al. ’88]

Chordal graph G with n vertices & maximal cliques I1, I2

QG ≽ 0 with nonzero entries corresponding to edges of G
=⇒ QG = P1

TQ1P1 + P2
TQ2P2 with Qk ≽ 0 indexed by Ik

1 2 3 1 2 2 3

What are P1, P2? P1 ∈ R|I1|×n P(i, j) =

{
1 if I(i) = j

0 otherwise

I1 = (1, 2) ⇒ P1 =

(
1 0 0
0 1 0

)
I2 = (2, 3) ⇒ P2 =

(
0 1 0
0 0 1

)

P1
TQ1P1 inflates a |I1| × |I1| matrix Q1 into a sparse n × n matrix

Victor Magron Exploiting sparsity in polynomial optimization 10 / 80

Sparse SDP matrices

Theorem [Griewank Toint ’84, Agler et al. ’88]

Chordal graph G with n vertices & maximal cliques I1, I2

QG ≽ 0 with nonzero entries corresponding to edges of G
=⇒ QG = P1

TQ1P1 + P2
TQ2P2 with Qk ≽ 0 indexed by Ik

1 2 3 1 2 2 3

What are P1, P2? P1 ∈ R|I1|×n P(i, j) =

{
1 if I(i) = j

0 otherwise

I1 = (1, 2) ⇒ P1 =

(
1 0 0
0 1 0

)
I2 = (2, 3) ⇒ P2 =

(
0 1 0
0 0 1

)
P1

TQ1P1 inflates a |I1| × |I1| matrix Q1 into a sparse n × n matrix
Victor Magron Exploiting sparsity in polynomial optimization 10 / 80

Sparse SDP

Correlative sparsity

Term sparsity

Ideal sparsity

Tutorial session

What is correlative sparsity?

Exploit few links between variables [Lasserre, Waki et al. ’06]

f (x) = x2x5 + x3x6 − x2x3 − x5x6 + x1(−x1 + x2 + x3 − x4 + x5 + x6)

Correlative sparsity pattern (csp) graph G

Vertices = {1, . . . , n}

(i, j) ∈ Edges ⇐⇒ xixj appears in f

6

4

5

1

23

Similar construction with constraints X = {x ∈ Rn : gj(x) ⩾ 0}

Victor Magron Exploiting sparsity in polynomial optimization 11 / 80

What is correlative sparsity?

Exploit few links between variables [Lasserre, Waki et al. ’06]

f (x) = x2x5 + x3x6 − x2x3 − x5x6 + x1(−x1 + x2 + x3 − x4 + x5 + x6)

Correlative sparsity pattern (csp) graph G

Vertices = {1, . . . , n}

(i, j) ∈ Edges ⇐⇒ xixj appears in f

6

4

5

1

23

Similar construction with constraints X = {x ∈ Rn : gj(x) ⩾ 0}

Victor Magron Exploiting sparsity in polynomial optimization 11 / 80

What is correlative sparsity?

f (x) = x2x5 + x3x6 − x2x3 − x5x6 + x1(−x1 + x2 + x3 − x4 + x5 + x6)

Chordal graph after adding edge (3, 5)

6

4

5

1

23

maximal cliques I1 = {1, 4} I2 = {1, 2, 3, 5} I3 = {1, 3, 5, 6}

f = f1 + f2 + f3 where fk involves only variables in Ik

Let us index moment matrices and SOS with the cliques Ik

Victor Magron Exploiting sparsity in polynomial optimization 12 / 80

What is correlative sparsity?

f (x) = x2x5 + x3x6 − x2x3 − x5x6 + x1(−x1 + x2 + x3 − x4 + x5 + x6)

Chordal graph after adding edge (3, 5)

6

4

5

1

23

maximal cliques I1 = {1, 4} I2 = {1, 2, 3, 5} I3 = {1, 3, 5, 6}

f = f1 + f2 + f3 where fk involves only variables in Ik

Let us index moment matrices and SOS with the cliques Ik

Victor Magron Exploiting sparsity in polynomial optimization 12 / 80

A sparse variant of Putinar’s Positivstellensatz

Convergence of the Moment-SOS hierarchy is based on:
Theorem [Putinar ’93] Positivstellensatz

If X contains a ball constraint N − ∑i x2
i ⩾ 0 then

f > 0 on X = {x : gj(x) ⩾ 0} =⇒ f = σ0 +∑
j

σjgj with σj SOS

Theorem: Sparse Putinar’s representation [Lasserre ’06]

f = ∑k fk, fk depends on x(Ik)

f > 0 on X
Each gj depends on some Ik

RIP holds for (Ik) =⇒
ball constraints for each x(Ik)

f = ∑
k
(σ0k + ∑

j∈Jk

σjgj)

SOS σ0k “sees” vars in Ik

σj “sees” vars from gj

Victor Magron Exploiting sparsity in polynomial optimization 13 / 80

A sparse variant of Putinar’s Positivstellensatz

Convergence of the Moment-SOS hierarchy is based on:
Theorem [Putinar ’93] Positivstellensatz

If X contains a ball constraint N − ∑i x2
i ⩾ 0 then

f > 0 on X = {x : gj(x) ⩾ 0} =⇒ f = σ0 +∑
j

σjgj with σj SOS

Theorem: Sparse Putinar’s representation [Lasserre ’06]

f = ∑k fk, fk depends on x(Ik)

f > 0 on X
Each gj depends on some Ik

RIP holds for (Ik) =⇒
ball constraints for each x(Ik)

f = ∑
k
(σ0k + ∑

j∈Jk

σjgj)

SOS σ0k “sees” vars in Ik

σj “sees” vars from gj

Victor Magron Exploiting sparsity in polynomial optimization 13 / 80

A first key message

SUMS OF SQUARES PRESERVE SPARSITY

Victor Magron Exploiting sparsity in polynomial optimization 14 / 80

A proof of sparse Putinar’s Positivstellensatz

Let X = {x : gj(x) ⩾ 0} be compact and f = ∑k fk, with fk

depends on x(Ik), and f > 0 on X

Xk = {x(Ik) : gj(x) ⩾ 0 : j ∈ Jk} = the subspace of X which only
“sees” variables indexed by Ik

Lemma [Grimm et al. ’07]

If RIP holds for (Ik) then
f = ∑k hk, with hk depends on x(Ik), and hk > 0 on Xk

Prove this lemma by induction on the number of subsets Ik

Then apply Putinar to each hk

Victor Magron Exploiting sparsity in polynomial optimization 15 / 80

A proof of sparse Putinar’s Positivstellensatz

Let X = {x : gj(x) ⩾ 0} be compact and f = ∑k fk, with fk

depends on x(Ik), and f > 0 on X

Xk = {x(Ik) : gj(x) ⩾ 0 : j ∈ Jk} = the subspace of X which only
“sees” variables indexed by Ik

Lemma [Grimm et al. ’07]

If RIP holds for (Ik) then
f = ∑k hk, with hk depends on x(Ik), and hk > 0 on Xk

Prove this lemma by induction on the number of subsets Ik

Then apply Putinar to each hk

Victor Magron Exploiting sparsity in polynomial optimization 15 / 80

A proof of sparse Putinar’s Positivstellensatz

Let X = {x : gj(x) ⩾ 0} be compact and f = ∑k fk, with fk

depends on x(Ik), and f > 0 on X

Xk = {x(Ik) : gj(x) ⩾ 0 : j ∈ Jk} = the subspace of X which only
“sees” variables indexed by Ik

Lemma [Grimm et al. ’07]

If RIP holds for (Ik) then
f = ∑k hk, with hk depends on x(Ik), and hk > 0 on Xk

Prove this lemma by induction on the number of subsets Ik

Then apply Putinar to each hk

Victor Magron Exploiting sparsity in polynomial optimization 15 / 80

A proof of sparse Putinar’s Positivstellensatz

Let X = {x : gj(x) ⩾ 0} be compact and f = ∑k fk, with fk

depends on x(Ik), and f > 0 on X

Xk = {x(Ik) : gj(x) ⩾ 0 : j ∈ Jk} = the subspace of X which only
“sees” variables indexed by Ik

Lemma [Grimm et al. ’07]

If RIP holds for (Ik) then
f = ∑k hk, with hk depends on x(Ik), and hk > 0 on Xk

Prove this lemma by induction on the number of subsets Ik

Then apply Putinar to each hk

Victor Magron Exploiting sparsity in polynomial optimization 15 / 80

A proof of sparse Putinar’s Positivstellensatz

Let X = {x : gj(x) ⩾ 0} be compact and f = ∑k fk, with fk

depends on x(Ik), and f > 0 on X

Xk = {x(Ik) : gj(x) ⩾ 0 : j ∈ Jk} = the subspace of X which only
“sees” variables indexed by Ik

Lemma [Grimm et al. ’07]

If RIP holds for (Ik) then
f = ∑k hk, with hk depends on x(Ik), and hk > 0 on Xk

Prove this lemma by induction on the number of subsets Ik

Then apply Putinar to each hk

Victor Magron Exploiting sparsity in polynomial optimization 15 / 80

Sparse moment matrices

For each subset Ik, submatrix of Mr(y) corresponding of rows
& columns indexed by monomials in x(Ik)

f (x) = x2x5 + x3x6 − x2x3 − x5x6 + x1(−x1 + x2 + x3 − x4 + x5 + x6)

I1 = {1, 4} =⇒ monomials in x1, x4

M1(y, I1) =

1 | y1,0,0,0,0,0 y0,0,0,1,0,0

− − −
y1,0,0,0,0,0 | y2,0,0,0,0,0 y1,0,0,1,0,0

y0,0,0,1,0,0 | y1,0,0,1,0,0 y0,0,0,2,0,0

same for each localizing matrix Mr(gjy)

Victor Magron Exploiting sparsity in polynomial optimization 16 / 80

Sparse moment matrices

For each subset Ik, submatrix of Mr(y) corresponding of rows
& columns indexed by monomials in x(Ik)

f (x) = x2x5 + x3x6 − x2x3 − x5x6 + x1(−x1 + x2 + x3 − x4 + x5 + x6)

I1 = {1, 4} =⇒ monomials in x1, x4

M1(y, I1) =

1 | y1,0,0,0,0,0 y0,0,0,1,0,0

− − −
y1,0,0,0,0,0 | y2,0,0,0,0,0 y1,0,0,1,0,0

y0,0,0,1,0,0 | y1,0,0,1,0,0 y0,0,0,2,0,0

same for each localizing matrix Mr(gjy)

Victor Magron Exploiting sparsity in polynomial optimization 16 / 80

Sparse moment matrices

For each subset Ik, submatrix of Mr(y) corresponding of rows
& columns indexed by monomials in x(Ik)

f (x) = x2x5 + x3x6 − x2x3 − x5x6 + x1(−x1 + x2 + x3 − x4 + x5 + x6)

I1 = {1, 4} =⇒ monomials in x1, x4

M1(y, I1) =

1 | y1,0,0,0,0,0 y0,0,0,1,0,0

− − −
y1,0,0,0,0,0 | y2,0,0,0,0,0 y1,0,0,1,0,0

y0,0,0,1,0,0 | y1,0,0,1,0,0 y0,0,0,2,0,0

same for each localizing matrix Mr(gjy)

Victor Magron Exploiting sparsity in polynomial optimization 16 / 80

Sparse moment matrices

For each subset Ik, submatrix of Mr(y) corresponding of rows
& columns indexed by monomials in x(Ik)

f (x) = x2x5 + x3x6 − x2x3 − x5x6 + x1(−x1 + x2 + x3 − x4 + x5 + x6)

I1 = {1, 4} =⇒ monomials in x1, x4

M1(y, I1) =

1 | y1,0,0,0,0,0 y0,0,0,1,0,0

− − −
y1,0,0,0,0,0 | y2,0,0,0,0,0 y1,0,0,1,0,0

y0,0,0,1,0,0 | y1,0,0,1,0,0 y0,0,0,2,0,0

same for each localizing matrix Mr(gjy)

Victor Magron Exploiting sparsity in polynomial optimization 16 / 80

Sparse primal-dual Moment-SOS hierarchy

fmin = infx∈X f (x) with X = {x : gj(x) ⩾ 0}

Dense Moment-SOS hierarchy

(Moment) (SOS)

inf ∑
α

fα yα = sup λ

s.t. Mr(y) ≽ 0 s.t. λ ∈ R

Mr−rj(gj y) ≽ 0 f − λ = σ0 + ∑
j

σjgj

y0 = 1

Victor Magron Exploiting sparsity in polynomial optimization 17 / 80

Sparse primal-dual Moment-SOS hierarchy

fmin = infx∈X f (x) with X = {x : gj(x) ⩾ 0}
f = ∑k fk, with fk depends on x(Ik)

Each gj depends on some Ik

Sparse Moment-SOS hierarchy

(Moment) (SOS)

inf ∑
α

fα yα = sup λ

s.t. Mr(y, Ik) ≽ 0 s.t. λ ∈ R

Mr−rj(gj y, Ik) ≽ 0 , j ∈ Jk, ∀k f − λ = ∑
k
(σk0 + ∑

j∈Jk

σjgj)

y0 = 1

RIP holds for (Ik) + ball constraints for each x(Ik) =⇒ Primal
and dual optimal value converge to fmin by sparse Putinar

Victor Magron Exploiting sparsity in polynomial optimization 18 / 80

Sparse primal-dual Moment-SOS hierarchy

fmin = infx∈X f (x) with X = {x : gj(x) ⩾ 0}
f = ∑k fk, with fk depends on x(Ik)

Each gj depends on some Ik

Sparse Moment-SOS hierarchy

(Moment) (SOS)

inf ∑
α

fα yα = sup λ

s.t. Mr(y, Ik) ≽ 0 s.t. λ ∈ R

Mr−rj(gj y, Ik) ≽ 0 , j ∈ Jk, ∀k f − λ = ∑
k
(σk0 + ∑

j∈Jk

σjgj)

y0 = 1

RIP holds for (Ik) + ball constraints for each x(Ik) =⇒ Primal
and dual optimal value converge to fmin by sparse Putinar

Victor Magron Exploiting sparsity in polynomial optimization 18 / 80

Computational cost

fmin = infx∈X f (x) with X = {x : gj(x) ⩾ 0, j ⩽ m}
τ = max{|I1|, . . . , |Ip|}

Sparse Moment-SOS hierarchy

(Moment) (SOS)

inf ∑
α

fα yα = sup λ

s.t. Mr(y, Ik) ≽ 0 s.t. λ ∈ R

Mr−rj(gj y, Ik) ≽ 0 , j ∈ Jk, ∀k f − λ = ∑
k
(σk0 + ∑

j∈Jk

σjgj)

y0 = 1

(m + p) SOS in at most τ vars of degree ⩽ 2r
(m + p)O (rτ) SDP vars vs (m + 1)O (rn) in the dense SDP

Victor Magron Exploiting sparsity in polynomial optimization 19 / 80

Computational cost

fmin = infx∈X f (x) with X = {x : gj(x) ⩾ 0, j ⩽ m}
τ = max{|I1|, . . . , |Ip|}

Sparse Moment-SOS hierarchy

(Moment) (SOS)

inf ∑
α

fα yα = sup λ

s.t. Mr(y, Ik) ≽ 0 s.t. λ ∈ R

Mr−rj(gj y, Ik) ≽ 0 , j ∈ Jk, ∀k f − λ = ∑
k
(σk0 + ∑

j∈Jk

σjgj)

y0 = 1

(m + p) SOS in at most τ vars of degree ⩽ 2r

(m + p)O (rτ) SDP vars vs (m + 1)O (rn) in the dense SDP

Victor Magron Exploiting sparsity in polynomial optimization 19 / 80

Computational cost

fmin = infx∈X f (x) with X = {x : gj(x) ⩾ 0, j ⩽ m}
τ = max{|I1|, . . . , |Ip|}

Sparse Moment-SOS hierarchy

(Moment) (SOS)

inf ∑
α

fα yα = sup λ

s.t. Mr(y, Ik) ≽ 0 s.t. λ ∈ R

Mr−rj(gj y, Ik) ≽ 0 , j ∈ Jk, ∀k f − λ = ∑
k
(σk0 + ∑

j∈Jk

σjgj)

y0 = 1

(m + p) SOS in at most τ vars of degree ⩽ 2r
(m + p)O (rτ) SDP vars

vs (m + 1)O (rn) in the dense SDP

Victor Magron Exploiting sparsity in polynomial optimization 19 / 80

Computational cost

fmin = infx∈X f (x) with X = {x : gj(x) ⩾ 0, j ⩽ m}
τ = max{|I1|, . . . , |Ip|}

Sparse Moment-SOS hierarchy

(Moment) (SOS)

inf ∑
α

fα yα = sup λ

s.t. Mr(y, Ik) ≽ 0 s.t. λ ∈ R

Mr−rj(gj y, Ik) ≽ 0 , j ∈ Jk, ∀k f − λ = ∑
k
(σk0 + ∑

j∈Jk

σjgj)

y0 = 1

(m + p) SOS in at most τ vars of degree ⩽ 2r
(m + p)O (rτ) SDP vars vs (m + 1)O (rn) in the dense SDP

Victor Magron Exploiting sparsity in polynomial optimization 19 / 80

Sparse linear program over measures

In the dense setting:
fmin = inf

µ

∫
X

f dµ

s.t. µ ∈ M+(X)

In the sparse setting:

Xk = {x(Ik) : gj(x) ⩾ 0 : j ∈ Jk} = the subspace of X which only
“sees” variables indexed by Ik

Xkj = only “sees” variables indexed by Ik ∩ Ij

one measure µk for each Ik → marginals πkjµk on M+(Xkj)

Sparse moment SDPs relax the sparse LP over measures:

fcs = inf
µk

∑
k

∫
Xk

fk dµk

s.t. πjkµj = πkjµk , µk ∈ M+(Xk)

Victor Magron Exploiting sparsity in polynomial optimization 20 / 80

Sparse linear program over measures

In the dense setting:
fmin = inf

µ

∫
X

f dµ

s.t. µ ∈ M+(X)

In the sparse setting:

Xk = {x(Ik) : gj(x) ⩾ 0 : j ∈ Jk} = the subspace of X which only
“sees” variables indexed by Ik

Xkj = only “sees” variables indexed by Ik ∩ Ij

one measure µk for each Ik → marginals πkjµk on M+(Xkj)

Sparse moment SDPs relax the sparse LP over measures:

fcs = inf
µk

∑
k

∫
Xk

fk dµk

s.t. πjkµj = πkjµk , µk ∈ M+(Xk)

Victor Magron Exploiting sparsity in polynomial optimization 20 / 80

Sparse linear program over measures

In the dense setting:
fmin = inf

µ

∫
X

f dµ

s.t. µ ∈ M+(X)

In the sparse setting:

Xk = {x(Ik) : gj(x) ⩾ 0 : j ∈ Jk} = the subspace of X which only
“sees” variables indexed by Ik

Xkj = only “sees” variables indexed by Ik ∩ Ij

one measure µk for each Ik → marginals πkjµk on M+(Xkj)

Sparse moment SDPs relax the sparse LP over measures:

fcs = inf
µk

∑
k

∫
Xk

fk dµk

s.t. πjkµj = πkjµk , µk ∈ M+(Xk)

Victor Magron Exploiting sparsity in polynomial optimization 20 / 80

Sparse linear program over measures

In the dense setting:
fmin = inf

µ

∫
X

f dµ

s.t. µ ∈ M+(X)

In the sparse setting:

Xk = {x(Ik) : gj(x) ⩾ 0 : j ∈ Jk} = the subspace of X which only
“sees” variables indexed by Ik

Xkj = only “sees” variables indexed by Ik ∩ Ij

one measure µk for each Ik → marginals πkjµk on M+(Xkj)

Sparse moment SDPs relax the sparse LP over measures:

fcs = inf
µk

∑
k

∫
Xk

fk dµk

s.t. πjkµj = πkjµk , µk ∈ M+(Xk)

Victor Magron Exploiting sparsity in polynomial optimization 20 / 80

Sparse linear program over measures

In the dense setting:
fmin = inf

µ

∫
X

f dµ

s.t. µ ∈ M+(X)

In the sparse setting:

Xk = {x(Ik) : gj(x) ⩾ 0 : j ∈ Jk} = the subspace of X which only
“sees” variables indexed by Ik

Xkj = only “sees” variables indexed by Ik ∩ Ij

one measure µk for each Ik → marginals πkjµk on M+(Xkj)

Sparse moment SDPs relax the sparse LP over measures:

fcs = inf
µk

∑
k

∫
Xk

fk dµk

s.t. πjkµj = πkjµk , µk ∈ M+(Xk)

Victor Magron Exploiting sparsity in polynomial optimization 20 / 80

The dual of sparse Putinar’s Positivstellensatz

Theorem [Lasserre ’06]

RIP holds for (Ik) =⇒ fmin = fcs = inf
µk

∑
k

∫
Xk

fk dµk

s.t. πjkµj = πkjµk

µk ∈ M+(Xk)

Proof: there exists µ ∈ M+(X) with marginal µk on Xk

M+(X)

M+(X1) M+(X2)

M+(X12)

π1 π2

π21 π12

Victor Magron Exploiting sparsity in polynomial optimization 21 / 80

The dual of sparse Putinar’s Positivstellensatz

Theorem [Lasserre ’06]

RIP holds for (Ik) =⇒ fmin = fcs = inf
µk

∑
k

∫
Xk

fk dµk

s.t. πjkµj = πkjµk

µk ∈ M+(Xk)

Proof: there exists µ ∈ M+(X) with marginal µk on Xk

M+(X)

M+(X1) M+(X2)

M+(X12)

π1 π2

π21 π12

Victor Magron Exploiting sparsity in polynomial optimization 21 / 80

A first (dual) key message

THE MEASURE LP PRESERVES SPARSITY

Victor Magron Exploiting sparsity in polynomial optimization 22 / 80

Extracting minimizers: the dense case

Let rmin be the minimal relaxation order.

Theorem: dense extraction [Lasserre & Henrion ’05]
Assume that the moment SDP has an optimal solution y with cost
f r and

rank Mr′(y) = rank Mr′−rmin(y) for some r′ ⩽ r .

Then f r = fmin and the LP over measures has an optimal solution
µ ∈ M+(X) supported on t = rank Mr′(y) points of X.

Extraction possible with the Gloptipoly software

Victor Magron Exploiting sparsity in polynomial optimization 23 / 80

Extracting minimizers: the dense case

Let rmin be the minimal relaxation order.

Theorem: dense extraction [Lasserre & Henrion ’05]
Assume that the moment SDP has an optimal solution y with cost
f r and

rank Mr′(y) = rank Mr′−rmin(y) for some r′ ⩽ r .

Then f r = fmin and the LP over measures has an optimal solution
µ ∈ M+(X) supported on t = rank Mr′(y) points of X.

Extraction possible with the Gloptipoly software

Victor Magron Exploiting sparsity in polynomial optimization 23 / 80

Extracting minimizers: the dense case

Let rmin be the minimal relaxation order.

Theorem: dense extraction [Lasserre & Henrion ’05]
Assume that the moment SDP has an optimal solution y with cost
f r and

rank Mr′(y) = rank Mr′−rmin(y) for some r′ ⩽ r .

Then f r = fmin and the LP over measures has an optimal solution
µ ∈ M+(X) supported on t = rank Mr′(y) points of X.

Extraction possible with the Gloptipoly software

Victor Magron Exploiting sparsity in polynomial optimization 23 / 80

Extracting minimizers: the dense case

Let rmin be the minimal relaxation order.

Theorem: dense extraction [Lasserre & Henrion ’05]
Assume that the moment SDP has an optimal solution y with cost
f r and

rank Mr′(y) = rank Mr′−rmin(y) for some r′ ⩽ r .

Then f r = fmin and the LP over measures has an optimal solution
µ ∈ M+(X) supported on t = rank Mr′(y) points of X.

Extraction possible with the Gloptipoly software

Victor Magron Exploiting sparsity in polynomial optimization 23 / 80

Extracting minimizers: the sparse case

ak = maxj∈Jk rj = max half degree of gj depending on Ik.

Theorem: sparse extraction [Lasserre ’06]

Assume that the sparse moment SDP has an optimal solution y with
cost f r

cs and

rank Mr(y, Ik) = rank Mr−ak (y, Ik)

rank Mr(y, Ik ∩ Ij) = 1

Then f r
cs = fmin = fcs & sparse measure LP has optimal solution µk ∈

M+(Xk) supported on tk = rank Mr(y, Ik) points of Xk.

RIP is not required!
Extract x(k) from Mr(y, Ik) =⇒ minimizer x with (xi)i∈Ik = x(k)

Victor Magron Exploiting sparsity in polynomial optimization 24 / 80

Extracting minimizers: the sparse case

ak = maxj∈Jk rj = max half degree of gj depending on Ik.

Theorem: sparse extraction [Lasserre ’06]

Assume that the sparse moment SDP has an optimal solution y with
cost f r

cs and

rank Mr(y, Ik) = rank Mr−ak (y, Ik)

rank Mr(y, Ik ∩ Ij) = 1

Then f r
cs = fmin = fcs & sparse measure LP has optimal solution µk ∈

M+(Xk) supported on tk = rank Mr(y, Ik) points of Xk.

RIP is not required!
Extract x(k) from Mr(y, Ik) =⇒ minimizer x with (xi)i∈Ik = x(k)

Victor Magron Exploiting sparsity in polynomial optimization 24 / 80

Extracting minimizers: the sparse case

ak = maxj∈Jk rj = max half degree of gj depending on Ik.

Theorem: sparse extraction [Lasserre ’06]

Assume that the sparse moment SDP has an optimal solution y with
cost f r

cs and

rank Mr(y, Ik) = rank Mr−ak (y, Ik)

rank Mr(y, Ik ∩ Ij) = 1

Then f r
cs = fmin = fcs & sparse measure LP has optimal solution µk ∈

M+(Xk) supported on tk = rank Mr(y, Ik) points of Xk.

RIP is not required!
Extract x(k) from Mr(y, Ik) =⇒ minimizer x with (xi)i∈Ik = x(k)

Victor Magron Exploiting sparsity in polynomial optimization 24 / 80

Extracting minimizers: the sparse case

ak = maxj∈Jk rj = max half degree of gj depending on Ik.

Theorem: sparse extraction [Lasserre ’06]

Assume that the sparse moment SDP has an optimal solution y with
cost f r

cs and

rank Mr(y, Ik) = rank Mr−ak (y, Ik)

rank Mr(y, Ik ∩ Ij) = 1

Then f r
cs = fmin = fcs & sparse measure LP has optimal solution µk ∈

M+(Xk) supported on tk = rank Mr(y, Ik) points of Xk.

RIP is not required!
Extract x(k) from Mr(y, Ik) =⇒ minimizer x with (xi)i∈Ik = x(k)

Victor Magron Exploiting sparsity in polynomial optimization 24 / 80

Application to rational functions

fmin = inf
x∈X

∑
i

pi(x)
qi(x)

, qi > 0 on X , pi, qi depends only on Ii

Theorem: dense measure LP [Bugarin et al. ’16]

fmin = inf
µi∈M+(X)

∑
i

∫
X

pi dµi

s.t.
∫

X
xα qi dµi =

∫
X

xα q1 dµ1 , α ∈ Nn∫
X

q1 dµ1 = 1

Theorem: sparse measure LP [Bugarin et al. ’16]

fmin = fcs = inf
µi∈M+(Xi)

∑
i

∫
Xi

pi dµi

s.t. πij(qidµi) = πji(qjdµj)∫
Xi

qi dµi = 1

Victor Magron Exploiting sparsity in polynomial optimization 25 / 80

Application to rational functions

fmin = inf
x∈X

∑
i

pi(x)
qi(x)

, qi > 0 on X , pi, qi depends only on Ii

Theorem: dense measure LP [Bugarin et al. ’16]

fmin = inf
µi∈M+(X)

∑
i

∫
X

pi dµi

s.t.
∫

X
xα qi dµi =

∫
X

xα q1 dµ1 , α ∈ Nn∫
X

q1 dµ1 = 1

Theorem: sparse measure LP [Bugarin et al. ’16]

fmin = fcs = inf
µi∈M+(Xi)

∑
i

∫
Xi

pi dµi

s.t. πij(qidµi) = πji(qjdµj)∫
Xi

qi dµi = 1

Victor Magron Exploiting sparsity in polynomial optimization 25 / 80

Application to rational functions

fmin = inf
x∈X

∑
i

pi(x)
qi(x)

, qi > 0 on X , pi, qi depends only on Ii

Theorem: dense measure LP [Bugarin et al. ’16]

fmin = inf
µi∈M+(X)

∑
i

∫
X

pi dµi

s.t.
∫

X
xα qi dµi =

∫
X

xα q1 dµ1 , α ∈ Nn∫
X

q1 dµ1 = 1

Theorem: sparse measure LP [Bugarin et al. ’16]

fmin = fcs = inf
µi∈M+(Xi)

∑
i

∫
Xi

pi dµi

s.t. πij(qidµi) = πji(qjdµj)∫
Xi

qi dµi = 1

Victor Magron Exploiting sparsity in polynomial optimization 25 / 80

Application to roundoff errors

[Magron Constantinides Donaldson ’17]

Exact f (x) = x1x2 + x3x4

Floating-point f̂ (x, e) = [x1x2(1 + e1) + x3x4(1 + e2)](1 + e3)

x ∈ X , | ei |⩽ 2−δ δ = 24 (single) or 53 (double)

1: Error f (x)− f̂ (x, e) = ℓ(x, e) + h(x, e), ℓ linear in e

2: Bound h(x, e) with interval arithmetic

3: Bound ℓ(x, e) with SPARSE SUMS OF SQUARES

Ik → {x, ek} =⇒ m rn+1 instead of rn+m SDP vars

Victor Magron Exploiting sparsity in polynomial optimization 26 / 80

Application to roundoff errors

[Magron Constantinides Donaldson ’17]

Exact f (x) = x1x2 + x3x4
Floating-point f̂ (x, e) = [x1x2(1 + e1) + x3x4(1 + e2)](1 + e3)

x ∈ X , | ei |⩽ 2−δ δ = 24 (single) or 53 (double)

1: Error f (x)− f̂ (x, e) = ℓ(x, e) + h(x, e), ℓ linear in e

2: Bound h(x, e) with interval arithmetic

3: Bound ℓ(x, e) with SPARSE SUMS OF SQUARES

Ik → {x, ek} =⇒ m rn+1 instead of rn+m SDP vars

Victor Magron Exploiting sparsity in polynomial optimization 26 / 80

Application to roundoff errors

[Magron Constantinides Donaldson ’17]

Exact f (x) = x1x2 + x3x4
Floating-point f̂ (x, e) = [x1x2(1 + e1) + x3x4(1 + e2)](1 + e3)

x ∈ X , | ei |⩽ 2−δ δ = 24 (single) or 53 (double)

1: Error f (x)− f̂ (x, e) = ℓ(x, e) + h(x, e), ℓ linear in e

2: Bound h(x, e) with interval arithmetic

3: Bound ℓ(x, e) with SPARSE SUMS OF SQUARES

Ik → {x, ek} =⇒ m rn+1 instead of rn+m SDP vars

Victor Magron Exploiting sparsity in polynomial optimization 26 / 80

Application to roundoff errors

[Magron Constantinides Donaldson ’17]

Exact f (x) = x1x2 + x3x4
Floating-point f̂ (x, e) = [x1x2(1 + e1) + x3x4(1 + e2)](1 + e3)

x ∈ X , | ei |⩽ 2−δ δ = 24 (single) or 53 (double)

1: Error f (x)− f̂ (x, e) = ℓ(x, e) + h(x, e), ℓ linear in e

2: Bound h(x, e) with interval arithmetic

3: Bound ℓ(x, e) with SPARSE SUMS OF SQUARES

Ik → {x, ek} =⇒ m rn+1 instead of rn+m SDP vars

Victor Magron Exploiting sparsity in polynomial optimization 26 / 80

Application to roundoff errors

[Magron Constantinides Donaldson ’17]

Exact f (x) = x1x2 + x3x4
Floating-point f̂ (x, e) = [x1x2(1 + e1) + x3x4(1 + e2)](1 + e3)

x ∈ X , | ei |⩽ 2−δ δ = 24 (single) or 53 (double)

1: Error f (x)− f̂ (x, e) = ℓ(x, e) + h(x, e), ℓ linear in e

2: Bound h(x, e) with interval arithmetic

3: Bound ℓ(x, e) with SPARSE SUMS OF SQUARES

Ik → {x, ek} =⇒ m rn+1 instead of rn+m SDP vars

Victor Magron Exploiting sparsity in polynomial optimization 26 / 80

Application to roundoff errors

[Magron Constantinides Donaldson ’17]

Exact f (x) = x1x2 + x3x4
Floating-point f̂ (x, e) = [x1x2(1 + e1) + x3x4(1 + e2)](1 + e3)

x ∈ X , | ei |⩽ 2−δ δ = 24 (single) or 53 (double)

1: Error f (x)− f̂ (x, e) = ℓ(x, e) + h(x, e), ℓ linear in e

2: Bound h(x, e) with interval arithmetic

3: Bound ℓ(x, e) with SPARSE SUMS OF SQUARES

Ik → {x, ek} =⇒ m rn+1 instead of rn+m SDP vars

Victor Magron Exploiting sparsity in polynomial optimization 26 / 80

Application to roundoff errors

f = x2x5 + x3x6 − x2x3 − x5x6 + x1(−x1 + x2 + x3 − x4 + x5 + x6)

x ∈ [4.00, 6.36]6 , e ∈ [−ϵ, ϵ]15 , ϵ = 2−53

Dense SDP: (6+15+4
6+15) = 12650 variables ; Out of memory

Sparse SDP Real2Float tool: 15(6+1+4
6+1) = 4950 ; 759ϵ

Interval arithmetic: 922ϵ (10 × less CPU)

Symbolic Taylor FPTaylor tool: 721ϵ (21 × more CPU)

SMT-based rosa tool: 762ϵ (19 × more CPU)

Victor Magron Exploiting sparsity in polynomial optimization 27 / 80

Application to roundoff errors

f = x2x5 + x3x6 − x2x3 − x5x6 + x1(−x1 + x2 + x3 − x4 + x5 + x6)

x ∈ [4.00, 6.36]6 , e ∈ [−ϵ, ϵ]15 , ϵ = 2−53

Dense SDP: (6+15+4
6+15) = 12650 variables ; Out of memory

Sparse SDP Real2Float tool: 15(6+1+4
6+1) = 4950 ; 759ϵ

Interval arithmetic: 922ϵ (10 × less CPU)

Symbolic Taylor FPTaylor tool: 721ϵ (21 × more CPU)

SMT-based rosa tool: 762ϵ (19 × more CPU)

Victor Magron Exploiting sparsity in polynomial optimization 27 / 80

Application to roundoff errors

f = x2x5 + x3x6 − x2x3 − x5x6 + x1(−x1 + x2 + x3 − x4 + x5 + x6)

x ∈ [4.00, 6.36]6 , e ∈ [−ϵ, ϵ]15 , ϵ = 2−53

Dense SDP: (6+15+4
6+15) = 12650 variables ; Out of memory

Sparse SDP Real2Float tool: 15(6+1+4
6+1) = 4950 ; 759ϵ

Interval arithmetic: 922ϵ (10 × less CPU)

Symbolic Taylor FPTaylor tool: 721ϵ (21 × more CPU)

SMT-based rosa tool: 762ϵ (19 × more CPU)

Victor Magron Exploiting sparsity in polynomial optimization 27 / 80

Application to roundoff errors

f = x2x5 + x3x6 − x2x3 − x5x6 + x1(−x1 + x2 + x3 − x4 + x5 + x6)

x ∈ [4.00, 6.36]6 , e ∈ [−ϵ, ϵ]15 , ϵ = 2−53

Dense SDP: (6+15+4
6+15) = 12650 variables ; Out of memory

Sparse SDP Real2Float tool: 15(6+1+4
6+1) = 4950 ; 759ϵ

Interval arithmetic: 922ϵ (10 × less CPU)

Symbolic Taylor FPTaylor tool: 721ϵ (21 × more CPU)

SMT-based rosa tool: 762ϵ (19 × more CPU)

Victor Magron Exploiting sparsity in polynomial optimization 27 / 80

Application to roundoff errors

f = x2x5 + x3x6 − x2x3 − x5x6 + x1(−x1 + x2 + x3 − x4 + x5 + x6)

x ∈ [4.00, 6.36]6 , e ∈ [−ϵ, ϵ]15 , ϵ = 2−53

Dense SDP: (6+15+4
6+15) = 12650 variables ; Out of memory

Sparse SDP Real2Float tool: 15(6+1+4
6+1) = 4950 ; 759ϵ

Interval arithmetic: 922ϵ (10 × less CPU)

Symbolic Taylor FPTaylor tool: 721ϵ (21 × more CPU)

SMT-based rosa tool: 762ϵ (19 × more CPU)

Victor Magron Exploiting sparsity in polynomial optimization 27 / 80

Application to roundoff errors

Re
al
2F
lo
at

ro
sa

FP
Ta
yl
or

0

200

400

600

800

1,000

759ε 762ε
721ε

CPU Time

Er
ro

r
Bo

un
d

(ε
)

Victor Magron Exploiting sparsity in polynomial optimization 28 / 80

Extension to noncommutative optimization

Self-adjoint noncommutative variables ai, bj ∈ B(H)

f = a1(b1 + b2 + b3) + a2(b1 + b2 − b3) + a3(b1 − b2)− b1 − 2b1 − b2

with a1a2 ̸= a2a1, involution (a1b3)⋆ = b3a1

Constraints X = {(a, b) : a2
i = ai, b2

j = bj, aibj = bjai}

MINIMAL EIGENVALUE OPTIMIZATION

λmin = inf {⟨ f (a, b)v, v⟩ : (a, b) ∈ X, ∥v∥ = 1}
= sup λ

s.t. f (a, b)− λI ≽ 0 , ∀(a, b) ∈ X

Victor Magron Exploiting sparsity in polynomial optimization 29 / 80

Extension to noncommutative optimization

Self-adjoint noncommutative variables ai, bj ∈ B(H)

f = a1(b1 + b2 + b3) + a2(b1 + b2 − b3) + a3(b1 − b2)− b1 − 2b1 − b2

with a1a2 ̸= a2a1, involution (a1b3)⋆ = b3a1

Constraints X = {(a, b) : a2
i = ai, b2

j = bj, aibj = bjai}

MINIMAL EIGENVALUE OPTIMIZATION

λmin = inf {⟨ f (a, b)v, v⟩ : (a, b) ∈ X, ∥v∥ = 1}
= sup λ

s.t. f (a, b)− λI ≽ 0 , ∀(a, b) ∈ X

Victor Magron Exploiting sparsity in polynomial optimization 29 / 80

Extension to noncommutative optimization

Self-adjoint noncommutative variables ai, bj ∈ B(H)

f = a1(b1 + b2 + b3) + a2(b1 + b2 − b3) + a3(b1 − b2)− b1 − 2b1 − b2

with a1a2 ̸= a2a1, involution (a1b3)⋆ = b3a1

Constraints X = {(a, b) : a2
i = ai, b2

j = bj, aibj = bjai}

MINIMAL EIGENVALUE OPTIMIZATION

λmin = inf {⟨ f (a, b)v, v⟩ : (a, b) ∈ X, ∥v∥ = 1}

= sup λ

s.t. f (a, b)− λI ≽ 0 , ∀(a, b) ∈ X

Victor Magron Exploiting sparsity in polynomial optimization 29 / 80

Extension to noncommutative optimization

Self-adjoint noncommutative variables ai, bj ∈ B(H)

f = a1(b1 + b2 + b3) + a2(b1 + b2 − b3) + a3(b1 − b2)− b1 − 2b1 − b2

with a1a2 ̸= a2a1, involution (a1b3)⋆ = b3a1

Constraints X = {(a, b) : a2
i = ai, b2

j = bj, aibj = bjai}

MINIMAL EIGENVALUE OPTIMIZATION

λmin = inf {⟨ f (a, b)v, v⟩ : (a, b) ∈ X, ∥v∥ = 1}
= sup λ

s.t. f (a, b)− λI ≽ 0 , ∀(a, b) ∈ X

Victor Magron Exploiting sparsity in polynomial optimization 29 / 80

Extension to noncommutative optimization

Ball constraint N − ∑i x2
i ≽ 0 in X

Theorem: NC Putinar’s representation [Helton & McCullough ’02]

f ≻ 0 on X =⇒ f = ∑
i

s⋆i si + ∑
j

∑
i

t⋆jigjtji with si, tji ∈ R⟨x⟩

NC variant of Lasserre’s Hierarchy for λmin:

replace “ f − λI ≽ 0 on X” by f − λI = ∑i s⋆i si + ∑j ∑i t⋆jigjtji

with si, tji of bounded degrees = SDP

Victor Magron Exploiting sparsity in polynomial optimization 30 / 80

Extension to noncommutative optimization

Ball constraint N − ∑i x2
i ≽ 0 in X

Theorem: NC Putinar’s representation [Helton & McCullough ’02]

f ≻ 0 on X =⇒ f = ∑
i

s⋆i si + ∑
j

∑
i

t⋆jigjtji with si, tji ∈ R⟨x⟩

NC variant of Lasserre’s Hierarchy for λmin:

replace “ f − λI ≽ 0 on X” by f − λI = ∑i s⋆i si + ∑j ∑i t⋆jigjtji

with si, tji of bounded degrees = SDP

Victor Magron Exploiting sparsity in polynomial optimization 30 / 80

Extension to noncommutative optimization

Self-adjoint noncommutative (NC) variables x = (x1, . . . , xn)

Theorem [Helton & McCullough ’02]

f ≽ 0 ⇔ f SOS (all positive polynomials are sums of squares)

BAD NEWS: there is no sparse analog! [Klep Magron Povh ’21]
sparse f SOS ⇏ f is a sparse SOS Take f = (x1 + x2 + x3)

2

GOOD NEWS: there is an NC analog of the sparse Putinar’s
Positivstellensatz! Based on GNS construction & amalgamation
[Blackadar ’78, Voiculescu ’85]
Theorem: Sparse NC Positivstellensatz [Klep Magron Povh ’21]

f = ∑k f k, f k depends on x(Ik)

f > 0 on {x : gj(x) ⩾ 0}
chordal graph with cliques Ik =⇒
ball constraints for each x(Ik)

f = ∑
k,i
(s⋆kiski + ∑

j∈Jk

tji
⋆gjtji)

ski “sees” vars in Ik
tji “sees” vars from gj

Victor Magron Exploiting sparsity in polynomial optimization 31 / 80

Extension to noncommutative optimization

Self-adjoint noncommutative (NC) variables x = (x1, . . . , xn)

Theorem [Helton & McCullough ’02]

f ≽ 0 ⇔ f SOS (all positive polynomials are sums of squares)

BAD NEWS: there is no sparse analog! [Klep Magron Povh ’21]
sparse f SOS ⇏ f is a sparse SOS

Take f = (x1 + x2 + x3)
2

GOOD NEWS: there is an NC analog of the sparse Putinar’s
Positivstellensatz! Based on GNS construction & amalgamation
[Blackadar ’78, Voiculescu ’85]
Theorem: Sparse NC Positivstellensatz [Klep Magron Povh ’21]

f = ∑k f k, f k depends on x(Ik)

f > 0 on {x : gj(x) ⩾ 0}
chordal graph with cliques Ik =⇒
ball constraints for each x(Ik)

f = ∑
k,i
(s⋆kiski + ∑

j∈Jk

tji
⋆gjtji)

ski “sees” vars in Ik
tji “sees” vars from gj

Victor Magron Exploiting sparsity in polynomial optimization 31 / 80

Extension to noncommutative optimization

Self-adjoint noncommutative (NC) variables x = (x1, . . . , xn)

Theorem [Helton & McCullough ’02]

f ≽ 0 ⇔ f SOS (all positive polynomials are sums of squares)

BAD NEWS: there is no sparse analog! [Klep Magron Povh ’21]
sparse f SOS ⇏ f is a sparse SOS Take f = (x1 + x2 + x3)

2

GOOD NEWS: there is an NC analog of the sparse Putinar’s
Positivstellensatz! Based on GNS construction & amalgamation
[Blackadar ’78, Voiculescu ’85]
Theorem: Sparse NC Positivstellensatz [Klep Magron Povh ’21]

f = ∑k f k, f k depends on x(Ik)

f > 0 on {x : gj(x) ⩾ 0}
chordal graph with cliques Ik =⇒
ball constraints for each x(Ik)

f = ∑
k,i
(s⋆kiski + ∑

j∈Jk

tji
⋆gjtji)

ski “sees” vars in Ik
tji “sees” vars from gj

Victor Magron Exploiting sparsity in polynomial optimization 31 / 80

Extension to noncommutative optimization

Self-adjoint noncommutative (NC) variables x = (x1, . . . , xn)

Theorem [Helton & McCullough ’02]

f ≽ 0 ⇔ f SOS (all positive polynomials are sums of squares)

BAD NEWS: there is no sparse analog! [Klep Magron Povh ’21]
sparse f SOS ⇏ f is a sparse SOS Take f = (x1 + x2 + x3)

2

GOOD NEWS: there is an NC analog of the sparse Putinar’s
Positivstellensatz!

Based on GNS construction & amalgamation
[Blackadar ’78, Voiculescu ’85]
Theorem: Sparse NC Positivstellensatz [Klep Magron Povh ’21]

f = ∑k f k, f k depends on x(Ik)

f > 0 on {x : gj(x) ⩾ 0}
chordal graph with cliques Ik =⇒
ball constraints for each x(Ik)

f = ∑
k,i
(s⋆kiski + ∑

j∈Jk

tji
⋆gjtji)

ski “sees” vars in Ik
tji “sees” vars from gj

Victor Magron Exploiting sparsity in polynomial optimization 31 / 80

Extension to noncommutative optimization

Self-adjoint noncommutative (NC) variables x = (x1, . . . , xn)

Theorem [Helton & McCullough ’02]

f ≽ 0 ⇔ f SOS (all positive polynomials are sums of squares)

BAD NEWS: there is no sparse analog! [Klep Magron Povh ’21]
sparse f SOS ⇏ f is a sparse SOS Take f = (x1 + x2 + x3)

2

GOOD NEWS: there is an NC analog of the sparse Putinar’s
Positivstellensatz! Based on GNS construction & amalgamation
[Blackadar ’78, Voiculescu ’85]

Theorem: Sparse NC Positivstellensatz [Klep Magron Povh ’21]

f = ∑k f k, f k depends on x(Ik)

f > 0 on {x : gj(x) ⩾ 0}
chordal graph with cliques Ik =⇒
ball constraints for each x(Ik)

f = ∑
k,i
(s⋆kiski + ∑

j∈Jk

tji
⋆gjtji)

ski “sees” vars in Ik
tji “sees” vars from gj

Victor Magron Exploiting sparsity in polynomial optimization 31 / 80

Extension to noncommutative optimization

Self-adjoint noncommutative (NC) variables x = (x1, . . . , xn)

Theorem [Helton & McCullough ’02]

f ≽ 0 ⇔ f SOS (all positive polynomials are sums of squares)

BAD NEWS: there is no sparse analog! [Klep Magron Povh ’21]
sparse f SOS ⇏ f is a sparse SOS Take f = (x1 + x2 + x3)

2

GOOD NEWS: there is an NC analog of the sparse Putinar’s
Positivstellensatz! Based on GNS construction & amalgamation
[Blackadar ’78, Voiculescu ’85]
Theorem: Sparse NC Positivstellensatz [Klep Magron Povh ’21]

f = ∑k f k, f k depends on x(Ik)

f > 0 on {x : gj(x) ⩾ 0}
chordal graph with cliques Ik =⇒
ball constraints for each x(Ik)

f = ∑
k,i
(s⋆kiski + ∑

j∈Jk

tji
⋆gjtji)

ski “sees” vars in Ik
tji “sees” vars from gj

Victor Magron Exploiting sparsity in polynomial optimization 31 / 80

Application to violation of Bell inequalities

I3322 Bell inequality (entanglement in quantum information)

f = a1(b1 + b2 + b3) + a2(b1 + b2 − b3) + a3(b1 − b2)− a1 − 2b1 − b2

Maximal violation levels → upper bounds on λmax of f on
{a, b : a2

i = ai b2
i = bi aibj = bjai}

Ik → {ak, b1, b2, b3}
level sparse dense [Pál & Vértesi ’18]
2 0.2550008 0.2509397
3 0.2511592 0.2508756
3’ 0.2508754 (1 day)
4 0.2508917
5 0.2508763
6 0.2508753977180 (1 hour)

PERFORMANCE VS ACCURACY

Victor Magron Exploiting sparsity in polynomial optimization 32 / 80

Application to violation of Bell inequalities

I3322 Bell inequality (entanglement in quantum information)

f = a1(b1 + b2 + b3) + a2(b1 + b2 − b3) + a3(b1 − b2)− a1 − 2b1 − b2

Maximal violation levels → upper bounds on λmax of f on
{a, b : a2

i = ai b2
i = bi aibj = bjai}

Ik → {ak, b1, b2, b3}

level sparse dense [Pál & Vértesi ’18]
2 0.2550008 0.2509397
3 0.2511592 0.2508756
3’ 0.2508754 (1 day)
4 0.2508917
5 0.2508763
6 0.2508753977180 (1 hour)

PERFORMANCE VS ACCURACY

Victor Magron Exploiting sparsity in polynomial optimization 32 / 80

Application to violation of Bell inequalities

I3322 Bell inequality (entanglement in quantum information)

f = a1(b1 + b2 + b3) + a2(b1 + b2 − b3) + a3(b1 − b2)− a1 − 2b1 − b2

Maximal violation levels → upper bounds on λmax of f on
{a, b : a2

i = ai b2
i = bi aibj = bjai}

Ik → {ak, b1, b2, b3}
level sparse dense [Pál & Vértesi ’18]
2 0.2550008 0.2509397

3 0.2511592 0.2508756
3’ 0.2508754 (1 day)
4 0.2508917
5 0.2508763
6 0.2508753977180 (1 hour)

PERFORMANCE VS ACCURACY

Victor Magron Exploiting sparsity in polynomial optimization 32 / 80

Application to violation of Bell inequalities

I3322 Bell inequality (entanglement in quantum information)

f = a1(b1 + b2 + b3) + a2(b1 + b2 − b3) + a3(b1 − b2)− a1 − 2b1 − b2

Maximal violation levels → upper bounds on λmax of f on
{a, b : a2

i = ai b2
i = bi aibj = bjai}

Ik → {ak, b1, b2, b3}
level sparse dense [Pál & Vértesi ’18]
2 0.2550008 0.2509397
3 0.2511592 0.2508756

3’ 0.2508754 (1 day)
4 0.2508917
5 0.2508763
6 0.2508753977180 (1 hour)

PERFORMANCE VS ACCURACY

Victor Magron Exploiting sparsity in polynomial optimization 32 / 80

Application to violation of Bell inequalities

I3322 Bell inequality (entanglement in quantum information)

f = a1(b1 + b2 + b3) + a2(b1 + b2 − b3) + a3(b1 − b2)− a1 − 2b1 − b2

Maximal violation levels → upper bounds on λmax of f on
{a, b : a2

i = ai b2
i = bi aibj = bjai}

Ik → {ak, b1, b2, b3}
level sparse dense [Pál & Vértesi ’18]
2 0.2550008 0.2509397
3 0.2511592 0.2508756
3’ 0.2508754 (1 day)

4 0.2508917
5 0.2508763
6 0.2508753977180 (1 hour)

PERFORMANCE VS ACCURACY

Victor Magron Exploiting sparsity in polynomial optimization 32 / 80

Application to violation of Bell inequalities

I3322 Bell inequality (entanglement in quantum information)

f = a1(b1 + b2 + b3) + a2(b1 + b2 − b3) + a3(b1 − b2)− a1 − 2b1 − b2

Maximal violation levels → upper bounds on λmax of f on
{a, b : a2

i = ai b2
i = bi aibj = bjai}

Ik → {ak, b1, b2, b3}
level sparse dense [Pál & Vértesi ’18]
2 0.2550008 0.2509397
3 0.2511592 0.2508756
3’ 0.2508754 (1 day)
4 0.2508917

5 0.2508763
6 0.2508753977180 (1 hour)

PERFORMANCE VS ACCURACY

Victor Magron Exploiting sparsity in polynomial optimization 32 / 80

Application to violation of Bell inequalities

I3322 Bell inequality (entanglement in quantum information)

f = a1(b1 + b2 + b3) + a2(b1 + b2 − b3) + a3(b1 − b2)− a1 − 2b1 − b2

Maximal violation levels → upper bounds on λmax of f on
{a, b : a2

i = ai b2
i = bi aibj = bjai}

Ik → {ak, b1, b2, b3}
level sparse dense [Pál & Vértesi ’18]
2 0.2550008 0.2509397
3 0.2511592 0.2508756
3’ 0.2508754 (1 day)
4 0.2508917
5 0.2508763

6 0.2508753977180 (1 hour)

PERFORMANCE VS ACCURACY

Victor Magron Exploiting sparsity in polynomial optimization 32 / 80

Application to violation of Bell inequalities

I3322 Bell inequality (entanglement in quantum information)

f = a1(b1 + b2 + b3) + a2(b1 + b2 − b3) + a3(b1 − b2)− a1 − 2b1 − b2

Maximal violation levels → upper bounds on λmax of f on
{a, b : a2

i = ai b2
i = bi aibj = bjai}

Ik → {ak, b1, b2, b3}
level sparse dense [Pál & Vértesi ’18]
2 0.2550008 0.2509397
3 0.2511592 0.2508756
3’ 0.2508754 (1 day)
4 0.2508917
5 0.2508763
6 0.2508753977180 (1 hour)

PERFORMANCE VS ACCURACY

Victor Magron Exploiting sparsity in polynomial optimization 32 / 80

Application to SOS of bounded degrees

Theorem: sparse BSOS representation [Weisser et al. ’18]

If 0 ⩽ gj ⩽ 1 on X, f > 0 on X & RIP holds for (Ik) then

f = ∑
k

(
σk + ∑

α,β
ck,αβ ∏

j∈Jk

gj
αj(1 − gj)

β j

)
,

with σk SOS of degree ⩽ 2r

Victor Magron Exploiting sparsity in polynomial optimization 33 / 80

Application to sparse positive definite forms

Theorem: [Reznick ’95] Positivstellensatz

pd form f =⇒ f =
σ

∥x∥2r
2

with σ SOS, r ∈ N

Sparse f ∑k fk, with fk only depends on Ik

RUNNING INTERSECTION PROPERTY (RIP)

∀k Ik ∩
⋃
j<k

Ij︸ ︷︷ ︸
Îk

⊆ Isk for some sk < k

Theorem: sparse Reznick [Mai Lasserre Magron ’20]

RIP =⇒ f = ∑
k

σk

Hk
r with σk SOS only depends on Ik

Uniform Hk involve products ∥x(I)∥2
2 for I ∈ {Ik, Îk, Îi : si = k}

Victor Magron Exploiting sparsity in polynomial optimization 34 / 80

Application to sparse positive definite forms

Theorem: [Reznick ’95] Positivstellensatz

pd form f =⇒ f =
σ

∥x∥2r
2

with σ SOS, r ∈ N

Sparse f ∑k fk, with fk only depends on Ik

RUNNING INTERSECTION PROPERTY (RIP)

∀k Ik ∩
⋃
j<k

Ij︸ ︷︷ ︸
Îk

⊆ Isk for some sk < k

Theorem: sparse Reznick [Mai Lasserre Magron ’20]

RIP =⇒ f = ∑
k

σk

Hk
r with σk SOS only depends on Ik

Uniform Hk involve products ∥x(I)∥2
2 for I ∈ {Ik, Îk, Îi : si = k}

Victor Magron Exploiting sparsity in polynomial optimization 34 / 80

Application to sparse positive definite forms

Theorem: [Reznick ’95] Positivstellensatz

pd form f =⇒ f =
σ

∥x∥2r
2

with σ SOS, r ∈ N

Sparse f ∑k fk, with fk only depends on Ik

RUNNING INTERSECTION PROPERTY (RIP)

∀k Ik ∩
⋃
j<k

Ij︸ ︷︷ ︸
Îk

⊆ Isk for some sk < k

Theorem: sparse Reznick [Mai Lasserre Magron ’20]

RIP =⇒ f = ∑
k

σk

Hk
r with σk SOS only depends on Ik

Uniform Hk involve products ∥x(I)∥2
2 for I ∈ {Ik, Îk, Îi : si = k}

Victor Magron Exploiting sparsity in polynomial optimization 34 / 80

More and more applications!

Robust Geometric Perception [Yang & Carlone ’20]

Polynomial matrix inequalities [Zheng & Fantuzzi ’20]

Region of attraction [Tacchi et al., Schlosser et al. ’21]

Volume computation [Tacchi et al. ’21]

Robustness of implicit deep networks [Chen et al. ’21]

Victor Magron Exploiting sparsity in polynomial optimization 35 / 80

More and more applications!

Robust Geometric Perception [Yang & Carlone ’20]

Polynomial matrix inequalities [Zheng & Fantuzzi ’20]

Region of attraction [Tacchi et al., Schlosser et al. ’21]

Volume computation [Tacchi et al. ’21]

Robustness of implicit deep networks [Chen et al. ’21]

Victor Magron Exploiting sparsity in polynomial optimization 35 / 80

More and more applications!

Robust Geometric Perception [Yang & Carlone ’20]

Polynomial matrix inequalities [Zheng & Fantuzzi ’20]

Region of attraction [Tacchi et al., Schlosser et al. ’21]

Volume computation [Tacchi et al. ’21]

Robustness of implicit deep networks [Chen et al. ’21]

Victor Magron Exploiting sparsity in polynomial optimization 35 / 80

More and more applications!

Robust Geometric Perception [Yang & Carlone ’20]

Polynomial matrix inequalities [Zheng & Fantuzzi ’20]

Region of attraction [Tacchi et al., Schlosser et al. ’21]

Volume computation [Tacchi et al. ’21]

Robustness of implicit deep networks [Chen et al. ’21]

Victor Magron Exploiting sparsity in polynomial optimization 35 / 80

More and more applications!

Robust Geometric Perception [Yang & Carlone ’20]

Polynomial matrix inequalities [Zheng & Fantuzzi ’20]

Region of attraction [Tacchi et al., Schlosser et al. ’21]

Volume computation [Tacchi et al. ’21]

Robustness of implicit deep networks [Chen et al. ’21]

Victor Magron Exploiting sparsity in polynomial optimization 35 / 80

Sparse SDP

Correlative sparsity

Term sparsity

Ideal sparsity

Tutorial session

Term sparsity via Newton polytope

f = 4x4
1x6

2 + x2
1 − x1x2

2 + x2
2

spt(f) = {(4, 6), (2, 0), (1, 2), (0, 2)}

Newton polytope B = conv (spt(f))

Squares in SOS decomposition ⊆ B
2 ∩ Nn

[Reznick ’78]

f =
(

x1 x2 x1x2 x1x2
2 x2

1x3
2

)
Q︸︷︷︸
≽0

x1

x2

x1x2

x1x2
2

x2
1x3

2

Victor Magron Exploiting sparsity in polynomial optimization 36 / 80

Term sparsity: the unconstrained case

f = x2
1 − 2x1x2 + 3x2

2 − 2x2
1x2 + 2x2

1x2
2 − 2x2x3

+ 6x2
3 + 18x2

2x3 − 54x2x2
3 + 142x2

2x2
3

[Reznick ’78] → f =
(
1 x1 x2 x3 x1x2 x2x3

)
Q︸︷︷︸
≽0

1
x1
x2
x3

x1x2
x2x3

⇝ 6×7
2 = 21 “unknown” entries in Q

Replace Q by QG′ with nonzero entries at edges of G′

⇝ 6 + 9 = 15 “unknown” entries in QG′

Victor Magron Exploiting sparsity in polynomial optimization 37 / 80

Term sparsity: the unconstrained case

f = x2
1 − 2x1x2 + 3x2

2 − 2x2
1x2 + 2x2

1x2
2 − 2x2x3

+ 6x2
3 + 18x2

2x3 − 54x2x2
3 + 142x2

2x2
3

[Reznick ’78] → f =
(
1 x1 x2 x3 x1x2 x2x3

)
Q︸︷︷︸
≽0

1
x1
x2
x3

x1x2
x2x3

⇝ 6×7
2 = 21 “unknown” entries in Q

Term sparsity pattern graph G

x1 x2 x3

x1x2 1 x2x3

Replace Q by QG′ with nonzero entries at edges of G′

⇝ 6 + 9 = 15 “unknown” entries in QG′

Victor Magron Exploiting sparsity in polynomial optimization 37 / 80

Term sparsity: the unconstrained case

f = x2
1 − 2x1x2 + 3x2

2 − 2x2
1x2 + 2x2

1x2
2 − 2x2x3

+ 6x2
3 + 18x2

2x3 − 54x2x2
3 + 142x2

2x2
3

[Reznick ’78] → f =
(
1 x1 x2 x3 x1x2 x2x3

)
Q︸︷︷︸
≽0

1
x1
x2
x3

x1x2
x2x3

⇝ 6×7
2 = 21 “unknown” entries in Q

Term sparsity pattern graph G
+ chordal extension G′

x1 x2 x3

x1x2 1 x2x3

Replace Q by QG′ with nonzero entries at edges of G′

⇝ 6 + 9 = 15 “unknown” entries in QG′

Victor Magron Exploiting sparsity in polynomial optimization 37 / 80

Term sparsity: the unconstrained case

f = x2
1 − 2x1x2 + 3x2

2 − 2x2
1x2 + 2x2

1x2
2 − 2x2x3

+ 6x2
3 + 18x2

2x3 − 54x2x2
3 + 142x2

2x2
3

[Reznick ’78] → f =
(
1 x1 x2 x3 x1x2 x2x3

)
Q︸︷︷︸
≽0

1
x1
x2
x3

x1x2
x2x3

⇝ 6×7
2 = 21 “unknown” entries in Q

Term sparsity pattern graph G
+ chordal extension G′

x1 x2 x3

x1x2 1 x2x3

Replace Q by QG′ with nonzero entries at edges of G′

⇝ 6 + 9 = 15 “unknown” entries in QG′

Victor Magron Exploiting sparsity in polynomial optimization 37 / 80

Term sparsity: the constrained case

At step r of the hierarchy, tsp graph G has

Nodes V = monomials of degree ⩽ r

Edges E with

{α, β} ∈ E ⇔ α + β ∈ supp f
⋃

supp gj
⋃
|α|⩽r

2α

An example with r = 2
f = x4

1 + x1x2
2 + x2x3 + x2

3x2
4

g1 = 1 − x2
1 − x2

2 − x2
3 g2 = 1 − x3x4

1

x2
1

x2
2

x2
3

x2
4

x1

x2x3x4 x1x2

x1x3 x1x4

x2x3

x2x4

x3x4

Victor Magron Exploiting sparsity in polynomial optimization 38 / 80

Term sparsity: the constrained case

At step r of the hierarchy, tsp graph G has

Nodes V = monomials of degree ⩽ r
Edges E with

{α, β} ∈ E ⇔ α + β ∈ supp f
⋃

supp gj
⋃
|α|⩽r

2α

An example with r = 2
f = x4

1 + x1x2
2 + x2x3 + x2

3x2
4

g1 = 1 − x2
1 − x2

2 − x2
3 g2 = 1 − x3x4

1

x2
1

x2
2

x2
3

x2
4

x1

x2x3x4 x1x2

x1x3 x1x4

x2x3

x2x4

x3x4

Victor Magron Exploiting sparsity in polynomial optimization 38 / 80

Term sparsity: the constrained case

At step r of the hierarchy, tsp graph G has

Nodes V = monomials of degree ⩽ r
Edges E with

{α, β} ∈ E ⇔ α + β ∈ supp f
⋃

supp gj
⋃
|α|⩽r

2α

An example with r = 2
f = x4

1 + x1x2
2 + x2x3 + x2

3x2
4

g1 = 1 − x2
1 − x2

2 − x2
3 g2 = 1 − x3x4

1

x2
1

x2
2

x2
3

x2
4

x1

x2x3x4 x1x2

x1x3 x1x4

x2x3

x2x4

x3x4

Victor Magron Exploiting sparsity in polynomial optimization 38 / 80

Term sparsity: support extension

α′ + β′ = α + β and (α, β) ∈ E ⇒ (α′, β′) ∈ E

1 x1 x2 x3

x2x3 x1x3 x1x2

Victor Magron Exploiting sparsity in polynomial optimization 39 / 80

Term sparsity: the constrained case

At step r of the hierarchy, tsp graph G has

Nodes V = monomials of degree ⩽ r

Edges E with

{α, β} ∈ E ⇔ α + β ∈ supp f
⋃

supp gj
⋃
|α|⩽r

2α

⇝ support extension⇝ chordal extension G′

By iteratively performing support extension & chordal extension

G(1) = G′ ⊆ · · · ⊆ G(s) ⊆ G(s+1) ⊆ · · ·
Two-level hierarchy of lower bounds for fmin, indexed by

sparse order s and relaxation order r

Victor Magron Exploiting sparsity in polynomial optimization 40 / 80

Term sparsity: the constrained case

At step r of the hierarchy, tsp graph G has

Nodes V = monomials of degree ⩽ r
Edges E with

{α, β} ∈ E ⇔ α + β ∈ supp f
⋃

supp gj
⋃
|α|⩽r

2α

⇝ support extension

⇝ chordal extension G′

By iteratively performing support extension & chordal extension

G(1) = G′ ⊆ · · · ⊆ G(s) ⊆ G(s+1) ⊆ · · ·
Two-level hierarchy of lower bounds for fmin, indexed by

sparse order s and relaxation order r

Victor Magron Exploiting sparsity in polynomial optimization 40 / 80

Term sparsity: the constrained case

At step r of the hierarchy, tsp graph G has

Nodes V = monomials of degree ⩽ r
Edges E with

{α, β} ∈ E ⇔ α + β ∈ supp f
⋃

supp gj
⋃
|α|⩽r

2α

⇝ support extension⇝ chordal extension G′

By iteratively performing support extension & chordal extension

G(1) = G′ ⊆ · · · ⊆ G(s) ⊆ G(s+1) ⊆ · · ·
Two-level hierarchy of lower bounds for fmin, indexed by

sparse order s and relaxation order r

Victor Magron Exploiting sparsity in polynomial optimization 40 / 80

Term sparsity: the constrained case

At step r of the hierarchy, tsp graph G has

Nodes V = monomials of degree ⩽ r
Edges E with

{α, β} ∈ E ⇔ α + β ∈ supp f
⋃

supp gj
⋃
|α|⩽r

2α

⇝ support extension⇝ chordal extension G′

By iteratively performing support extension & chordal extension

G(1) = G′ ⊆ · · · ⊆ G(s) ⊆ G(s+1) ⊆ · · ·
Two-level hierarchy of lower bounds for fmin, indexed by

sparse order s and relaxation order r
Victor Magron Exploiting sparsity in polynomial optimization 40 / 80

Term sparsity: primal moment relaxations

Let G′ be a chordal extension of G with maximal cliques (Ci)

Ci 7−→ MCi(y)

In the moment relaxation,

Mr(y) ≽ 0 −→ MCi(y) ≽ 0

Similarly for the localizing matrices Mr−rj(gj y)

Each constraint Gj ⇝ G(s)
j ⇝ cliques C(s)

j,i

Victor Magron Exploiting sparsity in polynomial optimization 41 / 80

Term sparsity: primal moment relaxations

Let G′ be a chordal extension of G with maximal cliques (Ci)

Ci 7−→ MCi(y)

In the moment relaxation,

Mr(y) ≽ 0 −→ MCi(y) ≽ 0

Similarly for the localizing matrices Mr−rj(gj y)

Each constraint Gj ⇝ G(s)
j ⇝ cliques C(s)

j,i

Victor Magron Exploiting sparsity in polynomial optimization 41 / 80

Term sparsity: primal moment relaxations

Let G′ be a chordal extension of G with maximal cliques (Ci)

Ci 7−→ MCi(y)

In the moment relaxation,

Mr(y) ≽ 0 −→ MCi(y) ≽ 0

Similarly for the localizing matrices Mr−rj(gj y)

Each constraint Gj ⇝ G(s)
j ⇝ cliques C(s)

j,i

Victor Magron Exploiting sparsity in polynomial optimization 41 / 80

Term sparsity: primal moment relaxations

Let G′ be a chordal extension of G with maximal cliques (Ci)

Ci 7−→ MCi(y)

In the moment relaxation,

Mr(y) ≽ 0 −→ MCi(y) ≽ 0

Similarly for the localizing matrices Mr−rj(gj y)

Each constraint Gj ⇝ G(s)
j ⇝ cliques C(s)

j,i

Victor Magron Exploiting sparsity in polynomial optimization 41 / 80

Term sparsity: primal moment relaxations

Let C(s)
j,i be the maximal cliques of G(s)

j . For each s ≥ 1

f r,s
ts = inf ∑α fαyα

s.t. M
C(s)

0,i
(y) ≽ 0

M
C(s)

j,i
(gj y) ≽ 0

y0 = 1

dual yields the TSSOS hierarchy

Victor Magron Exploiting sparsity in polynomial optimization 42 / 80

A two-level hierarchy of lower bounds

f rmin,1
ts ≤ f rmin,2

ts ≤ · · · ≤ f rmin

≥ ≥ ≥

f rmin+1,1
ts ≤ f rmin+1,2

ts ≤ · · · ≤ f rmin+1

≥ ≥ ≥

...
...

...
...

≥ ≥ ≥

f r,1
ts ≤ f r,2

ts ≤ · · · ≤ f r

≥ ≥ ≥

...
...

...
...

Victor Magron Exploiting sparsity in polynomial optimization 43 / 80

Different choices of chordal extensions

x1 x2 x3

x1x2 1 x2x3

x1 x2 x3

x1x2 1 x2x3

Victor Magron Exploiting sparsity in polynomial optimization 44 / 80

Different choices of chordal extensions

x1 x2 x3

x1x2 1 x2x3

x1 x2 x3

x1x2 1 x2x3

Victor Magron Exploiting sparsity in polynomial optimization 44 / 80

Term sparsity: convergence guarantees

Theorem [Lasserre Magron Wang ’21]

Fixing a sparse order s, the sequence (f r,s
ts)r≥rmin is monotonically non-

decreasing.

Fixing a relaxation order r, the sequence (f r,s
ts)s≥1 ↑ f r in finitely

many steps if the maximal chordal extension is used.

The block structures converge to the one determined by the sign
symmetries if the maximal chordal extension and monomial basis are
used.

f = 1 + x2
1x4

2 + x4
1x2

2 + x4
1x4

2 − x1x2
2 − 3x2

1x2
2

Newton polytope⇝ B = (1 x1x2 x1x2
2 x2

1x2 x2
1x2

2)

x2 7→ −x2
Sign-symmetries blocks (1 x1x2

2 x2
1x2

2) (x1x2 x2
1x2)

TSSOS blocks (1 x1x2
2 x2

1x2
2) (x1x2) (x2

1x2)

Victor Magron Exploiting sparsity in polynomial optimization 45 / 80

Term sparsity: convergence guarantees

Theorem [Lasserre Magron Wang ’21]

Fixing a sparse order s, the sequence (f r,s
ts)r≥rmin is monotonically non-

decreasing.

Fixing a relaxation order r, the sequence (f r,s
ts)s≥1 ↑ f r in finitely

many steps if the maximal chordal extension is used.

The block structures converge to the one determined by the sign
symmetries if the maximal chordal extension and monomial basis are
used.

f = 1 + x2
1x4

2 + x4
1x2

2 + x4
1x4

2 − x1x2
2 − 3x2

1x2
2

Newton polytope⇝ B = (1 x1x2 x1x2
2 x2

1x2 x2
1x2

2)

x2 7→ −x2
Sign-symmetries blocks (1 x1x2

2 x2
1x2

2) (x1x2 x2
1x2)

TSSOS blocks (1 x1x2
2 x2

1x2
2) (x1x2) (x2

1x2)

Victor Magron Exploiting sparsity in polynomial optimization 45 / 80

Term sparsity: convergence guarantees

Theorem [Lasserre Magron Wang ’21]

Fixing a sparse order s, the sequence (f r,s
ts)r≥rmin is monotonically non-

decreasing.

Fixing a relaxation order r, the sequence (f r,s
ts)s≥1 ↑ f r in finitely

many steps if the maximal chordal extension is used.

The block structures converge to the one determined by the sign
symmetries if the maximal chordal extension and monomial basis are
used.

f = 1 + x2
1x4

2 + x4
1x2

2 + x4
1x4

2 − x1x2
2 − 3x2

1x2
2

Newton polytope⇝ B = (1 x1x2 x1x2
2 x2

1x2 x2
1x2

2)

x2 7→ −x2
Sign-symmetries blocks (1 x1x2

2 x2
1x2

2) (x1x2 x2
1x2)

TSSOS blocks (1 x1x2
2 x2

1x2
2) (x1x2) (x2

1x2)

Victor Magron Exploiting sparsity in polynomial optimization 45 / 80

Term sparsity: convergence guarantees

Theorem [Lasserre Magron Wang ’21]

Fixing a sparse order s, the sequence (f r,s
ts)r≥rmin is monotonically non-

decreasing.

Fixing a relaxation order r, the sequence (f r,s
ts)s≥1 ↑ f r in finitely

many steps if the maximal chordal extension is used.

The block structures converge to the one determined by the sign
symmetries if the maximal chordal extension and monomial basis are
used.

f = 1 + x2
1x4

2 + x4
1x2

2 + x4
1x4

2 − x1x2
2 − 3x2

1x2
2

Newton polytope⇝ B = (1 x1x2 x1x2
2 x2

1x2 x2
1x2

2)

x2 7→ −x2
Sign-symmetries blocks (1 x1x2

2 x2
1x2

2) (x1x2 x2
1x2)

TSSOS blocks (1 x1x2
2 x2

1x2
2) (x1x2) (x2

1x2)

Victor Magron Exploiting sparsity in polynomial optimization 45 / 80

Term sparsity: convergence guarantees

Theorem [Lasserre Magron Wang ’21]

Fixing a sparse order s, the sequence (f r,s
ts)r≥rmin is monotonically non-

decreasing.

Fixing a relaxation order r, the sequence (f r,s
ts)s≥1 ↑ f r in finitely

many steps if the maximal chordal extension is used.

The block structures converge to the one determined by the sign
symmetries if the maximal chordal extension and monomial basis are
used.

f = 1 + x2
1x4

2 + x4
1x2

2 + x4
1x4

2 − x1x2
2 − 3x2

1x2
2

Newton polytope⇝ B = (1 x1x2 x1x2
2 x2

1x2 x2
1x2

2)

x2 7→ −x2
Sign-symmetries blocks (1 x1x2

2 x2
1x2

2) (x1x2 x2
1x2)

TSSOS blocks (1 x1x2
2 x2

1x2
2) (x1x2) (x2

1x2)

Victor Magron Exploiting sparsity in polynomial optimization 45 / 80

A second key message

TSSOS preserves the block structure

related to sign-symmetries

Victor Magron Exploiting sparsity in polynomial optimization 46 / 80

Comparison with (S)DSOS

Let f be a nonnegative polynomial of degree 2d
f is SOS ⇔ f = vTQv with Q ≽ 0⇝ semidefinite program
where v contains 1, x1, . . . , xn, x2

1, . . . , xd
n

To reduce the number of “unknown” entries in Q, one can force:
[Ahmadi & Majumdar ’14]

1 Q diagonally dominant: Qii ⩾ ∑j ̸=i Qij ⇝ linear program

2 Q ∼ to a diag. dominant matrix⇝ second-order program

Theorem [Lasserre Magron Wang ’21]

The first TSSOS relaxation is always more accurate than the SDSOS
relaxation

Victor Magron Exploiting sparsity in polynomial optimization 47 / 80

Comparison with (S)DSOS

Let f be a nonnegative polynomial of degree 2d
f is SOS ⇔ f = vTQv with Q ≽ 0⇝ semidefinite program
where v contains 1, x1, . . . , xn, x2

1, . . . , xd
n

To reduce the number of “unknown” entries in Q, one can force:
[Ahmadi & Majumdar ’14]

1 Q diagonally dominant: Qii ⩾ ∑j ̸=i Qij ⇝ linear program

2 Q ∼ to a diag. dominant matrix⇝ second-order program

Theorem [Lasserre Magron Wang ’21]

The first TSSOS relaxation is always more accurate than the SDSOS
relaxation

Victor Magron Exploiting sparsity in polynomial optimization 47 / 80

Comparison with (S)DSOS

Let f be a nonnegative polynomial of degree 2d
f is SOS ⇔ f = vTQv with Q ≽ 0⇝ semidefinite program
where v contains 1, x1, . . . , xn, x2

1, . . . , xd
n

To reduce the number of “unknown” entries in Q, one can force:
[Ahmadi & Majumdar ’14]

1 Q diagonally dominant: Qii ⩾ ∑j ̸=i Qij ⇝ linear program

2 Q ∼ to a diag. dominant matrix⇝ second-order program

Theorem [Lasserre Magron Wang ’21]

The first TSSOS relaxation is always more accurate than the SDSOS
relaxation

Victor Magron Exploiting sparsity in polynomial optimization 47 / 80

Combining correlative & term sparsity

1 Partition the variables w.r.t. the maximal cliques of the csp
graph

2 For each subsystem involving variables from one maximal
clique, apply TSSOS

a two-level CS-TSSOS hierarchy of lower bounds for fmin

Victor Magron Exploiting sparsity in polynomial optimization 48 / 80

Combining correlative & term sparsity

1 Partition the variables w.r.t. the maximal cliques of the csp
graph

2 For each subsystem involving variables from one maximal
clique, apply TSSOS

a two-level CS-TSSOS hierarchy of lower bounds for fmin

Victor Magron Exploiting sparsity in polynomial optimization 48 / 80

Combining correlative & term sparsity

1 Partition the variables w.r.t. the maximal cliques of the csp
graph

2 For each subsystem involving variables from one maximal
clique, apply TSSOS

a two-level CS-TSSOS hierarchy of lower bounds for fmin

Victor Magron Exploiting sparsity in polynomial optimization 48 / 80

Combining correlative & term sparsity

f = 1 + ∑6
i=1 x4

i + x1x2x3 + x3x4x5 + x3x4x6 + x3x5x6 + x4x5x6

csp graph

1

2

3

4

5

6

Victor Magron Exploiting sparsity in polynomial optimization 49 / 80

Combining correlative & term sparsity

f = 1 + ∑6
i=1 x4

i + x1x2x3 + x3x4x5 + x3x4x6 + x3x5x6 + x4x5x6

tsp graph for the first clique

1x2
3

x2
2 x2

1

x1 x2 x3

x2x3 x1x3 x1x2

Victor Magron Exploiting sparsity in polynomial optimization 50 / 80

Combining correlative & term sparsity

f = 1 + ∑6
i=1 x4

i + x1x2x3 + x3x4x5 + x3x4x6 + x3x5x6 + x4x5x6

tsp graph for the second clique

1

x2
6

x2
5 x2

4

x2
3

x3
x5x6

x4x6

x4x5

x3x6
x3x5

x3x4

x6

x4

x5

Victor Magron Exploiting sparsity in polynomial optimization 51 / 80

Combining correlative & term sparsity

f = 1 + ∑6
i=1 x4

i + x1x2x3 + x3x4x5 + x3x4x6 + x3x5x6 + x4x5x6

tsp graph without correlative sparsity

1

x2
1

x2
2

x2
3x2

4

x2
5

x2
6 x1 x2 x3

x2x3 x1x3 x1x2

x3
x5x6

x4x6

x4x5

x3x6
x3x5

x3x4

x6

x4

x5

Victor Magron Exploiting sparsity in polynomial optimization 52 / 80

Application to optimal power-flow

Optimal Powerflow n ≃ 103

bla

[Josz et al. ’18]

inf
Vi ,S

g
s ,Sij

∑s∈G(c2s(ℜ(Sg
s))

2 + c1sℜ(Sg
s) + c0s)

s.t. ∠Vref = 0,

Sgl
s ≤ Sg

s ≤ Sgu
s ∀s ∈ G, υl

i ≤ |Vi| ≤ υu
i ∀i ∈ N

∑s∈Gi
Sg

s − Sd
i − Ys

i |Vi|2 = ∑(i,j)∈Ei∪ER
i

Sij, ∀i ∈ N

Sij = (Y∗
ij − i

bc
ij

2) |Vi |2
|Tij |2 − Y∗

ij
ViVj

∗

Tij
, Sji = · · ·

|Sij| ≤ su
ij , θ∆l

ij ≤ ∠(ViVj
∗) ≤ θ∆u

ij , ∀(i, j) ∈ E

Victor Magron Exploiting sparsity in polynomial optimization 53 / 80

Application to optimal power-flow

mb = the maximal size of blocks
m = number of constraints

n m
CS (r = 2) CS+TS (r = 2, s = 1)

mb time (s) gap mb time (s) gap
114 315 66 5.59 0.39% 31 2.01 0.73%
348 1809 253 − − 34 278 0.05%
766 3322 153 585 0.68% 44 33.9 0.77%
1112 4613 496 − − 31 410 0.25%
4356 18257 378 − − 27 934 0.51%
6698 29283 1326 − − 76 1886 0.47%

Victor Magron Exploiting sparsity in polynomial optimization 54 / 80

Application to noncommutative optimization

Ground-state energy ⇔ minimal eigenvalue of an Hamiltonian

H = ∑
⟨i,j⟩

(
xi xj + yi yj + zi zj

)
spin states (xi, yi, zi), constraints

Lattices: 1D 2D Kagome

First neighbors interactions : H = ∑n
i=1 xixi+1 + yiyi+1 + zizi+1

periodic boundary conditions ⇒ n + 1 = 1

Existing ± efficient techniques: quantum Monte Carlo & variational
algorithms ⇒ upper bounds on minimal energy

Victor Magron Exploiting sparsity in polynomial optimization 55 / 80

Application to noncommutative optimization

Ground-state energy ⇔ minimal eigenvalue of an Hamiltonian

H = ∑
⟨i,j⟩

(
xi xj + yi yj + zi zj

)
spin states (xi, yi, zi), constraints

Lattices: 1D 2D Kagome

First neighbors interactions : H = ∑n
i=1 xixi+1 + yiyi+1 + zizi+1

periodic boundary conditions ⇒ n + 1 = 1

Existing ± efficient techniques: quantum Monte Carlo & variational
algorithms ⇒ upper bounds on minimal energy

Victor Magron Exploiting sparsity in polynomial optimization 55 / 80

Application to noncommutative optimization

Ground-state energy ⇔ minimal eigenvalue of an Hamiltonian

H = ∑
⟨i,j⟩

(
xi xj + yi yj + zi zj

)
spin states (xi, yi, zi), constraints

Lattices: 1D 2D Kagome

First neighbors interactions : H = ∑n
i=1 xixi+1 + yiyi+1 + zizi+1

periodic boundary conditions ⇒ n + 1 = 1

Existing ± efficient techniques: quantum Monte Carlo & variational
algorithms ⇒ upper bounds on minimal energy

Victor Magron Exploiting sparsity in polynomial optimization 55 / 80

Application to noncommutative optimization

Ground-state energy ⇔ minimal eigenvalue of an Hamiltonian

H = ∑
⟨i,j⟩

(
xi xj + yi yj + zi zj

)
spin states (xi, yi, zi), constraints

Lattices: 1D 2D Kagome

First neighbors interactions : H = ∑n
i=1 xixi+1 + yiyi+1 + zizi+1

periodic boundary conditions ⇒ n + 1 = 1

Existing ± efficient techniques: quantum Monte Carlo & variational
algorithms ⇒ upper bounds on minimal energy

Victor Magron Exploiting sparsity in polynomial optimization 55 / 80

Application to noncommutative optimization

Lower bounds of the energy 1D lattice

r

r

r

r

r

r

Dense r = 4, n = 102 ⇒ 1011 variables (solvers handle ≃ 104)

Sparse solved within 1 hour on PFCALCUL at LAAS

Victor Magron Exploiting sparsity in polynomial optimization 56 / 80

Application to noncommutative optimization

Lower bounds of the energy 1D lattice

r

r

r

r

r

r

Dense r = 4, n = 102 ⇒ 1011 variables (solvers handle ≃ 104)
Sparse solved within 1 hour on PFCALCUL at LAAS

Victor Magron Exploiting sparsity in polynomial optimization 56 / 80

Application to noncommutative optimization

CLASSICAL WORLD

ψ∗(A1 ⊗ B1 + A1 ⊗ B2 + A2 ⊗ B1 − A2 ⊗ B2)ψ ⩽ 2

for separable states ψ ∈ Ck ⊗ Ck and matrices Aj, Bj satisfying
A∗

j = Aj, A2
j = I, B∗

j = Bj, B2
j = I

TSIRELSON’S BOUND: 2 → 2
√

2 for maximally entangled states
ψ∗(A ⊗ B)ψ = tr(AB)

2
√

2 = trmax{a1b1 + a1b2 + a2b1 − a2b2 : a2
j = b2

j = 1}

Victor Magron Exploiting sparsity in polynomial optimization 57 / 80

Application to noncommutative optimization

CLASSICAL WORLD

ψ∗(A1 ⊗ B1 + A1 ⊗ B2 + A2 ⊗ B1 − A2 ⊗ B2)ψ ⩽ 2

for separable states ψ ∈ Ck ⊗ Ck and matrices Aj, Bj satisfying
A∗

j = Aj, A2
j = I, B∗

j = Bj, B2
j = I

TSIRELSON’S BOUND: 2 → 2
√

2 for maximally entangled states
ψ∗(A ⊗ B)ψ = tr(AB)

2
√

2 = trmax{a1b1 + a1b2 + a2b1 − a2b2 : a2
j = b2

j = 1}

Victor Magron Exploiting sparsity in polynomial optimization 57 / 80

Application to noncommutative optimization

CLASSICAL WORLD

ψ∗(A1 ⊗ B1 + A1 ⊗ B2 + A2 ⊗ B1 − A2 ⊗ B2)ψ ⩽ 2

for separable states ψ ∈ Ck ⊗ Ck and matrices Aj, Bj satisfying
A∗

j = Aj, A2
j = I, B∗

j = Bj, B2
j = I

TSIRELSON’S BOUND: 2 → 2
√

2 for maximally entangled states
ψ∗(A ⊗ B)ψ = tr(AB)

2
√

2 = trmax{a1b1 + a1b2 + a2b1 − a2b2 : a2
j = b2

j = 1}

Victor Magron Exploiting sparsity in polynomial optimization 57 / 80

Application to noncommutative optimization

COVARIANCES OF QUANTUM CORRELATIONS

covψ(A, B) = ψ∗(A ⊗ B)ψ − ψ∗(A ⊗ I)ψ · ψ∗(I ⊗ B)ψ

covψ(A1, B1) + covψ(A1, B2) + covψ(A1, B3)

+ covψ(A2, B1) + covψ(A2, B2)− covψ(A2, B3)

+ covψ(A3, B1)− covψ(A3, B2)

⩽
9
2

for separable states but . . . 5 for one maximally entangled state

2nd dense SDP relaxation of the corresponding trace
problem outputs 5 = max value for all maximal entangled states

2nd sparse SDP gives also 5 . . . 10 times faster

Victor Magron Exploiting sparsity in polynomial optimization 58 / 80

Application to noncommutative optimization

COVARIANCES OF QUANTUM CORRELATIONS

covψ(A, B) = ψ∗(A ⊗ B)ψ − ψ∗(A ⊗ I)ψ · ψ∗(I ⊗ B)ψ

covψ(A1, B1) + covψ(A1, B2) + covψ(A1, B3)

+ covψ(A2, B1) + covψ(A2, B2)− covψ(A2, B3)

+ covψ(A3, B1)− covψ(A3, B2)

⩽
9
2

for separable states but . . .

5 for one maximally entangled state

2nd dense SDP relaxation of the corresponding trace
problem outputs 5 = max value for all maximal entangled states

2nd sparse SDP gives also 5 . . . 10 times faster

Victor Magron Exploiting sparsity in polynomial optimization 58 / 80

Application to noncommutative optimization

COVARIANCES OF QUANTUM CORRELATIONS

covψ(A, B) = ψ∗(A ⊗ B)ψ − ψ∗(A ⊗ I)ψ · ψ∗(I ⊗ B)ψ

covψ(A1, B1) + covψ(A1, B2) + covψ(A1, B3)

+ covψ(A2, B1) + covψ(A2, B2)− covψ(A2, B3)

+ covψ(A3, B1)− covψ(A3, B2)

⩽
9
2

for separable states but . . . 5 for one maximally entangled state

2nd dense SDP relaxation of the corresponding trace
problem outputs 5 = max value for all maximal entangled states

2nd sparse SDP gives also 5 . . . 10 times faster

Victor Magron Exploiting sparsity in polynomial optimization 58 / 80

Application to noncommutative optimization

COVARIANCES OF QUANTUM CORRELATIONS

covψ(A, B) = ψ∗(A ⊗ B)ψ − ψ∗(A ⊗ I)ψ · ψ∗(I ⊗ B)ψ

covψ(A1, B1) + covψ(A1, B2) + covψ(A1, B3)

+ covψ(A2, B1) + covψ(A2, B2)− covψ(A2, B3)

+ covψ(A3, B1)− covψ(A3, B2)

⩽
9
2

for separable states but . . . 5 for one maximally entangled state

2nd dense SDP relaxation of the corresponding trace
problem outputs 5

= max value for all maximal entangled states

2nd sparse SDP gives also 5 . . . 10 times faster

Victor Magron Exploiting sparsity in polynomial optimization 58 / 80

Application to noncommutative optimization

COVARIANCES OF QUANTUM CORRELATIONS

covψ(A, B) = ψ∗(A ⊗ B)ψ − ψ∗(A ⊗ I)ψ · ψ∗(I ⊗ B)ψ

covψ(A1, B1) + covψ(A1, B2) + covψ(A1, B3)

+ covψ(A2, B1) + covψ(A2, B2)− covψ(A2, B3)

+ covψ(A3, B1)− covψ(A3, B2)

⩽
9
2

for separable states but . . . 5 for one maximally entangled state

2nd dense SDP relaxation of the corresponding trace
problem outputs 5 = max value for all maximal entangled states

2nd sparse SDP gives also 5 . . . 10 times faster

Victor Magron Exploiting sparsity in polynomial optimization 58 / 80

Application to noncommutative optimization

COVARIANCES OF QUANTUM CORRELATIONS

covψ(A, B) = ψ∗(A ⊗ B)ψ − ψ∗(A ⊗ I)ψ · ψ∗(I ⊗ B)ψ

covψ(A1, B1) + covψ(A1, B2) + covψ(A1, B3)

+ covψ(A2, B1) + covψ(A2, B2)− covψ(A2, B3)

+ covψ(A3, B1)− covψ(A3, B2)

⩽
9
2

for separable states but . . . 5 for one maximally entangled state

2nd dense SDP relaxation of the corresponding trace
problem outputs 5 = max value for all maximal entangled states

2nd sparse SDP gives also 5 . . . 10 times faster

Victor Magron Exploiting sparsity in polynomial optimization 58 / 80

Application to networked systems stability

Lyapunov function

f =
N

∑
i=1

ai(x2
i + x4

i)−
N

∑
i,k=1

bikx2
i x2

k ai ∈ [1, 2] bik ∈ [
0.5
N

,
1.5
N

]

⇝ (N+2
2)((N+2

2) + 1)/2 “unknown” entries in Q = 231 for N = 5

tsp graph G

1

x2
1

x2
2

x2
3

x2
4

x2
5

x1 x2 x5· · ·

x1x2 x1x3 x4x5· · ·

⇝ (N + 1)2 “unknown” entries in QG = 36 for N = 5

Proof that f ⩾ 0 for N = 80 in ∼ 10 seconds!

Victor Magron Exploiting sparsity in polynomial optimization 59 / 80

Application to networked systems stability

Lyapunov function

f =
N

∑
i=1

ai(x2
i + x4

i)−
N

∑
i,k=1

bikx2
i x2

k ai ∈ [1, 2] bik ∈ [
0.5
N

,
1.5
N

]

⇝ (N+2
2)((N+2

2) + 1)/2 “unknown” entries in Q = 231 for N = 5

tsp graph G

1

x2
1

x2
2

x2
3

x2
4

x2
5

x1 x2 x5· · ·

x1x2 x1x3 x4x5· · ·

⇝ (N + 1)2 “unknown” entries in QG = 36 for N = 5

Proof that f ⩾ 0 for N = 80 in ∼ 10 seconds!

Victor Magron Exploiting sparsity in polynomial optimization 59 / 80

Application to networked systems stability

Lyapunov function

f =
N

∑
i=1

ai(x2
i + x4

i)−
N

∑
i,k=1

bikx2
i x2

k ai ∈ [1, 2] bik ∈ [
0.5
N

,
1.5
N

]

⇝ (N+2
2)((N+2

2) + 1)/2 “unknown” entries in Q = 231 for N = 5

tsp graph G

1

x2
1

x2
2

x2
3

x2
4

x2
5

x1 x2 x5· · ·

x1x2 x1x3 x4x5· · ·

⇝ (N + 1)2 “unknown” entries in QG = 36 for N = 5

Proof that f ⩾ 0 for N = 80 in ∼ 10 seconds!
Victor Magron Exploiting sparsity in polynomial optimization 59 / 80

Application to networked systems stability

Duffing oscillator Hamiltonian V =
N

∑
i=1

ai(
x2

i
2

− x4
i

4
) +

1
8

N

∑
i,k=1

bik(xi − xk)
4

On which domain V > 0?
f = V −

N

∑
i=1

λi︸︷︷︸
>0

x2
i (g − x2

i) ⩾ 0

=⇒ V > 0 when x2
i < g

tsp graph G
x2
jx2

k

x2
i

xixjxixk

xjxk

x1 x2 xN· · ·

⇝ N(N+1)
2 + 6(N

2) + N “unknown” entries in QG = 80 for N = 5

Proof that f ⩾ 0 for N = 50 in ∼ 1 second!

Victor Magron Exploiting sparsity in polynomial optimization 60 / 80

Application to networked systems stability

Duffing oscillator Hamiltonian V =
N

∑
i=1

ai(
x2

i
2

− x4
i

4
) +

1
8

N

∑
i,k=1

bik(xi − xk)
4

On which domain V > 0?
f = V −

N

∑
i=1

λi︸︷︷︸
>0

x2
i (g − x2

i) ⩾ 0

=⇒ V > 0 when x2
i < g

tsp graph G
x2
jx2

k

x2
i

xixjxixk

xjxk

x1 x2 xN· · ·

⇝ N(N+1)
2 + 6(N

2) + N “unknown” entries in QG = 80 for N = 5

Proof that f ⩾ 0 for N = 50 in ∼ 1 second!

Victor Magron Exploiting sparsity in polynomial optimization 60 / 80

Application to networked systems stability

Duffing oscillator Hamiltonian V =
N

∑
i=1

ai(
x2

i
2

− x4
i

4
) +

1
8

N

∑
i,k=1

bik(xi − xk)
4

On which domain V > 0?
f = V −

N

∑
i=1

λi︸︷︷︸
>0

x2
i (g − x2

i) ⩾ 0

=⇒ V > 0 when x2
i < g

tsp graph G
x2
jx2

k

x2
i

xixjxixk

xjxk

x1 x2 xN· · ·

⇝ N(N+1)
2 + 6(N

2) + N “unknown” entries in QG = 80 for N = 5

Proof that f ⩾ 0 for N = 50 in ∼ 1 second!

Victor Magron Exploiting sparsity in polynomial optimization 60 / 80

Application to joint spectral radius (JSR)

Given A = {A1, . . . , Am} ⊆ Rn×n, the JSR is

ρ(A) := lim
k→∞

max
σ∈{1,...,m}k

||Aσ1 Aσ2 · · · Aσk ||
1
k

Tons of applications:

stability of switched linear systems

continuity of wavelet functions

trackability of graphs

· · ·

. . . NP-hard to compute/approximate

Victor Magron Exploiting sparsity in polynomial optimization 61 / 80

Application to joint spectral radius (JSR)

Given A = {A1, . . . , Am} ⊆ Rn×n, the JSR is

ρ(A) := lim
k→∞

max
σ∈{1,...,m}k

||Aσ1 Aσ2 · · · Aσk ||
1
k

Tons of applications:

stability of switched linear systems

continuity of wavelet functions

trackability of graphs

· · ·

. . . NP-hard to compute/approximate

Victor Magron Exploiting sparsity in polynomial optimization 61 / 80

Application to joint spectral radius (JSR)

Given A = {A1, . . . , Am} ⊆ Rn×n, the JSR is

ρ(A) := lim
k→∞

max
σ∈{1,...,m}k

||Aσ1 Aσ2 · · · Aσk ||
1
k

Tons of applications:

stability of switched linear systems

continuity of wavelet functions

trackability of graphs

· · ·

. . . NP-hard to compute/approximate

Victor Magron Exploiting sparsity in polynomial optimization 61 / 80

Application to joint spectral radius (JSR)

Theorem [Parrilo & Jadbabaie ’08]

Given A = {A1, . . . , Am} ⊆ Rn×n, if a positive definite form f of
degree 2r satisfies

f (Aix) ⩽ γ2r f (x) ∀i, x

Then ρ(A) ⩽ γ

ρ(A) ⩽ ρr(A) = inf
f∈R[x]2r ,γ

γ

s.t.

{
f (x)− ||x||2r

2 SOS

γ2r f (x)− f (Aix) SOS

Bisection on γ + SDP

Victor Magron Exploiting sparsity in polynomial optimization 62 / 80

Application to joint spectral radius (JSR)

Theorem [Parrilo & Jadbabaie ’08]

Given A = {A1, . . . , Am} ⊆ Rn×n, if a positive definite form f of
degree 2r satisfies

f (Aix) ⩽ γ2r f (x) ∀i, x

Then ρ(A) ⩽ γ

ρ(A) ⩽ ρr(A) = inf
f∈R[x]2r ,γ

γ

s.t.

{
f (x)− ||x||2r

2 SOS

γ2r f (x)− f (Aix) SOS

Bisection on γ + SDP

Victor Magron Exploiting sparsity in polynomial optimization 62 / 80

Application to joint spectral radius (JSR)

Theorem [Parrilo & Jadbabaie ’08]

Given A = {A1, . . . , Am} ⊆ Rn×n, if a positive definite form f of
degree 2r satisfies

f (Aix) ⩽ γ2r f (x) ∀i, x

Then ρ(A) ⩽ γ

ρ(A) ⩽ ρr(A) = inf
f∈R[x]2r ,γ

γ

s.t.

{
f (x)− ||x||2r

2 SOS

γ2r f (x)− f (Aix) SOS

Bisection on γ + SDP
Victor Magron Exploiting sparsity in polynomial optimization 62 / 80

Application to joint spectral radius (JSR)

At fixed r, replace f by a “term sparse” f

f0 = ∑n
j=1 cjx2r

j with support A (0)

Recursively, fs−1 = ∑α∈A (s−1) cαxα and

A (s) = A (s−1)∪
⋃

i

supp(fs−1(Aix)) A
(s)

i = A (s)∪ supp(fs(Aix))

Theorem: Sparse JSR [Maggio Magron Wang ’21]

ρ(A) ⩽ ρr(A) ⩽ ρr,s(A) = inf
f∈R[A (s)],γ

γ

s.t.

{
f (x)− ||x||2r

2 SOS(A (s))

γ2r f (x)− f (Aix) SOS(A (s)
i)

Victor Magron Exploiting sparsity in polynomial optimization 63 / 80

Application to joint spectral radius (JSR)

At fixed r, replace f by a “term sparse” f

f0 = ∑n
j=1 cjx2r

j with support A (0)

Recursively, fs−1 = ∑α∈A (s−1) cαxα and

A (s) = A (s−1)∪
⋃

i

supp(fs−1(Aix)) A
(s)

i = A (s)∪ supp(fs(Aix))

Theorem: Sparse JSR [Maggio Magron Wang ’21]

ρ(A) ⩽ ρr(A) ⩽ ρr,s(A) = inf
f∈R[A (s)],γ

γ

s.t.

{
f (x)− ||x||2r

2 SOS(A (s))

γ2r f (x)− f (Aix) SOS(A (s)
i)

Victor Magron Exploiting sparsity in polynomial optimization 63 / 80

Application to joint spectral radius (JSR)

At fixed r, replace f by a “term sparse” f

f0 = ∑n
j=1 cjx2r

j with support A (0)

Recursively, fs−1 = ∑α∈A (s−1) cαxα and

A (s) = A (s−1)∪
⋃

i

supp(fs−1(Aix)) A
(s)

i = A (s)∪ supp(fs(Aix))

Theorem: Sparse JSR [Maggio Magron Wang ’21]

ρ(A) ⩽ ρr(A) ⩽ ρr,s(A) = inf
f∈R[A (s)],γ

γ

s.t.

{
f (x)− ||x||2r

2 SOS(A (s))

γ2r f (x)− f (Aix) SOS(A (s)
i)

Victor Magron Exploiting sparsity in polynomial optimization 63 / 80

Application to joint spectral radius (JSR)

At fixed r, replace f by a “term sparse” f

f0 = ∑n
j=1 cjx2r

j with support A (0)

Recursively, fs−1 = ∑α∈A (s−1) cαxα and

A (s) = A (s−1)∪
⋃

i

supp(fs−1(Aix)) A
(s)

i = A (s)∪ supp(fs(Aix))

Theorem: Sparse JSR [Maggio Magron Wang ’21]

ρ(A) ⩽ ρr(A) ⩽ ρr,s(A) = inf
f∈R[A (s)],γ

γ

s.t.

{
f (x)− ||x||2r

2 SOS(A (s))

γ2r f (x)− f (Aix) SOS(A (s)
i)

Victor Magron Exploiting sparsity in polynomial optimization 63 / 80

Application to joint spectral radius (JSR)

Closed-loop system evolves according to either a completed or
a missed computation (AH or AM): A = {AH AM

i | i < m}

System asymptotically stable ⇔ ρ(A) < 1

(un)stability test with 10 matrices & n = 25 or 2 matrices &
n = 100 intractable with the dense JSR

takes less than 10 seconds with the Sparse JSR!

Victor Magron Exploiting sparsity in polynomial optimization 64 / 80

Application to joint spectral radius (JSR)

Closed-loop system evolves according to either a completed or
a missed computation (AH or AM): A = {AH AM

i | i < m}

System asymptotically stable ⇔ ρ(A) < 1

(un)stability test with 10 matrices & n = 25 or 2 matrices &
n = 100 intractable with the dense JSR

takes less than 10 seconds with the Sparse JSR!

Victor Magron Exploiting sparsity in polynomial optimization 64 / 80

Application to joint spectral radius (JSR)

Closed-loop system evolves according to either a completed or
a missed computation (AH or AM): A = {AH AM

i | i < m}

System asymptotically stable ⇔ ρ(A) < 1

(un)stability test with 10 matrices & n = 25 or 2 matrices &
n = 100 intractable with the dense JSR

takes less than 10 seconds with the Sparse JSR!

Victor Magron Exploiting sparsity in polynomial optimization 64 / 80

Application to joint spectral radius (JSR)

Closed-loop system evolves according to either a completed or
a missed computation (AH or AM): A = {AH AM

i | i < m}

System asymptotically stable ⇔ ρ(A) < 1

(un)stability test with 10 matrices & n = 25 or 2 matrices &
n = 100 intractable with the dense JSR

takes less than 10 seconds with the Sparse JSR!

Victor Magron Exploiting sparsity in polynomial optimization 64 / 80

Sparse SDP

Correlative sparsity

Term sparsity

Ideal sparsity

Tutorial session

Ideal sparsity

fmin = inf{ f (x1, x2) : x1x2 = 0}

= sup{λ : f (x1, x2)− λ ⩾ 0 whenever x1x2 = 0}

= sup{λ : f (x1, 0)− λ ⩾ 0 , f (0, x2)− λ ⩾ 0}
replace f (x1, 0)− λ ⩾ 0 by f (x1, 0)− λ = σ1(x1) with SOS σ1

General ideal constraints xixj = 0 ∀(i, j) ∈ E
⇝ max. cliques of the graph with vertices {1, . . . , n} & edges E

Theorem [Korda-Laurent-Magron-Steenkamp ’22]

Ideal-sparse hierarchies provide better bounds than the dense ones

ACCURACY

Victor Magron Exploiting sparsity in polynomial optimization 65 / 80

Ideal sparsity

fmin = inf{ f (x1, x2) : x1x2 = 0}

= sup{λ : f (x1, x2)− λ ⩾ 0 whenever x1x2 = 0}

= sup{λ : f (x1, 0)− λ ⩾ 0 , f (0, x2)− λ ⩾ 0}
replace f (x1, 0)− λ ⩾ 0 by f (x1, 0)− λ = σ1(x1) with SOS σ1

General ideal constraints xixj = 0 ∀(i, j) ∈ E
⇝ max. cliques of the graph with vertices {1, . . . , n} & edges E

Theorem [Korda-Laurent-Magron-Steenkamp ’22]

Ideal-sparse hierarchies provide better bounds than the dense ones

ACCURACY

Victor Magron Exploiting sparsity in polynomial optimization 65 / 80

Ideal sparsity

fmin = inf{ f (x1, x2) : x1x2 = 0}

= sup{λ : f (x1, x2)− λ ⩾ 0 whenever x1x2 = 0}

= sup{λ : f (x1, 0)− λ ⩾ 0 , f (0, x2)− λ ⩾ 0}

replace f (x1, 0)− λ ⩾ 0 by f (x1, 0)− λ = σ1(x1) with SOS σ1

General ideal constraints xixj = 0 ∀(i, j) ∈ E
⇝ max. cliques of the graph with vertices {1, . . . , n} & edges E

Theorem [Korda-Laurent-Magron-Steenkamp ’22]

Ideal-sparse hierarchies provide better bounds than the dense ones

ACCURACY

Victor Magron Exploiting sparsity in polynomial optimization 65 / 80

Ideal sparsity

fmin = inf{ f (x1, x2) : x1x2 = 0}

= sup{λ : f (x1, x2)− λ ⩾ 0 whenever x1x2 = 0}

= sup{λ : f (x1, 0)− λ ⩾ 0 , f (0, x2)− λ ⩾ 0}
replace f (x1, 0)− λ ⩾ 0 by f (x1, 0)− λ = σ1(x1) with SOS σ1

General ideal constraints xixj = 0 ∀(i, j) ∈ E
⇝ max. cliques of the graph with vertices {1, . . . , n} & edges E

Theorem [Korda-Laurent-Magron-Steenkamp ’22]

Ideal-sparse hierarchies provide better bounds than the dense ones

ACCURACY

Victor Magron Exploiting sparsity in polynomial optimization 65 / 80

Ideal sparsity

fmin = inf{ f (x1, x2) : x1x2 = 0}

= sup{λ : f (x1, x2)− λ ⩾ 0 whenever x1x2 = 0}

= sup{λ : f (x1, 0)− λ ⩾ 0 , f (0, x2)− λ ⩾ 0}
replace f (x1, 0)− λ ⩾ 0 by f (x1, 0)− λ = σ1(x1) with SOS σ1

General ideal constraints xixj = 0 ∀(i, j) ∈ E

⇝ max. cliques of the graph with vertices {1, . . . , n} & edges E

Theorem [Korda-Laurent-Magron-Steenkamp ’22]

Ideal-sparse hierarchies provide better bounds than the dense ones

ACCURACY

Victor Magron Exploiting sparsity in polynomial optimization 65 / 80

Ideal sparsity

fmin = inf{ f (x1, x2) : x1x2 = 0}

= sup{λ : f (x1, x2)− λ ⩾ 0 whenever x1x2 = 0}

= sup{λ : f (x1, 0)− λ ⩾ 0 , f (0, x2)− λ ⩾ 0}
replace f (x1, 0)− λ ⩾ 0 by f (x1, 0)− λ = σ1(x1) with SOS σ1

General ideal constraints xixj = 0 ∀(i, j) ∈ E
⇝ max. cliques of the graph with vertices {1, . . . , n} & edges E

Theorem [Korda-Laurent-Magron-Steenkamp ’22]

Ideal-sparse hierarchies provide better bounds than the dense ones

ACCURACY

Victor Magron Exploiting sparsity in polynomial optimization 65 / 80

Ideal sparsity

fmin = inf{ f (x1, x2) : x1x2 = 0}

= sup{λ : f (x1, x2)− λ ⩾ 0 whenever x1x2 = 0}

= sup{λ : f (x1, 0)− λ ⩾ 0 , f (0, x2)− λ ⩾ 0}
replace f (x1, 0)− λ ⩾ 0 by f (x1, 0)− λ = σ1(x1) with SOS σ1

General ideal constraints xixj = 0 ∀(i, j) ∈ E
⇝ max. cliques of the graph with vertices {1, . . . , n} & edges E

Theorem [Korda-Laurent-Magron-Steenkamp ’22]

Ideal-sparse hierarchies provide better bounds than the dense ones

ACCURACY

Victor Magron Exploiting sparsity in polynomial optimization 65 / 80

Application to matrix ranks

Given a symmetric nonnegative matrix A, find the smallest r+ s.t.

A =
r+

∑
ℓ=1

aℓaℓT for aℓ ⩾ 0

r+ is called the completely positive rank

✗ hard to compute
✓ Relax/convexify with a linear program over measures

r+ ⩾ inf
µ
{
∫

KA

1dµ :
∫

KA

xixjdµ = Aij (i, j ∈ V) , supp(µ) ⊆ KA}

KA = {x :
√

Aiixi − xi ⩾ 0 , Aij − xixj ⩾ 0 (i, j) ∈ EA ,
xixj = 0 (i, j) ∈ EA , A − xxT ≽ 0}

Victor Magron Exploiting sparsity in polynomial optimization 66 / 80

Application to matrix ranks

Given a symmetric nonnegative matrix A, find the smallest r+ s.t.

A =
r+

∑
ℓ=1

aℓaℓT for aℓ ⩾ 0

r+ is called the completely positive rank
✗ hard to compute

✓ Relax/convexify with a linear program over measures

r+ ⩾ inf
µ
{
∫

KA

1dµ :
∫

KA

xixjdµ = Aij (i, j ∈ V) , supp(µ) ⊆ KA}

KA = {x :
√

Aiixi − xi ⩾ 0 , Aij − xixj ⩾ 0 (i, j) ∈ EA ,
xixj = 0 (i, j) ∈ EA , A − xxT ≽ 0}

Victor Magron Exploiting sparsity in polynomial optimization 66 / 80

Application to matrix ranks

Given a symmetric nonnegative matrix A, find the smallest r+ s.t.

A =
r+

∑
ℓ=1

aℓaℓT for aℓ ⩾ 0

r+ is called the completely positive rank
✗ hard to compute
✓ Relax/convexify with a linear program over measures

r+ ⩾ inf
µ
{
∫

KA

1dµ :
∫

KA

xixjdµ = Aij (i, j ∈ V) , supp(µ) ⊆ KA}

KA = {x :
√

Aiixi − xi ⩾ 0 , Aij − xixj ⩾ 0 (i, j) ∈ EA ,
xixj = 0 (i, j) ∈ EA , A − xxT ≽ 0}

Victor Magron Exploiting sparsity in polynomial optimization 66 / 80

Application to matrix ranks

Given a symmetric nonnegative matrix A, find the smallest r+ s.t.

A =
r+

∑
ℓ=1

aℓaℓT for aℓ ⩾ 0

r+ is called the completely positive rank
✗ hard to compute
✓ Relax/convexify with a linear program over measures

r+ ⩾ inf
µ
{
∫

KA

1dµ :
∫

KA

xixjdµ = Aij (i, j ∈ V) , supp(µ) ⊆ KA}

KA = {x :
√

Aiixi − xi ⩾ 0 , Aij − xixj ⩾ 0 (i, j) ∈ EA ,
xixj = 0 (i, j) ∈ EA , A − xxT ≽ 0}

Victor Magron Exploiting sparsity in polynomial optimization 66 / 80

Application to matrix ranks

Random instances, order 2

PERFORMANCE AND ACCURACY

Victor Magron Exploiting sparsity in polynomial optimization 67 / 80

Application to matrix ranks

Random instances, order 2

PERFORMANCE AND ACCURACY

Victor Magron Exploiting sparsity in polynomial optimization 67 / 80

Application to matrix ranks

Random instances, order 2

PERFORMANCE AND ACCURACY

Victor Magron Exploiting sparsity in polynomial optimization 67 / 80

Conclusion

SPARSITY EXPLOITING CONVERGING HIERARCHIES to minimize
polynomials, eigenvalue/trace, joint spectral radii

FAST IMPLEMENTATION IN JULIA: TSSOS, NCTSSOS, SparseJSR

Combine correlative & term sparsity for problems with n = 103

Victor Magron Exploiting sparsity in polynomial optimization 68 / 80

Conclusion

SPARSITY EXPLOITING CONVERGING HIERARCHIES to minimize
polynomials, eigenvalue/trace, joint spectral radii

FAST IMPLEMENTATION IN JULIA: TSSOS, NCTSSOS, SparseJSR

Combine correlative & term sparsity for problems with n = 103

Victor Magron Exploiting sparsity in polynomial optimization 68 / 80

Conclusion

SPARSITY EXPLOITING CONVERGING HIERARCHIES to minimize
polynomials, eigenvalue/trace, joint spectral radii

FAST IMPLEMENTATION IN JULIA: TSSOS, NCTSSOS, SparseJSR

Combine correlative & term sparsity for problems with n = 103

Victor Magron Exploiting sparsity in polynomial optimization 68 / 80

Conclusion

SPARSITY EXPLOITING CONVERGING HIERARCHIES to minimize
polynomials, eigenvalue/trace, joint spectral radii

FAST IMPLEMENTATION IN JULIA: TSSOS, NCTSSOS, SparseJSR

Combine correlative & term sparsity for problems with n = 103

Victor Magron Exploiting sparsity in polynomial optimization 68 / 80

Further topics

Correlative sparsity: Convergence rate?

Term sparsity: Smart solution extraction?

Ideal sparsity: tensor (nonnegative, symmetric) ranks?

Numerical conditioning of sparse SDP?

Combination with symmetries?

Tons of applications!

Victor Magron Exploiting sparsity in polynomial optimization 69 / 80

Further topics

Correlative sparsity: Convergence rate?

Term sparsity: Smart solution extraction?

Ideal sparsity: tensor (nonnegative, symmetric) ranks?

Numerical conditioning of sparse SDP?

Combination with symmetries?

Tons of applications!

Victor Magron Exploiting sparsity in polynomial optimization 69 / 80

Further topics

Correlative sparsity: Convergence rate?

Term sparsity: Smart solution extraction?

Ideal sparsity: tensor (nonnegative, symmetric) ranks?

Numerical conditioning of sparse SDP?

Combination with symmetries?

Tons of applications!

Victor Magron Exploiting sparsity in polynomial optimization 69 / 80

Further topics

Correlative sparsity: Convergence rate?

Term sparsity: Smart solution extraction?

Ideal sparsity: tensor (nonnegative, symmetric) ranks?

Numerical conditioning of sparse SDP?

Combination with symmetries?

Tons of applications!

Victor Magron Exploiting sparsity in polynomial optimization 69 / 80

Further topics

Correlative sparsity: Convergence rate?

Term sparsity: Smart solution extraction?

Ideal sparsity: tensor (nonnegative, symmetric) ranks?

Numerical conditioning of sparse SDP?

Combination with symmetries?

Tons of applications!

Victor Magron Exploiting sparsity in polynomial optimization 69 / 80

Further topics

Correlative sparsity: Convergence rate?

Term sparsity: Smart solution extraction?

Ideal sparsity: tensor (nonnegative, symmetric) ranks?

Numerical conditioning of sparse SDP?

Combination with symmetries?

Tons of applications!

Victor Magron Exploiting sparsity in polynomial optimization 69 / 80

Thank you for your attention!

https://homepages.laas.fr/vmagron

GITHUB:TSSOS

https://homepages.laas.fr/vmagron
https://github.com/wangjie212/TSSOS

References

Gavril. Algorithms for minimum coloring, maximum clique, minimum
covering by cliques, and maximum independent set of a chordal graph.
SIAM Comp., 1972
Griewank & Toint. Numerical experiments with partially separable
optimization problems. Numerical analysis, 1984
Agler, Helton, McCullough & Rodman. Positive semidefinite matrices
with a given sparsity pattern. Linear algebra & its applications, 1988
Blair & Peyton. An introduction to chordal graphs and clique trees.
Graph theory & sparse matrix computation, 1993
Vandenberghe & Andersen. Chordal graphs and semidefinite
optimization. Foundations & Trends in Optim., 2015

References

Lasserre. Convergent SDP-relaxations in polynomial optimization with
sparsity. SIAM Optim., 2006
Waki, Kim, Kojima & Muramatsu. Sums of squares and semidefinite
program relaxations for polynomial optimization problems with
structured sparsity. SIAM Optim., 2006
Magron, Constantinides, & Donaldson. Certified Roundoff Error Bounds
Using Semidefinite Programming. Trans. Math. Softw., 2017
Magron. Interval Enclosures of Upper Bounds of Roundoff Errors Using
Semidefinite Programming. Trans. Math. Softw., 2018
Josz & Molzahn. Lasserre hierarchy for large scale polynomial
optimization in real and complex variables. SIAM Optim., 2018
Weisser, Lasserre & Toh. Sparse-BSOS: a bounded degree SOS
hierarchy for large scale polynomial optimization with sparsity. Math.
Program., 2018
Chen, Lasserre, Magron & Pauwels. A sublevel moment-sos hierarchy
for polynomial optimization, arxiv:2101.05167

https://arxiv.org/abs/2101.05167

References

Chen, Lasserre, Magron & Pauwels. Semialgebraic Optimization for
Bounding Lipschitz Constants of ReLU Networks. NIPS, 2020
Chen, Lasserre, Magron & Pauwels. Semialgebraic Representation of
Monotone Deep Equilibrium Models and Applications to Certification.
arxiv:2106.01453
Mai, Lasserre & Magron. A sparse version of Reznick’s
Positivstellensatz. arxiv:2002.05101
Tacchi, Weisser, Lasserre & Henrion. Exploiting sparsity for
semi-algebraic set volume computation. Foundations of Comp. Math.,
2021
Tacchi, Cardozo, Henrion & Lasserre. Approximating regions of
attraction of a sparse polynomial differential system. IFAC, 2020
Schlosser & Korda. Sparse moment-sum-of-squares relaxations for
nonlinear dynamical systems with guaranteed convergence.
arxiv:2012.05572

Zheng & Fantuzzi. Sum-of-squares chordal decomposition of polynomial

matrix inequalities. arxiv:2007.11410

https://arxiv.org/abs/2106.01453
https://arxiv.org/abs/2002.05101
https://arxiv.org/abs/2012.05572
https://arxiv.org/abs/2007.11410

References

Klep, Magron & Povh. Sparse Noncommutative Polynomial Optimization.
Math Prog. A, arxiv:1909.00569 NCSOStools

Reznick. Extremal PSD forms with few terms. Duke mathematical
journal, 1978
Wang, Magron & Lasserre. TSSOS: A Moment-SOS hierarchy that
exploits term sparsity. SIAM Optim., 2021
Wang, Magron & Lasserre. Chordal-TSSOS: a moment-SOS hierarchy
that exploits term sparsity with chordal extension. SIAM Optim., 2021
Wang, Magron, Lasserre & Mai. CS-TSSOS: Correlative and term
sparsity for large-scale polynomial optimization. arxiv:2005.02828
Magron & Wang. TSSOS: a Julia library to exploit sparsity for
large-scale polynomial optimization, MEGA, 2021
Parrilo & Jadbabaie. Approximation of the joint spectral radius using sum
of squares. Linear Algebra & its Applications, 2008
Wang, Maggio & Magron. SparseJSR: A fast algorithm to compute joint
spectral radius via sparse sos decompositions. ACC 2021

https://arxiv.org/abs/1909.00569
http://ncsostools.fis.unm.si/
https://arxiv.org/abs/2005.02828

References

Vreman, Pazzaglia, Wang, Magron & Maggio. Stability of control
systems under extended weakly-hard constraints. arxiv:2101.11312
Wang & Magron. Exploiting Sparsity in Complex Polynomial
Optimization. arxiv:2103.12444
Wang & Magron. Exploiting term sparsity in Noncommutative Polynomial
Optimization. Computational Optimization & Applications,
arxiv:2010.06956 NCTSSOS
Navascués, Pironio & Acín. A convergent hierarchy of semidefinite
programs characterizing the set of quantum correlations. New Journal of
Physics, 2008

Klep, Magron & Volčič. Optimization over trace polynomials. Annales

Henri Poincaré, 2021

https://arxiv.org/abs/2101.11312
https://arxiv.org/abs/2103.12444
arxiv.org/abs/2010.06956
https://github.com/wangjie212/NCTSSOS

Sparse SDP

Correlative sparsity

Term sparsity

Ideal sparsity

Tutorial session

Newton polytope

Motzkin f = x4
1x2

2 + x2
1x4

2 − 3x2
1x2

2 + 1

1 Compute the Newton polytope of f

2 Show that f is not SOS

Victor Magron Exploiting sparsity in polynomial optimization 70 / 80

Chordal or not chordal?

1 2

34

1 2

3

4

6

4

5

1

23

Victor Magron Exploiting sparsity in polynomial optimization 71 / 80

Chordal extension

x1

x2

x3

x4

x5

x6

Victor Magron Exploiting sparsity in polynomial optimization 72 / 80

Support extension

1 x1 x2 x3

x2x3 x1x3 x1x2

Victor Magron Exploiting sparsity in polynomial optimization 73 / 80

How big is CS?

f (x) = x2x5 + x3x6 − x2x3 − x5x6 + x1(−x1 + x2 + x3 − x4 + x5 + x6)

Chordal graph after adding edge (3, 5)

6

4

5

1

23

How many SDP variables in the dense and sparse relaxation at order
r = 1, 2, 3?

Victor Magron Exploiting sparsity in polynomial optimization 74 / 80

How big is CS?

f (x) = x2x5 + x3x6 − x2x3 − x5x6 + x1(−x1 + x2 + x3 − x4 + x5 + x6)

Chordal graph after adding edge (3, 5)

6

4

5

1

23

How many SDP variables in the dense and sparse relaxation at order
r = 1, 2, 3?

Victor Magron Exploiting sparsity in polynomial optimization 74 / 80

Moment matrix

Write the first (correlative) sparse moment relaxation of

inf
x

x1x2 + x1x3 + x1x4

s.t. x2
1 + x2

2 ⩽ 1

x2
1 + x2

3 ⩽ 1

x2
1 + x2

4 ⩽ 1

Victor Magron Exploiting sparsity in polynomial optimization 75 / 80

Measure LP preserves sparsity

f = f1 + f2, fk depends on Ik, X compact & each gj depends either
on I1 or I2.

Prove that

fmin = inf
µ∈M+(X)

∫
X

f dµ = fcs = inf
µ1,µ2

∫
X1

f1 dµ1 +
∫

X2
f2 dµ2

s.t. π12µ1 = π21µ2
µ1 ∈ M+(X1) , µ2 ∈ M+(X2)

(µk) feasible for fcs =⇒ ∃µ ∈ M+(X) with marginal µk on Xk

M+(X)

M+(X1) M+(X2)

M+(X12)

π1 π2

π21 π12

Victor Magron Exploiting sparsity in polynomial optimization 76 / 80

Measure LP preserves sparsity

f = f1 + f2, fk depends on Ik, X compact & each gj depends either
on I1 or I2. Prove that

fmin = inf
µ∈M+(X)

∫
X

f dµ = fcs = inf
µ1,µ2

∫
X1

f1 dµ1 +
∫

X2
f2 dµ2

s.t. π12µ1 = π21µ2
µ1 ∈ M+(X1) , µ2 ∈ M+(X2)

(µk) feasible for fcs =⇒ ∃µ ∈ M+(X) with marginal µk on Xk

M+(X)

M+(X1) M+(X2)

M+(X12)

π1 π2

π21 π12

Victor Magron Exploiting sparsity in polynomial optimization 76 / 80

Measure LP preserves sparsity

f = f1 + f2, fk depends on Ik, X compact & each gj depends either
on I1 or I2. Prove that

fmin = inf
µ∈M+(X)

∫
X

f dµ = fcs = inf
µ1,µ2

∫
X1

f1 dµ1 +
∫

X2
f2 dµ2

s.t. π12µ1 = π21µ2
µ1 ∈ M+(X1) , µ2 ∈ M+(X2)

(µk) feasible for fcs =⇒ ∃µ ∈ M+(X) with marginal µk on Xk

M+(X)

M+(X1) M+(X2)

M+(X12)

π1 π2

π21 π12

Victor Magron Exploiting sparsity in polynomial optimization 76 / 80

How big is TSSOS? (1/2)

f =
N

∑
i=1

(x2
i + x4

i)−
N

∑
i,k=1

x2
i x2

k

How many entries in the dense & sparse SOS/moment matrices?

tsp graph G

1

x2
1

x2
2

x2
3

x2
4

x2
5

x1 x2 x5· · ·

x1x2 x1x3 x4x5· · ·

Victor Magron Exploiting sparsity in polynomial optimization 77 / 80

How big is TSSOS? (1/2)

f =
N

∑
i=1

(x2
i + x4

i)−
N

∑
i,k=1

x2
i x2

k

How many entries in the dense & sparse SOS/moment matrices?

tsp graph G

1

x2
1

x2
2

x2
3

x2
4

x2
5

x1 x2 x5· · ·

x1x2 x1x3 x4x5· · ·

Victor Magron Exploiting sparsity in polynomial optimization 77 / 80

How big is TSSOS? (2/2)

f =
N

∑
i=1

(
x2

i
2

− x4
i

4
) +

N

∑
i,k=1

(xi − xk)
4

How many entries in the dense & sparse SOS/moment matrices?

tsp graph G x2
jx2

k

x2
i

xixjxixk

xjxk

x1 x2 xN· · ·

Victor Magron Exploiting sparsity in polynomial optimization 78 / 80

How big is TSSOS? (2/2)

f =
N

∑
i=1

(
x2

i
2

− x4
i

4
) +

N

∑
i,k=1

(xi − xk)
4

How many entries in the dense & sparse SOS/moment matrices?

tsp graph G x2
jx2

k

x2
i

xixjxixk

xjxk

x1 x2 xN· · ·

Victor Magron Exploiting sparsity in polynomial optimization 78 / 80

SOS + sparse + RIP ⇏ sparse SOS (1/2)

f1 = x4
1 + (x1x2 − 1)2 f2 = x2

2x2
3 + (x2

3 − 1)2 f = f1 + f2

Compute the dense relaxation f 2

Compare with the correlative sparse relaxation f 2
cs

Compare with the term sparse relaxation f 2,s
ts for s = 1, 2, . . .

Install and run TSSOS:
] add https://github.com/wangjie212/TSSOS
using TSSOS, DynamicPolynomials
@polyvar x1 x2 x3; x=[x1;x2;x3];
f1 = x1ˆ4+(x1*x2-1)ˆ2; f2 = x2ˆ2*x3ˆ2+(x3ˆ2-1)ˆ2;
f = f1+f2
dense2,sol,data=cs_tssos_first([f], x, 2,
CS=false,TS=false);

Victor Magron Exploiting sparsity in polynomial optimization 79 / 80

SOS + sparse + RIP ⇏ sparse SOS (1/2)

f1 = x4
1 + (x1x2 − 1)2 f2 = x2

2x2
3 + (x2

3 − 1)2 f = f1 + f2

Compute the dense relaxation f 2

Compare with the correlative sparse relaxation f 2
cs

Compare with the term sparse relaxation f 2,s
ts for s = 1, 2, . . .

Install and run TSSOS:
] add https://github.com/wangjie212/TSSOS
using TSSOS, DynamicPolynomials
@polyvar x1 x2 x3; x=[x1;x2;x3];
f1 = x1ˆ4+(x1*x2-1)ˆ2; f2 = x2ˆ2*x3ˆ2+(x3ˆ2-1)ˆ2;
f = f1+f2
dense2,sol,data=cs_tssos_first([f], x, 2,
CS=false,TS=false);

Victor Magron Exploiting sparsity in polynomial optimization 79 / 80

SOS + sparse + RIP ⇏ sparse SOS (1/2)

f1 = x4
1 + (x1x2 − 1)2 f2 = x2

2x2
3 + (x2

3 − 1)2 f = f1 + f2

Compute the dense relaxation f 2

Compare with the correlative sparse relaxation f 2
cs

Compare with the term sparse relaxation f 2,s
ts for s = 1, 2, . . .

Install and run TSSOS:
] add https://github.com/wangjie212/TSSOS
using TSSOS, DynamicPolynomials

@polyvar x1 x2 x3; x=[x1;x2;x3];
f1 = x1ˆ4+(x1*x2-1)ˆ2; f2 = x2ˆ2*x3ˆ2+(x3ˆ2-1)ˆ2;
f = f1+f2
dense2,sol,data=cs_tssos_first([f], x, 2,
CS=false,TS=false);

Victor Magron Exploiting sparsity in polynomial optimization 79 / 80

SOS + sparse + RIP ⇏ sparse SOS (1/2)

f1 = x4
1 + (x1x2 − 1)2 f2 = x2

2x2
3 + (x2

3 − 1)2 f = f1 + f2

Compute the dense relaxation f 2

Compare with the correlative sparse relaxation f 2
cs

Compare with the term sparse relaxation f 2,s
ts for s = 1, 2, . . .

Install and run TSSOS:
] add https://github.com/wangjie212/TSSOS
using TSSOS, DynamicPolynomials
@polyvar x1 x2 x3; x=[x1;x2;x3];
f1 = x1ˆ4+(x1*x2-1)ˆ2; f2 = x2ˆ2*x3ˆ2+(x3ˆ2-1)ˆ2;
f = f1+f2

dense2,sol,data=cs_tssos_first([f], x, 2,
CS=false,TS=false);

Victor Magron Exploiting sparsity in polynomial optimization 79 / 80

SOS + sparse + RIP ⇏ sparse SOS (1/2)

f1 = x4
1 + (x1x2 − 1)2 f2 = x2

2x2
3 + (x2

3 − 1)2 f = f1 + f2

Compute the dense relaxation f 2

Compare with the correlative sparse relaxation f 2
cs

Compare with the term sparse relaxation f 2,s
ts for s = 1, 2, . . .

Install and run TSSOS:
] add https://github.com/wangjie212/TSSOS
using TSSOS, DynamicPolynomials
@polyvar x1 x2 x3; x=[x1;x2;x3];
f1 = x1ˆ4+(x1*x2-1)ˆ2; f2 = x2ˆ2*x3ˆ2+(x3ˆ2-1)ˆ2;
f = f1+f2
dense2,sol,data=cs_tssos_first([f], x, 2,
CS=false,TS=false);

Victor Magron Exploiting sparsity in polynomial optimization 79 / 80

SOS + sparse + RIP ⇏ sparse SOS (2/2)

Download from https://homepages.laas.fr/vmagron/ncball:

f = f1 + f2 Bnc = {x : 1 − x2
1 − x2

2 − x2
3 ≽ 0, 1 − x2

2 − x2
3 − x2

4 ≽ 0}

Compute λmin(f) on Bnc with 2nd dense relaxation

cs_nctssos_first([f;ncball],x,2,CS=false, TS=false,
obj="eigen");

Compare with the correlative and term sparse relaxations

Victor Magron Exploiting sparsity in polynomial optimization 80 / 80

https://homepages.laas.fr/vmagron/ncball

SOS + sparse + RIP ⇏ sparse SOS (2/2)

Download from https://homepages.laas.fr/vmagron/ncball:

f = f1 + f2 Bnc = {x : 1 − x2
1 − x2

2 − x2
3 ≽ 0, 1 − x2

2 − x2
3 − x2

4 ≽ 0}

Compute λmin(f) on Bnc with 2nd dense relaxation

cs_nctssos_first([f;ncball],x,2,CS=false, TS=false,
obj="eigen");

Compare with the correlative and term sparse relaxations

Victor Magron Exploiting sparsity in polynomial optimization 80 / 80

https://homepages.laas.fr/vmagron/ncball

SOS + sparse + RIP ⇏ sparse SOS (2/2)

Download from https://homepages.laas.fr/vmagron/ncball:

f = f1 + f2 Bnc = {x : 1 − x2
1 − x2

2 − x2
3 ≽ 0, 1 − x2

2 − x2
3 − x2

4 ≽ 0}

Compute λmin(f) on Bnc with 2nd dense relaxation

cs_nctssos_first([f;ncball],x,2,CS=false, TS=false,
obj="eigen");

Compare with the correlative and term sparse relaxations

Victor Magron Exploiting sparsity in polynomial optimization 80 / 80

https://homepages.laas.fr/vmagron/ncball

SOS + sparse + RIP ⇏ sparse SOS (2/2)

Download from https://homepages.laas.fr/vmagron/ncball:

f = f1 + f2 Bnc = {x : 1 − x2
1 − x2

2 − x2
3 ≽ 0, 1 − x2

2 − x2
3 − x2

4 ≽ 0}

Compute λmin(f) on Bnc with 2nd dense relaxation

cs_nctssos_first([f;ncball],x,2,CS=false, TS=false,
obj="eigen");

Compare with the correlative and term sparse relaxations

Victor Magron Exploiting sparsity in polynomial optimization 80 / 80

https://homepages.laas.fr/vmagron/ncball

	Sparse SDP
	What is sparse polynomial optimization?
	Where do we find sparse POPs?
	The Moment-SOS Hierarchy for POP
	Sparse matrices
	Chordal extensions
	Running intersection property (RIP)
	Semidefinite Programming (SDP)
	Sparse SDP matrices

	Correlative sparsity
	What is correlative sparsity?
	A sparse variant of Putinar's Positivstellensatz
	A first key message
	A proof of sparse Putinar's Positivstellensatz
	Sparse moment matrices
	Sparse primal-dual Moment-SOS hierarchy
	Computational cost
	Sparse linear program over measures
	The dual of sparse Putinar's Positivstellensatz
	A first (dual) key message
	Extracting minimizers: the dense case
	Extracting minimizers: the sparse case
	Application to rational functions
	Application to roundoff errors
	Extension to noncommutative optimization
	Application to violation of Bell inequalities
	Application to SOS of bounded degrees
	Application to sparse positive definite forms
	More and more applications!

	Term sparsity
	Term sparsity via Newton polytope
	Term sparsity: the unconstrained case
	Term sparsity: the constrained case
	Term sparsity: primal moment relaxations
	A two-level hierarchy of lower bounds
	Term sparsity: convergence guarantees
	A second key message
	Comparison with (S)DSOS
	Combining correlative & term sparsity
	Application to optimal power-flow
	Application to noncommutative optimization
	Application to networked systems stability
	Application to joint spectral radius (JSR)

	Ideal sparsity
	Application to matrix ranks

	Conclusion & further topics
	Conclusion
	Further topics

	Tutorial session
	Newton polytope
	Chordal or not chordal?
	Chordal extension
	Support extension
	How big is CS?
	Moment matrix
	Measure LP preserves sparsity
	How big is TSSOS?
	SOS + sparse + RIP sparse SOS

