Exploiting sparsity in polynomial optimization

Victor Magron LAAS CNRS

https://homepages.laas.fr/vmagron/SparsePOPJNCF23.pdf

Journées Nationales de Calcul Formel 6-10 March 2023

Looks like a regular polynomial optimization problem (POP):

inf
$$f(\mathbf{x})$$

s.t. $\mathbf{x} \in \mathbf{X} = {\mathbf{x} \in \mathbb{R}^n : g_j(\mathbf{x}) \ge 0}$

Looks like a regular polynomial optimization problem (POP):

inf
$$f(\mathbf{x})$$

s.t. $\mathbf{x} \in \mathbf{X} = {\mathbf{x} \in \mathbb{R}^n : g_j(\mathbf{x}) \ge 0}$

 \forall But the input data f, g_i are "SPARSE"!

Looks like a regular polynomial optimization problem (POP):

inf
$$f(\mathbf{x})$$

s.t. $\mathbf{x} \in \mathbf{X} = \{\mathbf{x} \in \mathbb{R}^n : g_j(\mathbf{x}) \ge 0\}$

 \bigvee But the input data f, g_i are "SPARSE"!

Correlative sparsity: few products between each variable and the others in f, g_j

Looks like a regular polynomial optimization problem (POP):

inf
$$f(\mathbf{x})$$

s.t. $\mathbf{x} \in \mathbf{X} = \{\mathbf{x} \in \mathbb{R}^n : g_j(\mathbf{x}) \ge 0\}$

 \bigvee But the input data f, g_i are "SPARSE"!

Correlative sparsity: few products between each variable and the others in f, g_j $\rightarrow f(\mathbf{x}) = x_1 x_2 + x_2 x_3 + \dots x_{99} x_{100}$ 1-2-3-----

99 - 100

Looks like a regular polynomial optimization problem (POP):

inf
$$f(\mathbf{x})$$

s.t. $\mathbf{x} \in \mathbf{X} = \{\mathbf{x} \in \mathbb{R}^n : g_j(\mathbf{x}) \ge 0\}$

 \forall But the input data f, g_i are "SPARSE"!

Correlative sparsity: few products between each variable and the others in f, g_j $\rightsquigarrow f(\mathbf{x}) = x_1 x_2 + x_2 x_3 + \dots x_{99} x_{100}$

Term sparsity: few terms in f, g_i

- 3 -----

99 - 100

Looks like a regular polynomial optimization problem (POP):

inf
$$f(\mathbf{x})$$

s.t. $\mathbf{x} \in \mathbf{X} = \{\mathbf{x} \in \mathbb{R}^n : g_j(\mathbf{x}) \ge 0\}$

 \bigvee But the input data f, g_i are "SPARSE"!

 $\rightsquigarrow f(\mathbf{x}) = x_1^{99}x_2 + x_1x_2^{100}$

Correlative sparsity: few products between each variable and the others in f, g_j $\rightsquigarrow f(\mathbf{x}) = x_1 x_2 + x_2 x_3 + \dots x_{99} x_{100}$ Term sparsity: few terms in f, g_i

1 - 2 - 3 ----- 99 - 100

Looks like a regular polynomial optimization problem (POP):

inf
$$f(\mathbf{x})$$

s.t. $\mathbf{x} \in \mathbf{X} = \{\mathbf{x} \in \mathbb{R}^n : g_j(\mathbf{x}) \ge 0\}$

 \bigvee But the input data f, g_i are "SPARSE"!

Correlative sparsity: few products between each variable and the others in f, g_j $\rightsquigarrow f(\mathbf{x}) = x_1 x_2 + x_2 x_3 + \dots x_{99} x_{100}$

Term sparsity: few terms in f, g_j $\rightsquigarrow f(\mathbf{x}) = x_1^{99}x_2 + x_1x_2^{100}$

Ideal sparsity: constraints

- 3 -----

99 - 100

Looks like a regular polynomial optimization problem (POP):

inf
$$f(\mathbf{x})$$

s.t. $\mathbf{x} \in \mathbf{X} = \{\mathbf{x} \in \mathbb{R}^n : g_j(\mathbf{x}) \ge 0\}$

 \bigvee But the input data f, g_i are "SPARSE"!

Correlative sparsity: few products between each variable and the others in f, g_j $\rightsquigarrow f(\mathbf{x}) = x_1 x_2 + x_2 x_3 + \dots x_{99} x_{100}$

Term sparsity: few terms in f, g_j $\rightsquigarrow f(\mathbf{x}) = x_1^{99} x_2 + x_1 x_2^{100}$

Ideal sparsity: constraints $\rightsquigarrow x_1x_2 = x_2x_3 = 0$ 1 - 2 - 3 ----- 99 - 100

Looks like a regular polynomial optimization problem (POP):

inf
$$f(\mathbf{x})$$

s.t. $\mathbf{x} \in \mathbf{X} = {\mathbf{x} \in \mathbb{R}^n : g_j(\mathbf{x}) \ge 0}$

 \forall But the input data f, g_i are "SPARSE"!

Correlative sparsity: few products between each variable and the others in f, g_j $\rightsquigarrow f(\mathbf{x}) = x_1 x_2 + x_2 x_3 + \dots x_{99} x_{100}$

Term sparsity: few terms in f, g_j $\rightsquigarrow f(\mathbf{x}) = x_1^{99} x_2 + x_1 x_2^{100}$

Ideal sparsity: constraints $\rightsquigarrow x_1x_2 = x_2x_3 = 0$

PERFORMANCE

ACCURACY

Victor Magron

Exploiting sparsity in polynomial optimization

1 - 2 - 3 ----- 99 - 100

Everywhere (almost)!

Everywhere (almost)!

Deep learning

 \rightsquigarrow robustness, computer vision

Everywhere (almost)!

Deep learning

→ robustness, computer vision

Power systems

~ AC optimal power-flow, stability

Everywhere (almost)!

Deep learning

~> robustness, computer vision

Power systems

~ AC optimal power-flow, stability

Quantum Systems

Hidden

Output

Input

NP-hard NON CONVEX Problem $f_{\min} = \inf f(\mathbf{x})$

Practice

LASSERRE'S HIERARCHY of **CONVEX PROBLEMS** $\uparrow f_{min}$ [Lasserre '01]

degree r & n vars $\implies \binom{n+2r}{n}$ SDP variables

NP-hard NON CONVEX Problem $f_{\min} = \inf f(\mathbf{x})$

Practice

LASSERRE'S HIERARCHY of **CONVEX PROBLEMS** $\uparrow f_{min}$ [Lasserre '01]

degree r & n vars $\implies \binom{n+2r}{n}$ SDP variables

HOW TO OVERCOME THIS NO-FREE LUNCH RULE?

NP hard General Problem: $f_{\min} := \min_{\mathbf{x} \in \mathbf{X}} f(\mathbf{x})$

Semialgebraic set $\mathbf{X} = {\mathbf{x} \in \mathbb{R}^n : g_j(\mathbf{x}) \ge 0}$

NP hard General Problem: $f_{\min} := \min_{\mathbf{x} \in \mathbf{X}} f(\mathbf{x})$

Semialgebraic set $\mathbf{X} = \{\mathbf{x} \in \mathbb{R}^n : g_j(\mathbf{x}) \ge 0\}$ $\mathbf{X} = [0, 1]^2 = \{\mathbf{x} \in \mathbb{R}^2 : x_1(1 - x_1) \ge 0, \quad x_2(1 - x_2) \ge 0\}$

NP hard General Problem: $f_{\min} := \min_{\mathbf{x} \in \mathbf{X}} f(\mathbf{x})$

NP hard General Problem: $f_{\min} := \min_{\mathbf{x} \in \mathbf{X}} f(\mathbf{x})$

Semialgebraic set
$$\mathbf{X} = \{\mathbf{x} \in \mathbb{R}^n : g_j(\mathbf{x}) \ge 0\}$$

 $\mathbf{X} = [0,1]^2 = \{\mathbf{x} \in \mathbb{R}^2 : x_1(1-x_1) \ge 0, \quad x_2(1-x_2) \ge 0\}$
 $\overbrace{\mathbf{x}_1 \mathbf{x}_2}^f = \underbrace{\frac{\sigma_0}{1}}_{-\frac{1}{8} + \frac{1}{2}\left(x_1 + x_2 - \frac{1}{2}\right)^2} + \underbrace{\frac{\sigma_1}{12}}_{\frac{1}{2}} \underbrace{\frac{g_1}{x_1(1-x_1)}}_{\frac{g_1}{2} + \frac{\sigma_2}{12}} \underbrace{\frac{g_2}{x_2(1-x_2)}}_{\frac{g_2}{2} + \frac{\sigma_2}{2}}$

Sums of squares (SOS) σ_i

NP hard General Problem: $f_{\min} := \min_{\mathbf{x} \in \mathbf{X}} f(\mathbf{x})$

Semialgebraic set
$$\mathbf{X} = \{\mathbf{x} \in \mathbb{R}^n : g_j(\mathbf{x}) \ge 0\}$$

 $\mathbf{X} = [0, 1]^2 = \{\mathbf{x} \in \mathbb{R}^2 : x_1(1 - x_1) \ge 0, \quad x_2(1 - x_2) \ge 0\}$
 $\overbrace{\mathbf{x}_1 \mathbf{x}_2}^f = \underbrace{\frac{\sigma_0}{1}}_{-\frac{1}{8} + \frac{1}{2}\left(x_1 + x_2 - \frac{1}{2}\right)^2} + \underbrace{\frac{\sigma_1}{12}}_{\frac{1}{2}}\underbrace{\frac{g_1}{x_1(1 - x_1)}}_{\frac{g_1}{2} + \frac{\sigma_2}{12}}\underbrace{\frac{g_2}{x_2(1 - x_2)}}_{\frac{g_2}{2} + \frac{\sigma_2}{2}}$

Sums of squares (SOS) σ_i

Quadratic module:
$$\mathcal{M}(\mathbf{X})_r = \left\{ \sigma_0 + \sum_j \sigma_j g_j, \deg \sigma_j g_j \leqslant 2r \right\}$$

NP-hard NON CONVEX Problem $f_{\min} = \inf_{\mathbf{x} \in \mathbf{X}} f(\mathbf{x})$ **space** $\mathcal{M}_+(\mathbf{X})$ of probability measures supported on \mathbf{X} **quadratic module** $\mathcal{Q}(\mathbf{X}) = \left\{ \sigma_0 + \sum_i \sigma_i g_i, \text{ with } \sigma_i \text{ SOS } \right\}$

Infinite-dimensional linear programs (LP)

NP-hard NON CONVEX Problem $f_{\min} = \inf_{\mathbf{x} \in \mathbf{X}} f(\mathbf{x})$

- Pseudo-moment sequences y up to order r
- Truncated quadratic module $Q(\mathbf{X})_r$

Finite-dimensional semidefinite programs (SDP)

(Moment) (SOS)
inf
$$\sum_{\alpha} f_{\alpha} y_{\alpha} = \sup \lambda$$

s.t. $\mathbf{M}_{r-r_j}(g_j \mathbf{y}) \succeq 0$ s.t. $\lambda \in \mathbb{R}$
 $y_0 = 1$ $f - \lambda \in \mathcal{Q}(\mathbf{X})_r$

NP-hard NON CONVEX Problem $f_{\min} = \inf_{\mathbf{x} \in \mathbf{X}} f(\mathbf{x})$

Pseudo-moment sequences y up to order r

Truncated quadratic module $Q(\mathbf{X})_r$

Finite-dimensional semidefinite programs (SDP)

(Moment)
inf
$$\sum_{\alpha} f_{\alpha} y_{\alpha}$$
 = sup λ
s.t. $\mathbf{M}_{r-r_j}(g_j \mathbf{y}) \succeq 0$ s.t. $\lambda \in \mathbb{R}$
 $y_0 = 1$ $f - \lambda \in \mathcal{Q}(\mathbf{X})_r$

Primal-dual "SPARSE" variants?

Sparse SDP

Correlative sparsity

Term sparsity

Ideal sparsity

Tutorial session

Sparse SDP

Correlative sparsity

Term sparsity

Ideal sparsity

Tutorial session

Symmetric matrices indexed by graph vertices

Symmetric matrices indexed by graph vertices

 \overleftarrow{v} no edge between 1 and 3 \iff 0 entry in the (1,3) entry

Symmetric matrices indexed by graph vertices

 \overleftarrow{v} no edge between 1 and 3 \iff 0 entry in the (1,3) entry

Symmetric matrices indexed by graph vertices

 \overleftarrow{v} no edge between 1 and 3 \iff 0 entry in the (1,3) entry

cycle =
$$\begin{pmatrix} 1 & -2 \\ -4 & -3 \end{pmatrix}$$

chord = edge between two nonconsecutive vertices in a cycle

Symmetric matrices indexed by graph vertices

1 - 2 - 3

 \checkmark no edge between 1 and 3 \iff 0 entry in the (1,3) entry

cycle =
$$\begin{pmatrix} 1 & -2 \\ 4 & -3 \end{pmatrix}$$

chord = edge between two nonconsecutive vertices in a cycle

chordal graph = all cycles of length \ge 4 have at least one chord

Symmetric matrices indexed by graph vertices

 \bigvee no edge between 1 and 3 \iff 0 entry in the (1,3) entry

$$cycle = \begin{array}{c} 1 & -2 \\ 4 & -3 \end{array}$$

chord = edge between two nonconsecutive vertices in a cycle

chordal graph = all cycles of length \ge 4 have at least one chord

clique = a fully connected subset of vertices

Chordal extensions

Chordal extensions

Fact

Any non-chordal graph can always be extended to a chordal graph, by adding appropriate edges
Chordal extensions

Fact

Any non-chordal graph can always be extended to a chordal graph, by adding appropriate edges

V Chordal extension is not unique!

Chordal extensions

Fact

Any non-chordal graph can always be extended to a chordal graph, by adding appropriate edges

approximately minimal

maximal

Theorem [Gavril '72, Vandenberghe & Andersen '15]

The maximal cliques of a chordal graph can be enumerated in linear time in the number of nodes and edges.

RIP Theorem for chordal graphs [Blair & Peyton '93]

For a chordal graph with maximal cliques I_1, \ldots, I_p :

$$(\mathsf{RIP}) \quad \forall k$$

(possibly after reordering)

RIP Theorem for chordal graphs [Blair & Peyton '93]

For a chordal graph with maximal cliques I_1, \ldots, I_p :

$$(\mathsf{RIP}) \quad \forall k$$

(possibly after reordering)

 \checkmark RIP always holds for p = 2

RIP Theorem for chordal graphs [Blair & Peyton '93]

For a chordal graph with maximal cliques I_1, \ldots, I_p :

$$(\mathsf{RIP}) \quad \forall k$$

(possibly after reordering)

 \checkmark RIP always holds for p = 2

♥ RIP holds for chains 1 − 2 − 3 − − − − 99 − 100

RIP Theorem for chordal graphs [Blair & Peyton '93]

For a chordal graph with maximal cliques I_1, \ldots, I_p :

$$(\mathsf{RIP}) \quad \forall k$$

(possibly after reordering)

 \forall RIP always holds for p = 2

 ♥ RIP holds for chains
 1 − 2 − 3 − − − − 99 − 100

V RIP holds for numerous applications!

Semidefinite Programming (SDP)

$$\min_{\mathbf{y}} \quad \mathbf{c}^{\mathsf{T}} \mathbf{y} \\ \mathbf{s.t.} \quad \sum_{i} \mathbf{F}_{i} y_{i} \succeq \mathbf{F}_{0}$$

- Linear cost c
- Symmetric matrices F₀, F_i
- Linear matrix inequalities "F ≽ 0" (F has nonnegative eigenvalues)

Spectrahedron

Theorem [Griewank Toint '84, Agler et al. '88]

Chordal graph *G* with *n* vertices & maximal cliques I_1 , I_2 $Q_G \geq 0$ with nonzero entries corresponding to edges of *G* $\implies Q_G = P_1^T Q_1 P_1 + P_2^T Q_2 P_2$ with $Q_k \geq 0$ indexed by I_k

Theorem [Griewank Toint '84, Agler et al. '88]

Chordal graph *G* with *n* vertices & maximal cliques I_1 , I_2 $Q_G \geq 0$ with nonzero entries corresponding to edges of *G* $\implies Q_G = P_1^T Q_1 P_1 + P_2^T Q_2 P_2$ with $Q_k \geq 0$ indexed by I_k

What are P_1, P_2 ?

Theorem [Griewank Toint '84, Agler et al. '88]

Chordal graph *G* with *n* vertices & maximal cliques I_1 , I_2 $Q_G \geq 0$ with nonzero entries corresponding to edges of *G* $\implies Q_G = P_1^T Q_1 P_1 + P_2^T Q_2 P_2$ with $Q_k \geq 0$ indexed by I_k

Theorem [Griewank Toint '84, Agler et al. '88]

Chordal graph *G* with *n* vertices & maximal cliques I_1 , I_2 $Q_G \geq 0$ with nonzero entries corresponding to edges of *G* $\implies Q_G = P_1^T Q_1 P_1 + P_2^T Q_2 P_2$ with $Q_k \geq 0$ indexed by I_k

Theorem [Griewank Toint '84, Agler et al. '88]

Chordal graph *G* with *n* vertices & maximal cliques I_1 , I_2 $Q_G \geq 0$ with nonzero entries corresponding to edges of *G* $\implies Q_G = P_1^T Q_1 P_1 + P_2^T Q_2 P_2$ with $Q_k \geq 0$ indexed by I_k

Exploiting sparsity in polynomial optimization

Theorem [Griewank Toint '84, Agler et al. '88]

Chordal graph *G* with *n* vertices & maximal cliques I_1 , I_2 $Q_G \geq 0$ with nonzero entries corresponding to edges of *G* $\implies Q_G = P_1^T Q_1 P_1 + P_2^T Q_2 P_2$ with $Q_k \geq 0$ indexed by I_k

Victor Magron

Exploiting sparsity in polynomial optimization

Sparse SDP

Correlative sparsity

Term sparsity

Ideal sparsity

Tutorial session

Y Exploit few links between variables [Lasserre, Waki et al. '06]

$$f(\mathbf{x}) = x_2 x_5 + x_3 x_6 - x_2 x_3 - x_5 x_6 + x_1 (-x_1 + x_2 + x_3 - x_4 + x_5 + x_6)$$

Correlative sparsity pattern (csp) graph G

Vertices =
$$\{1, ..., n\}$$

$$(i, j) \in \mathsf{Edges} \iff x_i x_j$$
 appears in f

Y Exploit few links between variables [Lasserre, Waki et al. '06]

$$f(\mathbf{x}) = x_2 x_5 + x_3 x_6 - x_2 x_3 - x_5 x_6 + x_1 (-x_1 + x_2 + x_3 - x_4 + x_5 + x_6)$$

Correlative sparsity pattern (csp) graph G

Vertices =
$$\{1, \ldots, n\}$$

$$(i, j) \in \mathsf{Edges} \iff x_i x_j$$
 appears in f

Similar construction with constraints $\mathbf{X} = {\mathbf{x} \in \mathbb{R}^n : g_j(\mathbf{x}) \ge 0}$

$$f(\mathbf{x}) = x_2x_5 + x_3x_6 - x_2x_3 - x_5x_6 + x_1(-x_1 + x_2 + x_3 - x_4 + x_5 + x_6)$$

Chordal graph after adding edge (3,5)

$$f(\mathbf{x}) = x_2x_5 + x_3x_6 - x_2x_3 - x_5x_6 + x_1(-x_1 + x_2 + x_3 - x_4 + x_5 + x_6)$$

Chordal graph after adding edge (3,5)
maximal cliques $I_1 = \{1,4\}$ $I_2 = \{1,2,3,5\}$ $I_3 = \{1,3,5,6\}$

 $f = f_1 + f_2 + f_3$ where f_k involves **only** variables in I_k

 \overleftarrow{V} Let us index moment matrices and SOS with the cliques I_k

A sparse variant of Putinar's Positivstellensatz

Convergence of the Moment-SOS hierarchy is based on:

Theorem [Putinar '93] Positivstellensatz

If **X** contains a ball constraint $N - \sum_i x_i^2 \ge 0$ then

$$f > 0$$
 on $\mathbf{X} = {\mathbf{x} : g_j(\mathbf{x}) \ge 0} \implies f = \sigma_0 + \sum_j \sigma_j g_j$ with σ_j SOS

A sparse variant of Putinar's Positivstellensatz

Convergence of the Moment-SOS hierarchy is based on:

Theorem [Putinar '93] Positivstellensatz

If **X** contains a ball constraint $N - \sum_i x_i^2 \ge 0$ then

$$f > 0$$
 on $\mathbf{X} = {\mathbf{x} : g_j(\mathbf{x}) \ge 0} \implies f = \sigma_0 + \sum_j \sigma_j g_j$ with σ_j SOS

Theorem: Sparse Putinar's representation [Lasserre '06]

$$f = \sum_{k} f_{k}, f_{k} \text{ depends on } \mathbf{x}(I_{k})$$

$$f > 0 \text{ on } \mathbf{X}$$
Each g_{j} depends on some I_{k}
RIP holds for (I_{k})
ball constraints for each $\mathbf{x}(I_{k})$

$$\implies \begin{cases} f = \sum_{k} (\sigma_{0k} + \sum_{j \in J_{k}} \sigma_{j}g_{j}) \\ \text{SOS } \sigma_{0k} \text{ "sees" vars in } I_{k} \\ \sigma_{j} \text{ "sees" vars from } g_{j} \end{cases}$$

A first key message

🕅 SUMS OF SQUARES PRESERVE SPARSITY

Victor Magron

Exploiting sparsity in polynomial optimization

Let $\mathbf{X} = {\mathbf{x} : g_j(\mathbf{x}) \ge 0}$ be compact and $f = \sum_k f_k$, with f_k depends on $\mathbf{x}(I_k)$, and f > 0 on \mathbf{X}

Let $\mathbf{X} = {\mathbf{x} : g_j(\mathbf{x}) \ge 0}$ be compact and $f = \sum_k f_k$, with f_k depends on $\mathbf{x}(I_k)$, and f > 0 on \mathbf{X}

 $\mathbf{X}_k = {\mathbf{x}(I_k) : g_j(\mathbf{x}) \ge 0 : j \in J_k}$ = the subspace of \mathbf{X} which only "sees" variables indexed by I_k

Let $\mathbf{X} = {\mathbf{x} : g_j(\mathbf{x}) \ge 0}$ be compact and $f = \sum_k f_k$, with f_k depends on $\mathbf{x}(I_k)$, and f > 0 on \mathbf{X}

 $\mathbf{X}_k = {\mathbf{x}(I_k) : g_j(\mathbf{x}) \ge 0 : j \in J_k}$ = the subspace of \mathbf{X} which only "sees" variables indexed by I_k

Lemma [Grimm et al. '07]

If RIP holds for (I_k) then $f = \sum_k h_k$, with h_k depends on $\mathbf{x}(I_k)$, and $h_k > 0$ on \mathbf{X}_k

Let $\mathbf{X} = {\mathbf{x} : g_j(\mathbf{x}) \ge 0}$ be compact and $f = \sum_k f_k$, with f_k depends on $\mathbf{x}(I_k)$, and f > 0 on \mathbf{X}

 $\mathbf{X}_k = {\mathbf{x}(I_k) : g_j(\mathbf{x}) \ge 0 : j \in J_k}$ = the subspace of \mathbf{X} which only "sees" variables indexed by I_k

Lemma [Grimm et al. '07]

If RIP holds for (I_k) then $f = \sum_k h_k$, with h_k depends on $\mathbf{x}(I_k)$, and $h_k > 0$ on \mathbf{X}_k

\overleftarrow{V} Prove this lemma by induction on the number of subsets I_k

Let $\mathbf{X} = {\mathbf{x} : g_j(\mathbf{x}) \ge 0}$ be compact and $f = \sum_k f_k$, with f_k depends on $\mathbf{x}(I_k)$, and f > 0 on \mathbf{X}

 $\mathbf{X}_k = {\mathbf{x}(I_k) : g_j(\mathbf{x}) \ge 0 : j \in J_k}$ = the subspace of \mathbf{X} which only "sees" variables indexed by I_k

Lemma [Grimm et al. '07]

If RIP holds for (I_k) then $f = \sum_k h_k$, with h_k depends on $\mathbf{x}(I_k)$, and $h_k > 0$ on \mathbf{X}_k

 \overleftarrow{V} Prove this lemma by induction on the number of subsets I_k

\overleftarrow{v} Then apply Putinar to each h_k

For each subset I_k , submatrix of $M_r(y)$ corresponding of rows & columns indexed by monomials in $x(I_k)$

For each subset I_k , submatrix of $M_r(y)$ corresponding of rows & columns indexed by monomials in $x(I_k)$

$$f(\mathbf{x}) = x_2 x_5 + x_3 x_6 - x_2 x_3 - x_5 x_6 + x_1 (-x_1 + x_2 + x_3 - x_4 + x_5 + x_6)$$

For each subset I_k , submatrix of $M_r(y)$ corresponding of rows & columns indexed by monomials in $x(I_k)$

$$f(\mathbf{x}) = x_2 x_5 + x_3 x_6 - x_2 x_3 - x_5 x_6 + x_1 (-x_1 + x_2 + x_3 - x_4 + x_5 + x_6)$$

$$I_1 = \{1, 4\} \implies \text{monomials in } x_1, x_4$$

$$\mathbf{M}_1(\mathbf{y}, I_1) = \begin{pmatrix} 1 & | & y_{1,0,0,0,0,0} & y_{0,0,0,1,0,0} \\ & - & - & - \\ y_{1,0,0,0,0,0} & | & y_{2,0,0,0,0,0} & y_{1,0,0,1,0,0} \\ y_{0,0,0,1,0,0} & | & y_{1,0,0,1,0,0} & y_{0,0,0,2,0,0} \end{pmatrix}$$

For each subset I_k , submatrix of $M_r(y)$ corresponding of rows & columns indexed by monomials in $x(I_k)$

$$f(\mathbf{x}) = x_2 x_5 + x_3 x_6 - x_2 x_3 - x_5 x_6 + x_1 (-x_1 + x_2 + x_3 - x_4 + x_5 + x_6)$$

$$I_1 = \{1, 4\} \implies \text{monomials in } x_1, x_4$$

$$\mathbf{M}_1(\mathbf{y}, I_1) = \begin{pmatrix} 1 & | & y_{1,0,0,0,0,0} & y_{0,0,0,1,0,0} \\ & - & - & - \\ y_{1,0,0,0,0,0} & | & y_{2,0,0,0,0,0} & y_{1,0,0,1,0,0} \\ y_{0,0,0,1,0,0} & | & y_{1,0,0,1,0,0} & y_{0,0,0,2,0,0} \end{pmatrix}$$

 \forall same for each localizing matrix $\mathbf{M}_r(g_j \mathbf{y})$

Sparse primal-dual Moment-SOS hierarchy

$$f_{\min} = \inf_{\mathbf{x} \in \mathbf{X}} f(\mathbf{x}) \text{ with } \mathbf{X} = \{\mathbf{x} : g_j(\mathbf{x}) \ge 0\}$$

Exploiting sparsity in polynomial optimization

Sparse primal-dual Moment-SOS hierarchy

 $f_{\min} = \inf_{\mathbf{x} \in \mathbf{X}} f(\mathbf{x})$ with $\mathbf{X} = {\mathbf{x} : g_j(\mathbf{x}) \ge 0}$ $f = \sum_k f_k$, with f_k depends on $\mathbf{x}(I_k)$ Each g_j depends on some I_k

Sparse primal-dual Moment-SOS hierarchy

 $f_{\min} = \inf_{\mathbf{x} \in \mathbf{X}} f(\mathbf{x}) \text{ with } \mathbf{X} = \{\mathbf{x} : g_j(\mathbf{x}) \ge 0\}$ $f = \sum_k f_k, \text{ with } f_k \text{ depends on } \mathbf{x}(I_k)$ Each g_j depends on some I_k

RIP holds for (I_k) + ball constraints for each $\mathbf{x}(I_k) \implies$ Primal and dual optimal value converge to f_{\min} by sparse Putinar

Victor Magron

Exploiting sparsity in polynomial optimization

Computational cost

$$f_{\min} = \inf_{\mathbf{x} \in \mathbf{X}} f(\mathbf{x}) \text{ with } \mathbf{X} = \{\mathbf{x} : g_j(\mathbf{x}) \ge 0, j \le m\}$$

$$\tau = \max\{|I_1|, \dots, |I_p|\}$$

Sparse Moment-SOS hierarchy				
(Moment)		(SOS)		
inf	$\sum_{\alpha} f_{\alpha} y_{\alpha}$	=	sup	λ
s.t.	$\mathbf{M}_r(\mathbf{y}, \mathbf{I}_k) \succcurlyeq 0$		s.t.	$\lambda \in \mathbb{R}$
	$\mathbf{M}_{r-r_j}(g_j \mathbf{y}, I_k) \succcurlyeq 0, j \in J_k, \forall k$			$f - \lambda = \sum_{k} (\sigma_{k0} + \sum_{j \in J_k} \sigma_j g_j)$
	$y_0 = 1$			

Computational cost

$$f_{\min} = \inf_{\mathbf{x} \in \mathbf{X}} f(\mathbf{x}) \text{ with } \mathbf{X} = \{\mathbf{x} : g_j(\mathbf{x}) \ge 0, j \le m\}$$

$$\tau = \max\{|I_1|, \dots, |I_p|\}$$

(m+p) SOS in at most τ vars of degree $\leq 2r$

Computational cost

$$f_{\min} = \inf_{\mathbf{x} \in \mathbf{X}} f(\mathbf{x}) \text{ with } \mathbf{X} = \{\mathbf{x} : g_j(\mathbf{x}) \ge 0, j \le m\}$$

$$\tau = \max\{|I_1|, \dots, |I_p|\}$$

(m + p) SOS in at most τ vars of degree $\leq 2r$ $\bigvee (m + p) O(r^{\tau})$ SDP vars
Computational cost

$$f_{\min} = \inf_{\mathbf{x} \in \mathbf{X}} f(\mathbf{x}) \text{ with } \mathbf{X} = \{\mathbf{x} : g_j(\mathbf{x}) \ge 0, j \le m\}$$

$$\tau = \max\{|I_1|, \dots, |I_p|\}$$

(m + p) SOS in at most τ vars of degree $\leq 2r$ $\overleftrightarrow{}(m + p) \mathcal{O}(r^{\tau})$ SDP vars vs $(m + 1) \mathcal{O}(r^{n})$ in the dense SDP

In the dense setting:

$$f_{\min} = \inf_{\mu} \int_{\mathbf{X}} f \, d\mu$$

s.t. $\mu \in \mathcal{M}_{+}(\mathbf{X})$

In the dense setting:

$$f_{\min} = \inf_{\mu} \int_{\mathbf{X}} f \, d\mu$$

s.t. $\mu \in \mathcal{M}_{+}(\mathbf{X})$

In the sparse setting:

 $\mathbf{X}_k = {\mathbf{x}(I_k) : g_j(\mathbf{x}) \ge 0 : j \in J_k}$ = the subspace of \mathbf{X} which only "sees" variables indexed by I_k

In the dense setting:

$$f_{\min} = \inf_{\mu} \int_{\mathbf{X}} f \, d\mu$$

s.t. $\mu \in \mathcal{M}_{+}(\mathbf{X})$

In the sparse setting:

 $\mathbf{X}_k = {\mathbf{x}(I_k) : g_j(\mathbf{x}) \ge 0 : j \in J_k}$ = the subspace of \mathbf{X} which only "sees" variables indexed by I_k \mathbf{X}_{ki} = only "sees" variables indexed by $I_k \cap I_i$

In the dense setting:

$$f_{\min} = \inf_{\mu} \quad \int_{\mathbf{X}} f \, d\mu$$

s.t. $\mu \in \mathcal{M}_{+}(\mathbf{X})$

In the sparse setting:

 $\mathbf{X}_k = {\mathbf{x}(I_k) : g_j(\mathbf{x}) \ge 0 : j \in J_k}$ = the subspace of \mathbf{X} which only "sees" variables indexed by I_k \mathbf{X}_{kj} = only "sees" variables indexed by $I_k \cap I_j$ \mathbf{V} one measure μ_k for each $I_k \to$ marginals $\pi_{kj}\mu_k$ on $\mathcal{M}_+(\mathbf{X}_{kj})$

In the dense setting:

$$f_{\min} = \inf_{\mu} \int_{\mathbf{X}} f \, d\mu$$

s.t. $\mu \in \mathcal{M}_{+}(\mathbf{X})$

In the sparse setting:

 $\mathbf{X}_k = {\mathbf{x}(I_k) : g_j(\mathbf{x}) \ge 0 : j \in J_k}$ = the subspace of \mathbf{X} which only "sees" variables indexed by I_k \mathbf{X}_{kj} = only "sees" variables indexed by $I_k \cap I_j$ \mathbf{Y} one measure μ_k for each $I_k \to$ marginals $\pi_{kj}\mu_k$ on $\mathcal{M}_+(\mathbf{X}_{kj})$

Sparse moment SDPs relax the sparse LP over measures:

$$f_{cs} = \inf_{\mu_k} \sum_k \int_{\mathbf{X}_k} f_k \, d\mu_k$$

s.t. $\pi_{jk} \mu_j = \pi_{kj} \mu_k$, $\mu_k \in \mathcal{M}_+(\mathbf{X}_k)$

Victor Magron

Exploiting sparsity in polynomial optimization

The dual of sparse Putinar's Positivstellensatz

Theorem [Lasserre '06]

RIP holds for
$$(I_k) \implies f_{\min} = f_{cs} = \inf_{\mu_k} \sum_k \int_{\mathbf{X}_k} f_k d\mu_k$$

s.t. $\pi_{jk}\mu_j = \pi_{kj}\mu_k$
 $\mu_k \in \mathcal{M}_+(\mathbf{X}_k)$

The dual of sparse Putinar's Positivstellensatz

Theorem [Lasserre '06]

RIP holds for
$$(I_k) \implies f_{\min} = f_{cs} = \inf_{\mu_k} \sum_k \int_{\mathbf{X}_k} f_k d\mu_k$$

s.t. $\pi_{jk}\mu_j = \pi_{kj}\mu_k$
 $\mu_k \in \mathcal{M}_+(\mathbf{X}_k)$

 \overleftarrow{V} Proof: there exists $\mu \in \mathcal{M}_+(\mathbf{X})$ with marginal μ_k on \mathbf{X}_k

Victor Magron

Exploiting sparsity in polynomial optimization

A first (dual) key message

V THE MEASURE LP PRESERVES SPARSITY **V**

Let r_{\min} be the minimal relaxation order.

Let r_{\min} be the minimal relaxation order.

Theorem: dense extraction [Lasserre & Henrion '05]

Assume that the moment SDP has an optimal solution \mathbf{y} with cost f^r and

$$\operatorname{rank} \mathbf{M}_{r'}(\mathbf{y}) = \operatorname{rank} \mathbf{M}_{r'-r_{\min}}(\mathbf{y})$$
 for some $r' \leqslant r$.

Let r_{\min} be the minimal relaxation order.

Theorem: dense extraction [Lasserre & Henrion '05]

Assume that the moment SDP has an optimal solution \mathbf{y} with cost f^r and

$$\operatorname{rank} \mathbf{M}_{r'}(\mathbf{y}) = \operatorname{rank} \mathbf{M}_{r'-r_{\min}}(\mathbf{y})$$
 for some $r' \leqslant r$.

Then $f^r = f_{\min}$ and the LP over measures has an optimal solution $\mu \in \mathcal{M}_+(\mathbf{X})$ supported on $t = \operatorname{rank} \mathbf{M}_{r'}(\mathbf{y})$ points of \mathbf{X} .

Let r_{\min} be the minimal relaxation order.

Theorem: dense extraction [Lasserre & Henrion '05]

Assume that the moment SDP has an optimal solution \mathbf{y} with cost f^r and

$$\operatorname{rank} \mathbf{M}_{r'}(\mathbf{y}) = \operatorname{rank} \mathbf{M}_{r'-r_{\min}}(\mathbf{y})$$
 for some $r' \leqslant r$.

Then $f^r = f_{\min}$ and the LP over measures has an optimal solution $\mu \in \mathcal{M}_+(\mathbf{X})$ supported on $t = \operatorname{rank} \mathbf{M}_{r'}(\mathbf{y})$ points of \mathbf{X} .

Extraction possible with the Gloptipoly software

 $a_k = \max_{i \in I_k} r_i$ = max half degree of g_i depending on I_k .

 $a_k = \max_{j \in J_k} r_j$ = max half degree of g_j depending on I_k .

Theorem: sparse extraction [Lasserre '06]

Assume that the sparse moment SDP has an optimal solution ${\bf y}$ with cost $f_{\rm CS}^r$ and

rank
$$\mathbf{M}_r(\mathbf{y}, \mathbf{I}_k) = \operatorname{rank} \mathbf{M}_{r-a_k}(\mathbf{y}, \mathbf{I}_k)$$

rank $\mathbf{M}_r(\mathbf{y}, \mathbf{I}_k \cap \mathbf{I}_j) = 1$

 $a_k = \max_{j \in J_k} r_j$ = max half degree of g_j depending on I_k .

Theorem: sparse extraction [Lasserre '06]

Assume that the sparse moment SDP has an optimal solution \mathbf{y} with cost $f_{\rm CS}^{\rm r}$ and

rank
$$\mathbf{M}_r(\mathbf{y}, I_k) = \operatorname{rank} \mathbf{M}_{r-a_k}(\mathbf{y}, I_k)$$

rank $\mathbf{M}_r(\mathbf{y}, I_k \cap I_j) = 1$

Then $f_{CS}^r = f_{\min} = f_{CS}$ & sparse measure LP has optimal solution $\mu_k \in \mathcal{M}_+(\mathbf{X}_k)$ supported on $t_k = \operatorname{rank} \mathbf{M}_r(\mathbf{y}, I_k)$ points of \mathbf{X}_k .

 $a_k = \max_{j \in J_k} r_j$ = max half degree of g_j depending on I_k .

Theorem: sparse extraction [Lasserre '06]

Assume that the sparse moment SDP has an optimal solution \mathbf{y} with cost $f_{\rm CS}^{\rm r}$ and

rank
$$\mathbf{M}_r(\mathbf{y}, I_k) = \operatorname{rank} \mathbf{M}_{r-a_k}(\mathbf{y}, I_k)$$

rank $\mathbf{M}_r(\mathbf{y}, I_k \cap I_j) = 1$

Then $f_{CS}^r = f_{\min} = f_{CS}$ & sparse measure LP has optimal solution $\mu_k \in \mathcal{M}_+(\mathbf{X}_k)$ supported on $t_k = \operatorname{rank} \mathbf{M}_r(\mathbf{y}, I_k)$ points of \mathbf{X}_k .

V RIP is not required! **V** Extract $\mathbf{x}(k)$ from $\mathbf{M}_r(\mathbf{y}, \mathbf{I}_k) \implies$ minimizer \mathbf{x} with $(x_i)_{i \in I_k} = \mathbf{x}(k)$

Application to rational functions

$$f_{\min} = \inf_{\mathbf{x} \in \mathbf{X}} \sum_{i} \frac{p_i(\mathbf{x})}{q_i(\mathbf{x})}, \quad q_i > 0 \text{ on } \mathbf{X}, \quad p_i, q_i \text{ depends only on } I_i$$

Application to rational functions

$$f_{\min} = \inf_{\mathbf{x} \in \mathbf{X}} \sum_{i} \frac{p_i(\mathbf{x})}{q_i(\mathbf{x})}, \quad q_i > 0 \text{ on } \mathbf{X}, \quad p_i, q_i \text{ depends only on } I_i$$

Theorem: dense measure LP [Bugarin et al. '16]

$$f_{\min} = \inf_{\substack{\mu_i \in \mathcal{M}_+(\mathbf{X}) \\ \mathbf{S.t.}}} \sum_i \int_{\mathbf{X}} p_i d\mu_i$$

s.t.
$$\int_{\mathbf{X}} \mathbf{x}^{\alpha} q_i d\mu_i = \int_{\mathbf{X}} \mathbf{x}^{\alpha} q_1 d\mu_1, \alpha \in \mathbb{N}^n$$
$$\int_{\mathbf{X}} q_1 d\mu_1 = 1$$

Application to rational functions

$$f_{\min} = \inf_{\mathbf{x} \in \mathbf{X}} \sum_{i} \frac{p_i(\mathbf{x})}{q_i(\mathbf{x})}, \quad q_i > 0 \text{ on } \mathbf{X}, \quad p_i, q_i \text{ depends only on } I_i$$

Theorem: dense measure LP [Bugarin et al. '16]

$$f_{\min} = \inf_{\substack{\mu_i \in \mathcal{M}_+(\mathbf{X}) \\ \mathbf{S.t.}}} \sum_i \int_{\mathbf{X}} p_i d\mu_i$$

s.t.
$$\int_{\mathbf{X}} \mathbf{x}^{\alpha} q_i d\mu_i = \int_{\mathbf{X}} \mathbf{x}^{\alpha} q_1 d\mu_1, \alpha \in \mathbb{N}^n$$
$$\int_{\mathbf{X}} q_1 d\mu_1 = 1$$

Theorem: sparse measure LP [Bugarin et al. '16]

$$f_{\min} = f_{cs} = \inf_{\substack{\mu_i \in \mathcal{M}_+(\mathbf{X}_i) \\ s.t.}} \sum_i \int_{\mathbf{X}_i} p_i d\mu_i$$
$$s.t. \quad \pi_{ij}(q_i d\mu_i) = \pi_{ji}(q_j d\mu_j)$$
$$\int_{\mathbf{X}_i} q_i d\mu_i = 1$$

[Magron Constantinides Donaldson '17]

Exact $f(\mathbf{x}) = x_1 x_2 + x_3 x_4$

[Magron Constantinides Donaldson '17]

Exact $f(\mathbf{x}) = x_1 x_2 + x_3 x_4$ Floating-point $\hat{f}(\mathbf{x}, \mathbf{e}) = [x_1 x_2 (1 + e_1) + x_3 x_4 (1 + e_2)](1 + e_3)$

[Magron Constantinides Donaldson '17]

Exact $f(\mathbf{x}) = x_1 x_2 + x_3 x_4$ Floating-point $\hat{f}(\mathbf{x}, \mathbf{e}) = [x_1 x_2 (1 + e_1) + x_3 x_4 (1 + e_2)](1 + e_3)$ $\mathbf{x} \in \mathbf{X}, \quad |e_i| \leq 2^{-\delta} \quad \delta = 24$ (single) or 53 (double)

[Magron Constantinides Donaldson '17]

Exact $f(\mathbf{x}) = x_1 x_2 + x_3 x_4$ Floating-point $\hat{f}(\mathbf{x}, \mathbf{e}) = [x_1 x_2 (1 + e_1) + x_3 x_4 (1 + e_2)](1 + e_3)$ $\mathbf{x} \in \mathbf{X}, \quad |e_i| \leq 2^{-\delta} \quad \delta = 24$ (single) or 53 (double)

1: Error $f(\mathbf{x}) - \hat{f}(\mathbf{x}, \mathbf{e}) = \ell(\mathbf{x}, \mathbf{e}) + h(\mathbf{x}, \mathbf{e}), \ell$ linear in e

[Magron Constantinides Donaldson '17]

Exact $f(\mathbf{x}) = x_1 x_2 + x_3 x_4$ Floating-point $\hat{f}(\mathbf{x}, \mathbf{e}) = [x_1 x_2 (1 + e_1) + x_3 x_4 (1 + e_2)](1 + e_3)$ $\mathbf{x} \in \mathbf{X}, \quad |e_i| \leq 2^{-\delta} \quad \delta = 24$ (single) or 53 (double)

1: Error
$$f(\mathbf{x}) - \hat{f}(\mathbf{x}, \mathbf{e}) = \ell(\mathbf{x}, \mathbf{e}) + h(\mathbf{x}, \mathbf{e}), \ell$$
 linear in e

2: Bound $h(\mathbf{x}, \mathbf{e})$ with interval arithmetic

[Magron Constantinides Donaldson '17]

Exact $f(\mathbf{x}) = x_1 x_2 + x_3 x_4$ Floating-point $\hat{f}(\mathbf{x}, \mathbf{e}) = [x_1 x_2 (1 + e_1) + x_3 x_4 (1 + e_2)](1 + e_3)$ $\mathbf{x} \in \mathbf{X}, \quad |e_i| \leq 2^{-\delta} \quad \delta = 24$ (single) or 53 (double)

1: Error
$$f(\mathbf{x}) - \hat{f}(\mathbf{x}, \mathbf{e}) = \ell(\mathbf{x}, \mathbf{e}) + h(\mathbf{x}, \mathbf{e}), \ell$$
 linear in e

- 2: Bound $h(\mathbf{x}, \mathbf{e})$ with interval arithmetic
- 3: Bound $\ell(x, e)$ with SPARSE SUMS OF SQUARES

$$\forall I_k \to {\mathbf{x}, e_k} \implies \boxed{m r^{n+1} \text{ instead of } r^{n+m}}$$
 SDP vars

$$\begin{aligned} f &= x_2 x_5 + x_3 x_6 - x_2 x_3 - x_5 x_6 + x_1 (-x_1 + x_2 + x_3 - x_4 + x_5 + x_6) \\ \mathbf{x} &\in [4.00, 6.36]^6, \quad \mathbf{e} \in [-\epsilon, \epsilon]^{15}, \quad \epsilon = 2^{-53} \end{aligned}$$

Dense SDP: $\binom{6+15+4}{6+15} = 12650$ variables \rightsquigarrow Out of memory

$$\begin{aligned} f &= x_2 x_5 + x_3 x_6 - x_2 x_3 - x_5 x_6 + x_1 (-x_1 + x_2 + x_3 - x_4 + x_5 + x_6) \\ \mathbf{x} &\in [4.00, 6.36]^6, \quad \mathbf{e} \in [-\epsilon, \epsilon]^{15}, \quad \epsilon = 2^{-53} \end{aligned}$$

Dense SDP: $\binom{6+15+4}{6+15} = 12650$ variables \rightsquigarrow Out of memory

Sparse SDP Real2Float tool: $15\binom{6+1+4}{6+1} = 4950 \rightsquigarrow 759\epsilon$

$$\begin{aligned} f &= x_2 x_5 + x_3 x_6 - x_2 x_3 - x_5 x_6 + x_1 (-x_1 + x_2 + x_3 - x_4 + x_5 + x_6) \\ \mathbf{x} &\in [4.00, 6.36]^6, \quad \mathbf{e} \in [-\epsilon, \epsilon]^{15}, \quad \epsilon = 2^{-53} \end{aligned}$$

Dense SDP: $\binom{6+15+4}{6+15} = 12650$ variables \rightsquigarrow Out of memory

Sparse SDP Real2Float tool: $15\binom{6+1+4}{6+1} = 4950 \rightsquigarrow 759\epsilon$

Interval arithmetic: 922ϵ (10 × less CPU)

$$\begin{aligned} f &= x_2 x_5 + x_3 x_6 - x_2 x_3 - x_5 x_6 + x_1 (-x_1 + x_2 + x_3 - x_4 + x_5 + x_6) \\ \mathbf{x} &\in [4.00, 6.36]^6, \quad \mathbf{e} \in [-\epsilon, \epsilon]^{15}, \quad \epsilon = 2^{-53} \end{aligned}$$

Dense SDP: $\binom{6+15+4}{6+15} = 12650$ variables \rightsquigarrow Out of memory

Sparse SDP Real2Float tool: $15\binom{6+1+4}{6+1} = 4950 \rightsquigarrow 759\epsilon$

Interval arithmetic: 922ϵ (10 × less CPU)

Symbolic Taylor FPTaylor tool: 721ϵ (21 × more CPU)

$$f = x_2 x_5 + x_3 x_6 - x_2 x_3 - x_5 x_6 + x_1 (-x_1 + x_2 + x_3 - x_4 + x_5 + x_6)$$
$$\mathbf{x} \in [4.00, 6.36]^6, \quad \mathbf{e} \in [-\epsilon, \epsilon]^{15}, \quad \epsilon = 2^{-53}$$

Dense SDP: $\binom{6+15+4}{6+15}$ = 12650 variables \sim Out of memory

Sparse SDP Real2Float tool: $15\binom{6+1+4}{6+1} = 4950 \rightsquigarrow 759\epsilon$

Interval arithmetic: 922ϵ (10 × less CPU)

Symbolic Taylor FPTaylor tool: 721ϵ (21 × more CPU)

SMT-based rosa tool: 762ϵ (19 × more CPU)

Victor Magron

Exploiting sparsity in polynomial optimization

Exploiting sparsity in polynomial optimization

Self-adjoint noncommutative variables $a_i, b_j \in \mathcal{B}(\mathcal{H})$

$$f = a_1(b_1 + b_2 + b_3) + a_2(b_1 + b_2 - b_3) + a_3(b_1 - b_2) - b_1 - 2b_1 - b_2$$

with $a_1 a_2 \neq a_2 a_1$, involution $(a_1 b_3)^* = b_3 a_1$

Self-adjoint noncommutative variables $a_i, b_j \in \mathcal{B}(\mathcal{H})$

$$f = a_1(b_1 + b_2 + b_3) + a_2(b_1 + b_2 - b_3) + a_3(b_1 - b_2) - b_1 - 2b_1 - b_2$$

with $a_1a_2 \neq a_2a_1$, involution $(a_1b_3)^* = b_3a_1$

Constraints
$$\mathbf{X} = \{(a, b) : a_i^2 = a_i, b_j^2 = b_j, a_i b_j = b_j a_i\}$$

Self-adjoint noncommutative variables $a_i, b_j \in \mathcal{B}(\mathcal{H})$

 $f = a_1(b_1 + b_2 + b_3) + a_2(b_1 + b_2 - b_3) + a_3(b_1 - b_2) - b_1 - 2b_1 - b_2$

with $a_1a_2 \neq a_2a_1$, involution $(a_1b_3)^* = b_3a_1$

Constraints $\mathbf{X} = \{(a, b) : a_i^2 = a_i, b_j^2 = b_j, a_i b_j = b_j a_i\}$

MINIMAL EIGENVALUE OPTIMIZATION

$$\lambda_{\min} = \inf \left\{ \langle f(a,b)\mathbf{v}, \mathbf{v} \rangle : (a,b) \in \mathbf{X}, \|\mathbf{v}\| = 1 \right\}$$

Self-adjoint noncommutative variables $a_i, b_j \in \mathcal{B}(\mathcal{H})$

 $f = a_1(b_1 + b_2 + b_3) + a_2(b_1 + b_2 - b_3) + a_3(b_1 - b_2) - b_1 - 2b_1 - b_2$

with $a_1a_2 \neq a_2a_1$, involution $(a_1b_3)^* = b_3a_1$

Constraints $\mathbf{X} = \{(a, b) : a_i^2 = a_i, b_j^2 = b_j, a_i b_j = b_j a_i\}$

MINIMAL EIGENVALUE OPTIMIZATION

$$\lambda_{\min} = \inf \{ \langle f(a,b)\mathbf{v}, \mathbf{v} \rangle : (a,b) \in \mathbf{X}, \|\mathbf{v}\| = 1 \}$$
$$= \sup \quad \lambda$$
$$\mathbf{s.t.} \quad f(a,b) - \lambda \mathbf{I} \succeq 0, \quad \forall (a,b) \in \mathbf{X}$$
Ball constraint $N - \sum_i x_i^2 \succeq 0$ in **X**

Theorem: NC Putinar's representation [Helton & McCullough '02]

$$f \succ 0 \text{ on } \mathbf{X} \implies f = \sum_{i} s_{i}^{\star} s_{i} + \sum_{j} \sum_{i} t_{ji}^{\star} g_{j} t_{ji}$$
 with $s_{i}, t_{ji} \in \mathbb{R} \langle \underline{x} \rangle$

Ball constraint $N - \sum_i x_i^2 \succeq 0$ in **X**

Theorem: NC Putinar's representation [Helton & McCullough '02]

$$f \succ 0 \text{ on } \mathbf{X} \implies f = \sum_{i} s_{i}^{\star} s_{i} + \sum_{j} \sum_{i} t_{ji}^{\star} g_{j} t_{ji}$$
 with $s_{i}, t_{ji} \in \mathbb{R} \langle \underline{x} \rangle$

NC variant of Lasserre's Hierarchy for λ_{min} :

$$\forall$$
 replace " $f - \lambda \mathbf{I} \succeq 0$ on **X**" by $f - \lambda \mathbf{I} = \sum_{i} s_{i}^{*} s_{i} + \sum_{j} \sum_{i} t_{ji}^{*} g_{j} t_{ji}$
with s_{i} , t_{ji} of **bounded** degrees = SDP **V**

Self-adjoint noncommutative (NC) variables $x = (x_1, ..., x_n)$

Theorem [Helton & McCullough '02]

 $f \succcurlyeq 0 \Leftrightarrow f$ SOS (all positive polynomials are sums of squares)

Self-adjoint noncommutative (NC) variables $x = (x_1, ..., x_n)$

Theorem [Helton & McCullough '02]

 $f \succcurlyeq 0 \Leftrightarrow f$ SOS (all positive polynomials are sums of squares)

BAD NEWS: there is **no** sparse analog! sparse f SOS $\Rightarrow f$ is a sparse SOS [Klep Magron Povh '21]

Self-adjoint noncommutative (NC) variables $x = (x_1, ..., x_n)$

Theorem [Helton & McCullough '02]

 $f \succcurlyeq 0 \Leftrightarrow f$ SOS (all positive polynomials are sums of squares)

BAD NEWS: there is **no** sparse analog! sparse f SOS \Rightarrow f is a sparse SOS [Klep Magron Povh '21] Take $f = (x_1 + x_2 + x_3)^2$

Self-adjoint noncommutative (NC) variables $x = (x_1, ..., x_n)$

Theorem [Helton & McCullough '02]

 $f \succcurlyeq 0 \Leftrightarrow f$ SOS (all positive polynomials are sums of squares)

BAD NEWS: there is **no** sparse analog! sparse f SOS \Rightarrow f is a sparse SOS [Klep Magron Povh '21] Take $f = (x_1 + x_2 + x_3)^2$

GOOD NEWS: there is an NC analog of the sparse Putinar's Positivstellensatz!

Self-adjoint noncommutative (NC) variables $x = (x_1, ..., x_n)$

Theorem [Helton & McCullough '02]

 $f \succcurlyeq 0 \Leftrightarrow f$ SOS (all positive polynomials are sums of squares)

BAD NEWS: there is **no** sparse analog! sparse f SOS \Rightarrow f is a sparse SOS [Klep Magron Povh '21] Take $f = (x_1 + x_2 + x_3)^2$

GOOD NEWS: there is an NC analog of the sparse Putinar's Positivstellensatz! Based on GNS construction & **amalgamation** [Blackadar '78, Voiculescu '85]

Self-adjoint noncommutative (NC) variables $x = (x_1, ..., x_n)$

Theorem [Helton & McCullough '02]

 $f \succcurlyeq 0 \Leftrightarrow f$ SOS (all positive polynomials are sums of squares)

BAD NEWS: there is **no** sparse analog! sparse f SOS \Rightarrow f is a sparse SOS [Klep Magron Povh '21] Take $f = (x_1 + x_2 + x_3)^2$

GOOD NEWS: there is an NC analog of the sparse Putinar's Positivstellensatz! Based on GNS construction & **amalgamation** [Blackadar '78, Voiculescu '85]

Theorem: Sparse NC Positivstellensatz [Klep Magron Povh '21]

 $\begin{array}{c|c} f = \sum_{k} f_{k}, f_{k} \text{ depends on } x(I_{k}) \\ f > 0 \text{ on } \{x : g_{j}(x) \ge 0\} \\ \text{chordal graph with cliques } I_{k} \implies \\ \text{ball constraints for each } x(I_{k}) \qquad \\ \end{array}$

$$f = \sum_{k,i} (s_{ki}^* s_{ki} + \sum_{j \in J_k} t_{ji}^* g_j t_{ji})$$

$$s_{ki} \text{ "sees" vars in } I_k$$

$$t_{ii} \text{ "sees" vars from } g_i$$

I₃₃₂₂ Bell inequality (entanglement in quantum information)

 $f = a_1(b_1 + b_2 + b_3) + a_2(b_1 + b_2 - b_3) + a_3(b_1 - b_2) - a_1 - 2b_1 - b_2$

Maximal violation levels \rightarrow **upper bounds** on λ_{\max} of f on $\{a, b : a_i^2 = a_i \quad b_i^2 = b_i \quad a_i b_j = b_j a_i\}$

I₃₃₂₂ Bell inequality (entanglement in quantum information)

 $f = a_1(b_1 + b_2 + b_3) + a_2(b_1 + b_2 - b_3) + a_3(b_1 - b_2) - a_1 - 2b_1 - b_2$

Maximal violation levels \rightarrow **upper bounds** on λ_{\max} of f on $\{a, b : a_i^2 = a_i \quad b_i^2 = b_i \quad a_i b_j = b_j a_i\}$ $\forall I_k \rightarrow \{a_k, b_1, b_2, b_3\}$

I₃₃₂₂ Bell inequality (entanglement in quantum information)

$$f = a_1(b_1 + b_2 + b_3) + a_2(b_1 + b_2 - b_3) + a_3(b_1 - b_2) - a_1 - 2b_1 - b_2$$

Maximal violation levels \rightarrow **upper bounds** on λ_{\max} of f on $\{a, b : a_i^2 = a_i \quad b_i^2 = b_i \quad a_i b_j = b_j a_i\}$ $\forall I_k \rightarrow \{a_k, b_1, b_2, b_3\}$

level	sparse
2	0.2550008

dense [Pál & Vértesi '18] 0.2509397

I₃₃₂₂ Bell inequality (entanglement in quantum information)

$$f = a_1(b_1 + b_2 + b_3) + a_2(b_1 + b_2 - b_3) + a_3(b_1 - b_2) - a_1 - 2b_1 - b_2$$

Maximal violation levels \rightarrow **upper bounds** on λ_{\max} of f on $\{a, b : a_i^2 = a_i \quad b_i^2 = b_i \quad a_i b_j = b_j a_i\}$ $\forall I_k \rightarrow \{a_k, b_1, b_2, b_3\}$

level	sparse	dense [Pál & Vértesi '18]
2	0.2550008	0.2509397
3	0.2511592	0.2508756

I₃₃₂₂ Bell inequality (entanglement in quantum information)

$$f = a_1(b_1 + b_2 + b_3) + a_2(b_1 + b_2 - b_3) + a_3(b_1 - b_2) - a_1 - 2b_1 - b_2$$

Maximal violation levels \rightarrow **upper bounds** on λ_{\max} of f on $\{a, b : a_i^2 = a_i \quad b_i^2 = b_i \quad a_i b_j = b_j a_i\}$ $\forall I_k \rightarrow \{a_k, b_1, b_2, b_3\}$

level	sparse	dense [Pál & Vértesi
2	0.2550008	0.2509397
3	0.2511592	0.2508756
3'		0.25087 <mark>54 (1 day</mark>)

'18]

I₃₃₂₂ Bell inequality (entanglement in quantum information)

$$f = a_1(b_1 + b_2 + b_3) + a_2(b_1 + b_2 - b_3) + a_3(b_1 - b_2) - a_1 - 2b_1 - b_2$$

Maximal violation levels \rightarrow **upper bounds** on λ_{\max} of f on $\{a, b : a_i^2 = a_i \quad b_i^2 = b_i \quad a_i b_j = b_j a_i\}$ $\forall I_k \rightarrow \{a_k, b_1, b_2, b_3\}$

level	sparse	dense [Pál & Vértesi '18
2	0.2550008	0.2509397
3	0.2511592	0.2508756
3'		0.2508754 (1 day)
4	0.2508917	

I₃₃₂₂ Bell inequality (entanglement in quantum information)

$$f = a_1(b_1 + b_2 + b_3) + a_2(b_1 + b_2 - b_3) + a_3(b_1 - b_2) - a_1 - 2b_1 - b_2$$

Maximal violation levels \rightarrow **upper bounds** on λ_{\max} of f on $\{a, b : a_i^2 = a_i \quad b_i^2 = b_i \quad a_i b_j = b_j a_i\}$ $\forall I_k \rightarrow \{a_k, b_1, b_2, b_3\}$

level	sparse	dense [Pál & Vértesi '1
2	0.2550008	0.2509397
3	0.2511592	0.2508756
3'		0.25087 <mark>54 (1 day</mark>)
4	0.2508917	

5 0.25087<mark>63</mark>

8]

I₃₃₂₂ Bell inequality (entanglement in quantum information)

$$f = a_1(b_1 + b_2 + b_3) + a_2(b_1 + b_2 - b_3) + a_3(b_1 - b_2) - a_1 - 2b_1 - b_2$$

Maximal violation levels \rightarrow **upper bounds** on λ_{\max} of f on $\{a, b : a_i^2 = a_i \quad b_i^2 = b_i \quad a_i b_j = b_j a_i\}$ $\forall I_k \rightarrow \{a_k, b_1, b_2, b_3\}$

& Ko

level	sparse	dense [Pál & Vért	esi '18]
2	0.2550008	0.2509397	
3	0.2511592	0.2508756	
3'		0.2508754 (<mark>1 day</mark>))
4	0.2508917		
5	0.25087 <mark>63</mark>		
6	0.2508753977180	(1 hour)	
Performa	NCE	vs	ACCURACY

Exploiting sparsity in polynomial optimization

Application to SOS of bounded degrees

Theorem: sparse BSOS representation [Weisser et al. '18]

If $0 \leq g_j \leq 1$ on **X**, f > 0 on **X** & RIP holds for (I_k) then

$$f = \sum_{k} \left(\sigma_k + \sum_{lpha, eta} c_{k, lpha eta} \prod_{j \in J_k} g_j^{lpha_j} (1 - g_j)^{eta_j} \right) ,$$

with σ_k SOS of degree $\leq 2r$

Application to sparse positive definite forms

Theorem: [Reznick '95] Positivstellensatz

pd form
$$f \implies f = \frac{\sigma}{\|\mathbf{x}\|_2^{2r}}$$
 with σ SOS, $r \in \mathbb{N}$

Application to sparse positive definite forms

Theorem: [Reznick '95] Positivstellensatz

pd form
$$f \implies f = \frac{\sigma}{\|\mathbf{x}\|_2^{2r}}$$
 with σ SOS, $r \in \mathbb{N}$

Sparse $f \sum_k f_k$, with f_k only depends on I_k RUNNING INTERSECTION PROPERTY (RIP)

$$orall k \quad \underbrace{I_k \cap igcup_{j < k}}_{\hat{I}_k} I_j \subseteq I_{s_k} \quad ext{for some } s_k < k$$

Application to sparse positive definite forms

Theorem: [Reznick '95] Positivstellensatz

pd form
$$f \implies f = \frac{\sigma}{\|\mathbf{x}\|_2^{2r}}$$
 with σ SOS, $r \in \mathbb{N}$

Sparse $f \sum_k f_k$, with f_k only depends on I_k RUNNING INTERSECTION PROPERTY (RIP)

Theorem: sparse Reznick [Mai Lasserre Magron '20]

$$\mathsf{RIP} \implies \left| f = \sum_{k} \frac{\sigma_{k}}{H_{k}r} \right| \text{ with } \sigma_{k} \text{ SOS only depends on } I_{k}$$

Uniform H_k involve products $||\mathbf{x}(I)||_2^2$ for $I \in \{I_k, \hat{I}_k, \hat{I}_i : s_i = k\}$

Polynomial matrix inequalities [Zheng & Fantuzzi '20]

Polynomial matrix inequalities [Zheng & Fantuzzi '20]

Region of attraction [Tacchi et al., Schlosser et al. '21]

Polynomial matrix inequalities [Zheng & Fantuzzi '20]

Region of attraction [Tacchi et al., Schlosser et al. '21]

Volume computation [Tacchi et al. '21]

Polynomial matrix inequalities [Zheng & Fantuzzi '20]

Region of attraction [Tacchi et al., Schlosser et al. '21]

Volume computation [Tacchi et al. '21]

Robustness of implicit deep networks [Chen et al. '21]

Sparse SDP

Correlative sparsity

Term sparsity

Ideal sparsity

Tutorial session

Term sparsity via Newton polytope

$$f = 4x_1^4x_2^6 + x_1^2 - x_1x_2^2 + x_2^2$$

spt(f) = {(4,6), (2,0), (1,2), (0,2)}

Newton polytope $\mathscr{B} = \operatorname{conv}(\operatorname{spt}(f))$

$$f = \begin{pmatrix} x_1 & x_2 & x_1x_2 & x_1x_2^2 & x_1^2x_2^3 \end{pmatrix} \underbrace{Q}_{\geq 0} \begin{pmatrix} x_1 \\ x_2 \\ x_1x_2 \\ x_1x_2^2 \\ x_1x_2^2 \\ x_1^2x_2^3 \end{pmatrix}$$

Exploiting sparsity in polynomial optimization

$$f = x_1^2 - 2x_1x_2 + 3x_2^2 - 2x_1^2x_2 + 2x_1^2x_2^2 - 2x_2x_3 + 6x_3^2 + 18x_2^2x_3 - 54x_2x_3^2 + 142x_2^2x_3^2$$
[Reznick '78] $\rightarrow f = (1 \quad x_1 \quad x_2 \quad x_3 \quad x_1x_2 \quad x_2x_3) \underbrace{Q}_{\geqslant 0} \begin{pmatrix} 1 \\ x_1 \\ x_2 \\ x_3 \\ x_1x_2 \\ x_2x_3 \end{pmatrix}$
 $\sim \rightarrow \frac{6 \times 7}{2} = 21$ "unknown" entries in Q

$$f = x_1^2 - 2x_1x_2 + 3x_2^2 - 2x_1^2x_2 + 2x_1^2x_2^2 - 2x_2x_3 + 6x_3^2 + 18x_2^2x_3 - 54x_2x_3^2 + 142x_2^2x_3^2$$
[Reznick '78] $\rightarrow f = (1 \quad x_1 \quad x_2 \quad x_3 \quad x_1x_2 \quad x_2x_3) \bigcirc Q = (1 \quad x_1 \quad x_2 \quad x_3 \quad x_1x_2 \quad x_2x_3) \bigcirc Q = (1 \quad x_1 \quad x_2 \quad x_3 \quad x_1x_2 \quad x_2x_3) \bigcirc Q = (1 \quad x_1 \quad x_2 \quad x_3 \quad x_1x_2 \quad x_2x_3) \bigcirc Q = (1 \quad x_1 \quad x_2 \quad x_3 \quad x_1x_2 \quad x_2x_3) \bigcirc Q = (1 \quad x_1 \quad x_2 \quad x_3 \quad x_1x_2 \quad x_2x_3) \bigcirc Q = (1 \quad x_1 \quad x_2 \quad x_3 \quad x_1x_2 \quad x_2x_3) \bigcirc Q = (1 \quad x_1 \quad x_2 \quad x_3 \quad x_1x_2 \quad x_2x_3) \bigcirc Q = (1 \quad x_1 \quad x_2 \quad x_3 \quad x_1x_2 \quad x_2x_3) \bigcirc Q = (1 \quad x_1 \quad x_2 \quad x_3 \quad x_1x_2 \quad x_2x_3) \bigcirc Q = (1 \quad x_1 \quad x_2 \quad x_3 \quad x_1x_2 \quad x_2x_3) \bigcirc Q = (1 \quad x_1 \quad x_2 \quad x_3 \quad x_1x_2 \quad x_2x_3) \bigcirc Q = (1 \quad x_1 \quad x_2 \quad x_3 \quad x_1x_2 \quad x_2x_3) \bigcirc Q = (1 \quad x_1 \quad x_2 \quad x_3 \quad x_1x_2 \quad x_2x_3) \bigcirc Q = (1 \quad x_1 \quad x_2 \quad x_3 \quad x_1x_2 \quad x_2x_3) \bigcirc Q = (1 \quad x_1 \quad x_2 \quad x_3 \quad x_1x_2 \quad x_2x_3) \bigcirc Q = (1 \quad x_1 \quad x_2 \quad x_3 \quad x_1x_2 \quad x_2x_3) \bigcirc Q = (1 \quad x_1 \quad x_2 \quad x_3 \quad x_1x_2 \quad x_2x_3) \bigcirc Q = (1 \quad x_1 \quad x_2 \quad x_3 \quad x_1x_2 \quad x_2x_3)$

$$f = x_1^2 - 2x_1x_2 + 3x_2^2 - 2x_1^2x_2 + 2x_1^2x_2^2 - 2x_2x_3$$

$$+ 6x_3^2 + 18x_2^2x_3 - 54x_2x_3^2 + 142x_2^2x_3^2$$
[Reznick '78] $\rightarrow f = (1 \quad x_1 \quad x_2 \quad x_3 \quad x_1x_2 \quad x_2x_3) \bigcup_{k \ge 0} \begin{pmatrix} 1 \\ x_1 \\ x_2 \\ x_3 \\ x_1x_2 \\ x_2x_3 \end{pmatrix}$

$$\approx \frac{6 \times 7}{2} = 21 \text{ "unknown" entries in } Q$$

$$\Rightarrow \frac{6 \times 7}{2} = 21 \text{ "unknown" entries in } Q$$

$$\Rightarrow \frac{6 \times 7}{2} = 21 \text{ "unknown" entries in } Q$$

$$\Rightarrow \frac{6 \times 7}{2} = 21 \text{ "unknown" entries in } Q$$

$$\Rightarrow \frac{6 \times 7}{2} = 21 \text{ "unknown" entries in } Q$$

$$\Rightarrow \frac{6 \times 7}{2} = 21 \text{ "unknown" entries in } Q$$

$$\Rightarrow \frac{6 \times 7}{2} = 21 \text{ "unknown" entries in } Q$$

$$\Rightarrow \frac{6 \times 7}{2} = 21 \text{ "unknown" entries in } Q$$

$$\Rightarrow \frac{6 \times 7}{2} = 21 \text{ "unknown" entries in } Q$$

$$\Rightarrow \frac{6 \times 7}{2} = 21 \text{ "unknown" entries in } Q$$

$$\Rightarrow \frac{6 \times 7}{2} = 21 \text{ "unknown" entries in } Q$$

$$\Rightarrow \frac{6 \times 7}{2} = 21 \text{ "unknown" entries in } Q$$

$$\Rightarrow \frac{6 \times 7}{2} = 21 \text{ "unknown" entries in } Q$$

$$\Rightarrow \frac{6 \times 7}{2} = 21 \text{ "unknown" entries in } Q$$

$$\Rightarrow \frac{6 \times 7}{2} = 21 \text{ "unknown" entries in } Q$$

$$\Rightarrow \frac{6 \times 7}{2} = 21 \text{ "unknown" entries in } Q$$

$$\Rightarrow \frac{6 \times 7}{2} = 21 \text{ "unknown" entries in } Q$$

$$\Rightarrow \frac{6 \times 7}{2} = 21 \text{ "unknown" entries in } Q$$

$$\Rightarrow \frac{6 \times 7}{2} = 21 \text{ "unknown" entries in } Q$$

$$\Rightarrow \frac{6 \times 7}{2} = 21 \text{ "unknown" entries in } Q$$

$$\Rightarrow \frac{6 \times 7}{2} = 21 \text{ "unknown" entries in } Q$$

$$\Rightarrow \frac{6 \times 7}{2} = 21 \text{ "unknown" entries in } Q$$

$$\Rightarrow \frac{6 \times 7}{2} = 21 \text{ "unknown" entries in } Q$$

$$\Rightarrow \frac{6 \times 7}{2} = 21 \text{ "unknown" entries in } Q$$

$$\Rightarrow \frac{6 \times 7}{2} = 21 \text{ "unknown" entries in } Q$$

$$\Rightarrow \frac{6 \times 7}{2} = 21 \text{ "unknown" entries in } Q$$

$$\Rightarrow \frac{6 \times 7}{2} = 21 \text{ "unknown" entries in } Q$$

$$\Rightarrow \frac{6 \times 7}{2} = 21 \text{ "unknown" entries in } Q$$

$$\Rightarrow \frac{6 \times 7}{2} = 21 \text{ "unknown" entries in } Q$$

$$\Rightarrow \frac{6 \times 7}{2} = 21 \text{ "unknown" entries in } Q$$

$$\Rightarrow \frac{6 \times 7}{2} = 21 \text{ "unknown" entries in } Q$$

$$\Rightarrow \frac{6 \times 7}{2} = 21 \text{ "unknown" entries in } Q$$

 \rightarrow 6 + 9 = 15 "unknown" entries in $Q_{G'}$

At step r of the hierarchy, tsp graph G has

Nodes V = monomials of degree $\leq r$

At step r of the hierarchy, tsp graph G has

Nodes V = monomials of degree $\leq r$ Edges E with

$$\{\alpha,\beta\}\in E\Leftrightarrow \alpha+\beta\in \operatorname{supp} f\bigcup \operatorname{supp} g_j\bigcup_{|\alpha|\leqslant r}2\alpha$$

At step r of the hierarchy, tsp graph G has

Nodes V = monomials of degree $\leq r$ Edges E with

$$\{\alpha,\beta\}\in E\Leftrightarrow \alpha+\beta\in \operatorname{supp} f\bigcup\operatorname{supp} g_j\bigcup_{|\alpha|\leqslant r}2\alpha$$

Exploiting sparsity in polynomial optimization

Term sparsity: support extension

$\alpha' + \beta' = \alpha + \beta$ and $(\alpha, \beta) \in E \Rightarrow (\alpha', \beta') \in E$

At step r of the hierarchy, tsp graph G has

Nodes V = monomials of degree $\leq r$
Term sparsity: the constrained case

At step r of the hierarchy, tsp graph G has

Nodes V = monomials of degree $\leq r$ Edges E with

$$\{\alpha,\beta\}\in E\Leftrightarrow \alpha+\beta\in \operatorname{supp} f\bigcup \operatorname{supp} g_j\bigcup_{|\alpha|\leqslant r}2\alpha$$

→ support extension

Term sparsity: the constrained case

At step r of the hierarchy, tsp graph G has

Nodes V = monomials of degree $\leq r$ Edges E with

$$\{\alpha,\beta\}\in E\Leftrightarrow \alpha+\beta\in \operatorname{supp} f\bigcup\operatorname{supp} g_j\bigcup_{|\alpha|\leqslant r}2\alpha$$

 \rightsquigarrow support extension \rightsquigarrow chordal extension G'

Term sparsity: the constrained case

At step r of the hierarchy, tsp graph G has

Nodes V = monomials of degree $\leq r$ Edges E with

$$\{\alpha,\beta\}\in E\Leftrightarrow \alpha+\beta\in \operatorname{supp} f\bigcup\operatorname{supp} g_j\bigcup_{|\alpha|\leqslant r}2\alpha$$

 \rightsquigarrow support extension \rightsquigarrow chordal extension G'

By iteratively performing support extension & chordal extension

$$G^{(1)} = G' \subseteq \cdots \subseteq G^{(s)} \subseteq G^{(s+1)} \subseteq \cdots$$

 \bigvee Two-level hierarchy of lower bounds for f_{\min} , indexed by sparse order *s* and relaxation order *r*

Victor Magron

Exploiting sparsity in polynomial optimization

Let G' be a chordal extension of G with maximal cliques (C_i)

 $C_i \mapsto \mathbf{M}_{C_i}(\mathbf{y})$

Let G' be a chordal extension of G with maximal cliques (C_i)

$$C_i \mapsto \mathbf{M}_{C_i}(\mathbf{y})$$

In the moment relaxation,

$$\mathbf{M}_r(\mathbf{y}) \succcurlyeq 0 \longrightarrow \mathbf{M}_{\mathbf{C}_i}(\mathbf{y}) \succcurlyeq 0$$

Let G' be a chordal extension of G with maximal cliques (C_i)

$$C_i \mapsto \mathbf{M}_{C_i}(\mathbf{y})$$

In the moment relaxation,

$$\mathbf{M}_r(\mathbf{y}) \succcurlyeq 0 \longrightarrow \mathbf{M}_{\mathbf{C}_i}(\mathbf{y}) \succcurlyeq 0$$

Similarly for the localizing matrices $\mathbf{M}_{r-r_i}(g_j \mathbf{y})$

Let G' be a chordal extension of G with maximal cliques (C_i)

$$C_i \mapsto \mathbf{M}_{C_i}(\mathbf{y})$$

In the moment relaxation,

$$\mathbf{M}_r(\mathbf{y}) \succcurlyeq 0 \longrightarrow \mathbf{M}_{\mathbf{C}_i}(\mathbf{y}) \succcurlyeq 0$$

Similarly for the localizing matrices $\mathbf{M}_{r-r_j}(g_j \mathbf{y})$

$$\overleftarrow{V}$$
 Each constraint $G_j \rightsquigarrow G_j^{(s)} \rightsquigarrow$ cliques $C_{j,i}^{(s)}$

Victor Magron

Let $C_{j,i}^{(s)}$ be the maximal cliques of $G_j^{(s)}$. For each $s \ge 1$

$$f_{ts}^{r,s} = \inf \sum_{\alpha} f_{\alpha} y_{\alpha}$$

s.t.
$$\mathbf{M}_{C_{0,i}^{(s)}}(\mathbf{y}) \succeq 0$$
$$\mathbf{M}_{C_{j,i}^{(s)}}(g_{j} \mathbf{y}) \succeq 0$$
$$y_{0} = 1$$

V dual yields the TSSOS hierarchy

A two-level hierarchy of lower bounds

Different choices of chordal extensions

Different choices of chordal extensions

Exploiting sparsity in polynomial optimization

Theorem [Lasserre Magron Wang '21]

Fixing a sparse order *s*, the sequence $(f_{ts}^{r,s})_{r \ge r_{min}}$ is monotonically non-decreasing.

Theorem [Lasserre Magron Wang '21]

Fixing a sparse order *s*, the sequence $(f_{ts}^{r,s})_{r \ge r_{min}}$ is monotonically non-decreasing.

 \bigvee Fixing a relaxation order *r*, the sequence $(f_{ts}^{r,s})_{s\geq 1} \uparrow f^r$ in finitely many steps if the maximal chordal extension is used.

Theorem [Lasserre Magron Wang '21]

Fixing a sparse order *s*, the sequence $(f_{ts}^{r,s})_{r \ge r_{min}}$ is monotonically non-decreasing.

Fixing a relaxation order r, the sequence $(f_{ts}^{r,s})_{s\geq 1} \uparrow f^r$ in finitely many steps if the maximal chordal extension is used.

 \dot{V} The block structures converge to the one determined by the sign symmetries if the maximal chordal extension and monomial basis are used.

Theorem [Lasserre Magron Wang '21]

Fixing a sparse order *s*, the sequence $(f_{ts}^{r,s})_{r \ge r_{min}}$ is monotonically non-decreasing.

Fixing a relaxation order r, the sequence $(f_{ts}^{r,s})_{s\geq 1} \uparrow f^r$ in finitely many steps if the maximal chordal extension is used.

 \dot{V} The block structures converge to the one determined by the sign symmetries if the maximal chordal extension and monomial basis are used.

 $f = 1 + x_1^2 x_2^4 + x_1^4 x_2^2 + x_1^4 x_2^4 - x_1 x_2^2 - 3x_1^2 x_2^2$ Newton polytope $\rightsquigarrow \mathscr{B} = (1 \quad x_1 x_2 \quad x_1 x_2^2 \quad x_1^2 x_2 \quad x_1^2 x_2^2)$

Theorem [Lasserre Magron Wang '21]

Fixing a sparse order *s*, the sequence $(f_{ts}^{r,s})_{r \ge r_{min}}$ is monotonically non-decreasing.

Fixing a relaxation order r, the sequence $(f_{ts}^{r,s})_{s\geq 1} \uparrow f^r$ in finitely many steps if the maximal chordal extension is used.

 $\dot{\vec{v}}$ The block structures converge to the one determined by the sign symmetries if the maximal chordal extension and monomial basis are used.

 $f = 1 + x_1^2 x_2^4 + x_1^4 x_2^2 + x_1^4 x_2^4 - x_1 x_2^2 - 3x_1^2 x_2^2$ Newton polytope $\rightsquigarrow \mathscr{B} = (1 \quad x_1 x_2 \quad x_1 x_2^2 \quad x_1^2 x_2 \quad x_1^2 x_2^2)$

 $x_2 \mapsto -x_2$ Sign-symmetries blocks $(1 \quad x_1 x_2^2)$ TSSOS blocks $(1 \quad x_1 x_2^2)$

ks
$$(1 \quad x_1 x_2^2 \quad x_1^2 x_2^2) \quad (x_1 x_2 \quad x_1^2 x_2) (1 \quad x_1 x_2^2 \quad x_1^2 x_2^2) \quad (x_1 x_2) \quad (x_1^2 x_2)$$

Exploiting sparsity in polynomial optimization

Comparison with (S)DSOS

Let *f* be a nonnegative polynomial of degree 2*d f* is SOS \Leftrightarrow *f* = **v**^{*T*}**Qv** with **Q** \succeq 0 \rightsquigarrow semidefinite program where **v** contains 1, *x*₁,..., *x*_n, *x*₁²,..., *x*_n^{*d*}

Comparison with (S)DSOS

Let *f* be a nonnegative polynomial of degree 2d*f* is SOS \Leftrightarrow *f* = $\mathbf{v}^T \mathbf{Q} \mathbf{v}$ with $\mathbf{Q} \succeq 0 \rightsquigarrow$ semidefinite program where \mathbf{v} contains 1, $x_1, \ldots, x_n, x_1^2, \ldots, x_n^d$

To reduce the number of "unknown" entries in Q, one can force: [Ahmadi & Majumdar '14]

- **1** Q diagonally dominant: $Q_{ii} \ge \sum_{j \neq i} Q_{ij} \rightsquigarrow$ linear program
- 2 Q \sim to a diag. dominant matrix \rightsquigarrow second-order program

Comparison with (S)DSOS

Let *f* be a nonnegative polynomial of degree 2d*f* is SOS \Leftrightarrow *f* = $\mathbf{v}^T \mathbf{Q} \mathbf{v}$ with $\mathbf{Q} \succeq 0 \rightsquigarrow$ semidefinite program where \mathbf{v} contains 1, $x_1, \ldots, x_n, x_1^2, \ldots, x_n^d$

To reduce the number of "unknown" entries in Q, one can force: [Ahmadi & Majumdar '14]

1 Q diagonally dominant: $Q_{ii} \ge \sum_{j \neq i} Q_{ij} \rightsquigarrow$ linear program

2 Q \sim to a diag. dominant matrix \rightsquigarrow second-order program

Theorem [Lasserre Magron Wang '21]

The first TSSOS relaxation is always more accurate than the SDSOS relaxation

Partition the variables w.r.t. the maximal cliques of the csp graph

- Partition the variables w.r.t. the maximal cliques of the csp graph
- For each subsystem involving variables from one maximal clique, apply TSSOS

- Partition the variables w.r.t. the maximal cliques of the csp graph
- 2 For each subsystem involving variables from one maximal clique, apply TSSOS
- \forall a two-level CS-TSSOS hierarchy of lower bounds for f_{\min}

$$f = 1 + \sum_{i=1}^{6} x_i^4 + x_1 x_2 x_3 + x_3 x_4 x_5 + x_3 x_4 x_6 + x_3 x_5 x_6 + x_4 x_5 x_6$$

csp graph

$$f = 1 + \sum_{i=1}^{6} x_i^4 + x_1 x_2 x_3 + x_3 x_4 x_5 + x_3 x_4 x_6 + x_3 x_5 x_6 + x_4 x_5 x_6$$

tsp graph for the first clique

Exploiting sparsity in polynomial optimization

 $f = 1 + \sum_{i=1}^{6} x_i^4 + x_1 x_2 x_3 + x_3 x_4 x_5 + x_3 x_4 x_6 + x_3 x_5 x_6 + x_4 x_5 x_6$

tsp graph for the second clique

$$f = 1 + \sum_{i=1}^{6} x_i^4 + x_1 x_2 x_3 + x_3 x_4 x_5 + x_3 x_4 x_6 + x_3 x_5 x_6 + x_4 x_5 x_6$$

tsp graph without correlative sparsity

Application to optimal power-flow

Victor Magron

Exploiting sparsity in polynomial optimization

Application to optimal power-flow

mb = the maximal size of blocks m = number of constraints

n	т	CS (<i>r</i> = 2)			CS+TS ($r = 2, s = 1$)		
		mb	time (s)	gap	mb	time (s)	gap
114	315	66	5.59	0.39%	31	2.01	0.73%
348	1809	253	—	—	34	278	0.05%
766	3322	153	585	0.68%	44	33.9	0.77%
1112	4613	496	—	—	31	410	0.25%
4356	18257	378	—	—	27	934	0.51%
6698	29283	1326	—	—	76	1886	0.47%

Ground-state energy \Leftrightarrow minimal eigenvalue of an Hamiltonian

$$H = \sum_{\langle i,j \rangle} \left(x_i \, x_j + y_i \, y_j + z_i \, z_j \right)$$

Ground-state energy \Leftrightarrow minimal eigenvalue of an Hamiltonian

$$H = \sum_{\langle i,j \rangle} \left(x_i \, x_j + y_i \, y_j + z_i \, z_j \right)$$

First neighbors interactions : $H = \sum_{i=1}^{n} x_i x_{i+1} + y_i y_{i+1} + z_i z_{i+1}$

Ground-state energy \Leftrightarrow minimal eigenvalue of an Hamiltonian

$$H = \sum_{\langle i,j \rangle} \left(x_i \, x_j + y_i \, y_j + z_i \, z_j \right)$$

First neighbors interactions : $H = \sum_{i=1}^{n} x_i x_{i+1} + y_i y_{i+1} + z_i z_{i+1}$

periodic boundary conditions \Rightarrow n+1=1

Ground-state energy \Leftrightarrow minimal eigenvalue of an Hamiltonian

$$H = \sum_{\langle i,j \rangle} \left(x_i \, x_j + y_i \, y_j + \, z_i \, z_j \right)$$

First neighbors interactions : $H = \sum_{i=1}^{n} x_i x_{i+1} + y_i y_{i+1} + z_i z_{i+1}$

periodic boundary conditions \Rightarrow n+1=1

Existing \pm efficient techniques: quantum Monte Carlo & variational algorithms \Rightarrow **upper bounds** on minimal energy

Dense r = 4, $n = 10^2 \Rightarrow 10^{11}$ variables (solvers handle $\simeq 10^4$)

Dense r = 4, $n = 10^2 \Rightarrow 10^{11}$ variables (solvers handle $\simeq 10^4$) **Sparse** solved within 1 hour on PFCALCUL at LAAS

Victor Magron

Exploiting sparsity in polynomial optimization

CLASSICAL WORLD

$$\psi^*(A_1 \otimes B_1 + A_1 \otimes B_2 + A_2 \otimes B_1 - A_2 \otimes B_2)\psi \leqslant 2$$

for separable states $\psi \in \mathbb{C}^k \otimes \mathbb{C}^k$ and matrices A_j , B_j satisfying $A_j^* = A_j$, $A_j^2 = I$, $B_j^* = B_j$, $B_j^2 = I$
CLASSICAL WORLD

$$\psi^*(A_1 \otimes B_1 + A_1 \otimes B_2 + A_2 \otimes B_1 - A_2 \otimes B_2)\psi \leqslant 2$$

for separable states $\psi \in \mathbb{C}^k \otimes \mathbb{C}^k$ and matrices A_j , B_j satisfying $A_j^* = A_j$, $A_j^2 = I$, $B_j^* = B_j$, $B_j^2 = I$

TSIRELSON'S BOUND: $2 \rightarrow 2\sqrt{2}$ for maximally entangled states $\psi^*(A \otimes B)\psi = \operatorname{tr}(AB)$

CLASSICAL WORLD

$$\psi^*(A_1 \otimes B_1 + A_1 \otimes B_2 + A_2 \otimes B_1 - A_2 \otimes B_2)\psi \leqslant 2$$

for separable states $\psi \in \mathbb{C}^k \otimes \mathbb{C}^k$ and matrices A_j , B_j satisfying $A_j^* = A_j$, $A_j^2 = I$, $B_j^* = B_j$, $B_j^2 = I$

TSIRELSON'S BOUND: $2 \rightarrow 2\sqrt{2}$ for maximally entangled states $\psi^*(A \otimes B)\psi = \operatorname{tr}(AB)$

$$2\sqrt{2} = \operatorname{tr}_{\max}\{a_1b_1 + a_1b_2 + a_2b_1 - a_2b_2 : a_j^2 = b_j^2 = 1\}$$

COVARIANCES OF QUANTUM CORRELATIONS

$$\operatorname{cov}_{\psi}(A,B) = \psi^*(A \otimes B)\psi - \psi^*(A \otimes I)\psi \cdot \psi^*(I \otimes B)\psi$$

COVARIANCES OF QUANTUM CORRELATIONS

$$\operatorname{cov}_{\psi}(A,B) = \psi^*(A \otimes B)\psi - \psi^*(A \otimes I)\psi \cdot \psi^*(I \otimes B)\psi$$

$$\operatorname{cov}_{\psi}(A_1, B_1) + \operatorname{cov}_{\psi}(A_1, B_2) + \operatorname{cov}_{\psi}(A_1, B_3) + \operatorname{cov}_{\psi}(A_2, B_1) + \operatorname{cov}_{\psi}(A_2, B_2) - \operatorname{cov}_{\psi}(A_2, B_3) \leqslant \frac{9}{2} + \operatorname{cov}_{\psi}(A_3, B_1) - \operatorname{cov}_{\psi}(A_3, B_2)$$

for separable states but ...

COVARIANCES OF QUANTUM CORRELATIONS

$$\operatorname{cov}_{\psi}(A,B) = \psi^*(A \otimes B)\psi - \psi^*(A \otimes I)\psi \cdot \psi^*(I \otimes B)\psi$$

$$\operatorname{cov}_{\psi}(A_1, B_1) + \operatorname{cov}_{\psi}(A_1, B_2) + \operatorname{cov}_{\psi}(A_1, B_3) + \operatorname{cov}_{\psi}(A_2, B_1) + \operatorname{cov}_{\psi}(A_2, B_2) - \operatorname{cov}_{\psi}(A_2, B_3) \leqslant \frac{9}{2} + \operatorname{cov}_{\psi}(A_3, B_1) - \operatorname{cov}_{\psi}(A_3, B_2)$$

for separable states but ... 5 for one maximally entangled state

COVARIANCES OF QUANTUM CORRELATIONS

$$\operatorname{cov}_{\psi}(A,B) = \psi^*(A \otimes B)\psi - \psi^*(A \otimes I)\psi \cdot \psi^*(I \otimes B)\psi$$

$$\operatorname{cov}_{\psi}(A_1, B_1) + \operatorname{cov}_{\psi}(A_1, B_2) + \operatorname{cov}_{\psi}(A_1, B_3) + \operatorname{cov}_{\psi}(A_2, B_1) + \operatorname{cov}_{\psi}(A_2, B_2) - \operatorname{cov}_{\psi}(A_2, B_3) \leqslant \frac{9}{2} + \operatorname{cov}_{\psi}(A_3, B_1) - \operatorname{cov}_{\psi}(A_3, B_2)$$

for separable states but ... 5 for one maximally entangled state

V 2nd dense SDP relaxation of the corresponding trace problem outputs 5

COVARIANCES OF QUANTUM CORRELATIONS

$$\operatorname{cov}_{\psi}(A,B) = \psi^*(A \otimes B)\psi - \psi^*(A \otimes I)\psi \cdot \psi^*(I \otimes B)\psi$$

$$\operatorname{cov}_{\psi}(A_1, B_1) + \operatorname{cov}_{\psi}(A_1, B_2) + \operatorname{cov}_{\psi}(A_1, B_3) + \operatorname{cov}_{\psi}(A_2, B_1) + \operatorname{cov}_{\psi}(A_2, B_2) - \operatorname{cov}_{\psi}(A_2, B_3) \leqslant \frac{9}{2} + \operatorname{cov}_{\psi}(A_3, B_1) - \operatorname{cov}_{\psi}(A_3, B_2)$$

for separable states but ... 5 for one maximally entangled state

 \overrightarrow{V} 2nd dense SDP relaxation of the corresponding trace problem outputs $5 = \max$ value for **all** maximal entangled states

COVARIANCES OF QUANTUM CORRELATIONS

$$\operatorname{cov}_{\psi}(A,B) = \psi^*(A \otimes B)\psi - \psi^*(A \otimes I)\psi \cdot \psi^*(I \otimes B)\psi$$

$$\operatorname{cov}_{\psi}(A_1, B_1) + \operatorname{cov}_{\psi}(A_1, B_2) + \operatorname{cov}_{\psi}(A_1, B_3) + \operatorname{cov}_{\psi}(A_2, B_1) + \operatorname{cov}_{\psi}(A_2, B_2) - \operatorname{cov}_{\psi}(A_2, B_3) \leqslant \frac{9}{2} + \operatorname{cov}_{\psi}(A_3, B_1) - \operatorname{cov}_{\psi}(A_3, B_2)$$

for separable states but ... 5 for one maximally entangled state

 \forall 2nd dense SDP relaxation of the corresponding trace problem outputs $5 = \max$ value for **all** maximal entangled states

V 2nd sparse SDP gives also 5 ... 10 times faster

Lyapunov function

$$f = \sum_{i=1}^{N} a_i (x_i^2 + x_i^4) - \sum_{i,k=1}^{N} b_{ik} x_i^2 x_k^2 \quad a_i \in [1,2] \quad b_{ik} \in [\frac{0.5}{N}, \frac{1.5}{N}]$$

 $\sim (\binom{N+2}{2})(\binom{N+2}{2}+1)/2$ "unknown" entries in Q=231 for N=5

Lyapunov function

$$f = \sum_{i=1}^{N} a_i (x_i^2 + x_i^4) - \sum_{i,k=1}^{N} b_{ik} x_i^2 x_k^2 \quad a_i \in [1,2] \quad b_{ik} \in [\frac{0.5}{N}, \frac{1.5}{N}]$$

 $\sim (\binom{N+2}{2})(\binom{N+2}{2}+1)/2$ "unknown" entries in Q = 231 for N = 5

Lyapunov function

$$f = \sum_{i=1}^{N} a_i (x_i^2 + x_i^4) - \sum_{i,k=1}^{N} b_{ik} x_i^2 x_k^2 \quad a_i \in [1,2] \quad b_{ik} \in [\frac{0.5}{N}, \frac{1.5}{N}]$$

 $\sim (\binom{N+2}{2})(\binom{N+2}{2}+1)/2$ "unknown" entries in Q=231 for N=5

 $\rightsquigarrow (N+1)^2$ "unknown" entries in $Q_G = 36$ for N = 5

Proof that $f \ge 0$ for N = 80 in ~ 10 seconds!

Victor Magron

Exploiting sparsity in polynomial optimization

Duffing oscillator Hamiltonian
$$V = \sum_{i=1}^{N} a_i (\frac{x_i^2}{2} - \frac{x_i^4}{4}) + \frac{1}{8} \sum_{i,k=1}^{N} b_{ik} (x_i - x_k)^4$$

On which domain $V > 0$? $f = V - \sum_{i=1}^{N} \underbrace{\lambda_i}_{>0} x_i^2 (g - x_i^2) \ge 0$
 $\implies V > 0$ when $x_i^2 < g$

 $\sim \frac{N(N+1)}{2} + 6\binom{N}{2} + N$ "unknown" entries in $Q_G = 80$ for N = 5

Proof that $f \ge 0$ for N = 50 in ~ 1 second!

Given $\mathcal{A} = \{A_1, \dots, A_m\} \subseteq \mathbb{R}^{n \times n}$, the JSR is

$$\rho(\mathcal{A}) := \lim_{k \to \infty} \max_{\sigma \in \{1, \dots, m\}^k} ||A_{\sigma_1} A_{\sigma_2} \cdots A_{\sigma_k}||^{\frac{1}{k}}$$

Given $\mathcal{A} = \{A_1, \dots, A_m\} \subseteq \mathbb{R}^{n \times n}$, the JSR is

$$\rho(\mathcal{A}) := \lim_{k \to \infty} \max_{\sigma \in \{1, \dots, m\}^k} ||A_{\sigma_1} A_{\sigma_2} \cdots A_{\sigma_k}||^{\frac{1}{k}}$$

Tons of applications:

- stability of switched linear systems
- continuity of wavelet functions
- trackability of graphs

• • • •

Given $\mathcal{A} = \{A_1, \dots, A_m\} \subseteq \mathbb{R}^{n \times n}$, the JSR is

$$\rho(\mathcal{A}) := \lim_{k \to \infty} \max_{\sigma \in \{1, \dots, m\}^k} ||A_{\sigma_1} A_{\sigma_2} \cdots A_{\sigma_k}||^{\frac{1}{k}}$$

Tons of applications:

- stability of switched linear systems
- continuity of wavelet functions
- trackability of graphs

• • • •

... NP-hard to compute/approximate

Theorem [Parrilo & Jadbabaie '08]

Given $\mathcal{A} = \{A_1, \dots, A_m\} \subseteq \mathbb{R}^{n \times n}$, if a positive definite form f of degree 2r satisfies

 $f(\boldsymbol{A}_i \mathbf{x}) \leqslant \gamma^{2r} f(\mathbf{x}) \quad \forall i, \mathbf{x}$

Then $\rho(\mathcal{A}) \leqslant \gamma$

Theorem [Parrilo & Jadbabaie '08]

Given $\mathcal{A} = \{A_1, \dots, A_m\} \subseteq \mathbb{R}^{n \times n}$, if a positive definite form f of degree 2r satisfies

 $f(\mathbf{A}_i \mathbf{x}) \leqslant \gamma^{2r} f(\mathbf{x}) \quad \forall i, \mathbf{x}$

Then $\rho(\mathcal{A}) \leqslant \gamma$

$$\begin{split} \tilde{\mathbf{V}} \rho(\mathcal{A}) \leqslant \rho^{r}(\mathcal{A}) &= \inf_{f \in \mathbb{R}[\mathbf{x}]_{2r}, \gamma} \gamma \\ \text{s.t.} \begin{cases} f(\mathbf{x}) - ||\mathbf{x}||_{2}^{2r} \text{ SOS} \\ \gamma^{2r} f(\mathbf{x}) - f(A_{i}\mathbf{x}) \text{ SOS} \end{cases} \end{split}$$

Exploiting sparsity in polynomial optimization

Theorem [Parrilo & Jadbabaie '08]

Given $\mathcal{A} = \{A_1, \dots, A_m\} \subseteq \mathbb{R}^{n \times n}$, if a positive definite form f of degree 2r satisfies

 $f(\mathbf{A}_i \mathbf{x}) \leqslant \gamma^{2r} f(\mathbf{x}) \quad \forall i, \mathbf{x}$

Then $\rho(\mathcal{A}) \leqslant \gamma$

$$\begin{split} \tilde{\mathbf{V}} & \rho(\mathcal{A}) \leqslant \rho^{r}(\mathcal{A}) = \inf_{f \in \mathbb{R}[\mathbf{x}]_{2r}, \gamma} \gamma \\ \text{s.t.} \begin{cases} f(\mathbf{x}) - ||\mathbf{x}||_{2}^{2r} \text{ SOS} \\ \gamma^{2r} f(\mathbf{x}) - f(A_{i}\mathbf{x}) \text{ SOS} \end{cases} \end{split}$$

Bisection on γ + SDP

Victor Magron

Exploiting sparsity in polynomial optimization

 \bigvee At fixed r, replace f by a "term sparse" f

 \bigvee At fixed r, replace f by a "term sparse" f

 $f_0 = \sum_{j=1}^n c_j x_j^{2r}$ with support $\mathscr{A}^{(0)}$

 \bigvee At fixed r, replace f by a "term sparse" f

$$f_0 = \sum_{j=1}^{n} c_j x_j^{2^r} \text{ with support } \mathscr{A}^{(0)}$$

Recursively, $f_{s-1} = \sum_{\alpha \in \mathscr{A}^{(s-1)}} c_{\alpha} \mathbf{x}^{\alpha}$ and

$$\mathscr{A}^{(s)} = \mathscr{A}^{(s-1)} \cup \bigcup_{i} \operatorname{supp}(f_{s-1}(A_{i}\mathbf{x})) \quad \mathscr{A}^{(s)}_{i} = \mathscr{A}^{(s)} \cup \operatorname{supp}(f_{s}(A_{i}\mathbf{x}))$$

 \bigvee At fixed r, replace f by a "term sparse" f

$$f_{0} = \sum_{j=1}^{n} c_{j} x_{j}^{2r} \text{ with support } \mathscr{A}^{(0)}$$

Recursively, $f_{s-1} = \sum_{\alpha \in \mathscr{A}^{(s-1)}} c_{\alpha} \mathbf{x}^{\alpha}$ and

$$\mathscr{A}^{(s)} = \mathscr{A}^{(s-1)} \cup \bigcup_{i} \operatorname{supp}(f_{s-1}(A_{i}\mathbf{x})) \quad \mathscr{A}_{i}^{(s)} = \mathscr{A}^{(s)} \cup \operatorname{supp}(f_{s}(A_{i}\mathbf{x}))$$

Theorem: Sparse JSR [Maggio Magron Wang '21]

$$\begin{split} \overleftarrow{\boldsymbol{\varphi}}^{r} \rho(\boldsymbol{\mathcal{A}}) \leqslant \rho^{r}(\boldsymbol{\mathcal{A}}) \leqslant \rho^{r,s}(\boldsymbol{\mathcal{A}}) &= \inf_{f \in \mathbb{R}[\mathscr{A}^{(s)}], \gamma} \gamma \\ \text{s.t.} \begin{cases} f(\mathbf{x}) - ||\mathbf{x}||_{2}^{2r} \operatorname{SOS}(\mathscr{A}^{(s)}) \\ \gamma^{2r} f(\mathbf{x}) - f(\boldsymbol{A}_{i}\mathbf{x}) \operatorname{SOS}(\mathscr{A}_{i}^{(s)}) \end{cases} \end{split}$$

Exploiting sparsity in polynomial optimization

Closed-loop system evolves according to either a completed or a missed computation (A_H or A_M): $\mathcal{A} = \{A_H A_M{}^i \mid i < m\}$ Closed-loop system evolves according to either a completed or a missed computation (A_H or A_M): $\mathcal{A} = \{A_H A_M{}^i \mid i < m\}$

System asymptotically stable $\Leftrightarrow \rho(\mathcal{A}) < 1$

Closed-loop system evolves according to either a completed or a missed computation (A_H or A_M): $\mathcal{A} = \{A_H A_M{}^i \mid i < m\}$

System asymptotically stable $\Leftrightarrow \rho(\mathcal{A}) < 1$

(un)stability test with 10 matrices & n = 25 or 2 matrices & n = 100 intractable with the dense JSR

Closed-loop system evolves according to either a completed or a missed computation (A_H or A_M): $\mathcal{A} = \{A_H A_M{}^i \mid i < m\}$

System asymptotically stable $\Leftrightarrow \rho(\mathcal{A}) < 1$

(un)stability test with 10 matrices & n = 25 or 2 matrices & n = 100 intractable with the dense JSR V takes less than 10 seconds with the Sparse JSR! Sparse SDP

Correlative sparsity

Term sparsity

Ideal sparsity

Tutorial session

$$f_{\min} = \inf\{f(x_1, x_2) : x_1 x_2 = 0\}$$

$$f_{\min} = \inf\{f(x_1, x_2) : x_1 x_2 = 0\}$$

 $= \sup\{\lambda : f(x_1, x_2) - \lambda \ge 0 \text{ whenever } x_1x_2 = 0\}$

$$f_{\min} = \inf\{f(x_1, x_2) : x_1 x_2 = 0\}$$

$$= \sup\{\lambda : f(x_1, x_2) - \lambda \ge 0 \text{ whenever } x_1 x_2 = 0\}$$

$$= \sup\{\lambda : f(x_1, 0) - \lambda \ge 0, \quad f(0, x_2) - \lambda \ge 0\}$$

$$f_{\min} = \inf\{f(x_1, x_2) : x_1 x_2 = 0\}$$

 $= \sup\{\lambda : f(x_1, x_2) - \lambda \ge 0 \text{ whenever } x_1x_2 = 0\}$

$$= \sup\{\lambda : f(x_1, 0) - \lambda \ge 0, \quad f(0, x_2) - \lambda \ge 0\}$$

 \forall replace $f(x_1, 0) - \lambda \ge 0$ by $f(x_1, 0) - \lambda = \sigma_1(x_1)$ with SOS σ_1

$$f_{\min} = \inf\{f(x_1, x_2) : x_1 x_2 = 0\}$$

 $= \sup\{\lambda : f(x_1, x_2) - \lambda \ge 0 \text{ whenever } x_1x_2 = 0\}$

$$= \sup\{\lambda : f(x_1, 0) - \lambda \ge 0, \quad f(0, x_2) - \lambda \ge 0\}$$

 \forall replace $f(x_1, 0) - \lambda \ge 0$ by $f(x_1, 0) - \lambda = \sigma_1(x_1)$ with SOS σ_1

General ideal constraints $x_i x_j = 0 \quad \forall (i, j) \in \overline{E}$

$$f_{\min} = \inf\{f(x_1, x_2) : x_1 x_2 = 0\}$$

 $= \sup\{\lambda : f(x_1, x_2) - \lambda \ge 0 \text{ whenever } x_1x_2 = 0\}$

$$= \sup\{\lambda : f(x_1, 0) - \lambda \ge 0, \quad f(0, x_2) - \lambda \ge 0\}$$

For replace $f(x_1, 0) - \lambda \ge 0$ by $f(x_1, 0) - \lambda = \sigma_1(x_1)$ with SOS σ_1

General ideal constraints $x_i x_j = 0 \quad \forall (i, j) \in \overline{E}$ \rightsquigarrow max. cliques of the graph with vertices $\{1, \ldots, n\}$ & edges *E*

$$f_{\min} = \inf\{f(x_1, x_2) : x_1 x_2 = 0\}$$

 $= \sup\{\lambda : f(x_1, x_2) - \lambda \ge 0 \text{ whenever } x_1x_2 = 0\}$

$$= \sup\{\lambda : f(x_1, 0) - \lambda \ge 0, \quad f(0, x_2) - \lambda \ge 0\}$$

 \forall replace $f(x_1, 0) - \lambda \ge 0$ by $f(x_1, 0) - \lambda = \sigma_1(x_1)$ with SOS σ_1

General ideal constraints $x_i x_j = 0 \quad \forall (i, j) \in \overline{E}$ \rightsquigarrow max. cliques of the graph with vertices $\{1, \ldots, n\}$ & edges *E*

Theorem [Korda-Laurent-Magron-Steenkamp '22]

Ideal-sparse hierarchies provide better bounds than the dense ones

ACCURACY

Victor Magron
Given a symmetric nonnegative matrix A, find the smallest r_+ s.t.

$$A = \sum_{\ell=1}^{r_+} a_\ell a_\ell^T \qquad ext{ for } a_\ell \geqslant 0$$

 r_+ is called the completely positive rank

Given a symmetric nonnegative matrix A, find the smallest r_+ s.t.

$$A = \sum_{\ell=1}^{r_+} a_\ell a_\ell^T \qquad \text{ for } a_\ell \geqslant 0$$

 r_+ is called the completely positive rank **X** hard to compute

Given a symmetric nonnegative matrix A, find the smallest r_+ s.t.

$$A = \sum_{\ell=1}^{r_+} a_\ell a_\ell^T \qquad \text{ for } a_\ell \geqslant 0$$

 r_+ is called the completely positive rank

X hard to compute

✓ Relax/convexify with a linear program over measures

$$r_{+} \ge \inf_{\mu} \{ \int_{K_{A}} 1d\mu : \int_{K_{A}} x_{i}x_{j}d\mu = A_{ij} \ (i, j \in V) \ , \quad \mathsf{supp}(\mu) \subseteq K_{A} \}$$

Given a symmetric nonnegative matrix A, find the smallest r_+ s.t.

$$A = \sum_{\ell=1}^{r_+} a_\ell a_\ell^T \qquad \text{ for } a_\ell \geqslant 0$$

 r_+ is called the completely positive rank

X hard to compute

✓ Relax/convexify with a linear program over measures

$$r_+ \ge \inf_{\mu} \{ \int_{K_A} 1d\mu : \int_{K_A} x_i x_j d\mu = A_{ij} \ (i, j \in V) \,, \quad \mathsf{supp}(\mu) \subseteq K_A \}$$

$$\begin{split} K_A &= \{ \mathbf{x} : \sqrt{A_{ii}} x_i - x_i \ge 0, \quad A_{ij} - x_i x_j \ge 0 \ (i,j) \in E_A , \\ x_i x_j &= 0 \ (i,j) \in \overline{E}_A , \quad A - \mathbf{x} \mathbf{x}^T \succcurlyeq 0 \} \end{split}$$

Victor Magron

Exploiting sparsity in polynomial optimization

Random instances, order 2

Random instances, order 2

Size and nonzero density of the matrix

Random instances, order 2

Exploiting sparsity in polynomial optimization

SPARSITY EXPLOITING CONVERGING HIERARCHIES to minimize polynomials, eigenvalue/trace, joint spectral radii

SPARSITY EXPLOITING CONVERGING HIERARCHIES to minimize polynomials, eigenvalue/trace, joint spectral radii

FAST IMPLEMENTATION IN JULIA: TSSOS, NCTSSOS, SparseJSR

SPARSITY EXPLOITING CONVERGING HIERARCHIES to minimize polynomials, eigenvalue/trace, joint spectral radii

FAST IMPLEMENTATION IN JULIA: TSSOS, NCTSSOS, SparseJSR

 \checkmark Combine correlative & term sparsity for problems with $n = 10^3$

SPARSITY EXPLOITING CONVERGING HIERARCHIES to minimize polynomials, eigenvalue/trace, joint spectral radii

FAST IMPLEMENTATION IN JULIA: TSSOS, NCTSSOS, SparseJSR

 \overleftarrow{V} Combine correlative & term sparsity for problems with $n = 10^3$

Term sparsity: Smart solution extraction?

Term sparsity: Smart solution extraction?

Ideal sparsity: tensor (nonnegative, symmetric) ranks?

Term sparsity: Smart solution extraction?

Ideal sparsity: tensor (nonnegative, symmetric) ranks?

Numerical conditioning of sparse SDP?

Term sparsity: Smart solution extraction?

Ideal sparsity: tensor (nonnegative, symmetric) ranks?

Numerical conditioning of sparse SDP?

Combination with symmetries?

Term sparsity: Smart solution extraction?

Ideal sparsity: tensor (nonnegative, symmetric) ranks?

Numerical conditioning of sparse SDP?

Combination with symmetries?

Y Tons of applications!

https://homepages.laas.fr/vmagron

GITHUB:TSSOS

- Gavril. Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and maximum independent set of a chordal graph. SIAM Comp., 1972
- Griewank & Toint. Numerical experiments with partially separable optimization problems. Numerical analysis, 1984
- Agler, Helton, McCullough & Rodman. Positive semidefinite matrices with a given sparsity pattern. Linear algebra & its applications, 1988
- Blair & Peyton. An introduction to chordal graphs and clique trees. Graph theory & sparse matrix computation, 1993
- Vandenberghe & Andersen. Chordal graphs and semidefinite optimization. Foundations & Trends in Optim., 2015

- Lasserre. Convergent SDP-relaxations in polynomial optimization with sparsity. SIAM Optim., 2006
- Waki, Kim, Kojima & Muramatsu. Sums of squares and semidefinite program relaxations for polynomial optimization problems with structured sparsity. SIAM Optim., 2006
- Magron, Constantinides, & Donaldson. Certified Roundoff Error Bounds Using Semidefinite Programming. Trans. Math. Softw., 2017
- Magron. Interval Enclosures of Upper Bounds of Roundoff Errors Using Semidefinite Programming. Trans. Math. Softw., 2018
- Josz & Molzahn. Lasserre hierarchy for large scale polynomial optimization in real and complex variables. SIAM Optim., 2018
- Weisser, Lasserre & Toh. Sparse-BSOS: a bounded degree SOS hierarchy for large scale polynomial optimization with sparsity. Math. Program., 2018
 - Chen, Lasserre, Magron & Pauwels. A sublevel moment-sos hierarchy for polynomial optimization, arxiv:2101.05167

- Chen, Lasserre, Magron & Pauwels. Semialgebraic Optimization for Bounding Lipschitz Constants of ReLU Networks. NIPS, 2020
- Chen, Lasserre, Magron & Pauwels. Semialgebraic Representation of Monotone Deep Equilibrium Models and Applications to Certification. arxiv:2106.01453
- Mai, Lasserre & Magron. A sparse version of Reznick's Positivstellensatz. arxiv:2002.05101
 - Tacchi, Weisser, Lasserre & Henrion. Exploiting sparsity for semi-algebraic set volume computation. Foundations of Comp. Math., 2021
- - Tacchi, Cardozo, Henrion & Lasserre. Approximating regions of attraction of a sparse polynomial differential system. IFAC, 2020
- Schlosser & Korda. Sparse moment-sum-of-squares relaxations for nonlinear dynamical systems with guaranteed convergence. arxiv:2012.05572

Zheng & Fantuzzi. Sum-of-squares chordal decomposition of polynomial matrix inequalities. arxiv:2007.11410

- Klep, Magron & Povh. Sparse Noncommutative Polynomial Optimization. Math Prog. A. arxiv:1909.00569 NCSOStools
- Reznick, Extremal PSD forms with few terms, Duke mathematical journal, 1978
- Wang, Magron & Lasserre. TSSOS: A Moment-SOS hierarchy that exploits term sparsity. SIAM Optim., 2021

Wang, Magron & Lasserre. Chordal-TSSOS: a moment-SOS hierarchy that exploits term sparsity with chordal extension. SIAM Optim., 2021

- Wang, Magron, Lasserre & Mai. CS-TSSOS: Correlative and term sparsity for large-scale polynomial optimization. arxiv:2005.02828

Magron & Wang. TSSOS: a Julia library to exploit sparsity for large-scale polynomial optimization, MEGA, 2021

- - Parrilo & Jadbabaie. Approximation of the joint spectral radius using sum of squares. Linear Algebra & its Applications, 2008

Wang, Maggio & Magron. SparseJSR: A fast algorithm to compute joint spectral radius via sparse sos decompositions. ACC 2021

- Vreman, Pazzaglia, Wang, Magron & Maggio. Stability of control systems under extended weakly-hard constraints. arxiv:2101.11312
- Wang & Magron. Exploiting Sparsity in Complex Polynomial Optimization. arxiv:2103.12444
- Wang & Magron. Exploiting term sparsity in Noncommutative Polynomial Optimization. Computational Optimization & Applications, arxiv:2010.06956

Navascués, Pironio & Acín. A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations. New Journal of Physics, 2008

Klep, Magron & Volčič. Optimization over trace polynomials. Annales Henri Poincaré, 2021

Sparse SDP

Correlative sparsity

Term sparsity

Ideal sparsity

Tutorial session

Motzkin $f = x_1^4 x_2^2 + x_1^2 x_2^4 - 3x_1^2 x_2^2 + 1$

- **1** Compute the Newton polytope of *f*
- **2** Show that f is not SOS

Chordal or not chordal?

Exploiting sparsity in polynomial optimization

Chordal extension

Support extension

How many SDP variables in the dense and sparse relaxation at order r = 1, 2, 3?

Write the first (correlative) sparse moment relaxation of

$$\inf_{\mathbf{x}} \quad x_1 x_2 + x_1 x_3 + x_1 x_4 \\
\text{s.t.} \quad x_1^2 + x_2^2 \leqslant 1 \\
\quad x_1^2 + x_3^2 \leqslant 1 \\
\quad x_1^2 + x_4^2 \leqslant 1$$

Measure LP preserves sparsity

 $f = f_1 + f_2$, f_k depends on I_k , **X** compact & each g_j depends either on I_1 or I_2 .

Measure LP preserves sparsity

 $f = f_1 + f_2$, f_k depends on I_k , **X** compact & each g_j depends either on I_1 or I_2 . Prove that

$$f_{\min} = \inf_{\mu \in \mathcal{M}_{+}(\mathbf{X})} \int_{\mathbf{X}} f \, d\mu = f_{\text{CS}} = \inf_{\substack{\mu_{1}, \mu_{2} \\ \mu_{1}, \mu_{2} \\ \text{s.t.}} \quad \int_{\mathbf{X}_{1}} f_{1} \, d\mu_{1} + \int_{\mathbf{X}_{2}} f_{2} \, d\mu_{2}$$
$$\text{s.t.} \quad \pi_{12}\mu_{1} = \pi_{21}\mu_{2}$$
$$\mu_{1} \in \mathcal{M}_{+}(\mathbf{X}_{1}), \quad \mu_{2} \in \mathcal{M}_{+}(\mathbf{X}_{2})$$

Measure LP preserves sparsity

 $f = f_1 + f_2$, f_k depends on I_k , **X** compact & each g_j depends either on I_1 or I_2 . Prove that

$$f_{\min} = \inf_{\mu \in \mathcal{M}_{+}(\mathbf{X})} \int_{\mathbf{X}} f \, d\mu = f_{\text{CS}} = \inf_{\substack{\mu_{1}, \mu_{2} \\ \text{s.t.}}} \int_{\mathbf{X}_{1}} f_{1} \, d\mu_{1} + \int_{\mathbf{X}_{2}} f_{2} \, d\mu_{2}$$
$$\text{s.t.} \quad \pi_{12}\mu_{1} = \pi_{21}\mu_{2}$$
$$\mu_{1} \in \mathcal{M}_{+}(\mathbf{X}_{1}), \quad \mu_{2} \in \mathcal{M}_{+}(\mathbf{X}_{2})$$

 \overleftrightarrow{V} (μ_k) feasible for $f_{CS} \implies \exists \mu \in \mathcal{M}_+(\mathbf{X})$ with marginal μ_k on \mathbf{X}_k $\mathcal{M}_+(\mathbf{X})$ π_1 π_2 $\mathcal{M}_{+}(\mathbf{X}_{2})$ $\mathcal{M}_+(\mathbf{X}_1)$ π_{21} π_{12} $\mathcal{M}_{+}(\mathbf{X}_{12})$

Exploiting sparsity in polynomial optimization

(1/2)

$$f = \sum_{i=1}^{N} (x_i^2 + x_i^4) - \sum_{i,k=1}^{N} x_i^2 x_k^2$$

How many entries in the dense & sparse SOS/moment matrices?

(1/2)

$$f = \sum_{i=1}^{N} (x_i^2 + x_i^4) - \sum_{i,k=1}^{N} x_i^2 x_k^2$$

How many entries in the dense & sparse SOS/moment matrices?

$$f = \sum_{i=1}^{N} \left(\frac{x_i^2}{2} - \frac{x_i^4}{4}\right) + \sum_{i,k=1}^{N} (x_i - x_k)^4$$

How many entries in the dense & sparse SOS/moment matrices?

(2/2)

$$f = \sum_{i=1}^{N} \left(\frac{x_i^2}{2} - \frac{x_i^4}{4}\right) + \sum_{i,k=1}^{N} (x_i - x_k)^4$$

How many entries in the dense & sparse SOS/moment matrices?

Exploiting sparsity in polynomial optimization

$$f_1 = x_1^4 + (x_1x_2 - 1)^2$$
 $f_2 = x_2^2x_3^2 + (x_3^2 - 1)^2$ $f = f_1 + f_2$

$$f_1 = x_1^4 + (x_1x_2 - 1)^2$$
 $f_2 = x_2^2x_3^2 + (x_3^2 - 1)^2$ $f = f_1 + f_2$

Compute the dense relaxation f^2 Compare with the correlative sparse relaxation f_{cs}^2 Compare with the term sparse relaxation $f_{ts}^{2,s}$ for s = 1, 2, ... $f_1 = x_1^4 + (x_1x_2 - 1)^2$ $f_2 = x_2^2x_3^2 + (x_3^2 - 1)^2$ $f = f_1 + f_2$

Compute the dense relaxation f^2 Compare with the correlative sparse relaxation f_{CS}^2 Compare with the term sparse relaxation $f_{LS}^{2,s}$ for s = 1, 2, ...

Y Install and run TSSOS:

] add https://github.com/wangjie212/TSSOS using TSSOS, DynamicPolynomials

$$f_1 = x_1^4 + (x_1x_2 - 1)^2$$
 $f_2 = x_2^2x_3^2 + (x_3^2 - 1)^2$ $f = f_1 + f_2$

Compute the dense relaxation f^2 Compare with the correlative sparse relaxation f_{cs}^2 Compare with the term sparse relaxation $f_{ts}^{2,s}$ for s = 1, 2, ...

```
    Install and run TSSOS:
    add https://github.com/wangjie212/TSSOS
    using TSSOS, DynamicPolynomials
    @polyvar x1 x2 x3; x=[x1;x2;x3];
    f1 = x1^4+(x1*x2-1)^2; f2 = x2^2*x3^2+(x3^2-1)^2;
    f = f1+f2
```

$$f_1 = x_1^4 + (x_1x_2 - 1)^2$$
 $f_2 = x_2^2x_3^2 + (x_3^2 - 1)^2$ $f = f_1 + f_2$

Compute the dense relaxation f^2 Compare with the correlative sparse relaxation f_{cs}^2 Compare with the term sparse relaxation $f_{ts}^{2,s}$ for s = 1, 2, ...

```
    Install and run TSSOS:
    add https://github.com/wangjie212/TSSOS
    using TSSOS, DynamicPolynomials
    @polyvar x1 x2 x3; x=[x1;x2;x3];
    f1 = x1^4+(x1*x2-1)^2; f2 = x2^2*x3^2+(x3^2-1)^2;
    f = f1+f2
    dense2,sol,data=cs_tssos_first([f], x, 2,
    CS=false,TS=false);
```

$$f = f_1 + f_2$$
 $\mathbb{B}_{nc} = \{x : 1 - x_1^2 - x_2^2 - x_3^2 \succeq 0, 1 - x_2^2 - x_3^2 - x_4^2 \succeq 0\}$

(2/2)

 $f = f_1 + f_2 \qquad \mathbb{B}_{\mathsf{nc}} = \{ x : 1 - x_1^2 - x_2^2 - x_3^2 \succcurlyeq 0, 1 - x_2^2 - x_3^2 - x_4^2 \succcurlyeq 0 \}$

Compute $\lambda_{\min}(f)$ on \mathbb{B}_{nc} with 2nd dense relaxation

(2/2)

 $f = f_1 + f_2 \qquad \mathbb{B}_{\mathsf{nc}} = \{ x : 1 - x_1^2 - x_2^2 - x_3^2 \succcurlyeq 0, 1 - x_2^2 - x_3^2 - x_4^2 \succcurlyeq 0 \}$

Compute $\lambda_{\min}(f)$ on \mathbb{B}_{nc} with 2nd dense relaxation

```
cs_nctssos_first([f;ncball],x,2,CS=false, TS=false,
obj="eigen");
```

 $f = f_1 + f_2 \qquad \mathbb{B}_{\mathsf{nc}} = \{ x : 1 - x_1^2 - x_2^2 - x_3^2 \succcurlyeq 0, 1 - x_2^2 - x_3^2 - x_4^2 \succcurlyeq 0 \}$

Compute $\lambda_{\min}(f)$ on \mathbb{B}_{nc} with 2nd dense relaxation

```
cs_nctssos_first([f;ncball],x,2,CS=false, TS=false,
obj="eigen");
```

Compare with the correlative and term sparse relaxations