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Motivation

I Rational maps are used intensively for the generation and
manipulation of 2D and 3D shapes

I For instance, free-form deformations have applications to
computer-aided geometric design [Hoffmann, 1989], shape
optimization [Manzoni et al., 2012], character animation
[Chadwick et al., 1989], ...



State of the art: constructive 2D birational maps

I [Sederberg and Zheng, 2015] derived an effective method to
construct birational maps ffi : (P1

R)2 99K P2
R of degree 1× 1

I Birationality criteria for maps of degree 1× n are given in
[Sederberg et al., 2016]

I Recently, methods for the construction of birational maps
ffi : P2

R 99K P2
R with quadratic entries have been studied in

[Wang et al., 2021]
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3D trilinear rational maps

ffi : P1
R × P1

R × P1
R 99K P3

R

(s0 : s1)× (t0 : t1)× (u0 : u1) 7→ (f0 : f1 : f2 : f3) ;

where

f := (f0 ; f1 ; f2 ; f3)T =
X

0≤i ;j;k≤1

wi jk Pi jk Bi(s0; s1)Bj(t0; t1)Bk(u0; u1)

and

wi jk ∈ R≥0 ; Pi jk = (1; xi jk ; yi jk ; zi jk)T

B0(x0; x1) = x0 − x1 ; B1(x0; x1) = x1

I In general, ffi is 6-to-1.

Goal: Given Pi jk ’s, compute wi jk ’s so ffi is birational
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Parametric and boundary surfaces

I Given (–0 : –1) ∈ P1
R the (closure of the) restriction of ffi to

(s0 : s1) = (–0 : –1) is an s-surface

I The t- and u- surfaces are respectively defined

I These parametric surfaces are either planes or doubly ruled
quadrics

I Definition: The type of ffi is (a; b; c) ∈ Z3 where a (resp:
b; c) is the degree of the s- (resp: t-, u-) surfaces

I The s-surfaces (resp: t-, u-) determined by the facets of the
unit cube are the boundary surfaces Σ0;Σ1 (resp: Tj , Yk)
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Example: a rational map of type (1; 1; 2)



Birational maps of type (1; 1; 1)

I Let R = R[s0; s1]⊗R R[t0; t1]⊗R R[u0; u1]

Theorem: Let ffi be dominant. TFAE:
1. ffi is birational of type (1; 1; 1)

2. The minimal graded free resolution of I = (f0; f1; f2; f3) is

0 −→

R(−2;−1;−1)
⊕

R(−1;−2;−1)
⊕

R(−1;−1;−2)

−→ R(−1;−1;−1)4 −→ I −→ 0

3. f has syzygies of degree 1× 0× 0, 0× 1× 0, and 0× 0× 1



Geometric constraints: (1,1,1)

I Let X = (x0; x1; x2; x3)T be homogeneous variables in P3
R

Property A.1: For each i = 0; 1, Σi is the plane defined by
〈ffi ;X〉 = 0 for some ffi = (ff0i ; ff1i ; ff2i ; ff3i) ∈ R4

Property A.2: For each j = 0; 1, Tj is the plane defined by
〈fi j ;X〉 = 0 for some fi j = (fi0j ; fi1j ; fi2j ; fi3j) ∈ R4

Property A.3: For each k = 0; 1, Yk is the plane defined by
〈flk ;X〉 = 0 for some flk = (fl0k ; fl1k ; fl2k ; fl3k) ∈ R4

I If ffi is birational of type (1; 1; 1) Properties A.1, A.2 and
A.3 are satisfied
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Linear syzygies 1: algebra

Lemma: Assume Property A.1 and ffi dominant. Then, f has a
syzygy of degree 1× 0× 0 iff the matrix„
w100 〈ff0;P100〉 w110 〈ff0;P110〉 w101 〈ff0;P101〉 w111 〈ff0;P111〉
w000 〈ff1;P000〉 w010 〈ff1;P010〉 w001 〈ff1;P001〉 w011 〈ff1;P011〉

«
has rank one. In particular, we find ¸ ∈ R such that

−w1jk 〈ff0;P1jk〉 = ¸w0jk 〈ff1;P0jk〉

for each 0 ≤ j; k ≤ 1, and any syzygy of degree 1× 0× 0 of f is
proportional to

ff = ff(s0; s1) = B0(s0; s1) ff0 + ¸ B1(s0; s1) ff1



Linear syzygies 1: geometry

I Let 0̂ = 1 and 1̂ = 0

I The pullback of Σî is defined by the vanishing of

〈ff î ; f〉 = Bi(s0; s1)
X

0≤j;k≤1

wi jk 〈ff î ;Pi jk〉Bj(t0; t1)Bk(u0; u1)

I f admits a syzygy of degree 1× 0× 0 iff for each i = 0; 1 ffi
contracts to Σ0 ∩Σ1 the surface in (P1

R)3 defined byX
0≤j;k≤1

wi jk 〈ff î ;Pi jk〉Bj(t0; t1)Bk(u0; u1) = 0
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I The pullback of Σî is defined by the vanishing of
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Linear syzygies 2 and 3

I Similarly, f has syzygies of degree 0× 1× 0 and 0× 0× 1 iff„
w010 〈fi 0;P010〉 w110 〈fi 0;P110〉 w011 〈fi 0;P011〉 w111 〈fi 0;P111〉
w000 〈fi 1;P000〉 w100 〈fi 1;P100〉 w001 〈fi 1;P001〉 w101 〈fi 1;P101〉

«
„
w001 〈fl0;P001〉 w101 〈fl0;P101〉 w011 〈fl0;P011〉 w111 〈fl0;P111〉
w000 〈fl1;P000〉 w100 〈fl1;P100〉 w010 〈fl1;P010〉 w110 〈fl1;P110〉

«
have rank one

I The same observations hold after the obvious modifications
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Configuration A

Configuration A: The Pijk’s define a quadrilaterally-faced
hexahedron.

Equivalently, Properties A.1, A.2, and A.3 are
satisfied and moreover

〈ffi ;Pî jk〉 > 0 ; 〈fi j ;Pi ĵk〉 > 0 ; 〈flk ;Pi j k̂〉 > 0

for each 0 ≤ i ; j; k ≤ 1
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Example: Configuration A



Simultaneous drop of rank

I For each 0 ≤ i ; j; k ≤ 1 define

∆i jk =

˛̨̨̨
˛̨ff1i ff2i ff3i
fi1j fi2j fi3j
fl1k fl2k fl3k

˛̨̨̨
˛̨

I We can write

∆0jk 〈ff1;P0jk〉 = ff1 ∧ ff0 ∧ fi j ∧ flk = −∆1jk 〈ff0;P1jk〉

I Thus, the first rank condition is equivalent to

rank

 
w100 ∆000 w110 ∆010 w101 ∆001 w111 ∆011

w000 ∆100 w010 ∆110 w001 ∆101 w011 ∆111

!
= 1
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Simultaneous drop of rank

I Similarly, the other two conditions can be rewritten as

rank

 
w010 ∆000 w110 ∆100 w011 ∆001 w111 ∆101

w000 ∆010 w100 ∆110 w001 ∆011 w101 ∆111

!
= 1

rank

 
w001 ∆000 w101 ∆100 w011 ∆010 w111 ∆110

w000 ∆001 w100 ∆101 w010 ∆011 w110 ∆111

!
= 1



Constructive 3D birational maps of type (1; 1; 1)

Theorem: Assume Configuration A:

I Choose freely positive values for w000, w100, w010, w001

I Set

¸ =
w100

∆100

∆000

w000

; ˛ =
w010

∆010

∆000

w000

; ‚ =
w001

∆001

∆000

w000

I Then, ffi is birational of type (1; 1; 1) iff there is a non-zero
constant ! ∈ R such that for each 0 ≤ i ; j; k ≤ 1

wi jk = ! ¸i ˛j ‚k ∆i jk



Constructive 3D birational maps of type (1; 1; 1)

I Moreover, the inverse rational map is given by

s1
s0

=
〈ff0;X〉

〈ff0;X〉 − ¸ 〈ff1;X〉
;
t1
t0

=
〈fi 0;X〉

〈fi 0;X〉 − ˛ 〈fi 1;X〉
;

u1
u0

=
〈fl0;X〉

〈fl0;X〉 − ‚ 〈fl1;X〉

I Only the constants ¸; ˛; ‚ depend on the wi jk ’s!
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Birational deformation of a Menger sponge



Birational maps of type (1; 1; 2)

Theorem: Let ffi be dominant. TFAE:
1. ffi is birational of type (1; 1; 2)

2. The minimal graded free resolution of I = (f0; f1; f2; f3) is

0→ R(−2;−2;−2) −→

R(−2;−1;−1)
⊕

R(−1;−2;−1)
⊕

R(−2;−1;−2)
⊕

R(−1;−2;−2)

−→ R(−1;−1;−1)4 −→ I −→ 0

3. f has syzygies of degree 1× 0× 0, 0× 1× 0, but not
0× 0× 1



Geometric constraints: (1,1,2)

Property B.3: For each k = 0; 1, Yk is a doubly ruled quadric
surface

Property C: Assume Properties A.1 and A.2. The planes Σ0,
Σ1, T0, T1 intersect at a point V (in P3

R)

Lemma: If ffi is birational of type (1; 1; 2) Property C is satisfied
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Example: Property B.3 + Property C



Weight calibration: (1,1,2)

I Let B ∈ T0 ∩ T1 be a point distinct from V

I For each 0 ≤ i ; k ≤ 1 we define

flik = Pi0k ∧ Pi1k ∧ B = (fl0ik ; fl1ik ; fl2ik ; fl3ik)

I Additionally, for each 0 ≤ i ; j; k ≤ 1 we set

∆i jk =

˛̨̨̨
˛̨ ff1i ff2i ff3i
fi1j fi2j fi3j
fl1ik fl2ik fl3ik

˛̨̨̨
˛̨ ; –i = 〈ffi ;B〉 ; �ik = 〈flik ;V〉
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I For each 0 ≤ i ; k ≤ 1 we define
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Constructive 3D birational maps of type (1; 1; 2)

Theorem: Assume Properties B.3 + C:
I Choose freely positive values for w000, w100, w010, w001

I Set

¸ =
w100 �10

∆100

∆000

w000 �00
; ˛ =

w010

∆010

∆000

w000

; ‚ =
w001 �01

∆001

∆000

w000 �00

I Then, ffi is birational of type (1; 1; 2) iff there is a non-zero
constant ! ∈ R such that for each 0 ≤ i ; j; k ≤ 1

wi jk = ! ¸i ˛j ‚k
∆i jk

�ik



Constructive 3D birational maps of type (1; 1; 2)

Theorem:
I Moreover, the inverse rational map is given by

s1
s0

=
〈ff0;X〉

〈ff0;X〉 − ¸ 〈ff1;X〉
;
t1
t0

=
〈fi 0;X〉

〈fi 0;X〉 − ˛ 〈fi 1;X〉
;

u1
u0

=

˛̨̨̨
˛̨̨̨ 1

›1
〈ff1;X〉

1

›0
〈ff0;X〉

1

�10
〈fl10;X〉

1

�00
〈fl00;X〉

˛̨̨̨
˛̨̨̨

˛̨̨̨
˛̨̨̨ 1

–1
〈ff1;X〉

1

–0
〈ff0;X〉

1

�10
〈fl10;X〉

1

�00
〈fl00;X〉

˛̨̨̨
˛̨̨̨− ‚

˛̨̨̨
˛̨̨̨ 1

–1
〈ff1;X〉

1

–0
〈ff0;X〉

1

�11
〈fl11;X〉

1

‹01
〈fl01;X〉

˛̨̨̨
˛̨̨̨



Constructive 3D birational maps of larger type

I If ffi has type (1; 2; 2), the resolution of I = (f0; f1; f2; f3) is

0→ R2 −→ R5 −→ R4 −→ I −→ 0

I We know similar results to construct these birational maps
I However, the geometry of the Pi jk ’s is more complicated

I If ffi has type (2; 2; 2), the resolution of I = (f0; f1; f2; f3) is

0→ R3 −→ R6 −→ R4 −→ I −→ 0

I We still do not know how to construct these maps . . .
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