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Motivation

» Rational maps are used intensively for the generation and
manipulation of 2D and 3D shapes

» For instance, free-form deformations have applications to
computer-aided geometric design [Hoffmann, 1989], shape
optimization [Manzoni et al., 2012], character animation
[Chadwick et al., 1989], ...
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State of the art: constructive 2D birational maps

» [Sederberg and Zheng, 2015] derived an effective method to
construct birational maps ¢ : (P%)? --» P4 of degree 1 x 1

» Birationality criteria for maps of degree 1 x n are given in
[Sederberg et al., 2016]

» Recently, methods for the construction of birational maps
¢ : P2 --» P2 with quadratic entries have been studied in
[Wang et al., 2021]



3D trilinear rational maps

¢:PLxPLxPL -——» P
(so:s1)) X (to:t)) X (wp:y) — (h:h:Hh:B),
where

f=(h, A, 6, fa)T = Z Wijk Pijk Bi(so, s1) Bj(to, t1) Bk (uo, u1)

0<i,j,k<1
and

Pou, o P11

;
wiik € Rso, Pijk = (1, Xijk, Yijk Zijk)

Bo(xo, x1) = %o — x1, Bi(x0,x1) = x
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¢:PLxPLxPL -——» P
(so:s1)) X (to:t)) X (wp:y) — (h:h:Hh:B),

where

f=(fh, i, 6, fa)T = Z wijk Pijk Bi(so, s1) Bj(to, t1) Bi(uo, uz)
0<i j k<1

and P011. o P11

Poor

T o
wiik € R>o , Pijk = (1, Xijk, Yijk, Zijk) ’ — Pi
|

Bo(xo, x1) = %o — x1, Bi(x0,x1) = x

» In general, ¢ is 6-to-1. Poso

Goal: Given Pjj’s, compute w;jx's so ¢ is birational
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Parametric and boundary surfaces

» Given (Ao : A1) € P% the (closure of the) restriction of ¢ to
(so:s1) = (Mo : A1) is an s-surface

» The t- and u- surfaces are respectively defined

» These parametric surfaces are either planes or doubly ruled
quadrics

» Definition: The type of ¢ is (a, b, ¢) € Z3 where a (resp.
b, ¢) is the degree of the s- (resp. t-, u-) surfaces

» The s-surfaces (resp. t-, u-) determined by the facets of the
unit cube are the boundary surfaces Xy, X (resp. T}, Y)



Example: a rational map of type (1,1, 2)




Birational maps of type (1,1,1)

> Let R = R[So, 51] ®R R[tg, tl] ®]R R[Uo, U1]

Theorem: Let ¢ be dominant. TFAE:
1. ¢ is birational of type (1,1, 1)
2. The minimal graded free resolution of I = (fy, f;, f, f3) is

R(~2,—1,-1)
@
0— R(-1,-2,-1) = R(-1,-1,-1)* = I —0
®
R(~1,-1,-2)

3. f has syzygies of degree 1 x0x0,0x1x0,and 0 x0x1
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Geometric constraints: (1,1,1)

» Let X = (xg, X1, X2, X3) be homogeneous variables in P3
g R

Property A.1: For each i =0, 1, X; is the plane defined by
(o;,X) = 0 for some a; = (00;, 01;, 027, 03;) € R?

Property A.2: For each j = 0,1, T; is the plane defined by
(1;,X) = 0 for some T; = (70;, T1j, T2, T3;) € R*

Property A.3: For each k =0, 1, Y, is the plane defined by
<‘Uk, X> = 0 for some Vi = (UOk: Uik, U2k, 'U3k) € R4

> If ¢ is birational of type (1,1,1) Properties A.1, A.2 and
A.3 are satisfied



Linear syzygies 1: algebra

Lemma: Assume Property A.1 and ¢ dominant. Then, f has a
syzygy of degree 1 x 0 x 0 iff the matrix

W100 <0'o, I3100) w110 <0'0, I:"11o> Wio1 <0'o, P101> Wi11 (0'0, I3111)
Wooo (01, Pooo) Wo1o (01, Poto) Woo1 (01, Poo1) wo11 (01, Po11)

has rank one. In particular, we find o € R such that
— Wijk <0'ov Pljk> = Q Wojk <0'1, POjk>

for each 0 < j, k <1, and any syzygy of degree 1 x 0 x 0 of f is
proportional to

o =0(sy,51) = Bo(so,51) 0+ Bi(so,51) o1
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> letO=1and1=0

» The pullback of X: is defined by the vanishing of

(0 F) = Bi(so,51) > wiji (07, Piji) Bj(to, t1) Bi(uo, tn)

0<j,k<1



Linear syzygies 1. geometry

> letO=1and1=0

» The pullback of X: is defined by the vanishing of

(o f) i(s0,51) Z Wijk (07, Pijk) Bj(to, t1) Bk(uo, u1)

0<j,k<1

» f admits a syzygy of degree 1 x 0 x 0 iff for each i = 0,1 ¢
contracts to Xy N X; the surface in (PL)* defined by

Z Wijk <0',¢, Pijk> Bj(to, tl) Bk(UO, Ul) =0

0<j k<1



Linear syzygies 2 and 3

» Similarly, f has syzygies of degree 0 x 1 x 0 and 0 x 0 x 1 iff

<W010 (‘To, P010> Wi1o0 <‘To, P110> Wo11 (‘To, Po11> Wi11 <‘To, I:’111>
Wooo <‘7'1, P000> W100 <‘T1, P1oo> Woo1 (‘7'1, P001> Wio1 <‘1'1, P101>

<W001 <‘U0, I:’oo1> Wi101 <‘Uo, P101> Wo11 <‘on P011> Wi11 ('Uo, I:’111>
Wooo <'U1, P000> W100 <‘U1, P1oo> Wo10 <‘Ul, P01o> Wi11o0 (’U1, P110>

have rank one



Linear syzygies 2 and 3

» Similarly, f has syzygies of degree 0 x 1 x 0 and 0 x 0 x 1 iff
<W010 (‘To, P010> w110 <‘To, P110> Wo11 (‘To, Po11> Wii11 <‘To, P111>)

Wooo <‘7'1, P000> W100 <‘T1, P1oo> Woo1 (‘7'1, P001> Wio1 <‘1'1, P101>

Woo1 <‘U0, I:’oo1> Wi101 <‘Uo, P101> Wo11 <‘on P011> Wi11 ('Uo, I:’111>
Wooo <'U1, P000> W100 <‘U1, P1oo> Wo10 <‘Ul, P01o> Wi11o0 (’U1, P110>

have rank one

» The same observations hold after the obvious modifications
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Configuration A: The Pjy’s define a quadrilaterally-faced
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Configuration A

Configuration A: The Pjy’s define a quadrilaterally-faced
hexahedron. Equivalently, Properties A.1, A.2, and A.3 are
satisfied and moreover

<0',', Pfjk> >0 , <‘TJ', Pifk> >0 , <‘Uk, PijIA<> >0

foreach 0 <i,j, k<1



Example: Configuration A




Simultaneous drop of rank
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Simultaneous drop of rank

» For each 0 </, j, k <1 define

O1; 02;i 03j
Ajjk = |T1j Ty T3
Uik Vi Uzk

» We can write

Dojk (01, Poj) =01 Naog ATj AN v = —Aqji (00, P1ji)

» Thus, the first rank condition is equivalent to

K <W100 Aooo w110 Doto Wio1 Door Wina A011)
ran

Wooo D100 Wo10 D110 Woo1 D101 Woi1 Dis



Simultaneous drop of rank

» Similarly, the other two conditions can be rewritten as

rank

rank

A

Wooo Ao1o

Woo1 Dooo

Wooo Aoo1

Wii1o A100

wigo D110

w101 A1oo

wigo D101

Wo11 A001

Woo1 Do11

Wo11 Do1o

Wo10 Do11

Wii11 A101

Wio01 A1

wi11 D110

w110 A111



Constructive 3D birational maps of type (1,1, 1)

Theorem: Assume Configuration A:

» Choose freely positive values for Woo0, W100, Wo10. Woo1
> Set

T AN A Woo1 Dooo

— , — , ’y —
A100 Wooo Ao10 Wooo Ago1 Wooo

» Then, ¢ is birational of type (1,1, 1) iff there is a non-zero
constant w € R such that for each 0 < /,j,k <1

i R~k
Wik = w o By’ Dy
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Constructive 3D birational maps of type (1,1, 1)

» Moreover, the inverse rational map is given by

51 B <0'0,X> tl . <To,x>
5 (00, X)—al(e,X) "ty (1o, X)—B (T, X) '
up . <'Uo,x>

Up N <‘UQ,X> —’Y<U1,X>

» Only the constants «, B,y depend on the w;j’'s!



Birational deformation of a Menger sponge




Birational maps of type (1,1, 2)

Theorem: Let ¢ be dominant. TFAE:
1. ¢ is birational of type (1,1,2)
2. The minimal graded free resolution of I = (fy, f1, f, f3) is

R(-2,—1,-1)
®
R(-1,-2,-1)
0— R(-2,-2,-2) — ® —R(-1,-1,-1)* - T1—-0
R(-2,—1,-2)
®
R(—1,-2,-2)

3. f has syzygies of degree 1 x 0 x 0, 0 x 1 x 0, but not
O0x0x1
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Geometric constraints: (1,1,2)

Property B.3: For each k = 0,1, Y, is a doubly ruled quadric
surface

Property C: Assume Properties A.1 and A.2. The planes X,
¥,, Ty, T, intersect at a point V (in P3)

Lemma: If ¢ is birational of type (1, 1, 2) Property C is satisfied



Example: Property B.3 + Property C

I3




Weight calibration: (1,1,2)

» Let B € ToN Ty be a point distinct from V
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Weight calibration: (1,1,2)

» Let B € ToN Ty be a point distinct from V
» For each 0 </, k <1 we define

Uik = Piox A Piik A B = (voik, V1ik, V2iks Usik)
» Additionally, for each 0 </, j, k <1 we set

01 02i 03
Njp=|T; T T3|, Xi=(0,B), vik= (v, V)
Viik V2ik Usik



Constructive 3D birational maps of type (1, 1, 2)

Theorem: Assume Properties B.3 + C:
» Choose freely positive values for wogo, Wi0o, Wo10, Woo1
> Set

_ Wioo V10 Agoo g — wo10 Aooo _ Wopo1 Vo1 Agoo
A100  Wooo Yoo Ao10 Wooo Aoor  Wooo Yoo

» Then, ¢ is birational of type (1,1, 2) iff there is a non-zero
constant w € R such that for each 0 < /,j, k<1

C ik D
i k Rijk

Wik =w a' By ——
Vik



Constructive 3D birational maps of type (1, 1, 2)

Theorem:
» Moreover, the inverse rational map is given by

St o, X) b (1 X)
S0 <0'0,X>—O£<0'1,X> , to <To,x>—ﬁ<1’1,x> '

1 1
— X — X
. (o1,X) - (g0, X)
1 1
— X)) — , X
u 0 <U10 ) Voo <'Uoo >
w1 1 1 1
— X - X — X — X
)\1 <0'1, > >\0 <0'0, > )\1 <0.1’ > >\O <0'0, >
1 1 Y11 1
— (v10, X) — (vgo, X) — (v11, X) — (vo1, X)
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Constructive 3D birational maps of larger type

> If ¢ has type (1,2,2), the resolution of I = (fy, f1, f5, f3) is

05 RPSR SR 5T —0

» We know similar results to construct these birational maps

» However, the geometry of the P;j’s is more complicated

> If ¢ has type (2, 2,2), the resolution of I = (fy, f1, f2, f3) is

0 RESR SRV SIS0

» We still do not know how to construct these maps . ..
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