USING STRUCTURED VARIANTS IN LATTICE-BASED CRYPTOGRAPHY

Adeline Roux-Langlois

Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, Caen, FRANCE

Using LWE to build provable constructions - theory

Approx Shortest Vector Problem (Approx SVP $_{\gamma}$)

Given a lattice $\mathcal{L}(\mathbf{B})$ of dimension *n*:

Output: find a non-zero vector $\mathbf{x} \in \mathcal{L}(\mathbf{B})$ such that $\|\mathbf{x}\| \leq \gamma \lambda_1(\mathcal{L}(\mathbf{B}))$

Lattice $\mathcal{L}(\mathbf{B}) = \{\sum_{1=i}^{n} a_i \mathbf{b}_i, a_i \in \mathbb{Z}\}$, where the $(\mathbf{b}_i)_{1 \leq i \leq n}$'s, linearly independent vectors, are a basis of $\mathcal{L}(\mathbf{B})$.

Hardness of Approx SVP $_{\gamma}$

Conjecture

There is no polynomial time algorithm that approximates this lattice problem and its variants to within polynomial factors.

The Learning With Errors problem

 $\mathsf{LWE}^n_{\alpha,q}$

Discrete Gaussian error $D_{\mathbb{Z},\alpha q}$

Search version: Given $(\mathbf{A}, \mathbf{b} = \mathbf{As} + \mathbf{e})$, find **s**. Decision version: Distinguish from (\mathbf{A}, \mathbf{b}) with **b** uniform.

Regev's encryption scheme

► Keys: sk = s and pk = (A, b), with $b = A s + e \mod q$ where $s \leftrightarrow U(\mathbb{Z}_q^n)$, $A \leftrightarrow U(\mathbb{Z}_q^{m \times n})$, $e \leftrightarrow D_{\mathbb{Z}^m, \alpha q}$.

Encryption $(M \in \{0,1\})$: Let $\mathbf{r} \leftarrow U(\{0,1\}^m)$,

If close from 0: return 0, if close from $\lfloor q/2 \rfloor$: return 1.

LWE hard \Rightarrow Regev's scheme is IND-CPA secure.

Hardness of LWE used as a foundation for many constructions.

Solutions used today?

Lattice-based NIST finalists

Among the 5 lattice-based finalists, 3 of them are based on (possibly structured) variants of LWE.

- Public Key Encryption
 - Crystals Kyber: Module-LWE with both secret and noise chosen from a centered binomial distribution.
 - Saber: Module-LWR (deterministic variant).
 - NTRU
 - **FrodoKEM** (as alternate candidate): LWE but with smaller parameters.

Signature

- Crystals Dilithium: Module-LWE with both secret and noise chosen in a small uniform interval, and Module-SIS.
- **Falcon**: Ring-SIS on NTRU matrices.

Using LWE to build constructions

Using LWE to build constructions in practice

Using LWE to build constructions in practice

10/35

From SIS/LWE to structured variants

Problem: constructions based on LWE enjoy a nice guaranty of security but are too costly in practice.

- \rightarrow replace \mathbb{Z}^n by a Ring, for example $R = \mathbb{Z}[x]/\langle x^n + 1 \rangle$ $(n = 2^k)$.
- Ring variants since 2006:

- Structured $\mathbf{A} \in \mathbb{Z}_q^{m \cdot n \times n}$ represented by $m \cdot n$ elements,
- Product with matrix/vector more efficient,
- ► Hardness of Ring-SIS,

[Lyubashevsky and Micciancio 06] and [Peikert and Rosen 06]

Hardness of Ring-LWE [Lyubashevsky, Peikert and Regev 10].

Idea: replace \mathbb{Z}^n by $R = \mathbb{Z}[x]/\langle x^n + 1 \rangle$

where $n = 2^k$ then the polynomial $x^n + 1$ is irreducible. Elements of this ring are polynomials of degree less than n.

R is a **cyclotomic ring.** *R* is also the ring of integer \mathcal{O}_K of an number field *K*:

•
$$K = \mathbb{Q}[x]/\langle x^n + 1 \rangle$$
: *K* is a cyclotomic field,

► $R = \mathbb{Z}[x]/\langle \phi_m(x) \rangle$ where ϕ_m is the mth cyclotomic polynomial of degree $n = \varphi(m)$. Its roots are the mth roots of unity $\zeta_m^j \in \mathbb{C}$, with $\zeta_m = e^{\frac{2i\pi}{m}}$. (For $m = 2^{k+1}$, we have $\phi_m(x) = x^n + 1$.)

• Canonical embedding: $\sigma_K : \alpha \in K \mapsto ((\sigma(\alpha))_{\sigma} = (\alpha(\zeta_m^j))_j)$.

Idea: replace \mathbb{Z}^n by $R = \mathbb{Z}[x]/\langle x^n + 1 \rangle$

R is isomorph to \mathbb{Z}^n

Let
$$a \in R$$
, we have $a(x) = a_0 + a_1x + \ldots + a_{n-1}x^{n-1}$,
the isomorphism $R \to \mathbb{Z}^n$ associate

the polynomial $a \in R$ to the vector $\mathbf{a} =$

$$\begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \end{bmatrix} \in \mathbb{Z}^n.$$

Idea: replace \mathbb{Z}^n by $R = \mathbb{Z}[x]/\langle x^n + 1 \rangle$

Let's look at the product of two polynomials $x^n + 1$

•
$$a(x) = a_0 + a_1 \cdot x + \ldots + a_{n-1} \cdot x^{n-1}$$

• $s(x) = s_0 + a_1 \cdot x + \ldots + a_{n-1} \cdot x^{n-1}$

Using matrices, it gives the following block:

$$\begin{bmatrix} a_0 & -a_{n-1} & \cdots & -a_2 & -a_1 \\ a_1 & a_0 & \cdots & -a_3 & -a_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n-2} & a_{n-3} & \cdots & a_0 & -a_{n-1} \\ a_{n-1} & a_{n-2} & \cdots & a_1 & a_0 \end{bmatrix} \begin{bmatrix} s_0 \\ s_1 \\ \vdots \\ s_{n-2} \\ s_{n-1} \end{bmatrix}$$

Module LWE

Let *K* be a number field of degree *n* with *R* its ring of integers. Think of *K* as $\mathbb{Q}[x]/(x^n+1)$ and of *R* as $\mathbb{Z}[x]/(x^n+1)$ for $n = 2^k$.

Replace \mathbb{Z} by R, and \mathbb{Z}_q by $R_q = R/qR$.

Special case d = 1 is Ring-LWE

Module SIS and LWE

$$\begin{split} R &= \mathbb{Z}[x]/\langle x^n + 1 \rangle \ \text{ and } R_q = R/qR. \\ \text{Module-SIS}_{q,m,\beta} \\ \text{Given } \mathbf{a}_1, \dots, \mathbf{a}_m \in R_q^d \text{ independent and uniform, find } z_1, \dots, z_m \in R \text{ such that } \\ \sum_{i=1}^m \mathbf{a}_i \cdot z_i = 0 \mod q \text{ and } 0 < \|\mathbf{z}\| \leq \beta. \end{split}$$

Let $\alpha > 0$ and $\mathbf{s} \in (R_q)^d$, the distribution $A_{\mathbf{s}, D_{R, \alpha q}}^{(M)}$ is:

▶ $\mathbf{a} \in (R_q)^d$ uniform,

• e sampled from $D_{R,\alpha q}$,

Outputs: $(\mathbf{a}, \langle \mathbf{a}, \mathbf{s} \rangle + e)$.

Module-LWE $_{q,\nu_{\alpha}}$

Let $\mathbf{s} \in (R_q)^d$ uniform, distinguish between an arbitrary number of samples from $A_{\mathbf{s},D_{R,\alpha q}}^{(M)}$ or the same number from $U((R_q)^d \times R_q)$.

Ideals and modules

- $R = \mathbb{Z}[x]/\langle x^n + 1 \rangle$ and $R_q = R/qR$.
 - ► An ideal *I* of *R* is an additive subgroup of *R* closed under multiplication by every elements of *R*.
 - ► As *R* is isomorph to \mathbb{Z}^n , any ideal $I \in R$ defines an integer lattice $\Lambda(\mathbf{B})$ where $\mathbf{B} = \{g \mod x^n + 1 : g \in I\}.$
 - A subset $M \subseteq K^d$ is an *R*-module if it is closed under addition and multiplication by elements of *R*.
 - A finite-type *R*-module: $M \subseteq R^d : \sum_{i=1}^D R \cdot \mathbf{b}_i, (\mathbf{b}_i) \in R^d$,
 - $M = \sum_{i=1}^{d} I_i \cdot \mathbf{b}_i$ where I_i are ideals of R and (I_i, \mathbf{b}_i) is a pseudo-basis of M.
 - ► As ideals, any module defines an integer module lattice.

Hardness of Ring Learning With Errors problem

• Applebaum, Cash, Peikert, Sahai 2009 - same error and secret

Hardness of Module Learning With Errors problem

Applebaum, Cash, Peikert, Sahai 2009 - same error and secret
 Boudgoust, Jeudy, Roux-Langlois, Wen 2022: short error and secret distributions

Module or Rings?

Hardness of the problem

Module or Rings?

Choice of parameters

- Example of Ring $R_q = \mathbb{Z}_q[x]/\langle x^n + 1 \rangle$
- Constraints on parameters $n = 2^k$, $q = 1 \mod 2n \dots$
- An example of parameter set:
 - ▶ $n = 512 \Rightarrow$ 60 bits of security,
 - ▶ $n = 1024 \Rightarrow$ 140 bits of security,
 - ▶ (n = 256, d = 3) gives nd = 768 which is "in between".

Module LWE allows more flexibility.

From 2017 to 2024, NIST competition to develop new standards on post-quantum cryptography

2022 first results: 3 over 4 new standards are lattice-based

- Kyber encryption scheme based on Module-LWE,
- Dilithium signature scheme based on Module SIS and LWE,
- ► Falcon signature scheme based on NTRU and Ring-SIS.

Encryption scheme based on Ring-LWE

[Lyubashevsky, Peikert, Regev 2011]

KeyGen : The secret key is a small $s \in R$ The public key is $(a, b) = (a, b = a \cdot s + e) \in R_q^2$, with $a \leftarrow U(R_q)$ and a small $e \in R$.

Enc : Given $m \in \{0,1\}^n$, a message is a polynomial in R with coordinates in $\{0,1\}$. Sample small r, e_1, e_2 in R and output

$$(a \cdot \mathbf{r} + \mathbf{e}_1, b \cdot \mathbf{r} + \mathbf{e}_2 + \lfloor q/2 \rfloor \cdot m) \in R_q \times R_q.$$

Dec : Given $(u, v) \in R_q \times R_q$, compute

$$v - u \cdot s = (r \cdot e - s \cdot e_1 + e_2) + b\lfloor q/2 \rfloor \cdot m$$

For each coordinate of m, the plaintext is 0 if the result is closer from 0 than $\lfloor q/2 \rfloor$, and 1 otherwise.

Kyber

[Avanzi, Bos, Ducas, Kiltz, Lepoint, Lyubashevsky, Schanck, Schwabe, Seiler, Stehle]

► Kyber relies on Module-LWE,

• Use
$$R_q = \mathbb{Z}_q[x]/\langle x^{256}+1 \rangle$$
 with $q = 7681$.

- The small elements follow a binomial distribution B_{η} : For some positive integer η , sample $\{(ai, bi)\}_{i=1}^{\eta} \leftarrow (\{0, 1\}^2)^{\eta}$ and output $\sum_{i=1}^{\eta} (a_i - b_i)$.
- ► The uniform public key is generated given a *seed* and a function PARSE,
- Multiplication operations uses NTT Number Theoretic Transform which is a variant of the FFT in rings,
- Size of ciphertext is compressed by keeping only high order bits.

Performances

Current timings (ECDH) Public key around 32 bytes Efficiency comparable in terms of cycles.

			Kyber-512		
Sizes (in bytes)		Haswell cycles (ref)		Haswell cycles (avx2)	
sk:	1632	gen:	122684	gen:	33856
pk:	800	enc:	154524	enc:	45200
ct:	768	dec:	187960	dec:	34572
Kyber-768					
Sizes (in bytes)		Haswell cycles (ref)		Haswell cycles (avx2)	
sk:	2400	gen:	199408	gen:	52732
pk:	1184	enc:	235260	enc:	67624
ct:	1088	dec:	274900	dec:	53156
Kyber-1024					
Sizes (in bytes)		Haswell cycles (ref)		Haswell cycles (avx2)	
sk:	3168	gen:	307148	gen:	73544
pk:	1568	enc:	346648	enc:	97324
ct:	1568	dec:	396584	dec:	79128

Choice of parameters

Parameters used by Kyber:

▶ n = 256 and d = 2, 3, 4 giving three levels of security: 512, 768, 1024,

$$q = 7681$$

Choice of parameters

- Parameters used by Kyber:
 - ▶ n = 256 and d = 2, 3, 4 giving three levels of security: 512, 768, 1024,

$$q = 7681$$

- How do they choose the parameters?
 - ▶ By considering the LWE instance with dimension *nd*,
 - ▶ and the "lattice estimator" [Albrecht, Player, Scott 2015],

Choice of parameters

- ► Parameters used by Kyber:
 - ▶ n = 256 and d = 2, 3, 4 giving three levels of security: 512, 768, 1024,
 - ▶ q = 7681
- How do they choose the parameters?
 - ▶ By considering the LWE instance with dimension *nd*,
 - ▶ and the "lattice estimator" [Albrecht, Player, Scott 2015],
- There is no consideration of the structure!
 - ► Why?
 - Because we don't know how...

Approx Ideal SVP seems to be the easiest

Hardness of the problem

Solving Approx Ideal SVP¹

For a long time, no algorithm manages to exploit the structure of Ideal SVP.

- 2014: Quantum algorithm computing (S-)units, class groups in polynomial time! [EHKS14,BS16]
- Followed by a long series of cryptanalysis works.
 [CGS14,CDPR16,CDW17/21,PHS19,BR20,BLNR22,BL21,BEFHY22]

 $^{^1} Thanks$ to Olivier Bernard and Andrea Lesavourey for part of the slides (particularly to Olivier for the <code>tikz</code> picture!)

Algebraic cryptanalysis of Ideal-SVP

1. Schnorr's hierarchy (unstructured)

Algebraic cryptanalysis of Ideal-SVP

- 1. Schnorr's hierarchy (unstructured)
- 2. CDW algorithm [Cramer, Ducas, Wesolowski 17/21]: uses short *Stickelberger* relations.

Algebraic cryptanalysis of Ideal-SVP

- 1. Schnorr's hierarchy (unstructured)
- 2. CDW algorithm [Cramer, Ducas, Wesolowski 17/21]: uses short *Stickelberger* relations.
- PHS and Twisted-PHS [Pellet-Mary, Hanrot, Stehlé 19, Bernard, Roux-Langlois 20, Bernard, Lesavouvey, Nguyen, Roux-Langlois 22]: *S-unit attacks*.

Solving Approx Ideal SVP

Consider an intermediate problem.

Short Generator Principal ideal Problem (SG-PIP):

Given a principal ideal I = (g) such that g is short, retrieve g.

```
<sup>2</sup>Log<sub>K</sub> : x \mapsto (\ln |\sigma_1(x)|, \dots, \ln |\sigma_n(x)|)
```

Solving Approx Ideal SVP

Consider an intermediate problem.

Short Generator Principal ideal Problem (SG-PIP): Given a principal ideal I = (q) such that q is short, retrieve q.

- 1. Find a generator h = gu of I ($u \in \mathcal{O}_K^{\times}$) Can be done in polynomial time with a quantum computer
- 2. Find g given h. Use the Log-embedding² and the Log-unit lattice $Log(\mathcal{O}_{K}^{\times})$

²Log_K : $x \mapsto (\ln |\sigma_1(x)|, \dots, \ln |\sigma_n(x)|)$

Solving Approx Ideal SVP

Consider an intermediate problem.

Short Generator Principal ideal Problem (SG-PIP): Given a principal ideal I = (q) such that q is short, retrieve q.

- 1. Find a generator h = gu of I ($u \in \mathcal{O}_K^{\times}$) Can be done in polynomial time with a quantum computer
- Find g given h.
 Use the Log-embedding² and the Log-unit lattice Log(O[×]_K)
- ► [Cramer, Ducas, Peikert, Regev 2016] quantum polynomial-time or classical $2^{n^{2/3+\epsilon}}$ -time algorithm to solve SG-PIP over cyclotomic fields.

²Log_K : $x \mapsto (\ln |\sigma_1(x)|, \dots, \ln |\sigma_n(x)|)$

Let *I* be a challenge ideal.

1. Quantum decomposition Apply Log_K $Log_K(h) = Log_K(g) + Log_K(u) \in$ $Log_K(g) + Log_K(\mathcal{O}_K^{\times})$

$$h = g \cdot u$$

Let *I* be a challenge ideal.

- 1. Quantum decomposition Apply Log_K $Log_K(h) = Log_K(g) + Log_K(u) \in$ $Log_K(g) + Log_K(\mathcal{O}_K^{\times})$
- 2. Short coset representative ?

$$h = g \cdot u$$

Let *I* be a challenge ideal.

- 1. Quantum decomposition Apply Log_K $Log_K(h) = Log_K(g) + Log_K(u) \in$ $Log_K(g) + Log_K(\mathcal{O}_K^{\times})$
- 2. Short coset representative ?

$$h = g \cdot u$$

Let *I* be a challenge ideal.

- 1. Quantum decomposition Apply Log_K $Log_K(h) = Log_K(g) + Log_K(u) \in$ $Log_K(g) + Log_K(\mathcal{O}_K^{\times})$
- 2. Short coset representative ?

$$h = g \cdot u$$

Let *I* be a challenge ideal.

- 1. Quantum decomposition Apply Log_K $Log_K(h) = Log_K(g) + Log_K(u) \in$ $Log_K(g) + Log_K(\mathcal{O}_K^{\times})$
- 2. Short coset representative ?
- 3. Hope this is *short* in *I*.

 $\begin{aligned} h &= g \cdot u \\ (h/u) &= g \end{aligned}$

SVP of general ideals

Consider K a number field, I an ideal and S a set of prime ideals.

- 1. Compute a S-generator of I, i.e. h s.t. $(h) = I \prod_{p \in S} p^{v_p}$
- **2**. Reduce h

Two variants for step 2.

- 1. First reduce $\prod_{\mathfrak{p}} \mathfrak{p}^{v_{\mathfrak{p}}}$; then find a generator with the Log-embedding.
 - $\rightarrow\,$ [Cramer, Ducas, Wesolowski 2017] cyclotomic fields, subexponential approximation factor
- 2. Use the Log-S-embedding³ to reduce everything.
 - → [Pellet-Mary, Hanrot, Stehlé 2019] all number fields, exponential preprocessing, subexponential approximation factor
 - \rightarrow [Bernard, Roux-Langlois 2020] other def. of $\mathrm{Log}_{K,S},$ same asymptotic results, good results in practice for cyclotomics up to dimensions 70.

 ${}^{3}\mathrm{Log}_{K,S}: x \mapsto (\ln|\sigma_{1}(x)|, \dots, \ln|\sigma_{n}(x)|, -v_{\mathfrak{p}_{1}}(x)\ln(N(\mathfrak{p}_{1})), \dots, -v_{\mathfrak{p}_{r}}(x)\ln(N(\mathfrak{p}_{r})))$

Bernard, Lesavourey, Nguyen, Roux-Langlois (2022)

Can we extend these good results to higher dimensions ?

Two major obstructions for experiments:

- Decomposition $(h) = I \cdot \prod_{\mathfrak{p} \in S} \mathfrak{p}^{v_{\mathfrak{p}}}$
- Group of S-units $(s) = \prod_{\mathfrak{p} \in S} \tilde{\mathfrak{p}}^{e_{\mathfrak{p}}}$

Bernard, Lesavourey, Nguyen, Roux-Langlois (2022)

Can we extend these good results to higher dimensions ?

Two major obstructions for experiments:

- Decomposition $(h) = I \cdot \prod_{\mathfrak{p} \in S} \mathfrak{p}^{v_{\mathfrak{p}}}$
- Group of S-units $(s) = \prod_{\mathfrak{p} \in S} \mathfrak{p}^{e_{\mathfrak{p}}}$

Use new results of Bernard and Kučera (2021) on Stickelberger ideal

- Obtain explicit short basis of S_m
- It is constructive: the associated generators can be computed efficiently
- Free family of short *S*-units

Bernard, Lesavourey, Nguyen, Roux-Langlois (2022)

Can we extend these good results to higher dimensions ?

Two major obstructions for experiments:

- Decomposition $(h) = I \cdot \prod_{\mathfrak{p} \in S} \mathfrak{p}^{v_{\mathfrak{p}}}$
- Group of S-units $(s) = \prod_{\mathfrak{p} \in S} \mathfrak{p}^{e_{\mathfrak{p}}}$

Use new results of Bernard and Kučera (2021) on Stickelberger ideal

- Obtain explicit short basis of S_m
- It is constructive: the associated generators can be computed efficiently
- Free family of short S-units

Allows us to approximate $Log(\mathcal{O}_{K,S}^{\times})$ with a full-rank sublattice

- Cyclotomic units
- Explicit Stickelberger generators
- ▶ Real $S \cap K_m^+$ -units → only part sub-exponential; dimension n/2
- 2-saturation to reduce the index

Cyclotomic fields with almost all conductors, up to dimension 210.

Simulated targets in the Log-space

⁴Code available at https://github.com/ob3rnard/Tw-Sti.

Cyclotomic fields with almost all conductors, up to dimension 210.

Simulated targets in the Log-space

Cyclotomic fields with almost all conductors, up to dimension 210.

Simulated targets in the Log-space

Cyclotomic fields with almost all conductors, up to dimension 210.

Simulated targets in the Log-space

Cyclotomic fields with almost all conductors, up to dimension 210.

Simulated targets in the Log-space

Using LWE to build constructions in practice

Conclusion

- Lattice-based cryptography allows to build efficient constructions such as encryption or signature schemes with a security based on the hardness of difficult algorithmic problems on lattices.
- Three schemes (Kyber, Dilithium and Falcon) will be standardise by the NIST, together with a hash-based signature. Two of them are based on Module-LWE.
- ► Approx Ideal SVP seems to be the easier problem to try to solve → the results of recent attacks does not impact the security of lattice-based constructions.