USING STRUCTURED VARIANTS IN LATTICE-BASED CRYPTOGRAPHY

Adeline Roux-Langlois

Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, Caen, FRANCE

Cryptography

Let's start with a simple example: you want to send a message to someone.
Two possibilities:

- Either you share a secret key (AES...),
- Either you don't \Rightarrow public key cryptography.

Cryptography

Let's start with a simple example: you want to send a message to someone. Two possibilities:

- Either you share a secret key (AES...),
- Either you don't \Rightarrow public key cryptography.

Public key cryptography

Public key cryptography

Public key cryptography

- Examples: factorisation (RSA), discrete log (El Gamal) ...
- Solving those problems needs an exponential complexity on a classical computer.

Public key cryptography

- Examples: factorisation (RSA), discrete log (EI Gamal) ...
- Solving those problems needs an exponential complexity on a classical computer.
- Shor's algorithm (1997): polynomial time on a quantum computer.

Context

New goals in cryptography

- Resisting to quantum computers,
- Need of new functionalities,
\rightarrow need alternatives
- Post-quantum secure,
- Efficient,
- New functionalities, different types of constructions.

NIST competition

From 2017 to 2024, NIST competition to develop new standards on post-quantum cryptography

Total: 69 accepted submissions (round 1)

- Signature (5 lattice-based),
- Public key encryption / Key Encapsulation

Mechanism (21 lattice-based)
Other candidates: 17 code-based PKE, 7 multivariate signatures, 3 hash-based signatures, 7 from "other" assumptions (isogenies, PQ RSA ...) and 4 attacked +5 withdrawn.
\Rightarrow lattice-based constructions are very serious candidates
5 over 7 finalists are lattice-based
2022 first results: $\mathbf{3}$ over 4 new standards are lattice-based

Why lattice-based cryptography?

- Likely to resist attacks from quantum computers,
- Strong security guarantees, from well-understood hard problems on lattices.
- Novel and powerful cryptographic functionalities,
- Public key encryption and signature scheme (practical),
- Advanced signature (group signature ...), and encryption scheme (IBE, ABE, ...),
- Fully homomorphic encryption.
- Efficiency

Today: an introduction to lattice-based cryptography

1. Lattices

- Definition
- Hard problem on lattices

2. The Learning With Errors problem

- Definition
- Difficulty
- How to encrypt using LWE?

3. Practical scheme

- Adding structure
- Module-LWE
- Kyber encryption scheme

Lattices

Lattice
$\mathcal{L}(\mathbf{B})=\left\{\sum_{1=i}^{n} a_{i} \mathbf{b}_{i}, a_{i} \in \mathbb{Z}\right\}$, where the $\left(\mathbf{b}_{i}\right)_{1 \leq i \leq n}$'s, linearly independent vectors, are a basis of $\mathcal{L}(\mathbf{B})$.

Lattices

- Several basis define a lattice, some are better.

Lattices

- Several basis define a lattice, some are better.
- The first minimum λ_{1} is the norm of the smallest non-zero vector.

Lattices

- Several basis define a lattice, some are better.
- The first minimum λ_{1} is the norm of the smallest non-zero vector.
- The n-th minima λ_{n} is the radius of a sphere which contains n linearly independent shortest vectors of the lattices.

Lattices

- Several basis define a lattice, some are better.
- The first minimum λ_{1} is the norm of the smallest non-zero vector.
- The n-th minima λ_{n} is the radius of a sphere which contains n linearly independent shortest vectors of the lattices.
- The fundamental parallelepiped is defined by $\mathcal{P}(\mathbf{B})=\left\{\sum_{i=1}^{n} c_{i} \mathbf{b}_{i}: c_{i} \in[0,1)\right\}$. Its volume defines the volume of the lattice: $\operatorname{det}(\Lambda)=|\operatorname{det}(\mathbf{B})|$.
- The first minimum λ_{1} is the norm of the smallest non-zero vector.
- The n-th minima λ_{n} is the radius of a sphere which contains n linearly independent shortest vectors of the lattices.
- The fundamental parallelepiped is defined by $\mathcal{P}(\mathbf{B})=\left\{\sum_{i=1}^{n} c_{i} \mathbf{b}_{i}: c_{i} \in[0,1)\right\}$. Its volume defines the volume of the lattice: $\operatorname{det}(\Lambda)=|\operatorname{det}(\mathbf{B})|$.
- Minkowski Theorem:

$$
\begin{gathered}
\lambda_{1}(\Lambda) \leq \sqrt{n} \cdot \operatorname{det}(\Lambda)^{1 / n} \\
\left(\prod_{i=1}^{n} \lambda_{i}(\Lambda)\right)^{1 / n} \leq \sqrt{n} \cdot \operatorname{det}(\Lambda)^{1 / n}
\end{gathered}
$$

Shortest Vector Problem (SVP)

Given a lattice $\mathcal{L}(\mathbf{B})$ of dimension n :

Output: find the shortest non-zero vector $\mathbf{x} \in \mathcal{L}(\mathbf{B})$.

Approx Shortest Vector Problem (Approx SVP ${ }_{\gamma}$)

Given a lattice $\mathcal{L}(\mathbf{B})$ of dimension n :

Output: find a non-zero vector $\mathbf{x} \in \mathcal{L}(\mathbf{B})$ such that $\|\mathbf{x}\| \leq \gamma \lambda_{1}(\mathcal{L}(\mathbf{B}))$

Gap Shortest Vector Problem (GapSVP)

Given a lattice $\mathcal{L}(\mathbf{B})$ of dimension n and $d>0$:
Output: • YES: there is $\mathbf{z} \in \mathcal{L}(\mathbf{B})$ non-zero such that $\|\mathbf{z}\|<d$,

- NO: for all non-zero vectors $\mathbf{z} \in \mathcal{L}(\mathbf{B}):\|\mathbf{z}\| \geq d$.

Gap Shortest Vector Problem (GapSVP ${ }_{\gamma}$)

Given a lattice $\mathcal{L}(\mathbf{B})$ of dimension n and $d>0$:
Output: • YES: there is $\mathbf{z} \in \mathcal{L}(\mathbf{B})$ non-zero such that $\|\mathbf{z}\|<d$,

- NO: for all non-zero vectors $\mathbf{z} \in \mathcal{L}(\mathbf{B}):\|\mathbf{z}\| \geq \gamma d$.

Closest Vector Problem

Given a lattice $\mathcal{L}(\mathbf{B})$ of dimension n and $\mathbf{t} \in \mathbb{Z}^{m}$:

Output: find $\mathbf{x} \in \mathbb{Z}^{n}$ minimizing $\|\mathbf{B x}-\mathbf{t}\|$.
Approx variant: find $\mathbf{x} \in \mathbb{Z}^{n}$ such that $\|\mathbf{B x}-\mathbf{t}\| \leq \gamma \cdot \operatorname{dist}(\mathbf{t}, \Lambda(\mathbf{B}))$.

Closest Vector Problem

Given a lattice $\mathcal{L}(\mathbf{B})$ of dimension n and $\mathbf{t} \in \mathbb{Z}^{m}$:

Output: find $\mathbf{x} \in \mathbb{Z}^{n}$ minimizing $\|\mathbf{B x}-\mathbf{t}\|$.
Approx variant: find $\mathbf{x} \in \mathbb{Z}^{n}$ such that $\|\mathbf{B x}-\mathbf{t}\| \leq \gamma \cdot \operatorname{dist}(\mathbf{t}, \Lambda(\mathbf{B}))$.

How hard is it to solve those problems?

Hardness of Approx SVP γ_{γ}

Conjecture

There is no polynomial time algorithm that approximates this lattice problem and its variants to within polynomial factors.

At the heart of lattice-based cryptography the Learning With Errors problem

- Introduced by Regev in 2005

Problem: solve a linear system with m equations and n variables ($m \geq n$), with noise, and modulo an integer q.

Find $\left(s_{1}, s_{2}, s_{3}, s_{4}, s_{5}\right)$ such that:

$$
\begin{array}{rl}
s_{1}+22 s_{2}+17 s_{3}+2 s_{4}+s_{5} & \approx 16 \bmod 23 \\
3 s_{1}+2 s_{2}+11 s_{3}+7 s_{4}+8 s_{5} & \approx 17 \bmod 23 \\
15 s_{1}+13 s_{2}+10 s_{3}+3 s_{4}+5 s_{5} & \approx \\
17 s_{1}+11 s_{2}+20 s_{3}+9 s_{4}+3 s_{5} & \approx 8 \bmod 23 \\
2 s_{1}+14 s_{2}+13 s_{3}+6 s_{4}+7 s_{5} & \approx \\
4 s_{1}+21 s_{2}+9 s_{3}+5 s_{4}+s_{5} & \approx \\
11 s_{1}+12 s_{2}+5 s_{3}+s_{4}+9 s_{5} & \approx \\
18 & 7 \bmod 23 \\
\bmod 23
\end{array}
$$

Gaussian distributions

Continuous Gaussian distribution of center c and parameter s :

$$
\begin{aligned}
& D_{s, c}(x) \sim \frac{1}{s} \exp \left(-\pi \frac{\|x-c\|^{2}}{s^{2}}\right) \\
& \forall x \in \mathbb{R}
\end{aligned}
$$

Gaussian distributions

Continuous Gaussian distribution of center c and parameter s :

$$
\begin{aligned}
& D_{s, c}(x) \sim \frac{1}{s} \exp \left(-\pi \frac{\|x-c\|^{2}}{s^{2}}\right) \\
& \forall x \in \mathbb{R}
\end{aligned}
$$

Gaussian distribution on \mathbb{Z} of center c with parameter s :

$$
\left\lvert\, \begin{aligned}
& D_{\mathbb{Z}, s, c}(x) \sim \frac{1}{s} \exp \left(-\pi \frac{\|x-c\|^{2}}{s^{2}}\right) \\
& \forall x \in \mathbb{Z}
\end{aligned}\right.
$$

- It is not the rounding of the continuous Gaussian.
- We now how to sample it efficiently.
- Almost all samples are in $[-t \cdot s,+t \cdot s]$ for a constant t, if s is not to small.

Discrete gaussian on lattices

Theorem (Gentry, Peikert, Vaikuntanathan 2008)
There exists a PPT algorithm which, given a basis \mathbf{B} of a lattice $\Lambda(\mathbf{B})$ of dimension n, a parameter $s \geq\|\tilde{\mathbf{B}}\| \cdot \omega(\sqrt{\log n})$, an a center $c \in \mathbb{R}^{n}$, outputs a sample from a distribution statistically close from $D_{\Lambda, s, c}$.

Intuition: sampling on \mathbb{Z} is quite easy, it is more complicated on a general lattice.

Important: Better is the basis (with short vectors), smaller is the parameter we can sample with, and then have short vectors.

Smoothing parameter

Definition
For all $\varepsilon>0$, the smoothing parameter of a lattice Λ with parameter ε is the smallest s such that $\rho_{1 / s}\left(\Lambda^{*} \backslash\{0\}\right) \leq \varepsilon$, we denote it by $\eta_{\varepsilon}(\Lambda)$.

When the Gaussian's parameter is bigger than smoothing parameter, the discrete gaussian distribution has the same properties than a continuous one. In particular:

- the discrete gaussian distribution $D_{\Lambda, s, c}$ is mainly concentrated in a sphere of radius $\sqrt{n} s$ around its center c.
If $s>\eta_{\varepsilon}(\Lambda)$,

$$
\operatorname{Pr}_{x \hookleftarrow D_{\Lambda, s, c}}[\|x-c\|>\sqrt{n} s] \leq 2^{-n} .
$$

- Addition: if $s, t>\eta_{\varepsilon}(\Lambda)$, we can also add two gaussian on the same lattice :

$$
D_{\Lambda, s}+D_{\Lambda, t}=D_{\Lambda, \sqrt{s^{2}+t^{2}}} .
$$

Size of the smoothing parameter

The size of the smooting parameter can be compared to the size of the n-th minima.

- Micciancio, Regev 2004 and Regev 2005:

For any lattice Λ and $\varepsilon>0$

$$
\sqrt{\frac{\ln (1 / \varepsilon)}{\pi}} \cdot \frac{\lambda_{n}(\Lambda)}{n} \leq \eta_{\varepsilon}(\Lambda) \leq \sqrt{\frac{\ln (2 n(1+1 / \varepsilon))}{\pi}} \cdot \lambda_{n}(\Lambda)
$$

The Learning With Errors problem [Regev 05]

Let $n>1, q \geq 2$ and $\alpha \in] 0,1[$.
For any $\mathbf{s} \in \mathbb{Z}_{q}^{n}$, we define the distribution $\mathcal{D}_{n, q, \alpha}(\mathbf{s})$ by:
$(\mathbf{a},\langle\mathbf{a}, \mathbf{s}\rangle+e)$, with $\mathbf{a} \leftarrow U\left(\mathbb{Z}_{q}^{n}\right)$ and $e \leftarrow D_{\mathbb{Z}, \alpha q}$.

- Search LWE For any \mathbf{s} : find \mathbf{s} given an arbitrary number of samples from $\mathcal{D}_{n, q, \alpha}(\mathbf{s})$.
- Decision LWE

With non-negligible probability on $\mathbf{s} \leftarrow U\left(\mathbb{Z}_{q}^{n}\right)$: distinguish between the distributions $\mathcal{D}_{n, q, \alpha}(\mathbf{s})$ and $U\left(\mathbb{Z}_{q}^{n+1}\right)$.

Decision version

Let $n>1, q \geq 2$ and $\alpha \in] 0,1[$.
For any $\mathbf{s} \in \mathbb{Z}_{q}^{n}$, we define the distribution $\mathcal{D}_{n, q, \alpha}(\mathbf{s})$ by:

$$
(\mathbf{a},\langle\mathbf{a}, \mathbf{s}\rangle+e), \text { with } \mathbf{a} \leftarrow U\left(\mathbb{Z}_{q}^{n}\right) \text { and } e \leftarrow D_{\mathbb{Z}, \alpha q}
$$

- Decision LWE With non-negligible probability on $\mathbf{s} \leftarrow U\left(\mathbb{Z}_{q}^{n}\right)$: distinguish between the distributions $\mathcal{D}_{n, q, \alpha}(\mathbf{s})$ and $U\left(\mathbb{Z}_{q}^{n+1}\right)$.

We consider an oracle \mathcal{O} which produces independant samples, all from the same distribution being:

- either $\mathcal{D}_{n, q, \alpha}(\mathbf{s})$ for a fixed \mathbf{s},
- either $U\left(\mathbb{Z}_{q}^{n+1}\right)$.

The goal is to decide which one with a non-negligeable advantage.

The Learning With Errors problem

$\mathbf{L W E}_{\alpha, q}^{n}$

- $\mathbf{A} \leftarrow U\left(\mathbb{Z}_{q}^{m \times n}\right)$,
- $\mathbf{s} \leftarrow U\left(\mathbb{Z}_{q}^{n}\right)$,
- $\mathrm{e} \leftarrow D_{\mathbb{Z}^{m}, \alpha q}$, small compared to q.

Discrete Gaussian error $D_{\mathbb{Z}, \alpha q}$

Search version: Given ($\mathbf{A}, \mathbf{b}=\mathbf{A s}+\mathbf{e}$), find \mathbf{s}.
Decision version: Distinguish from (\mathbf{A}, \mathbf{b}) with \mathbf{b} uniform.

Equivalence between the two variants

LWE sample: $(\mathbf{A}, \mathbf{b}=\mathbf{A} \mathbf{s}+\mathbf{e} \bmod q)$ with short e .

- Easy reduction : from decision to search
- find $\mathbf{s} \Rightarrow$ distinguish \mathbf{b} uniform or \mathbf{b} LWE sample,

Equivalence between the two variants

LWE sample: $(\mathbf{A}, \mathbf{b}=\mathbf{A} \mathbf{s}+\mathbf{e} \bmod q)$ with short e .

- Easy reduction : from decision to search
- find $\mathbf{s} \Rightarrow$ distinguish \mathbf{b} uniform or \mathbf{b} LWE sample,
- Given (A, b), find the oracle to find \mathbf{s}, compute \mathbf{b} - As:

Equivalence between the two variants

LWE sample: $(\mathbf{A}, \mathbf{b}=\mathbf{A} \mathbf{s}+\mathbf{e} \bmod q)$ with short e .

- Easy reduction : from decision to search
- find $\mathbf{s} \Rightarrow$ distinguish \mathbf{b} uniform or \mathbf{b} LWE sample,
- Given (A, b), find the oracle to find \mathbf{s}, compute \mathbf{b} - As:
- if it is small, then \mathbf{b} is an LWE sample,
- if it looks uniform, then \mathbf{b} is uniform.

Equivalence between the two variants

LWE sample: $(\mathbf{A}, \mathbf{b}=\mathbf{A} \mathbf{s}+\mathbf{e} \bmod q)$ with short e .

- Easy reduction : from decision to search
- find $\mathbf{s} \Rightarrow$ distinguish \mathbf{b} uniform or \mathbf{b} LWE sample,
- Given (A, b), find the oracle to find \mathbf{s}, compute \mathbf{b} - As:
- if it is small, then \mathbf{b} is an LWE sample,
- if it looks uniform, then \mathbf{b} is uniform.
- 2nd reduction: from search to decision
- Distinguish \mathbf{b} uniform from \mathbf{b} LWE sample \Rightarrow find \mathbf{s},

Equivalence between the two variants

LWE sample: $(\mathbf{A}, \mathbf{b}=\mathbf{A} \mathbf{s}+\mathbf{e} \bmod q)$ with short e .

- Easy reduction : from decision to search
- find $\mathbf{s} \Rightarrow$ distinguish \mathbf{b} uniform or \mathbf{b} LWE sample,
- Given (A, b), find the oracle to find \mathbf{s}, compute \mathbf{b} - As:
- if it is small, then \mathbf{b} is an LWE sample,
- if it looks uniform, then \mathbf{b} is uniform.
- 2nd reduction: from search to decision
- Distinguish buniform from \mathbf{b} LWE sample \Rightarrow find \mathbf{s},
- Given (\mathbf{A}, \mathbf{b}) use the oracle to find each coordinate of \mathbf{s} : for all s_{1}^{*}, choose u uniform in \mathbb{Z}_{q} and modify (\mathbf{A}, \mathbf{b}) as follow:

$$
(\mathbf{a}, b)+\left(u, 0, \ldots, 0, u s_{1}^{*}\right)=\left(\mathbf{a}^{\prime},\left\langle\mathbf{a}^{\prime}, \mathbf{s}\right\rangle+e+u\left(s_{1}^{*}-s_{1}\right)\right), .
$$

- if $s_{1}^{*}=s_{1}$ it stays a LWE sample,
- else \mathbf{b} will be uniform.

Short Integer Solution problem [Ajtai 1996]

For $\mathbf{A} \leftarrow U\left(\mathbb{Z}_{q}^{m \times n}\right)$:

Goal: Given $\mathbf{A} \leftarrow U\left(\mathbb{Z}_{q}^{m \times n}\right)$, find \mathbf{X} s.t. $0<\|\mathbf{x}\| \leq \beta$.

Goal: Given (A,As+e), find \mathbf{s}.

Short Integer Solution problem [Ajtai 1996]

$$
\text { For } \mathbf{A} \leftarrow U\left(\mathbb{Z}_{q}^{m \times n}\right):
$$

Hardness of LWE

- Exhaustive search
- Try all the $\mathbf{s} \in \mathbb{Z}_{q}^{n} \rightarrow$ is \mathbf{b} - As small?
- \Rightarrow cost around q^{n}.

Hardness of LWE

- Exhaustive search
- Try all the $\mathbf{s} \in \mathbb{Z}_{q}^{n} \rightarrow$ is \mathbf{b} - As small?
- \Rightarrow cost around q^{n}.
- Other possibility: guess the n first errors, find $\mathbf{s} \rightarrow$ is \mathbf{b} - As small?
- \Rightarrow cost around $(\alpha q \sqrt{n})^{n}$.

Hardness of LWE

- Exhaustive search
- Try all the $\mathbf{s} \in \mathbb{Z}_{q}^{n} \rightarrow$ is \mathbf{b} - As small?
- \Rightarrow cost around q^{n}.
- Other possibility: guess the n first errors, find $\mathbf{s} \rightarrow$ is \mathbf{b} - As small?
- \Rightarrow cost around $(\alpha q \sqrt{n})^{n}$.
- How to do better?
- LWE is a lattice problem: consider

$$
\Lambda_{q}(\mathbf{A})=\left\{\mathbf{y} \in \mathbb{Z}^{m}: \mathbf{y}=\mathbf{A s} \bmod q \text { for } \mathbf{s} \in \mathbb{Z}^{n}\right\} .
$$

Solving LWE \Leftrightarrow solving CVP in this lattice.

- Cost: $\left(\frac{n \log q}{\log ^{2} \alpha}\right)^{\frac{n \log q}{\log ^{2} \alpha}}$.

Hardness of the Learning With Errors problem

Worst-case to averagecase reduction

- Regev 2005 - quantum
- Peikert 2009 - classical q exp
- Brakerski, Langlois, Peikert Regev, Stehlé 2013 - classical

LWE variants

Choose another distribution for the secret or the error.
Regev 2009: uniform secret and gaussian error.

- Gaussian (continue, discretize, discrete ...),
- Uniform in small interval,
- Binary under conditions.
- Same distribution as the error: in particular Gaussian,
- Binary (Unif in $\{0,1\}^{n}$),
- Entropic.

Using LWE to build provable constructions - theory

Public key encryption - definition

An encryption scheme is defined by three algorithms (KeyGen, Enc, Dec):

- The key generation algorithm KeyGen takes as input a security parameter λ and outputs the public and the secret keys $(p k, s k)$.
- The encryption algorithm Enc takes as input the public key $p k$ and a message m and outputs $c=\operatorname{Enc}(p k, m)$,
- The decryption algorithm Dec takes as input the secret key $s k$ and a ciphertext c and outputs $m=\operatorname{Dec}(s k, c)$,
such that $\operatorname{Dec}(s k,(\operatorname{Enc}(p k, m))=m$.

Regev's encryption scheme

- Parameters: $n, m, q \in \mathbb{Z}, \alpha \in \mathbb{R}$,
- Keys: $\mathbf{s k}=\mathbf{s}$ and $\mathrm{pk}=(\mathbf{A}, \mathbf{b})$, with $\mathbf{b}=\mathbf{A} \mathbf{s}+\mathbf{e} \bmod q$ where $\mathbf{s} \hookleftarrow U\left(\mathbb{Z}_{q}^{n}\right), \mathbf{A} \hookleftarrow U\left(\mathbb{Z}_{q}^{m \times n}\right), \mathrm{e} \hookleftarrow D_{\mathbb{Z}^{m}, \alpha q}$.

Regev's encryption scheme

- Parameters: $n, m, q \in \mathbb{Z}, \alpha \in \mathbb{R}$,
- Keys: $\mathbf{s k}=\mathbf{s}$ and $\mathrm{pk}=(\mathbf{A}, \mathbf{b})$, with $\mathbf{b}=\mathbf{A} \mathbf{s}+\mathbf{e} \bmod q$ where $\mathbf{s} \hookleftarrow U\left(\mathbb{Z}_{q}^{n}\right), \mathbf{A} \hookleftarrow U\left(\mathbb{Z}_{q}^{m \times n}\right), \mathrm{e} \hookleftarrow D_{\mathbb{Z}^{m}, \alpha q}$.
- Encryption $(M \in\{0,1\})$: Let $\mathbf{r} \hookleftarrow U\left(\{0,1\}^{m}\right)$,

Regev's encryption scheme

- Parameters: $n, m, q \in \mathbb{Z}, \alpha \in \mathbb{R}$,
- Keys: $\mathbf{s k}=\mathbf{s}$ and $\mathrm{pk}=(\mathbf{A}, \mathbf{b})$, with $\mathbf{b}=\mathbf{A} \mathbf{s}+\mathbf{e} \bmod q$ where $\mathbf{s} \hookleftarrow U\left(\mathbb{Z}_{q}^{n}\right), \mathbf{A} \hookleftarrow U\left(\mathbb{Z}_{q}^{m \times n}\right), \mathrm{e} \hookleftarrow D_{\mathbb{Z}^{m}, \alpha q}$.
- Encryption $(M \in\{0,1\})$: Let $\mathbf{r} \hookleftarrow U\left(\{0,1\}^{m}\right)$,

- Decryption of (\mathbf{u}, v): compute $v-\mathbf{u}^{T} \mathbf{s}$,

If close from 0 : return 0 , if close from $\lfloor q / 2\rfloor$: return 1 .

Regev's encryption scheme

- Parameters: $n, m, q \in \mathbb{Z}, \alpha \in \mathbb{R}$,
- Keys: $\mathbf{s k}=\mathbf{s}$ and $\mathrm{pk}=(\mathbf{A}, \mathbf{b})$, with $\mathbf{b}=\mathbf{A} \mathbf{s}+\mathrm{e} \bmod q$ where $\mathbf{s} \hookleftarrow U\left(\mathbb{Z}_{q}^{n}\right), \mathbf{A} \hookleftarrow U\left(\mathbb{Z}_{q}^{m \times n}\right), \mathrm{e} \hookleftarrow D_{\mathbb{Z}^{m}, \alpha q}$.
- Encryption $(M \in\{0,1\})$: Let $\mathbf{r} \hookleftarrow U\left(\{0,1\}^{m}\right)$,

- Decryption of (\mathbf{u}, v) : compute $v-\mathbf{u}^{T} \mathbf{s}$,

LWE hard \Rightarrow Regev's scheme is IND-CPA secure.

Correction

The randomness \boldsymbol{r} is uniformly chosen in $\{0,1\}^{m}$, and e is sampled from a discrete gaussian of parameter $\alpha q \leq q /(8 m)$, then, with overwhealming probability,

$$
\left|\sum_{i \leq m} r_{i} e_{i}\right| \leq\|\mathbf{r}\| \cdot\|\mathbf{e}\| \leq \sqrt{m} \cdot \frac{q}{8 \sqrt{m}}=\frac{q}{8} .
$$

$v-\mathbf{u}^{T} \mathbf{s}$ is either close from 0 , either close from $\lfloor q / 2\rfloor$, which allows to find M.

IND-CPA security

To define the security, we use a game between a challenger and an adversary. We define two experiments Exp_{b} for $b \in\{0,1\}$:

Challenger
Adversary

$$
A d v^{C P A}(\mathcal{A})=\left|\operatorname{Pr}\left[\mathcal{A} \rightarrow^{E x p_{0}} 1\right]-\operatorname{Pr}\left[\mathcal{A} \rightarrow^{E x p_{1}} 1\right]\right| .
$$

IND-CPA security

Goal of the proof: show that if an adversary succeed in attacking the encryption scheme with a non-negligible advantage, then the challenger can use it to solve a difficult problem (here LWE).

Decision LWE can also be seen as a game:

\mathcal{C}	\mathcal{B}	
$\mathbf{A} \leftarrow U\left(\mathbb{Z}_{q}^{m \times n}\right)$		
RAND $(b=0): \mathbf{b} \leftarrow U\left(\mathbb{Z}_{q}^{m}\right)$		
LWE $(b=1): \mathbf{b}=\mathbf{A s}+\mathbf{e} \quad \xrightarrow{(\mathbf{A}, \mathbf{b})}$		

$$
\operatorname{Adv}(\mathcal{B})=|\operatorname{Pr}[\mathcal{B} \xrightarrow{R A N D} 1]-\operatorname{Pr}[\mathcal{B} \xrightarrow{L W E} 1]| .
$$

Leftover Hash Lemma

Let $m, n, q \geq 1$ be integers such that $m \geq 4 n \log q$ and q prime, and let $\mathbf{A} \hookleftarrow U\left(\mathbb{Z}_{q}^{m \times n}\right)$ and $\mathbf{r} \hookleftarrow U\left(\{0,1\}^{m}\right)$. Then $\left(\mathbf{A}, \mathbf{r}^{T} \mathbf{A}\right)$ has statistical distance $\leq 2^{-n}$ from the uniform distribution on $\mathbb{Z}_{q}^{m \times n} \times \mathbb{Z}_{q}^{n}$.

Leftover Hash Lemma

Let $m, n, q \geq 1$ be integers such that $m \geq 4 n \log q$ and q prime, and let $\mathbf{A} \hookleftarrow U\left(\mathbb{Z}_{q}^{m \times n}\right)$ and $\mathbf{r} \hookleftarrow U\left(\{0,1\}^{m}\right)$. Then $\left(\mathbf{A}, \mathbf{r}^{T} \mathbf{A}\right)$ has statistical distance $\leq 2^{-n}$ from the uniform distribution on $\mathbb{Z}_{q}^{m \times n} \times \mathbb{Z}_{q}^{n}$.

- Statistical distance : $\Delta\left(D_{1}, D_{2}\right)=\frac{1}{2} \sum_{x}\left|D_{1}(x)-D_{2}(x)\right|$.

Leftover Hash Lemma

Let $m, n, q \geq 1$ be integers such that $m \geq 4 n \log q$ and q prime, and let $\mathbf{A} \hookleftarrow U\left(\mathbb{Z}_{q}^{m \times n}\right)$ and $\mathbf{r} \hookleftarrow U\left(\{0,1\}^{m}\right)$. Then $\left(\mathbf{A}, \mathbf{r}^{T} \mathbf{A}\right)$ has statistical distance $\leq 2^{-n}$ from the uniform distribution on $\mathbb{Z}_{q}^{m \times n} \times \mathbb{Z}_{q}^{n}$.

- Statistical distance : $\Delta\left(D_{1}, D_{2}\right)=\frac{1}{2} \sum_{x}\left|D_{1}(x)-D_{2}(x)\right|$.
- For any algorithm \mathcal{A}, we have

$$
\begin{aligned}
& \left|\operatorname{Pr}\left[\mathcal{A}\left(D_{1}\right)=1\right]-\operatorname{Pr}\left[\mathcal{A}\left(D_{2}\right)=1\right]\right| \leq \Delta\left(D_{1}, D_{2}\right) . \\
& \Delta\left(D_{1}, D_{2}\right) \text { small } \Rightarrow D_{1} \text { and } D_{2} \text { are statistically indistinguishable. }
\end{aligned}
$$

Leftover Hash Lemma

Let $m, n, q \geq 1$ be integers such that $m \geq 4 n \log q$ and q prime, and let $\mathbf{A} \hookleftarrow U\left(\mathbb{Z}_{q}^{m \times n}\right)$ and $\mathbf{r} \hookleftarrow U\left(\{0,1\}^{m}\right)$. Then $\left(\mathbf{A}, \mathbf{r}^{T} \mathbf{A}\right)$ has statistical distance $\leq 2^{-n}$ from the uniform distribution on $\mathbb{Z}_{q}^{m \times n} \times \mathbb{Z}_{q}^{n}$.

- Statistical distance : $\Delta\left(D_{1}, D_{2}\right)=\frac{1}{2} \sum_{x}\left|D_{1}(x)-D_{2}(x)\right|$.
- For any algorithm \mathcal{A}, we have

$$
\left|\operatorname{Pr}\left[\mathcal{A}\left(D_{1}\right)=1\right]-\operatorname{Pr}\left[\mathcal{A}\left(D_{2}\right)=1\right]\right| \leq \Delta\left(D_{1}, D_{2}\right) .
$$

$\Delta\left(D_{1}, D_{2}\right)$ small $\Rightarrow D_{1}$ and D_{2} are statistically indistinguishable.
The LHL implies that $((\mathbf{A} \mathbf{b}), \mathbf{r}(\mathbf{A} \mathbf{b}))$ is indistinguishable from uniform.

IND-CPA security proof

Idea: we start from an LWE instance, and build an instance of the IND-CPA experiment, then we use the answer of the adversary to solve LWE.
We use the following IND-CPA game:

\mathcal{B}	\mathcal{A}		
$(s k=\mathbf{s}, p k=(\mathbf{A}, \mathbf{b}=\mathbf{A s}+\mathbf{e}) \leftarrow \operatorname{KeyGen}()$.			
chooses b			
computes $\left(c_{1}, c_{2}\right) \leftarrow \operatorname{Enc}\left(p k, m_{b}\right)$	$\xrightarrow{p k=(\mathbf{A}, \mathbf{b})}$		
$\stackrel{m_{0}, m_{1}}{\longrightarrow}$		\quad	Chooses m_{0}, m_{1},
:---:			
Computes a bit b^{\prime} if $b=b^{\prime}$ then output Win			

We want to show that if LWE is hard, then there exists a negligible function negl such that:

$$
\operatorname{Pr}[\mathcal{A} \mathrm{Win}] \leq 1 / 2+\operatorname{negl}(n)
$$

IND-CPA security proof

\mathcal{B} wants to solve decisional LWE using \mathcal{A}.

For \mathcal{B} :

- RAND: \mathbf{b} is uniform then c_{2} is uniform. \mathcal{A} cannot distinguish between the two cases, its advantage is equals to zero, the probability that \mathcal{B} outputs 1 is $1 / 2$.

$$
\operatorname{Pr}[\mathcal{B} \xrightarrow{R A N D} 1]=1 / 2,
$$

IND-CPA security proof

\mathcal{B} wants to solve decisional LWE using \mathcal{A}.

\mathcal{C}	\mathcal{B}	\mathcal{A}
RAND: \mathbf{b} unif		
LWE: $\mathbf{b}=\mathbf{A s}+\mathbf{e}$	$\xrightarrow{(\mathbf{A}, \mathbf{b})}$	
	choose b $\left(\mathbf{r}^{T} \mathbf{A}, \mathbf{r}^{T} \mathbf{b}+q / 2 \cdot m_{b}\right)$ if $b=b^{\prime}$ output 1 else output 0	$\stackrel{(\mathbf{A}, \mathbf{b})}{m_{0}, m_{1}}$

For \mathcal{B} :

- LWE: $\mathbf{b}=\mathbf{A s}+\mathbf{e}$ and then the ciphertext is exactly a ciphertext from the Regev encryption scheme. The probability that \mathcal{B} outputs 1 is exactly the success probability of \mathcal{A} in the encryption scheme security game (as it has the same view of the experiment).

$$
\operatorname{Pr}[\mathcal{B} \xrightarrow{L W E} 1]=\operatorname{Pr}[\mathcal{A} \text { win }],
$$

IND-CPA security proof

To conclude, we have:

$$
\begin{gathered}
\operatorname{Pr}[\mathcal{B} \xrightarrow{R A N D} 1]=1 / 2, \\
\operatorname{Pr}[\mathcal{B} \xrightarrow{L W E} 1]=\operatorname{Pr}[\mathcal{A} \text { win }],
\end{gathered}
$$

then:

$$
\begin{aligned}
\operatorname{Adv}(\mathcal{B}) & =|\operatorname{Pr}[\mathcal{B} \xrightarrow{R A N D} 1]-\operatorname{Pr}[\mathcal{B} \xrightarrow{L W E} 1]| \\
& =\mid \operatorname{Pr}[\mathcal{A} \text { win }]-1 / 2 \mid
\end{aligned}
$$

If \mathcal{A} succeeds with a non-negligible probability, then there exists ε such that $\operatorname{Pr}[\mathcal{A}$ win $] \geq 1 / 2+\varepsilon$, then $\operatorname{Adv}(\mathcal{B}) \geq \varepsilon$ which implies that there exists a distinguisher able to solve the decisional LWE problem.

Using LWE

Hardness of LWE used as a foundation for many constructions.

Solutions used today?

