# USING STRUCTURED VARIANTS IN LATTICE-BASED CRYPTOGRAPHY 

Adeline Roux-Langlois

Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, Caen, FRANCE


## Using LWE to build provable constructions - theory



## Approx Shortest Vector Problem (Approx SVP ${ }_{\gamma}$ )

Given a lattice $\mathcal{L}(\mathbf{B})$ of dimension $n$ :
Output: find a non-zero vector $\mathbf{x} \in \mathcal{L}(\mathbf{B})$ such that $\|\mathbf{x}\| \leq \gamma \lambda_{1}(\mathcal{L}(\mathbf{B}))$


Lattice
$\mathcal{L}(\mathbf{B})=\left\{\sum_{1=i}^{n} a_{i} \mathbf{b}_{i}, a_{i} \in \mathbb{Z}\right\}$, where the $\left(\mathbf{b}_{i}\right)_{1 \leq i \leq n}$ 's, linearly independent vectors, are a basis of $\mathcal{L}(\mathbf{B})$.

## Hardness of Approx SVP $\gamma_{\gamma}$



## Conjecture

There is no polynomial time algorithm that approximates this lattice problem and its variants to within polynomial factors.

## The Learning With Errors problem

$\mathbf{L W E}_{\alpha, q}^{n}$


- $\mathbf{A} \leftarrow U\left(\mathbb{Z}_{q}^{m \times n}\right)$,
- $\mathbf{s} \leftarrow U\left(\mathbb{Z}_{q}^{n}\right)$,
- $\mathrm{e} \leftarrow D_{\mathbb{Z}^{m}, \alpha q}$, small compared to $q$.


Discrete Gaussian error $D_{\mathbb{Z}, \alpha q}$

Search version: Given ( $\mathbf{A}, \mathbf{b}=\mathbf{A s}+\mathbf{e}$ ), find $\mathbf{s}$.
Decision version: Distinguish from $(\mathbf{A}, \mathbf{b})$ with $\mathbf{b}$ uniform.

## Regev's encryption scheme

- Parameters: $n, m, q \in \mathbb{Z}, \alpha \in \mathbb{R}$,
- Keys: $\mathbf{s k}=\mathbf{s}$ and $\mathrm{pk}=(\mathbf{A}, \mathbf{b})$, with $\mathbf{b}=\mathbf{A} \mathbf{s}+\mathbf{e} \bmod q$ where $\mathbf{s} \hookleftarrow U\left(\mathbb{Z}_{q}^{n}\right), \mathbf{A} \hookleftarrow U\left(\mathbb{Z}_{q}^{m \times n}\right), \mathrm{e} \hookleftarrow D_{\mathbb{Z}^{m}, \alpha q}$.
- Encryption $(M \in\{0,1\})$ : Let $\mathbf{r} \hookleftarrow U\left(\{0,1\}^{m}\right)$,

- Decryption of ( $\mathbf{u}, v$ ): compute $v-\mathbf{u}^{T} \mathbf{s}$,


If close from 0 : return 0 , if close from $\lfloor q / 2\rfloor$ : return 1 .
LWE hard $\Rightarrow$ Regev's scheme is IND-CPA secure.

## Using LWE

Hardness of LWE used as a foundation for many constructions.


Solutions used today?

## Lattice-based NIST finalists

Among the 5 lattice-based finalists, 3 of them are based on (possibly structured) variants of LWE.

- Public Key Encryption
- Crystals - Kyber: Module-LWE with both secret and noise chosen from a centered binomial distribution.
- Saber: Module-LWR (deterministic variant).
- NTRU
- FrodoKEM (as alternate candidate): LWE but with smaller parameters.
- Signature
- Crystals - Dilithium: Module-LWE with both secret and noise chosen in a small uniform interval, and Module-SIS.
- Falcon: Ring-SIS on NTRU matrices.


## Using LWE to build constructions



## Using LWE to build constructions in practice



## Using LWE to build constructions in practice

Worst-case to average-
case reduction
With Errors $\begin{gathered}\text { Cryptanalysis }\end{gathered}$
Choice of parameters

Security proof

| Efficient |
| :--- |
| $\begin{array}{l}\text { Cryptographic } \\ \text { constructions }\end{array}$ |

## From SIS/LWE to structured variants

Problem: constructions based on LWE enjoy a nice guaranty of security but are too costly in practice.
$\rightarrow$ replace $\mathbb{Z}^{n}$ by a Ring, for example $R=\mathbb{Z}[x] /\left\langle x^{n}+1\right\rangle\left(n=2^{k}\right)$.

- Ring variants since 2006:

- Structured $\mathbf{A} \in \mathbb{Z}_{q}^{m \cdot n \times n}$ represented by $m \cdot n$ elements,
- Product with matrix/vector more efficient,

- Hardness of Ring-SIS,
[Lyubashevsky and Micciancio 06] and [Peikert and Rosen 06]
- Hardness of Ring-LWE
[Lyubashevsky, Peikert and Regev 10].


## Idea: replace $\mathbb{Z}^{n}$ by $R=\mathbb{Z}[x] /\left\langle x^{n}+1\right\rangle$

where $n=2^{k}$ then the polynomial $x^{n}+1$ is irreducible.
Elements of this ring are polynomials of degree less than $n$.
$R$ is a cyclotomic ring. $R$ is also the ring of integer $\mathcal{O}_{K}$ of an number field $K$ :

- $K=\mathbb{Q}[x] /\left\langle x^{n}+1\right\rangle: K$ is a cyclotomic field,
- $R=\mathbb{Z}[x] /\left\langle\phi_{m}(x)\right\rangle$ where $\phi_{m}$ is the $\mathrm{m}^{t h}$ cyclotomic polynomial of degree $n=\varphi(m)$. Its roots are the $\mathrm{m}^{t h}$ roots of unity $\zeta_{m}^{j} \in \mathbb{C}$, with $\zeta_{m}=e^{\frac{2 i \pi}{m}}$. (For $m=2^{k+1}$, we have $\phi_{m}(x)=x^{n}+1$.)
- Canonical embedding: $\sigma_{K}: \alpha \in K \mapsto\left((\sigma(\alpha))_{\sigma}=\left(\alpha\left(\zeta_{m}^{j}\right)\right)_{j}\right.$.


## Idea: replace $\mathbb{Z}^{n}$ by $R=\mathbb{Z}[x] /\left\langle x^{n}+1\right\rangle$

$R$ is isomorph to $\mathbb{Z}^{n}$

Let $a \in R$, we have $a(x)=a_{0}+a_{1} x+\ldots+a_{n-1} x^{n-1}$, the isomorphism $R \rightarrow \mathbb{Z}^{n}$ associate
the polynomial $a \in R$ to the vector $\mathbf{a}=\left[\begin{array}{c}a_{0} \\ a_{1} \\ \vdots \\ a_{n-1}\end{array}\right] \in \mathbb{Z}^{n}$.

## Idea: replace $\mathbb{Z}^{n}$ by $R=\mathbb{Z}[x] /\left\langle x^{n}+1\right\rangle$

Let's look at the product of two polynomials $x^{n}+1$

- $a(x)=a_{0}+a_{1} \cdot x+\ldots+a_{n-1} \cdot x^{n-1}$
- $s(x)=s_{0}+a_{1} \cdot x+\ldots+a_{n-1} \cdot x^{n-1}$

Using matrices, it gives the following block:

$$
\left[\begin{array}{ccccc}
a_{0} & -a_{n-1} & \cdots & -a_{2} & -a_{1} \\
a_{1} & a_{0} & \cdots & -a_{3} & -a_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
a_{n-2} & a_{n-3} & \cdots & a_{0} & -a_{n-1} \\
a_{n-1} & a_{n-2} & \cdots & a_{1} & a_{0}
\end{array}\right]\left[\begin{array}{c}
s_{0} \\
s_{1} \\
\vdots \\
s_{n-2} \\
s_{n-1}
\end{array}\right]
$$

## Module LWE

Let $K$ be a number field of degree $n$ with $R$ its ring of integers.
Think of $K$ as $\mathbb{Q}[x] /\left(x^{n}+1\right)$ and of $R$ as $\mathbb{Z}[x] /\left(x^{n}+1\right)$ for $n=2^{k}$.
Replace $\mathbb{Z}$ by $R$, and $\mathbb{Z}_{q}$ by $R_{q}=R / q R$.


- $\mathbf{A} \leftarrow U\left(R_{q}^{m \times d}\right)$,
- $\mathbf{s} \leftarrow U\left(R_{q}^{d}\right)$,
- $e \in R^{m}$ small compared to $q$.

Special case $d=1$ is Ring-LWE

## Module SIS and LWE

$R=\mathbb{Z}[x] /\left\langle x^{n}+1\right\rangle$ and $R_{q}=R / q R$.
Module-SIS ${ }_{q, m, \beta}$
Given $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m} \in R_{q}^{d}$ independent and uniform, find $z_{1}, \ldots, z_{m} \in R$ such that $\sum_{i=1}^{m} \mathbf{a}_{i} \cdot z_{i}=0 \bmod q$ and $0<\|\mathbf{z}\| \leq \beta$.

Let $\alpha>0$ and $\mathbf{s} \in\left(R_{q}\right)^{d}$, the distribution $A_{\mathbf{s}, D_{R, \alpha q}}^{(M)}$ is:

- $\mathbf{a} \in\left(R_{q}\right)^{d}$ uniform,
- e sampled from $D_{R, \alpha q}$,

Outputs: $(\mathbf{a},\langle\mathbf{a}, \mathbf{s}\rangle+e)$.
Module-LWE ${ }_{q, \nu_{\alpha}}$
Let $\mathbf{s} \in\left(R_{q}\right)^{d}$ uniform, distinguish between an arbitrary number of samples from $A_{\mathbf{s}, D_{R, \alpha q}}^{(M)}$ or the same number from $U\left(\left(R_{q}\right)^{d} \times R_{q}\right)$.

## Ideals and modules

$$
R=\mathbb{Z}[x] /\left\langle x^{n}+1\right\rangle \text { and } R_{q}=R / q R .
$$

- An ideal $I$ of $R$ is an additive subgroup of $R$ closed under multiplication by every elements of $R$.
- As $R$ is isomorph to $\mathbb{Z}^{n}$, any ideal $I \in R$ defines an integer lattice $\Lambda(\mathbf{B})$ where $\mathbf{B}=\left\{g \bmod x^{n}+1: g \in I\right\}$.
- A subset $M \subseteq K^{d}$ is an $R$-module if it is closed under addition and multiplication by elements of $R$.
- A finite-type $R$-module: $M \subseteq R^{d}: \sum_{i=1}^{D} R \cdot \mathbf{b}_{i},\left(\mathbf{b}_{i}\right) \in R^{d}$,
- $M=\sum_{i=1}^{d} I_{i} \cdot \mathbf{b}_{i}$ where $I_{i}$ are ideals of $R$ and $\left(I_{i}, \mathbf{b}_{i}\right)$ is a pseudo-basis of $M$.
- As ideals, any module defines an integer module lattice.


## Hardness of Ring Learning With Errors problem

Worst-case to averagecase reduction

- Stehlé, Steinfeld, Tanaka and Xagawa 2009 - search - Lyubashevsky, Peikert, Regev 2010-decisional reduction both quantum, $q$ poly Ideal Lattice

Ring Learning With Errors

Self reductions
Applebaum, Cash, Peikert, Sahai 2009 - same error and secret

## Hardness of Module Learning With Errors problem

Worst-case to averagecase reduction

- Langlois Stehlé 2015 - quantum, $q$ poly
- Folklore: adapting Peikert 2009 gives classical reduction but $q \exp$ and only search variant
- Boudgoust, Jeudy, Roux-Langlois, Wen 2021 classical, $q$ poly, decisional, linear rank


Self reductions
Applebaum, Cash, Peikert, Sahai 2009 - same error and secret
Boudgoust, Jeudy, Roux-Langlois, Wen 2022: short error and secret distributions

## Module or Rings?

- Hardness of the problem



## Module or Rings?

- Choice of parameters
- Example of Ring $R_{q}=\mathbb{Z}_{q}[x] /\left\langle x^{n}+1\right\rangle$
- Constraints on parameters $n=2^{k}, q=1 \bmod 2 n \ldots$
- An example of parameter set:
- $n=512 \Rightarrow 60$ bits of security,
- $n=1024 \Rightarrow 140$ bits of security,
- ( $n=256, d=3$ ) gives $n d=768$ which is "in between".
- Module LWE allows more flexibility.


## NIST competition

From 2017 to 2024, NIST competition to develop new standards on post-quantum cryptography

## 2022 first results: 3 over 4 new standards are lattice-based

- Kyber - encryption scheme based on Module-LWE,
- Dilithium - signature scheme based on Module SIS and LWE,
- Falcon - signature scheme based on NTRU and Ring-SIS.


## Encryption scheme based on Ring-LWE

[Lyubashevsky, Peikert, Regev 2011]
KeyGen: The secret key is a small $s \in R$
The public key is $(a, b)=(a, b=a \cdot s+e) \in R_{q}^{2}$, with $a \leftarrow U\left(R_{q}\right)$ and a small $e \in R$.
Enc: Given $m \in\{0,1\}^{n}$, a message is a polynomial in $R$ with coordinates in $\{0,1\}$. Sample small $r, e_{1}, e_{2}$ in $R$ and output

$$
\left(a \cdot r+e_{1}, b \cdot r+e_{2}+\lfloor q / 2\rfloor \cdot m\right) \in R_{q} \times R_{q} .
$$

Dec: Given $(u, v) \in R_{q} \times R_{q}$, compute

$$
v-u \cdot s=\left(r \cdot e-s \cdot e_{1}+e_{2}\right)+b\lfloor q / 2\rfloor \cdot m
$$

For each coordinate of $m$, the plaintext is 0 if the result is closer from 0 than $\lfloor q / 2\rfloor$, and 1 otherwise.

## Kyber

[Avanzi, Bos, Ducas, Kiltz, Lepoint, Lyubashevsky, Schanck, Schwabe, Seiler, Stehle]

- Kyber relies on Module-LWE,
- Use $R_{q}=\mathbb{Z}_{q}[x] /\left\langle x^{256}+1\right\rangle$ with $q=7681$.
- The small elements follow a binomial distribution $B_{\eta}$ : For some positive integer $\eta$, sample $\{(a i, b i)\}_{i=1}^{\eta} \leftarrow\left(\{0,1\}^{2}\right)^{\eta}$ and output $\sum_{i=1}^{\eta}\left(a_{i}-b_{i}\right)$.
- The uniform public key is generated given a seed and a function PARSE,
- Multiplication operations uses NTT - Number Theoretic Transform - which is a variant of the FFT in rings,
- Size of ciphertext is compressed by keeping only high order bits.


## Performances

Kyber-512
Sizes (in bytes) Haswell cycles (ref) Haswell cycles (avx2)

| sk: | 1632 gen: | 122684 gen: | 33856 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| pk: | 800 enc: | 154524 enc: | 45200 |
| ct: | 768 dec: | 187960 dec: | 34572 |

Kyber-768
Sizes (in bytes) Haswell cycles (ref) Haswell cycles (avx2)

| sk: | 2400 gen: | 199408 gen: | 52732 |
| :--- | ---: | ---: | ---: | ---: |
| pk: | 1184 enc: | 235260 enc: | 67624 |
| ct: | 1088 dec: | 274900 dec: | 53156 |

Sizes (in bytes) Haswell cycles (ref) Haswell cycles (avx2)

| sk: | 3168 gen: | 307148 gen: | 73544 |
| :--- | :--- | ---: | ---: | ---: |
| pk: | 1568 enc: | 346648 enc: | 97324 |
| ct: | 1568 dec: | 396584 dec: | 79128 |

## Choice of parameters

- Parameters used by Kyber:
- $n=256$ and $d=2,3,4$ giving three levels of security: $512,768,1024$,
- $q=7681$


## Choice of parameters

- Parameters used by Kyber:
- $n=256$ and $d=2,3,4$ giving three levels of security: $512,768,1024$,
- $q=7681$
- How do they choose the parameters?
- By considering the LWE instance with dimension nd,
- and the "lattice estimator" [Albrecht, Player, Scott 2015],


## Choice of parameters

- Parameters used by Kyber:
- $n=256$ and $d=2,3,4$ giving three levels of security: $512,768,1024$,
- $q=7681$
- How do they choose the parameters?
- By considering the LWE instance with dimension $n d$,
- and the "lattice estimator" [Albrecht, Player, Scott 2015],
- There is no consideration of the structure!
- Why?
- Because we don't know how...


## Approx Ideal SVP seems to be the easiest

- Hardness of the problem



## Solving Approx Ideal SVP ${ }^{1}$

- For a long time, no algorithm manages to exploit the structure of Ideal SVP.
- 2014: Quantum algorithm computing ( $\mathcal{S}$-)units, class groups in polynomial time!
[EHKS14,BS16]
- Followed by a long series of cryptanalysis works. [CGS14,CDPR16,CDW17/21,PHS19,BR20,BLNR22,BL21,BEFHY22]

[^0]
## Algebraic cryptanalysis of Ideal-SVP



1. Schnorr's hierarchy (unstructured)

## Algebraic cryptanalysis of Ideal-SVP



1. Schnorr's hierarchy (unstructured)
2. CDW algorithm [Cramer, Ducas, Wesolowski 17/21]: uses short Stickelberger relations.

## Algebraic cryptanalysis of Ideal-SVP



1. Schnorr's hierarchy (unstructured)
2. CDW algorithm [Cramer, Ducas, Wesolowski 17/21]: uses short Stickelberger relations.
3. PHS and Twisted-PHS [Pellet-Mary, Hanrot, Stehlé 19, Bernard, Roux-Langlois 20, Bernard, Lesavouvey, Nguyen, Roux-Langlois 22]: $\mathcal{S}$-unit attacks.

## Solving Approx Ideal SVP

Consider an intermediate problem.

## Short Generator Principal ideal Problem (SG-PIP):

Given a principal ideal $I=(g)$ such that $g$ is short, retrieve $g$.

[^1]
## Solving Approx Ideal SVP

Consider an intermediate problem.

## Short Generator Principal ideal Problem (SG-PIP):

Given a principal ideal $I=(g)$ such that $g$ is short, retrieve $g$.

1. Find a generator $h=g u$ of $I\left(u \in \mathcal{O}_{K}^{\times}\right)$

Can be done in polynomial time with a quantum computer
2. Find $g$ given $h$.

Use the Log-embedding ${ }^{2}$ and the Log-unit lattice $\log \left(\mathcal{O}_{K}^{\times}\right)$
${ }^{2} \log _{K}: x \mapsto\left(\ln \left|\sigma_{1}(x)\right|, \ldots, \ln \left|\sigma_{n}(x)\right|\right)$

## Solving Approx Ideal SVP

Consider an intermediate problem.

## Short Generator Principal ideal Problem (SG-PIP):

Given a principal ideal $I=(g)$ such that $g$ is short, retrieve $g$.

1. Find a generator $h=g u$ of $I\left(u \in \mathcal{O}_{K}^{\times}\right)$

Can be done in polynomial time with a quantum computer
2. Find $g$ given $h$.

Use the Log-embedding ${ }^{2}$ and the Log-unit lattice $\log \left(\mathcal{O}_{K}^{\times}\right)$

- [Cramer, Ducas, Peikert, Regev 2016] quantum polynomial-time or classical $2^{n^{2 / 3+\epsilon}}$-time algorithm to solve SG-PIP over cyclotomic fields.
${ }^{2} \log _{K}: x \mapsto\left(\ln \left|\sigma_{1}(x)\right|, \ldots, \ln \left|\sigma_{n}(x)\right|\right)$


## View of the algorithm



## View of the algorithm

Let $I$ be a challenge ideal.


1. Quantum decomposition Apply $\log _{K}$
$\log _{K}(h)=\log _{K}(g)+\log _{K}(u) \in$ $\log _{K}(g)+\log _{K}\left(\mathcal{O}_{K}^{\times}\right)$

$$
h=g \cdot u
$$

## View of the algorithm

Let $I$ be a challenge ideal.


1. Quantum decomposition Apply $\log _{K}$
$\log _{K}(h)=\log _{K}(g)+\log _{K}(u) \in$ $\log _{K}(g)+\log _{K}\left(\mathcal{O}_{K}^{\times}\right)$
2. Short coset representative ?

$$
h=g \cdot u
$$

## View of the algorithm

Let $I$ be a challenge ideal.


1. Quantum decomposition Apply $\log _{K}$
$\log _{K}(h)=\log _{K}(g)+\log _{K}(u) \in$ $\log _{K}(g)+\log _{K}\left(\mathcal{O}_{K}^{\times}\right)$
2. Short coset representative ?

$$
h=g \cdot u
$$

## View of the algorithm

Let $I$ be a challenge ideal.


1. Quantum decomposition Apply $\log _{K}$
$\log _{K}(h)=\log _{K}(g)+\log _{K}(u) \in$ $\log _{K}(g)+\log _{K}\left(\mathcal{O}_{K}^{\times}\right)$
2. Short coset representative ?

$$
h=g \cdot u
$$

## View of the algorithm

Let $I$ be a challenge ideal.


1. Quantum decomposition Apply $\log _{K}$
$\log _{K}(h)=\log _{K}(g)+\log _{K}(u) \in$ $\log _{K}(g)+\log _{K}\left(\mathcal{O}_{K}^{\times}\right)$
2. Short coset representative ?
3. Hope this is short in $I$.

$$
\begin{aligned}
h & =g \cdot u \\
(h / u) & =g
\end{aligned}
$$

## SVP of general ideals

Consider $K$ a number field, $I$ an ideal and $S$ a set of prime ideals.

1. Compute a $S$-generator of $I$, i.e. $h$ s.t. $(h)=I \prod_{\mathfrak{p} \in S} \mathfrak{p}^{v_{\mathfrak{p}}}$
2. Reduce $h$

Two variants for step 2.

1. First reduce $\prod_{\mathfrak{p}} \mathfrak{p}^{v_{\mathfrak{p}}}$; then find a generator with the Log-embedding.
$\rightarrow$ [Cramer, Ducas, Wesolowski 2017] cyclotomic fields, subexponential approximation factor
2. Use the Log- $S$-embedding ${ }^{3}$ to reduce everything.
$\rightarrow$ [Pellet-Mary, Hanrot, Stehlé 2019] all number fields, exponential preprocessing, subexponential approximation factor
$\rightarrow$ [Bernard, Roux-Langlois 2020] other def. of $\log _{K, S}$, same asymptotic results, good results in practice for cyclotomics up to dimensions 70.
${ }^{3} \log _{K, S}: x \mapsto\left(\ln \left|\sigma_{1}(x)\right|, \ldots, \ln \left|\sigma_{n}(x)\right|,-v_{\mathfrak{p}_{1}}(x) \ln \left(N\left(\mathfrak{p}_{1}\right)\right), \ldots,-v_{\mathfrak{p}_{r}}(x) \ln \left(N\left(\mathfrak{p}_{r}\right)\right)\right)$

## Bernard, Lesavourey, Nguyen, Roux-Langlois (2022)

Can we extend these good results to higher dimensions ?
Two major obstructions for experiments:

- Decomposition $(h)=I \cdot \prod_{\mathfrak{p} \in S} \mathfrak{p}^{v_{\mathfrak{p}}}$
- Group of $S$-units $(s)=\prod_{\mathfrak{p} \in S} \mathfrak{p}^{e_{\mathfrak{p}}}$


## Bernard, Lesavourey, Nguyen, Roux-Langlois (2022)

## Can we extend these good results to higher dimensions ?

Two major obstructions for experiments:

- Decomposition $(h)=I \cdot \prod_{\mathfrak{p} \in S} \mathfrak{p}^{v_{\mathfrak{p}}}$
- Group of $S$-units $(s)=\prod_{\mathfrak{p} \in S} \mathfrak{p}^{\boldsymbol{p}_{\mathfrak{p}}}$

Use new results of Bernard and Kučera (2021) on Stickelberger ideal

- Obtain explicit short basis of $S_{m}$
- It is constructive: the associated generators can be computed efficiently
- Free family of short $S$-units


## Bernard, Lesavourey, Nguyen, Roux-Langlois (2022)

Can we extend these good results to higher dimensions ?
Two major obstructions for experiments:

- Decomposition $(h)=I \cdot \prod_{p \in S} \mathfrak{p}^{v_{\mathfrak{p}}}$
- Group of $S$-units $(s)=\prod_{\mathfrak{p} \in S} \mathfrak{p}^{\boldsymbol{e}_{\mathfrak{p}}}$

Use new results of Bernard and Kučera (2021) on Stickelberger ideal

- Obtain explicit short basis of $S_{m}$
- It is constructive: the associated generators can be computed efficiently
- Free family of short $S$-units

Allows us to approximate $\log \left(\mathcal{O}_{K, S}^{\times}\right)$with a full-rank sublattice

- Cyclotomic units
- Explicit Stickelberger generators
- Real $S \cap K_{m}^{+}$-units $\rightarrow$ only part sub-exponential; dimension $n / 2$
- 2-saturation to reduce the index


## Experimental results ${ }^{4}$

Cyclotomic fields with almost all conductors, up to dimension 210. Simulated targets in the Log-space

[^2]
## Experimental results ${ }^{4}$

Cyclotomic fields with almost all conductors, up to dimension 210. Simulated targets in the Log-space


[^3]
## Experimental results ${ }^{4}$

Cyclotomic fields with almost all conductors, up to dimension 210. Simulated targets in the Log-space


[^4]
## Experimental results ${ }^{4}$

Cyclotomic fields with almost all conductors, up to dimension 210. Simulated targets in the Log-space


[^5]
## Experimental results ${ }^{4}$

Cyclotomic fields with almost all conductors, up to dimension 210. Simulated targets in the Log-space


[^6]
## Using LWE to build constructions in practice

Worst-case to average-
case reduction
Learning
With Errors $\begin{gathered}\text { using } \\ \text { structured } \\ \text { variants }\end{gathered}$ Choice of parameters

Security proof

| Efficient |
| :--- |
| $\begin{array}{l}\text { Cryptographic } \\ \text { constructions }\end{array}$ |

## Conclusion

- Lattice-based cryptography allows to build efficient constructions such as encryption or signature schemes with a security based on the hardness of difficult algorithmic problems on lattices.
- Three schemes (Kyber, Dilithium and Falcon) will be standardise by the NIST, together with a hash-based signature.
Two of them are based on Module-LWE.
- Approx Ideal SVP seems to be the easier problem to try to solve $\rightarrow$ the results of recent attacks does not impact the security of lattice-based constructions.


[^0]:    ${ }^{1}$ Thanks to Olivier Bernard and Andrea Lesavourey for part of the slides (particularly to Olivier for the tikz picture!)

[^1]:    ${ }^{2} \log _{K}: x \mapsto\left(\ln \left|\sigma_{1}(x)\right|, \ldots, \ln \left|\sigma_{n}(x)\right|\right)$

[^2]:    ${ }^{4}$ Code available at https://github.com/ob3rnard/Tw-Sti.

[^3]:    ${ }^{4}$ Code available at https://github.com/ob3rnard/Tw-Sti.

[^4]:    ${ }^{4}$ Code available at https://github.com/ob3rnard/Tw-Sti.

[^5]:    ${ }^{4}$ Code available at https://github.com/ob3rnard/Tw-Sti.

[^6]:    ${ }^{4}$ Code available at https://github.com/ob3rnard/Tw-Sti.

