Effective birational deformation of trilinear volumes

Pablo González-Mazón [https://doi.org/10.1090/mcom/3804] [https://hal.inria.fr/hal-03939273]

Centre Inria d'Université Côte d'Azur Journées Nationales de Calcul Formel 2023

9th of March, 2023

Marie Skłodowska-Curie Actions

Motivation

Rational maps are used intensively for the generation and manipulation of 2D and 3D shapes

For instance, free-form deformations have applications to computer-aided geometric design [Hoffmann, 1989], shape optimization [Manzoni et al., 2012], character animation [Chadwick et al., 1989], ... ▶ [Sederberg and Zheng, 2015] derived an effective method to construct birational maps $\phi : (\mathbb{P}^1_{\mathbb{R}})^2 \dashrightarrow \mathbb{P}^2_{\mathbb{R}}$ of degree 1×1

- [Sederberg and Zheng, 2015] derived an effective method to construct birational maps φ : (P¹_R)² --→ P²_R of degree 1 × 1
- Birationality criteria for maps of degree 1 × n are given in [Sederberg et al., 2016]

- ► [Sederberg and Zheng, 2015] derived an effective method to construct birational maps $\phi : (\mathbb{P}^1_{\mathbb{R}})^2 \dashrightarrow \mathbb{P}^2_{\mathbb{R}}$ of degree 1×1
- Birationality criteria for maps of degree 1 × n are given in [Sederberg et al., 2016]
- ► Recently, methods for the construction of birational maps φ : P²_ℝ --→ P²_ℝ with quadratic entries have been studied in [Wang et al., 2021]

3D trilinear rational maps

$$egin{aligned} egin{aligned} \phi &\colon \mathbb{P}^1_{\mathbb{R}} imes \mathbb{P}^1_{\mathbb{R}} imes \mathbb{P}^1_{\mathbb{R}} & ext{--} eta \quad \mathbb{P}^3_{\mathbb{R}} \ (s_0 &\colon s_1) imes (t_0 &\colon t_1) imes (u_0 &\colon u_1) & \mapsto & (f_0 &\colon f_1 &\colon f_2 &\colon f_3) \ , \end{aligned}$$

where

$$\mathbf{f} := (f_0, f_1, f_2, f_3)^T = \sum_{0 \le i, j, k \le 1} w_{ijk} \mathbf{P}_{ijk} B_i(s_0, s_1) B_j(t_0, t_1) B_k(u_0, u_1)$$

and
$$\mathbf{P}_{011} \mathbf{P}_{011} \mathbf{P}_{111}$$

$$egin{aligned} w_{ijk} \in \mathbb{R}_{\geq 0} ext{ , } \mathbf{P}_{ijk} &= (1, x_{ijk}, y_{ijk}, z_{ijk})^T \ B_0(x_0, x_1) &= x_0 - x_1 ext{ , } B_1(x_0, x_1) &= x_1 \end{aligned}$$

3D trilinear rational maps

$$egin{aligned} egin{aligned} \phi &\colon \mathbb{P}^1_{\mathbb{R}} imes \mathbb{P}^1_{\mathbb{R}} imes \mathbb{P}^1_{\mathbb{R}} & ext{--} eta \quad \mathbb{P}^3_{\mathbb{R}} \ (s_0 &\colon s_1) imes (t_0 &\colon t_1) imes (u_0 &\colon u_1) & \mapsto & (f_0 &\colon f_1 &\colon f_2 &\colon f_3) \ , \end{aligned}$$

where

$$\mathbf{f} := (f_0, f_1, f_2, f_3)^T = \sum_{0 \le i, k \le 1} w_{ijk} \mathbf{P}_{ijk} B_i(s_0, s_1) B_j(t_0, t_1) B_k(u_0, u_1)$$

and
$$\mathbf{P}_{011} \longrightarrow \mathbf{P}_{111}$$

P₀₀₁

P₀₀₀

P₁₀₁

P110

✓ P₁₀₀

P₀₁₀

$$egin{aligned} &w_{ijk} \in \mathbb{R}_{\geq 0} ext{ , } \mathbf{P}_{ijk} = (1, x_{ijk}, y_{ijk}, z_{ijk})^T \ &B_0(x_0, x_1) = x_0 - x_1 ext{ , } B_1(x_0, x_1) = x_1 \end{aligned}$$

▶ In general, ϕ is 6-to-1.

3D trilinear rational maps

where

$$\mathbf{f} := (f_0, f_1, f_2, f_3)^T = \sum_{0 \le i, j, k \le 1} w_{ijk} \mathbf{P}_{ijk} B_i(s_0, s_1) B_j(t_0, t_1) B_k(u_0, u_1)$$

and
$$\mathbf{P}_{011} - \mathbf{P}_{111}$$

P₀₀₁

P₀₀₀

P₁₀₁

P110

P₁₀₀

P010

$$egin{aligned} & w_{ijk} \in \mathbb{R}_{\geq 0} ext{ , } \mathbf{P}_{ijk} = (1, x_{ijk}, y_{ijk}, z_{ijk})^T \ & B_0(x_0, x_1) = x_0 - x_1 ext{ , } B_1(x_0, x_1) = x_1 \end{aligned}$$

ln general,
$$\phi$$
 is 6-to-1.

Goal: Given P_{ijk} 's, compute w_{ijk} 's so ϕ is birational

• Given $(\lambda_0 : \lambda_1) \in \mathbb{P}^1_{\mathbb{R}}$ the (closure of the) restriction of ϕ to $(s_0 : s_1) = (\lambda_0 : \lambda_1)$ is an *s*-surface

- Given $(\lambda_0 : \lambda_1) \in \mathbb{P}^1_{\mathbb{R}}$ the (closure of the) restriction of ϕ to $(s_0 : s_1) = (\lambda_0 : \lambda_1)$ is an *s*-surface
- ▶ The *t* and *u* surfaces are respectively defined

- Given $(\lambda_0 : \lambda_1) \in \mathbb{P}^1_{\mathbb{R}}$ the (closure of the) restriction of ϕ to $(s_0 : s_1) = (\lambda_0 : \lambda_1)$ is an *s*-surface
- ▶ The *t* and *u* surfaces are respectively defined
- These parametric surfaces are either planes or doubly ruled quadrics

- Given $(\lambda_0 : \lambda_1) \in \mathbb{P}^1_{\mathbb{R}}$ the (closure of the) restriction of ϕ to $(s_0 : s_1) = (\lambda_0 : \lambda_1)$ is an *s*-surface
- ▶ The *t* and *u* surfaces are respectively defined
- These parametric surfaces are either planes or doubly ruled quadrics
- ▶ **Definition:** The type of ϕ is $(a, b, c) \in \mathbb{Z}^3$ where *a* (resp. *b*, *c*) is the degree of the *s* (resp. *t*-, *u*-) surfaces

- Given $(\lambda_0 : \lambda_1) \in \mathbb{P}^1_{\mathbb{R}}$ the (closure of the) restriction of ϕ to $(s_0 : s_1) = (\lambda_0 : \lambda_1)$ is an *s*-surface
- ▶ The *t* and *u* surfaces are respectively defined
- These parametric surfaces are either planes or doubly ruled quadrics
- ▶ **Definition:** The type of ϕ is $(a, b, c) \in \mathbb{Z}^3$ where *a* (resp. *b*, *c*) is the degree of the *s* (resp. *t*-, *u*-) surfaces
- The s-surfaces (resp. t-, u-) determined by the facets of the unit cube are the boundary surfaces Σ₀, Σ₁ (resp. T_j, Y_k)

Example: a rational map of type (1, 1, 2)

Birational maps of type (1, 1, 1)

$$\blacktriangleright \text{ Let } R = \mathbb{R}[s_0, s_1] \otimes_{\mathbb{R}} \mathbb{R}[t_0, t_1] \otimes_{\mathbb{R}} \mathbb{R}[u_0, u_1]$$

Theorem: Let ϕ be dominant. TFAE:

- 1. ϕ is birational of type (1, 1, 1)
- 2. The minimal graded free resolution of $I = (f_0, f_1, f_2, f_3)$ is

$$egin{aligned} & R(-2,-1,-1) & \oplus & \ 0 & \to & R(-1,-2,-1) & \to & R(-1,-1,-1)^4 & \to I & \to & 0 & \ & \oplus & & \ & R(-1,-1,-2) & & \ \end{aligned}$$

3. **f** has syzygies of degree $1 \times 0 \times 0$, $0 \times 1 \times 0$, and $0 \times 0 \times 1$

• Let $\mathbf{X} = (x_0, x_1, x_2, x_3)^T$ be homogeneous variables in $\mathbb{P}^3_{\mathbb{R}}$

▶ Let $\mathbf{X} = (x_0, x_1, x_2, x_3)^T$ be homogeneous variables in $\mathbb{P}^3_{\mathbb{R}}$

Property A.1: For each $i = 0, 1, \Sigma_i$ is the plane defined by $\langle \boldsymbol{\sigma}_i, \mathbf{X} \rangle = 0$ for some $\boldsymbol{\sigma}_i = (\sigma_{0i}, \sigma_{1i}, \sigma_{2i}, \sigma_{3i}) \in \mathbb{R}^4$

• Let $\mathbf{X} = (x_0, x_1, x_2, x_3)^T$ be homogeneous variables in $\mathbb{P}^3_{\mathbb{R}}$

Property A.1: For each $i = 0, 1, \Sigma_i$ is the plane defined by $\langle \boldsymbol{\sigma}_i, \mathbf{X} \rangle = 0$ for some $\boldsymbol{\sigma}_i = (\sigma_{0i}, \sigma_{1i}, \sigma_{2i}, \sigma_{3i}) \in \mathbb{R}^4$

Property A.2: For each $j = 0, 1, \mathbf{T}_j$ is the plane defined by $\langle \boldsymbol{\tau}_j, \mathbf{X} \rangle = 0$ for some $\boldsymbol{\tau}_j = (\tau_{0j}, \tau_{1j}, \tau_{2j}, \tau_{3j}) \in \mathbb{R}^4$

Property A.3: For each k = 0, 1, \mathbf{Y}_k is the plane defined by $\langle \boldsymbol{v}_k, \mathbf{X} \rangle = 0$ for some $\boldsymbol{v}_k = (v_{0k}, v_{1k}, v_{2k}, v_{3k}) \in \mathbb{R}^4$

• Let $\mathbf{X} = (x_0, x_1, x_2, x_3)^T$ be homogeneous variables in $\mathbb{P}^3_{\mathbb{R}}$

Property A.1: For each $i = 0, 1, \Sigma_i$ is the plane defined by $\langle \boldsymbol{\sigma}_i, \mathbf{X} \rangle = 0$ for some $\boldsymbol{\sigma}_i = (\sigma_{0i}, \sigma_{1i}, \sigma_{2i}, \sigma_{3i}) \in \mathbb{R}^4$

Property A.2: For each $j = 0, 1, \mathbf{T}_j$ is the plane defined by $\langle \boldsymbol{\tau}_j, \mathbf{X} \rangle = 0$ for some $\boldsymbol{\tau}_j = (\tau_{0j}, \tau_{1j}, \tau_{2j}, \tau_{3j}) \in \mathbb{R}^4$

Property A.3: For each k = 0, 1, \mathbf{Y}_k is the plane defined by $\langle \boldsymbol{v}_k, \mathbf{X} \rangle = 0$ for some $\boldsymbol{v}_k = (v_{0k}, v_{1k}, v_{2k}, v_{3k}) \in \mathbb{R}^4$

If φ is birational of type (1, 1, 1) Properties A.1, A.2 and A.3 are satisfied **Lemma:** Assume Property A.1 and ϕ dominant. Then, **f** has a syzygy of degree $1 \times 0 \times 0$ iff the matrix

$$\begin{pmatrix} w_{100} \langle \boldsymbol{\sigma}_0, \boldsymbol{\mathsf{P}}_{100} \rangle & w_{110} \langle \boldsymbol{\sigma}_0, \boldsymbol{\mathsf{P}}_{110} \rangle & w_{101} \langle \boldsymbol{\sigma}_0, \boldsymbol{\mathsf{P}}_{101} \rangle & w_{111} \langle \boldsymbol{\sigma}_0, \boldsymbol{\mathsf{P}}_{111} \rangle \\ w_{000} \langle \boldsymbol{\sigma}_1, \boldsymbol{\mathsf{P}}_{000} \rangle & w_{010} \langle \boldsymbol{\sigma}_1, \boldsymbol{\mathsf{P}}_{010} \rangle & w_{001} \langle \boldsymbol{\sigma}_1, \boldsymbol{\mathsf{P}}_{001} \rangle & w_{011} \langle \boldsymbol{\sigma}_1, \boldsymbol{\mathsf{P}}_{011} \rangle \end{pmatrix}$$

has rank one. In particular, we find $\alpha \in \mathbb{R}$ such that

$$-$$
 w $_{1jk}$ $\langle oldsymbol{\sigma}_{0}, oldsymbol{\mathsf{P}}_{1jk}
angle = lpha$ w $_{0jk}$ $\langle oldsymbol{\sigma}_{1}, oldsymbol{\mathsf{P}}_{0jk}
angle$

for each $0 \le j, k \le 1$, and any syzygy of degree $1 \times 0 \times 0$ of **f** is proportional to

$$oldsymbol{\sigma} = oldsymbol{\sigma}(s_0, s_1) = B_0(s_0, s_1) \; oldsymbol{\sigma}_0 + lpha \; B_1(s_0, s_1) \; oldsymbol{\sigma}_1$$

Linear syzygies 1: geometry

▶ Let
$$\hat{0} = 1$$
 and $\hat{1} = 0$

Linear syzygies 1: geometry

- $\blacktriangleright~$ Let $\hat{0}=1~\text{and}~\hat{1}=0$
- The pullback of $\Sigma_{\hat{i}}$ is defined by the vanishing of

$$\langle \boldsymbol{\sigma}_{\hat{i}}, \mathbf{f}
angle = B_i(s_0, s_1) \sum_{0 \leq j,k \leq 1} w_{ijk} \langle \boldsymbol{\sigma}_{\hat{i}}, \mathbf{P}_{ijk}
angle B_j(t_0, t_1) B_k(u_0, u_1)$$

Linear syzygies 1: geometry

- $\blacktriangleright~$ Let $\hat{0}=1~\text{and}~\hat{1}=0$
- The pullback of $\Sigma_{\hat{i}}$ is defined by the vanishing of

$$\langle \boldsymbol{\sigma}_{\hat{i}}, \mathbf{f}
angle = B_i(s_0, s_1) \sum_{0 \leq j,k \leq 1} w_{ijk} \langle \boldsymbol{\sigma}_{\hat{i}}, \mathbf{P}_{ijk}
angle B_j(t_0, t_1) B_k(u_0, u_1)$$

• **f** admits a syzygy of degree $1 \times 0 \times 0$ iff for each $i = 0, 1 \phi$ contracts to $\Sigma_0 \cap \Sigma_1$ the surface in $(\mathbb{P}^1_{\mathbb{R}})^3$ defined by

$$\sum_{0\leq j,k\leq 1} w_{ijk} \langle \boldsymbol{\sigma}_{\hat{i}}, \mathbf{P}_{ijk} \rangle B_j(t_0, t_1) B_k(u_0, u_1) = 0$$

\blacktriangleright Similarly, ${\bf f}$ has syzygies of degree 0 \times 1 \times 0 and 0 \times 0 \times 1 iff

$$\begin{pmatrix} w_{010} \langle \boldsymbol{\tau}_{0}, \mathbf{P}_{010} \rangle & w_{110} \langle \boldsymbol{\tau}_{0}, \mathbf{P}_{110} \rangle & w_{011} \langle \boldsymbol{\tau}_{0}, \mathbf{P}_{011} \rangle & w_{111} \langle \boldsymbol{\tau}_{0}, \mathbf{P}_{111} \rangle \\ w_{000} \langle \boldsymbol{\tau}_{1}, \mathbf{P}_{000} \rangle & w_{100} \langle \boldsymbol{\tau}_{1}, \mathbf{P}_{100} \rangle & w_{001} \langle \boldsymbol{\tau}_{1}, \mathbf{P}_{001} \rangle & w_{101} \langle \boldsymbol{\tau}_{1}, \mathbf{P}_{101} \rangle \end{pmatrix} \\ \begin{pmatrix} w_{001} \langle \boldsymbol{\upsilon}_{0}, \mathbf{P}_{001} \rangle & w_{101} \langle \boldsymbol{\upsilon}_{0}, \mathbf{P}_{101} \rangle & w_{011} \langle \boldsymbol{\upsilon}_{0}, \mathbf{P}_{011} \rangle & w_{111} \langle \boldsymbol{\upsilon}_{0}, \mathbf{P}_{111} \rangle \\ w_{000} \langle \boldsymbol{\upsilon}_{1}, \mathbf{P}_{000} \rangle & w_{100} \langle \boldsymbol{\upsilon}_{1}, \mathbf{P}_{100} \rangle & w_{010} \langle \boldsymbol{\upsilon}_{1}, \mathbf{P}_{010} \rangle & w_{110} \langle \boldsymbol{\upsilon}_{1}, \mathbf{P}_{110} \rangle \end{pmatrix}$$
have rank one

 \blacktriangleright Similarly, ${\bf f}$ has syzygies of degree 0 \times 1 \times 0 and 0 \times 0 \times 1 iff

$$\begin{pmatrix} w_{010} \langle \boldsymbol{\tau}_{0}, \boldsymbol{P}_{010} \rangle & w_{110} \langle \boldsymbol{\tau}_{0}, \boldsymbol{P}_{110} \rangle & w_{011} \langle \boldsymbol{\tau}_{0}, \boldsymbol{P}_{011} \rangle & w_{111} \langle \boldsymbol{\tau}_{0}, \boldsymbol{P}_{111} \rangle \\ w_{000} \langle \boldsymbol{\tau}_{1}, \boldsymbol{P}_{000} \rangle & w_{100} \langle \boldsymbol{\tau}_{1}, \boldsymbol{P}_{100} \rangle & w_{001} \langle \boldsymbol{\tau}_{1}, \boldsymbol{P}_{001} \rangle & w_{101} \langle \boldsymbol{\tau}_{1}, \boldsymbol{P}_{101} \rangle \end{pmatrix} \\ \begin{pmatrix} w_{001} \langle \boldsymbol{\upsilon}_{0}, \boldsymbol{P}_{001} \rangle & w_{101} \langle \boldsymbol{\upsilon}_{0}, \boldsymbol{P}_{101} \rangle & w_{011} \langle \boldsymbol{\upsilon}_{0}, \boldsymbol{P}_{011} \rangle & w_{111} \langle \boldsymbol{\upsilon}_{0}, \boldsymbol{P}_{111} \rangle \\ w_{000} \langle \boldsymbol{\upsilon}_{1}, \boldsymbol{P}_{000} \rangle & w_{100} \langle \boldsymbol{\upsilon}_{1}, \boldsymbol{P}_{100} \rangle & w_{010} \langle \boldsymbol{\upsilon}_{1}, \boldsymbol{P}_{010} \rangle & w_{110} \langle \boldsymbol{\upsilon}_{1}, \boldsymbol{P}_{110} \rangle \end{pmatrix}$$
have rank one

▶ The same observations hold after the obvious modifications

Configuration A: The P_{ijk} 's define a quadrilaterally-faced hexahedron.

Configuration A: The P_{ijk} 's define a quadrilaterally-faced hexahedron. Equivalently, Properties A.1, A.2, and A.3 are satisfied and moreover

 $\langle \boldsymbol{\sigma}_i, \mathbf{P}_{\hat{i}jk}
angle > 0$, $\langle \boldsymbol{\tau}_j, \mathbf{P}_{i\hat{j}k}
angle > 0$, $\langle \boldsymbol{\upsilon}_k, \mathbf{P}_{ij\hat{k}}
angle > 0$

for each $0 \leq i, j, k \leq 1$

Example: Configuration A

For each $0 \le i, j, k \le 1$ define

$$\Delta_{ijk} = egin{bmatrix} \sigma_{1i} & \sigma_{2i} & \sigma_{3i} \ au_{1j} & au_{2j} & au_{3j} \ au_{1k} & au_{2k} & au_{3k} \end{bmatrix}$$

For each
$$0 \le i, j, k \le 1$$
 define

$$\Delta_{ijk} = egin{bmatrix} \sigma_{1i} & \sigma_{2i} & \sigma_{3i} \ au_{1j} & au_{2j} & au_{3j} \ au_{1k} & au_{2k} & au_{3k} \end{cases}$$

► We can write

$$\Delta_{0jk} \left\langle \boldsymbol{\sigma}_{1}, \mathbf{P}_{0jk}
ight
angle = \boldsymbol{\sigma}_{1} \wedge \boldsymbol{\sigma}_{0} \wedge \boldsymbol{ au}_{j} \wedge \boldsymbol{arphi}_{k} = -\Delta_{1jk} \left\langle \boldsymbol{\sigma}_{0}, \mathbf{P}_{1jk}
ight
angle$$

For each
$$0 \le i, j, k \le 1$$
 define

$$\Delta_{ijk} = egin{bmatrix} \sigma_{1i} & \sigma_{2i} & \sigma_{3i} \ au_{1j} & au_{2j} & au_{3j} \ au_{1k} & au_{2k} & au_{3k} \end{bmatrix}$$

We can write

$$\Delta_{0jk}\left\langle oldsymbol{\sigma}_1, oldsymbol{\mathsf{P}}_{0jk}
ight
angle = oldsymbol{\sigma}_1 \wedge oldsymbol{\sigma}_0 \wedge oldsymbol{ au}_j \wedge oldsymbol{arphi}_k = -\Delta_{1jk}\left\langle oldsymbol{\sigma}_0, oldsymbol{\mathsf{P}}_{1jk}
ight
angle$$

▶ Thus, the first rank condition is equivalent to

$$\mathsf{rank} egin{pmatrix} \mathsf{w}_{100}\,\Delta_{000} & \mathsf{w}_{110}\,\Delta_{010} & \mathsf{w}_{101}\,\Delta_{001} & \mathsf{w}_{111}\,\Delta_{011} \ \mathsf{w}_{000}\,\Delta_{100} & \mathsf{w}_{010}\,\Delta_{110} & \mathsf{w}_{001}\,\Delta_{101} & \mathsf{w}_{011}\,\Delta_{111} \end{pmatrix} = 1$$

Similarly, the other two conditions can be rewritten as

$$\mathsf{rank} egin{pmatrix} \mathsf{w}_{010} \ \Delta_{000} & \mathsf{w}_{110} \ \Delta_{100} & \mathsf{w}_{011} \ \Delta_{001} & \mathsf{w}_{111} \ \Delta_{101} \ \mathsf{w}_{000} \ \Delta_{010} & \mathsf{w}_{100} \ \Delta_{110} & \mathsf{w}_{001} \ \Delta_{011} & \mathsf{w}_{101} \ \Delta_{111} \end{pmatrix} = 1 \, .$$

$$\mathsf{rank} egin{pmatrix} \mathsf{w}_{001}\,\Delta_{000} & \mathsf{w}_{101}\,\Delta_{100} & \mathsf{w}_{011}\,\Delta_{010} & \mathsf{w}_{111}\,\Delta_{110} \ \mathsf{w}_{000}\,\Delta_{001} & \mathsf{w}_{100}\,\Delta_{101} & \mathsf{w}_{010}\,\Delta_{011} & \mathsf{w}_{110}\,\Delta_{111} \end{pmatrix} = 1$$

Constructive 3D birational maps of type (1, 1, 1)

Theorem: Assume Configuration A:

Choose freely positive values for w₀₀₀, w₁₀₀, w₀₁₀, w₀₀₁
 Set

$$lpha = rac{w_{100}}{\Delta_{100}} rac{\Delta_{000}}{w_{000}}$$
 , $eta = rac{w_{010}}{\Delta_{010}} rac{\Delta_{000}}{w_{000}}$, $\gamma = rac{w_{001}}{\Delta_{001}} rac{\Delta_{000}}{w_{000}}$

► Then, ϕ is birational of type (1, 1, 1) iff there is a non-zero constant $\omega \in \mathbb{R}$ such that for each $0 \leq i, j, k \leq 1$

$$w_{ijk} = \omega \,\, lpha^i \, eta^j \, \gamma^k \, \Delta_{ijk}$$

Constructive 3D birational maps of type (1, 1, 1)

Moreover, the inverse rational map is given by

$$\begin{split} \frac{s_1}{s_0} &= \frac{\langle \boldsymbol{\sigma}_0, \boldsymbol{X} \rangle}{\langle \boldsymbol{\sigma}_0, \boldsymbol{X} \rangle - \alpha \langle \boldsymbol{\sigma}_1, \boldsymbol{X} \rangle} , \ \frac{t_1}{t_0} &= \frac{\langle \boldsymbol{\tau}_0, \boldsymbol{X} \rangle}{\langle \boldsymbol{\tau}_0, \boldsymbol{X} \rangle - \beta \langle \boldsymbol{\tau}_1, \boldsymbol{X} \rangle} , \\ \frac{u_1}{u_0} &= \frac{\langle \boldsymbol{v}_0, \boldsymbol{X} \rangle}{\langle \boldsymbol{v}_0, \boldsymbol{X} \rangle - \gamma \langle \boldsymbol{v}_1, \boldsymbol{X} \rangle} \end{split}$$

Constructive 3D birational maps of type (1, 1, 1)

Moreover, the inverse rational map is given by

$$egin{aligned} rac{s_1}{s_0} &= rac{\langle oldsymbol{\sigma}_0, oldsymbol{X}
angle}{\langle oldsymbol{\sigma}_0, oldsymbol{X}
angle - lpha \left\langle oldsymbol{\sigma}_1, oldsymbol{X}
ight
angle} , & rac{t_1}{t_0} &= rac{\langle oldsymbol{ au}_0, oldsymbol{X}
angle}{\langle oldsymbol{ au}_0, oldsymbol{X}
angle - oldsymbol{eta} \left\langle oldsymbol{ au}_1, oldsymbol{X}
ight
angle} , & \ & rac{u_1}{u_0} &= rac{\langle oldsymbol{v}_0, oldsymbol{X}
angle}{\langle oldsymbol{v}_0, oldsymbol{X}
angle - \gamma \left\langle oldsymbol{v}_1, oldsymbol{X}
ight
angle} , \end{aligned}$$

• Only the constants α , β , γ depend on the w_{ijk} 's!

Birational deformation of a Menger sponge

Birational maps of type (1, 1, 2)

Theorem: Let ϕ be dominant. TFAE:

- 1. ϕ is birational of type (1, 1, 2)
- 2. The minimal graded free resolution of $I = (f_0, f_1, f_2, f_3)$ is

$$R(-2, -1, -1) \oplus R(-1, -2, -2, -2)
ightarrow egin{array}{c} R(-1, -2, -1) \oplus R(-1, -1, -1)^4 & \to I
ightarrow 0 \otimes R(-2, -1, -2) \oplus R(-1, -2, -2) \oplus R(-1, -2, -2) \end{array}$$

3. **f** has syzygies of degree $1\times0\times0,\,0\times1\times0,$ but not $0\times0\times1$

Property B.3: For each k = 0, 1, \mathbf{Y}_k is a doubly ruled quadric surface

Property B.3: For each k = 0, 1, \mathbf{Y}_k is a doubly ruled quadric surface

Property C: Assume Properties A.1 and A.2. The planes Σ_0 , Σ_1 , T_0 , T_1 intersect at a point **V** (in $\mathbb{P}^3_{\mathbb{R}}$)

Property B.3: For each k = 0, 1, \mathbf{Y}_k is a doubly ruled quadric surface

Property C: Assume Properties A.1 and A.2. The planes Σ_0 , Σ_1 , T_0 , T_1 intersect at a point **V** (in $\mathbb{P}^3_{\mathbb{R}}$)

Lemma: If ϕ is birational of type (1, 1, 2) Property C is satisfied

Example: Property B.3 + Property C

Weight calibration: (1,1,2)

 \blacktriangleright Let $\textbf{B} \in \textbf{T}_0 \cap \textbf{T}_1$ be a point distinct from V

Weight calibration: (1,1,2)

- \blacktriangleright Let $\textbf{B} \in \textbf{T}_0 \cap \textbf{T}_1$ be a point distinct from V
- ▶ For each $0 \le i$, $k \le 1$ we define

$$oldsymbol{v}_{ik} = oldsymbol{\mathsf{P}}_{i0k} \wedge oldsymbol{\mathsf{P}}_{i1k} \wedge oldsymbol{\mathsf{B}} = ig(v_{0ik}, v_{1ik}, v_{2ik}, v_{3ik} ig)$$

Weight calibration: (1,1,2)

- ▶ Let $\mathbf{B} \in \mathbf{T}_0 \cap \mathbf{T}_1$ be a point distinct from \mathbf{V}
- ▶ For each $0 \le i$, $k \le 1$ we define

$$oldsymbol{v}_{ik} = oldsymbol{\mathsf{P}}_{i0k} \wedge oldsymbol{\mathsf{P}}_{i1k} \wedge oldsymbol{\mathsf{B}} = (v_{0ik}, v_{1ik}, v_{2ik}, v_{3ik})$$

▶ Additionally, for each $0 \le i, j, k \le 1$ we set

$$\Delta_{ijk} = egin{bmatrix} \sigma_{1i} & \sigma_{2i} & \sigma_{3i} \ au_{1j} & au_{2j} & au_{3j} \ m{v}_{1ik} & m{v}_{2ik} & m{v}_{3ik} \end{bmatrix}$$
 , $\lambda_i = \langle m{\sigma}_i, m{B}
angle$, $u_{ik} = \langle m{v}_{ik}, m{V}
angle$

Constructive 3D birational maps of type (1, 1, 2)

Theorem: Assume Properties B.3 + C:

• Choose freely positive values for w_{000} , w_{100} , w_{010} , w_{001}

Set

$$lpha = rac{w_{100} \,
u_{10}}{\Delta_{100}} rac{\Delta_{000}}{w_{000} \,
u_{00}}$$
 , $oldsymbol{eta} = rac{w_{010}}{\Delta_{010}} rac{\Delta_{000}}{w_{000}}$, $\gamma = rac{w_{001} \,
u_{01}}{\Delta_{001}} rac{\Delta_{000}}{w_{000} \,
u_{00}}$

► Then, ϕ is birational of type (1, 1, 2) iff there is a non-zero constant $\omega \in \mathbb{R}$ such that for each $0 \leq i, j, k \leq 1$

$$w_{ijk} = \omega \,\, lpha^i \, eta^j \, \gamma^k \, rac{\Delta_{ijk}}{
u_{ik}}$$

Constructive 3D birational maps of type (1, 1, 2)

Theorem:

Moreover, the inverse rational map is given by

$$\frac{s_{1}}{s_{0}} = \frac{\langle \boldsymbol{\sigma}_{0}, \boldsymbol{X} \rangle}{\langle \boldsymbol{\sigma}_{0}, \boldsymbol{X} \rangle - \alpha \langle \boldsymbol{\sigma}_{1}, \boldsymbol{X} \rangle} , \quad \frac{t_{1}}{t_{0}} = \frac{\langle \boldsymbol{\tau}_{0}, \boldsymbol{X} \rangle}{\langle \boldsymbol{\tau}_{0}, \boldsymbol{X} \rangle - \beta \langle \boldsymbol{\tau}_{1}, \boldsymbol{X} \rangle} ,$$
$$\begin{pmatrix} \frac{1}{\epsilon_{1}} \langle \boldsymbol{\sigma}_{1}, \boldsymbol{X} \rangle & \frac{1}{\epsilon_{0}} \langle \boldsymbol{\sigma}_{0}, \boldsymbol{X} \rangle \\\frac{1}{\epsilon_{1}} \langle \boldsymbol{\upsilon}_{10}, \boldsymbol{X} \rangle & \frac{1}{\epsilon_{0}} \langle \boldsymbol{\upsilon}_{00}, \boldsymbol{X} \rangle \\\frac{1}{\epsilon_{1}} \langle \boldsymbol{\upsilon}_{10}, \boldsymbol{X} \rangle & \frac{1}{\epsilon_{0}} \langle \boldsymbol{\upsilon}_{00}, \boldsymbol{X} \rangle \\\frac{1}{\epsilon_{1}} \langle \boldsymbol{\upsilon}_{10}, \boldsymbol{X} \rangle & \frac{1}{\epsilon_{0}} \langle \boldsymbol{\upsilon}_{00}, \boldsymbol{X} \rangle \\\frac{1}{\epsilon_{1}} \langle \boldsymbol{\upsilon}_{10}, \boldsymbol{X} \rangle & \frac{1}{\epsilon_{0}} \langle \boldsymbol{\upsilon}_{00}, \boldsymbol{X} \rangle \\\frac{1}{\epsilon_{1}} \langle \boldsymbol{\upsilon}_{10}, \boldsymbol{X} \rangle & \frac{1}{\epsilon_{0}} \langle \boldsymbol{\upsilon}_{00}, \boldsymbol{X} \rangle \\\frac{1}{\epsilon_{1}} \langle \boldsymbol{\upsilon}_{11}, \boldsymbol{X} \rangle & \frac{1}{\epsilon_{0}} \langle \boldsymbol{\upsilon}_{01}, \boldsymbol{X} \rangle \\\frac{1}{\epsilon_{0}} \langle \boldsymbol{\upsilon}_{01}, \boldsymbol{X} \rangle & \frac{1}{\epsilon_{0}} \langle \boldsymbol{\upsilon}_{01}, \boldsymbol{X} \rangle \\\frac{1}{\epsilon_{0}} \langle \boldsymbol{\upsilon}_{01}, \boldsymbol{X} \rangle & \frac{1}{\epsilon_{0}} \langle \boldsymbol{\upsilon}_{01}, \boldsymbol{X} \rangle \\\frac{1}{\epsilon_{0}} \langle \boldsymbol{\upsilon}_{01}, \boldsymbol{X} \rangle & \frac{1}{\epsilon_{0}} \langle \boldsymbol{\upsilon}_{01}, \boldsymbol{X} \rangle \\\frac{1}{\epsilon_{0}} \langle \boldsymbol{\upsilon}_{01}, \boldsymbol{X} \rangle & \frac{1}{\epsilon_{0}} \langle \boldsymbol{\upsilon}_{01}, \boldsymbol{X} \rangle \\\frac{1}{\epsilon_{0}} \langle \boldsymbol{\upsilon}_{01}, \boldsymbol{X} \rangle & \frac{1}{\epsilon_{0}} \langle \boldsymbol{\upsilon}_{01}, \boldsymbol{X} \rangle \\\frac{1}{\epsilon_{0}} \langle \boldsymbol{\upsilon}_{01}, \boldsymbol{X} \rangle & \frac{1}{\epsilon_{0}} \langle \boldsymbol{\upsilon}_{01}, \boldsymbol{X} \rangle \\\frac{1}{\epsilon_{0}} \langle \boldsymbol{\upsilon}_{01}, \boldsymbol{X} \rangle & \frac{1}{\epsilon_{0}} \langle \boldsymbol{\upsilon}_{01}, \boldsymbol{X} \rangle \\\frac{1}{\epsilon_{0}} \langle \boldsymbol{\upsilon}_{01}, \boldsymbol{X} \rangle & \frac{1}{\epsilon_{0}} \langle \boldsymbol{\upsilon}_{01}, \boldsymbol{X} \rangle \\\frac{1}{\epsilon_{0}} \langle \boldsymbol{\upsilon}_{01}, \boldsymbol{X} \rangle & \frac{1}{\epsilon_{0}} \langle \boldsymbol{\upsilon}_{01}, \boldsymbol{X} \rangle \\\frac{1}{\epsilon_{0}} \langle \boldsymbol{\upsilon}_{01}, \boldsymbol{X} \rangle & \frac{1}{\epsilon_{0}} \langle \boldsymbol{\upsilon}_{01}, \boldsymbol{X} \rangle \\\frac{1}{\epsilon_{0}} \langle \boldsymbol{\upsilon}_{01}, \boldsymbol{X} \rangle & \frac{1}{\epsilon_{0}} \langle \boldsymbol{\upsilon}_{01}, \boldsymbol{X} \rangle \\\frac{1}{\epsilon_{0}} \langle \boldsymbol{\upsilon}_{01}, \boldsymbol{X} \rangle & \frac{1}{\epsilon_{0}} \langle \boldsymbol{\upsilon}_{01}, \boldsymbol{X} \rangle \\\frac{1}{\epsilon_{0}} \langle \boldsymbol{\upsilon}_{01}, \boldsymbol{X} \rangle & \frac{1}{\epsilon_{0}} \langle \boldsymbol{\upsilon}_{01}, \boldsymbol{X} \rangle \\\frac{1}{\epsilon_{0}} \langle \boldsymbol{\upsilon}_{01}, \boldsymbol{X} \rangle & \frac{1}{\epsilon_{0}} \langle \boldsymbol{\upsilon}_{01}, \boldsymbol{X} \rangle \\\frac{1}{\epsilon_{0}} \langle \boldsymbol{\upsilon}_{01}, \boldsymbol{X} \rangle & \frac{1}{\epsilon_{0}} \langle \boldsymbol{\upsilon}_{01}, \boldsymbol{X} \rangle \\\frac{1}{\epsilon_{0}} \langle \boldsymbol{\upsilon}_{01}, \boldsymbol{X} \rangle & \frac{1}{\epsilon_{0}} \langle \boldsymbol{\upsilon}_{01}, \boldsymbol{X} \rangle \\\frac{1}{\epsilon_{0}} \langle \boldsymbol{\upsilon}_{0}, \boldsymbol{U}_{0}, \boldsymbol{U} \rangle \\\frac{1}{\epsilon_{0}} \langle \boldsymbol{\upsilon}_{0}, \boldsymbol{U}_{0}, \boldsymbol{U} \rangle \\\frac{1}{\epsilon_{0}} \langle \boldsymbol{\upsilon}_{0}, \boldsymbol{U} \rangle & \frac{1}{\epsilon_{0}} \langle \boldsymbol{\upsilon}_{0}, \boldsymbol{U} \rangle \\\frac{1}{\epsilon_{0}} \langle \boldsymbol{\upsilon}_{0$$

▶ If ϕ has type (1, 2, 2), the resolution of $I = (f_0, f_1, f_2, f_3)$ is

$$0 \rightarrow R^2 \rightarrow R^5 \rightarrow R^4 \rightarrow I \rightarrow 0$$

▶ If ϕ has type (1, 2, 2), the resolution of $I = (f_0, f_1, f_2, f_3)$ is

$$0 \rightarrow R^2 \rightarrow R^5 \rightarrow R^4 \rightarrow I \rightarrow 0$$

We know similar results to construct these birational maps

▶ If ϕ has type (1, 2, 2), the resolution of $I = (f_0, f_1, f_2, f_3)$ is

$$0 \rightarrow R^2 \rightarrow R^5 \rightarrow R^4 \rightarrow I \rightarrow 0$$

We know similar results to construct these birational maps

▶ However, the geometry of the **P**_{*ijk*}'s is more complicated

▶ If ϕ has type (1, 2, 2), the resolution of $I = (f_0, f_1, f_2, f_3)$ is

$$0 \rightarrow R^2 \rightarrow R^5 \rightarrow R^4 \rightarrow I \rightarrow 0$$

We know similar results to construct these birational maps
 However, the geometry of the P_{ijk}'s is more complicated

▶ If ϕ has type (2, 2, 2), the resolution of $I = (f_0, f_1, f_2, f_3)$ is

$$0 \rightarrow R^3 \rightarrow R^6 \rightarrow R^4 \rightarrow I \rightarrow 0$$

▶ If ϕ has type (1, 2, 2), the resolution of $I = (f_0, f_1, f_2, f_3)$ is

$$0 \rightarrow R^2 \rightarrow R^5 \rightarrow R^4 \rightarrow I \rightarrow 0$$

We know similar results to construct these birational maps
 However, the geometry of the P_{ijk}'s is more complicated

▶ If ϕ has type (2, 2, 2), the resolution of $I = (f_0, f_1, f_2, f_3)$ is

$$0 \rightarrow R^3 \rightarrow R^6 \rightarrow R^4 \rightarrow I \rightarrow 0$$

▶ We still do not know how to construct these maps