On Covering Spheres with a Q-arrangement of Simplices

An inductive Characterization of Q-matrices

by Khalil Ghorbal and Christelle Kozaily (Inria, France) on March 9, 2023. JNCF

Planar Cas

Q-Covering

Characterizing Q-matrices for n=30000

» Linear Complementarity Systems (LCS)

A LCS is defined as the following system

q' = Aq + Bz + ew = q + Mz $0 \le w \perp z \ge 0$

- $* \hspace{0.1 cm} q \in \mathbb{R}^n \hspace{0.1 cm} ext{(state)}, \hspace{0.1 cm} w \in \mathbb{R}^m \hspace{0.1 cm} ext{(output)}, \hspace{0.1 cm} z \in \mathbb{R}^m \hspace{0.1 cm} ext{(input)}$
- * q' stands for the time derivative of q
- $* \hspace{0.1 in} A \in \mathbb{R}^{n imes n}, \hspace{0.1 in} B \in \mathbb{R}^{n imes m}, \hspace{0.1 in} M \in \mathbb{R}^{m imes m}, \hspace{0.1 in} e \in \mathbb{R}^n$
- This is a semi-explicit non-smooth DAE (unilateral constraints)

000000		

» Sufficient Condition For State Continuous Solution

$$q' = Aq + Bz + e$$
$$w = q + Mz$$
$$0 \le w \perp z \ge 0$$

Heemels and Schumacher 2000

If the principle minors of M are all positive then the LCS admits a unique solution continuous in x.

Planar Las

Q-Covering

Characterizing Q-matrices for n = 30000

» Linear Complementarity Problem (LCP)

A LCP(q,M) is defined as the following system

q' = Aq + Bz + ew = q + Mz $0 \le w \perp z \ge 0$

- $* w, z \in \mathbb{R}^n$ are unknown
- * *M* is a P-matrix: LCP(q, M) has a unique solution $\forall q$.
- * *M* is a Q-matrix: LCP(q, M) has a solution $\forall q$.

Planar Case

Q-Covering 000000 Characterizing Q-matrices for n = 30000

» State-of-the-art

somehow unsatisfactory...

578

J Glob Optim (2010) 46:571-580

5 Matrix class inclusion map

See Fig. 1.

Planar Casi

Q-Covering 000000 Characterizing Q-matrices for n = 30000

» Complementary Cones

*
$$C = \langle a_1, \ldots, a_n \rangle$$
, $a_i \in \{I_i, -M_i\}$

- * 2^n complementary cones C_k
- * The cones 'are' the vertices of the hypercube Q_n
- * Longest Hamiltonian cycle of Q_n has a length of 2^n
- * Cones are sewed along their common (n-1)-facets
- * *M* is a P_0 -matrix if all cones partition \mathbb{R}^n
- * (and if all cones are non-degenerate, *M* is a *P*-matrix)
- * *M* is a *Q*-matrix if all cones cover \mathbb{R}^n , i.e. $\mathbb{R}^n \subset \cup_k C_k$

Q-Covering 000000 Characterizing Q-matrices for n = 30000

» Partition

Characterizing P-matrices [1958]

M is a P-matrix if and only if the 2^n principle minors of M are positive.

- * A principle minor is the determinant of a well-oriented complementary subset of $\begin{pmatrix} I & -M \end{pmatrix}$
- Positivity ensures that the orientation of all cones is preserved
- * ... and that all cones are non-degenerate

Q-Covering 000000 Characterizing Q-matrices for n = 30000

» Partition

Characterizing P-matrices [1958]

M is a P-matrix if and only if the 2^n principle minors of M are positive.

- * A principle minor is the determinant of a well-oriented complementary subset of $\begin{pmatrix} I & -M \end{pmatrix}$
- Positivity ensures that the orientation of all cones is preserved
- * ... and that all cones are non-degenerate

Characterizing Q-matrices [?]

M is a Q-matrix if and only if ...

Q-Covering 000000 Characterizing Q-matrices for n = 30000

» Planar Q-Covering

For S^1 to be covered, the point e_2 must be surrounded in one of the following ways:

1. $S^0(e_2) \subseteq [e_1, -M_1]$ (local problem of lower dimension),

2. $e_2 \in \langle e_1, -M_2 \rangle^\circ$ (e_2 is in the interior of $\langle e_1, -M_2 \rangle$),

3. $e_2 \in \langle -M_1, -M_2 \rangle^\circ$ (e_2 is in the interior of $\langle -M_1, -M_2 \rangle$),

4. $\boldsymbol{e}_2 = -\boldsymbol{M}_1 \wedge \boldsymbol{S}^0(\boldsymbol{e}_2) \subseteq [\boldsymbol{e}_1, -\boldsymbol{M}_2]$ (\boldsymbol{e}_2 coincides with $-\boldsymbol{M}_1$).

Given $M = \begin{pmatrix} m_1 & m_2 \\ m_3 & m_4 \end{pmatrix}$, with $m_1^2 + m_3^2 = m_2^2 + m_4^2 = 1$, e_2 is surrounded if and only if one of the following holds

$$1. -m_1 < 0$$

$$2. -m_4 > 0 \wedge m_2 > 0$$

3. $-\det(M), m_2, -m_1$ have the same sign

4.
$$-m_1 = 0 \land -m_3 = 1 \land -m_4 < 0$$

Planar Cas

Q-Covering 000000 Characterizing Q-matrices for n=30000

» Q-matrices for ${m n}=2$

$$(m_2m_3m_4 < m_1m_4^2)$$

 $\lor (m_2m_4 > 0 \land m_1 = m_2 \land m_3 = m_4$
 $\lor (m_3 > 0 \land 1 + m_2 = 0 \land m_4 = 0)$
 $\lor (m_2 < 0 \land m_4 < 0)$
 $\lor (m_1m_2 > 0 \land \frac{m_2m_3}{m_1} > m_4)$

Q-Covering

Planar Cas

Q-Covering 000000 Characterizing Q-matrices for n=30000

» Spherical Geometry

w = q + Mz $0 \le w \perp z \ge 0$

- * If *q* has a solution, then so does λq for any positive λ .
- * q = 0 has an obvious solution (0, 0).
- * $u \simeq v$ if and only if $u = \lambda v$ for some positive λ
- * It suffices to study the covering on $(\mathbb{R}^n \setminus \{0\}) / \simeq$ which is homemorphic to S^{n-1} , the sphere of dimension n-1
- * Complementary cones become spherical simplices

Planar Cas

Q-Covering ○○●○○○ Characterizing Q-matrices for n=30000

» Occam's Razor

- * Q-matrix is not necessarily about a linear application
- * Positive homogeneity can be dropped
- * The vector space structure of \mathbb{R}^n is useless

Planar Cas

Q-Covering

Characterizing Q-matrices for n = 30000

» Occam's Razor

- * Q-matrix is not necessarily about a linear application
- Positive homogeneity can be dropped
- * The vector space structure of \mathbb{R}^n is useless

Deciding whether *M* is a *Q*-matrix is equivalent to a specific simplicial covering of (n - 1)-dimensional sphere following the longest Hamiltonian path of the hypercube graph Q_n .

Planar Case

Q-Covering 000000 Characterizing Q-matrices for n=30000

» Cells

Definition (Cell)

A *cell* is a closed non-empty connected subset of S^{n-1} delimited by an (n-2)-facet in each direction and such that its interior does not intersect any other facet.

Q-Covering

Characterizing Q-matrices for n=30000

» Non-constructive Characterization

Definition (Surrounded Point)

We say that a point $q \in S^{n-1}$ is *surrounded* if and only if there exists an (open) neighborhood $U \subseteq S^{n-1}$ of q such that U is covered, i.e. $U \subset \cup_k C_k$.

Q-Covering

Characterizing Q-matrices for n=30000

» Non-constructive Characterization

Definition (Surrounded Point)

We say that a point $q \in S^{n-1}$ is *surrounded* if and only if there exists an (open) neighborhood $U \subseteq S^{n-1}$ of q such that U is covered, i.e. $U \subset \cup_k C_k$.

Localization

If each cell has at least one surrounded vertex (0-simplex), then S^{n-1} is covered.

- 1. How many points one needs to check?
- 2. How to prove that a given point is surrounded?

Q-Covering

Characterizing Q-matrices for n = 30000

» Ghost Cells

Checking the original list of 2n points I_i and $-M_i$ is not enough.

Q-Covering 000000 Characterizing Q-matrices for n = 30000

» Ghost Cells

Checking the original list of 2n points I_i and $-M_i$ is not enough.

n = 3Ghost cells are covered whenever they exist.

Characterizing Q-matrices for ${\it n}=3$

Q-Covering 000000 Characterizing Q-matrices for n = 3

» Spacial Q-Covering

 e_3 could be surrounded in one of the following ways:

- 1. $S^1(e_3) \subseteq [e_1, -M_1] \oplus [e_2, -M_2]$ (local problem in lower dimension)
- 2. $e_3 \in \langle a_1, a_2, -M_3 \rangle^\circ$ (interior of a simplex)
- 3. $e_3 \in \langle e_1, -M_3 \rangle^{\circ} \wedge S^1(e_3) \subseteq [e_1, -M_3] \oplus [e_2, -M_2]$ (two simplices with $-M_3$)
- 4. $e_3 = -M_2 \wedge S^1(e_3) \subseteq [e_1, -M_3] \oplus [e_2, -M_2]$ (e_3 coincides with $-M_2$)
- 5. $e_3 \in \langle e_1, -M_3 \rangle^{\circ} \wedge -M_2 = -M_3 \wedge S^1(e_3) \subseteq [-M_1, e_2] \oplus [-M_3, e_2]$ (a mix of simplices)

Planar Cas

Q-Covering 000000 Characterizing Q-matrices for n=3

» Q-matrix with non-pointed cone

n = 3

No covering is possible with non-pointed complementary cones.

Planar Cas

Q-Covering 000000 Characterizing Q-matrices for n = 3

» Q-matrix with non-pointed cone

n = 3

No covering is possible with non-pointed complementary cones.

$$\begin{pmatrix} 2 & 1 & -1 \\ 4 & 0 & -1 \\ 3 & 0 & -1 \end{pmatrix}$$

٠

Planar Cas

Q-Covering 000000 Characterizing Q-matrices for n=3

» Ongoing/Future work

- * Ghost cells for dimensions ≥ 4
- * Is there a better way to detect/count holes? (Homology)

Thanks for attending!

More details available here https://arxiv.org/abs/2203.12333