Individual Discrete Logarithm with Sublattice Reduction

Haetham AL ASWAD and Cécile PIERROT

Journées C2, Hendaye, 11 April 2022

• $\log(T) \mod \ell$?

- $\log(T) \mod \ell$?
- Let's find R such that:

- $\log(T) \mod \ell$?
- Let's find R such that:
 - $\log(R) \equiv \log(T) \mod \ell$.

- $\log(T) \mod \ell$?
- Let's find R such that:
 - $\log(R) \equiv \log(T) \mod \ell$.
 - log(R) easier to calculate.

Discrete logarithm in finite fields

Definition

Let $\mathbb{F}_{p^n}^*$ be the multiplicative groupe of a finite field with g a generator. For $T \in \mathbb{F}_{p^n}^*$, $T = g^k$,

Discrete logarithm in finite fields

Definition

Let $\mathbb{F}_{p^n}^*$ be the multiplicative groupe of a finite field with g a generator. For $T\in\mathbb{F}_{p^n}^*$, $T=g^k$,

$$\log_g(T) := k$$

Discrete logarithm in finite fields

Definition

Let $\mathbb{F}_{p^n}^*$ be the multiplicative groupe of a finite field with g a generator. For $T \in \mathbb{F}_{p^n}^*$, $T = g^k$,

$$\log_g(T) := k$$

Alice

Private key:
$$a \in [1, p^n - 1]$$

 $K = B^a = g^{ab}$

$$B=g^b$$

Bob

Private key : $b \in [1, p^n - 1]$

$$K = A^b = g^{ab}$$

• Naive algorithm, Baby step Giant step, and Pollard-Rho are exponential in the input size: $\log(p^n)$.

- Naive algorithm, Baby step Giant step, and Pollard-Rho are exponential in the input size: $log(p^n)$.
- The number field sieve (NFS) has a subexponential complexity.

$$L_{p^n}\left(\frac{1}{3}\right)$$

$$L_{p^n}(\alpha,c) = e^{(c+o(1))\log(p^n)^{\alpha}\log\log(p^n)^{1-\alpha}}$$

Polynomial selection.

- Polynomial selection.
- Sieving.

- Polynomial selection.
- Sieving.
- Substitution Linear algebra.

- Polynomial selection.
- Sieving.
- Linear algebra.
- Individual Logarithm.

1) Polynomial selection.

1) Polynomial selection.

Why number fields?

In \mathcal{K}_1 we have

- A norm: $\mathcal{N}: \phi \mapsto |\mathsf{resultant}(f_1, \phi)|$.
- Unique decomposition of ideals into prime ideals.

2), 3) Sieve and linear algebra: We know the logarithms of the factor base. .

- 2), 3) Sieve and linear algebra: We know the logarithms of the factor base. .
 - 4) Individual logarithm:

- 2), 3) Sieve and linear algebra: We know the logarithms of the factor base. .
 - 4) Individual logarithm: We decompose T into product of elements of the factor base.

Individual logarithm

Individual logarithm

Ideals of the factor base

[Guillevic 19] Smoothing using sublattices Practice results Smoothing using BKZ

Our problem

Definition: B-smoothness

An integer is B-smooth if all its prime factors are below B.

Our problem

Definition: B-smoothness

An integer is B-smooth if all its prime factors are below B.

This work

• Given: \mathbb{F}_{p^n} with n composite, d its greater proper divisor, B a smoothness bound, and a target $T \in \mathbb{F}_{p^n}^*$.

Our problem

Definition: B-smoothness

An integer is B-smooth if all its prime factors are below B.

This work

- Given: \mathbb{F}_{p^n} with n composite, d its greater proper divisor, B a smoothness bound, and a target $T \in \mathbb{F}_{p^n}^*$.
- Aim: Find $\overline{R} \in \mathcal{K}_f$ such that:
 - $\log(R) \equiv \log(T) \mod \ell$. with ℓ a large prime divisor of the group order.
 - $\mathcal{N}(\overline{R})$ *B*-smooth.

Lemma

Let $U \in \mathbb{F}_{p^n}^{\times}$ in a proper subfield of \mathbb{F}_{p^n} . Then $\log(U) \equiv 0 \mod \ell$.

Lemma

Let $U \in \mathbb{F}_{p^n}^{\times}$ in a proper subfield of \mathbb{F}_{p^n} . Then $\log(U) \equiv 0 \mod \ell$.

Algorithm

• Compute $U=g^{\frac{p^n-1}{p^d-1}}.$ Hence $\{1,U,\dots,U^{d-1}\}$ is an \mathbb{F}_p base of $\mathbb{F}_{p^d}.$

Lemma

Let $U \in \mathbb{F}_{p^n}^{\times}$ in a proper subfield of \mathbb{F}_{p^n} . Then $\log(U) \equiv 0 \mod \ell$.

Algorithm

- Compute $U=g^{\frac{p^n-1}{p^d-1}}$. Hence $\{1,U,\dots,U^{d-1}\}$ is an \mathbb{F}_p base of \mathbb{F}_{p^d} .
- $R \leftarrow LLL(\{T, UT, \dots, U^{d-1}T\}).$

Lemma

Let $U \in \mathbb{F}_{p^n}^{\times}$ in a proper subfield of \mathbb{F}_{p^n} . Then $\log(U) \equiv 0 \mod \ell$.

Algorithm

- Compute $U=g^{\frac{p^n-1}{p^d-1}}.$ Hence $\{1,U,\dots,U^{d-1}\}$ is an \mathbb{F}_p base of $\mathbb{F}_{p^d}.$
- $R \leftarrow LLL(\{T, UT, \dots, U^{d-1}T\}).$
 - $||R||_{\infty} \leq 2^{\frac{n-1}{4}} p^{\frac{n-d}{n}}$
 - $\deg(R) = n 1$.

Lemma

Let $U \in \mathbb{F}_{p^n}^{\times}$ in a proper subfield of \mathbb{F}_{p^n} . Then $\log(U) \equiv 0 \mod \ell$.

Algorithm

- Compute $U=g^{\frac{p^n-1}{p^d-1}}.$ Hence $\{1,U,\dots,U^{d-1}\}$ is an \mathbb{F}_p base of $\mathbb{F}_{p^d}.$
- $R \leftarrow LLL(\{T, UT, \dots, U^{d-1}T\}).$
 - $||R||_{\infty} \leq 2^{\frac{n-1}{4}} p^{\frac{n-d}{n}}$
 - $\deg(R) = n 1$.
- $\mathcal{N}\left(\overline{R}\right) = O\left(2^{n\frac{n-1}{4}}p^{(1+\zeta)n-d-\zeta}\right)$. Where $\zeta \in [0,1]$ fixed by the polynomial selection.

$$P = 1 + X + 3X^2 \in \mathcal{K}_f$$
 $Q = 1 + X + 3X^{50} \in \mathcal{K}_f$

$$P = 1 + X + 3X^2 \in \mathcal{K}_f \qquad Q = 1 + X + 3X^{50} \in \mathcal{K}_f$$

- $\bullet \ \|P\|_{\infty} = \|Q\|_{\infty}.$
- $||P||_2 = ||Q||_2$.

$$P = 1 + X + 3X^2 \in \mathcal{K}_f$$
 $Q = 1 + X + 3X^{50} \in \mathcal{K}_f$

- $\bullet \ \|P\|_{\infty} = \|Q\|_{\infty}.$
- $||P||_2 = ||Q||_2$.
- $\mathcal{N}(P) \ll \mathcal{N}(Q)$.

$$P = 1 + X + 3X^2 \in \mathcal{K}_f$$
 $Q = 1 + X + 3X^{50} \in \mathcal{K}_f$

- $||P||_{\infty} = ||Q||_{\infty}$.
- $||P||_2 = ||Q||_2$.
- $\mathcal{N}(P) \ll \mathcal{N}(Q)$.

Lemma

Let
$$R \in \mathcal{K}_f$$
, then: $\mathcal{N}(R) = O\left(\|f\|_{\infty}^{\mathsf{deg}(R)}\|R\|_{\infty}^{\mathsf{deg}(f)}\right)$

Smaller dimension = Smaller degree

Smaller dimension = Smaller degree

$$R \leftarrow LLL\left(\{T, UT, \dots, U^{d-1}T\} \text{ of dimension n }\right)$$

$$R \leftarrow LLL(\{T, UT, \dots, U^{d-1}T\} \text{ of dimension n })$$

$$R \leftarrow LLL\left(\underbrace{\text{sublattice}}_{} \text{ of } \{T, UT, \dots, U^{d-1}T\} \text{ of dimension } n-s\right)$$
 where $0 \le s \le d-2$.

$$R \leftarrow LLL(\{T, UT, \dots, U^{d-1}T\} \text{ of dimension n })$$

$$R \leftarrow LLL\left(\underline{\text{sublattice}} \text{ of } \{T, UT, \dots, U^{d-1}T\} \text{ of dimension } n-s\right)$$

where $0 \le s \le d - 2$.

- Coefficients of $R \le 2^{\frac{n-s-1}{4}} p^{\frac{n-d}{n-s}}$
- $\deg(R) = n s 1$.

$$R \leftarrow LLL(\{T, UT, \dots, U^{d-1}T\} \text{ of dimension n })$$

$$R \leftarrow LLL\left(\underbrace{\text{sublattice}}_{} \text{ of } \{T, UT, \dots, U^{d-1}T\} \text{ of dimension } n-s\right)$$

where $0 \le s \le d - 2$.

- Coefficients of $R \le 2^{\frac{n-s-1}{4}} p^{\frac{n-d}{n-s}}$
- $\deg(R) = n s 1$.

New bound on $\mathcal{N}(\overline{R})$

$$\mathcal{N}\left(\overline{R}\right) = O\left(2^{n\frac{n-s-1}{4}}p^{n\frac{n-d}{n-s}+\zeta(n-s-1)}\right).$$

Where $\zeta \in [0, 1]$ is fixed by the polynomial selection.

$$R \leftarrow LLL(\{T, UT, \dots, U^{d-1}T\} \text{ of dimension n })$$

$$R \leftarrow LLL\left(\underbrace{\text{sublattice}}_{} \text{ of } \{T, UT, \dots, U^{d-1}T\} \text{ of dimension } n-s\right)$$

where $0 \le s \le d - 2$.

- Coefficients of $R \le 2^{\frac{n-s-1}{4}} p^{\frac{n-d}{n-s}}$
- $\deg(R) = n s 1$.

New bound on $\mathcal{N}(\overline{R})$

$$\mathcal{N}\left(\overline{R}\right) = O\left(2^{n\frac{n-s-1}{4}}p^{n\frac{n-d}{n-s}+\zeta(n-s-1)}\right)$$
. We minimize it in *s* Where $\zeta \in [0,1]$ is fixed by the polynomial selection.

$$R \leftarrow LLL(\{T, UT, \dots, U^{d-1}T\} \text{ of dimension n })$$

$$R \leftarrow \textit{LLL}\left(\underline{\text{sublattice}} \text{ of } \{T, UT, \dots, U^{d-1}T\} \text{ of dimension } n-s \right)$$

where $0 \le s \le d - 2$.

- Coefficients of $R \le 2^{\frac{n-s-1}{4}} p^{\frac{n-d}{n-s}}$
- $\deg(R) = n s 1$.

New bound on $\mathcal{N}(\overline{R})$

$$\mathcal{N}\left(\overline{R}\right) = O\left(2^{n\frac{n-s-1}{4}}p^{n\frac{n-d}{n-s}+\zeta(n-s-1)}\right)$$
. We minimize it in *s* Where $\zeta \in [0,1]$ is fixed by the polynomial selection.

Remark

$$s = 0 \Rightarrow$$
 Initial algorithm [Guillevic 19]

Finite fields of 500 bits

Figure: Norms in finite fields

Figure: Difference in bits between [Guillevic 19] and our results as a function of n

$$p = L_{p^n}(\alpha, c) = e^{(c+o(1))\log(p^n)^{\alpha}\log\log(p^n)^{1-\alpha}}.$$

$$p = L_{p^n}(\alpha, c) = e^{(c+o(1))\log(p^n)^{\alpha}\log\log(p^n)^{1-\alpha}}.$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

$$p = L_{p^n}(\alpha, c) = e^{(c+o(1))\log(p^n)^{\alpha}\log\log(p^n)^{1-\alpha}}.$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

 $\mathbb{F}_{p^2} \mathbb{F}_p$

 \mathbb{F}_{p^6}

$$p = L_{p^n}(\alpha, c) = e^{(c+o(1))\log(p^n)^{\alpha}\log\log(p^n)^{1-\alpha}}.$$

small characteristic medium characteristic large characteristic

$$\mathbb{F}_{2^n}$$
 \mathbb{F}_{p^6} \mathbb{F}_{p^2} \mathbb{F}_p

Figure: Even extension degress with JLSV1 polynomial selection

Figure: Even extension degress with JLSV1 polynomial selection

Figure: Even extension degress with JLSV1 polynomial selection

Takeaway

In practice: Use sublattices for large composite extensions.

Takeaway

In practice: Use sublattices for large composite extensions.

In theory: Use BKZ instead of LLL.

Takeaway

In practice: Use sublattices for large composite extensions.

In theory: Use BKZ instead of LLL.

Thank you!