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Introduction Definition and Diffie Hellman

Hardness of discrete logarithm in finite fields

A reduction problem

@ log(T) mod ¢ 7
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A reduction problem

@ log(T) mod ¢ 7
@ Let's find R such that:
o log(R) =log(T) mod ¢.
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Introduction Definition and Diffie Hellman

Hardness of discrete logarithm in finite fields

A reduction problem

@ log(T) mod ¢ 7

@ Let's find R such that:
o log(R) =log(T) mod ¢.
o log(R) easier to calculate.
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Introduction Definition and Diffie Hellman

Hardness of discrete logarithm in finite fields

Discrete logarithm in finite fields

Definition
Let F;» be the multiplicative groupe of a finite field with g a
generator. For T € Fp, T = gk,
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Discrete logarithm in finite fields

Definition

Let F;» be the multiplicative groupe of a finite field with g a
generator. For T € Fp, T = gk,

log,(T) =k
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Introduction

Definition and Diffie Hellman
Hardness of discrete logarithm in finite fields

Discrete logarithm in finite fields

Definition
Let F;» be the multiplicative groupe of a finite field with g a
generator. For T € Fp, T = gk,

log,(T) =k

{ A=g

=g ) -
Private key: a€ [L,p" —1] | ¥ Private key : b € [1,p" —1]
K:Ba:gab K:Ab:gab
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Introduction Definition and Diffie Hellman

Hardness of discrete logarithm in finite fields

@ Naive algorithm, Baby step Giant step, and Pollard-Rho are
exponentiel in the input size: log(p”).
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Introduction Definition and Diffie Hellman

Hardness of discrete logarithm in finite fields

@ Naive algorithm, Baby step Giant step, and Pollard-Rho are
exponentiel in the input size: log(p”).

@ The number field sieve (NFS) has a subexponential complexity.

Lpn(a7 C) = e(c+°(1)) |0g(p")“ |0g|og(p”)1—a J
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Polynomial selection
Number Field Sieve Sieve, Linear algebra, and Individual logarithm
Individual logarithm

Steps of the Number Field Sieve

Haetham AL ASWAD Individual Discrete Logarithm with Sublattice Reducti



Polynomial selection
Number Field Sieve Sieve, Linear algebra, and Individual logarithm
Individual logarithm

Steps of the Number Field Sieve

@ Polynomial selection.

Haetham AL ASWAD Individual Discrete Logarithm with Sublattice Reduction



Polynomial selection
Number Field Sieve Sieve, Linear algebra, and Individual logarithm
Individual logarithm

Steps of the Number Field Sieve

@ Polynomial selection.
@ Sieving.
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Polynomial selection

Sieve, Linear algebra, and Individual logarithm
Individual logarithm

Number Field Sieve

Steps of the Number Field Sieve

@ Polynomial selection.
@ Sieving.
© Linear algebra.
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Polynomial selection
Number Field Sieve Sieve, Linear algebra, and Individual logarithm
Individual logarithm

Steps of the Number Field Sieve

@ Polynomial selection.
@ Sieving.

© Linear algebra.

@ Individual Logarithm.
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Polynomial selection
Number Field Sieve Sieve, Linear algebra, and Individual logarithm

Individual logarithm

1) Polynomial selection.

/ - \
Q[X]/(A(X)) = Q[X]/(f(X)) = K2
\

/

Fp[X]/ (h(X))
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Polynomial selection
Number Field Sieve Sieve, Linear algebra, and Individual logarithm

Individual logarithm

1) Polynomial selection.

/ - \
QX]/(A(X)) = Q[X]/(f(X)) = K2
\

/

Fpr = Fp[X]/ (h(X))

Why number fields?

In IC1 we have
@ A norm: N : ¢ — |resultant(fi, ¢)|.
@ Unique decomposition of ideals into prime ideals.

s = = =
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Polynomial selection
Number Field Sieve Sieve, Linear algebra, and Individual logarithm

Individual logarithm

Factor Base

O

2), 3) Sieve and linear algebra: We know the logarithms of the
factor base.
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Polynomial selection
Number Field Sieve Sieve, Linear algebra, and Individual logarithm

Individual logarithm

Factor Base

O

2), 3) Sieve and linear algebra: We know the logarithms of the
factor base.

4) Individual logarithm:
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Polynomial selection
Number Field Sieve Sieve, Linear algebra, and Individual logarithm

Individual logarithm

Factor Base

2), 3) Sieve and linear algebra: We know the logarithms of the
factor base.

4) Individual logarithm: We decompose T into product of
elements of the factor base.
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Polynomial selection
Number Field Sieve Sieve, Linear algebra, and Individual logarithm
Individual logarithm

Individual logarithm

7
Smoothness step: N (R) is B-smooth
R

descent tree

hiho

/1\/\/\
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Polynomial selection
Number Field Sieve Sieve, Linear algebra, and Individual logarithm
Individual logarithm

Individual logarithm

7
}Smoothness step: A (R) is B-smooth
R

descent tree

Ideals of the factor base
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[Guillevic 19]
Smoothing using sublattices
Practice results

th t . .
Smoothness step Smoothing using BKZ

Our problem

Definition: B-smoothness
An integer is B-smooth if all its prime factors are below B.
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[Guillevic 19]
Smoothing using sublattices
Practice results

Smoothness step Smoothing using BKZ

Our problem

Definition: B-smoothness
An integer is B-smooth if all its prime factors are below B.

e Given: [, with n composite, d its greater proper divisor, B
a smoothness bound, and a target T € ]F;.;n.
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[Guillevic 19]
Smoothing using sublattices
Practice results

Smoothness step Smoothing using BKZ

Our problem

Definition: B-smoothness
An integer is B-smooth if all its prime factors are below B.

e Given: [, with n composite, d its greater proper divisor, B
a smoothness bound, and a target T € ]F;.;n.

e Aim: Find R € K¢ such that:
o log(R) =log(T) mod £. with ¢ a large prime divisor of the

group order.
o N(R) B-smooth.
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[Guillevic 19]
Smoothing using sublattices
Practice results

th t . .
Smoothness step Smoothing using BKZ

Crucial lemma and [Guillevic 19]'s algorithm

Let U € . in a proper subfield of Fpn. Then log(U) =0 mod .

Haetham AL ASWAD Individual Discrete Logarithm with Sublattice Reduction



[Guillevic 19]
Smoothing using sublattices
Practice results

Smoothness step Smoothing using BKZ

Crucial lemma and [Guillevic 19]'s algorithm

Let U € F, in a proper subfield of Fpn. Then log(U) =0 mod .

Algorithm

1_1

o
o Compute U = gr?~1. Hence {1,U,..., U9 1} is an [Fp, base

of de.
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[Guillevic 19]
Smoothing using sublattices
Practice results

Smoothness step Smoothing using BKZ

Crucial lemma and [Guillevic 19]'s algorithm

Let U € F, in a proper subfield of Fpn. Then log(U) =0 mod .

Algorithm

p"—1

71 Hence {1,U,...,U% 1} is an [Fp, base

e Compute U=g
of de.

© R LLL({T,UT,...,U?"'T}).

A\

Haetham AL ASWAD Individual Discrete Logarithm with Sublattice Reduction
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Smoothing using sublattices
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Smoothness step Smoothing using BKZ

Crucial lemma and [Guillevic 19]'s algorithm

Let U € F, in a proper subfield of Fpn. Then log(U) =0 mod .

Algorithm

n_1
o Compute U = gidﬁl. Hence {1,U,..., U9 1} is an [Fp, base
of de.
© R LLL({T,UT,...,U?"'T}).

n—1

n—d
o IRl < 2%
o deg(R)=n—1.

A\
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[Guillevic 19]
Smoothing using sublattices
Practice results

Smoothness step Smoothing using BKZ

Crucial lemma and [Guillevic 19]'s algorithm

Let U € F, in a proper subfield of Fpn. Then log(U) =0 mod .

Algorithm

e Compute U = gp ~1. Hence {1,U,...,U9 1} is an F,, base

of F
© R LLL({T,UT,...,U?"'T}).
° [Rlleo <
o deg(R)=n—1.
o N (R) = pUHIT=d=C). Where € [0,1] fixed by

the polynomial selection.

A\
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[Guillevic 19]
Smoothing using sublattices
Practice results

th t . .
Smoothness step Smoothing using BKZ

The degree counts for A/

P=1+X+3X?eKks Q=1+X+3XYeckK,
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[Guillevic 19]
Smoothing using sublattices
Practice results

th t . .
Smoothness step Smoothing using BKZ

The degree counts for A/

P=1+X+3X?eKks Q=1+X+3XYeckK,

° [[Plloc = [|Qllcc-
° [[Pl2= Q2
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[Guillevic 19]
Smoothing using sublattices
Practice results

th t . .
Smoothness step Smoothing using BKZ

The degree counts for A/

P=1+X+3X?eKks Q=1+X+3XYeckK,

® [|Plloc = [ Qlloo-
o [|Pll2 = [ Qll2-
o N(P) << N(Q).
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[Guillevic 19]

Smoothing using sublattices
Practice results

Smoothing using BKZ

Smoothness step

The degree counts for A/

P=1+X+3X?eKks Q=1+X+3XYeckK,

® [|Plloc = [ Qlloo-
o [|Pll2 = [ Qll2-
o N(P) << N(Q).

Let R € K¢, then: N(R) =0 <||nggg(R)HRHg§g(f)>
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S P Smoothing using BKZ

Smaller dimension = Smaller degree



[Guillevic 19]
Smoothing using sublattices
Practice results

th t . .
Smoothness step Smoothing using BKZ

Smaller dimension = Smaller degree

X1 X!

XO XO
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[Guillevic 19]
Smoothing using sublattices
Practice results

th t . .
Smoothness step Smoothing using BKZ

Our algorithm
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[Guillevic 19]
Smoothing using sublattices
Practice results

th t . .
Smoothness step Smoothing using BKZ

Our algorithm

R« LLL (sublattice of {T,UT,..., vt T} of dimension n — s)

where 0 < s < d — 2.
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[Guillevic 19]
Smoothing using sublattices
Practice results

th t . .
Smoothness step Smoothing using BKZ

Our algorithm

R« LLL (sublattice of {T,UT,..., vt T} of dimension n — s)

where 0 < s < d — 2.
e Coefficients of R < 2n_i_lp2:s
o deg(R)=n—s—1.

Q
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[Guillevic 19]

Smoothing using sublattices
Practice results

Smoothing using BKZ

Smoothness step

Our algorithm

R« LLL (sublattice of {T,UT,..., vt T} of dimension n — s)

where 0 < s < d —2.
n—s— n—d
o Coefficients of R <2 2 lpnfs
o deg(R)=n—s—1.

New bound on NV (R

Where ¢ € [0, 1] is fixed by the polynomial selection.
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Smoothing using sublattices
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Smoothing using BKZ

Smoothness step

Our algorithm

R« LLL (sublattice of {T,UT,..., vt T} of dimension n — s)

where 0 < s < d —2.
n—s— n—d
o Coefficients of R <2 2 lpnfs
o deg(R)=n—s—1.

New bound on NV (R
N(R)=0 (2”'1_151_1 p""]v%g%("*s*l)). We minimize it in s
Where ¢ € [0, 1] is fixed by the polynomial selection.
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Smoothing using sublattices
Practice results

Smoothing using BKZ

Smoothness step

Our algorithm

R« LLL (sublattice of {T,UT,..., vt T} of dimension n — s)

where 0 < s < d —2.
n—s— n—d
o Coefficients of R <2 2 lpnfs
o deg(R)=n—s—1.

New bound on NV (R
N(R)=0 (2”'1_151_1 p""]v%g%("*s*l)). We minimize it in s
Where ¢ € [0, 1] is fixed by the polynomial selection.

s = 0 = Initial algorithm [Guillevic 19]
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[Guillevic 19]

Smoothing using sublattices
Practice results

Smoothing using BKZ

Smoothness step

Finite fields of 500 bits

1000 Norms of lifted elements *
o e e o bits(norms after Guillevic's reduction)
jorms after our reduction 601 - bits(norms after our reduction)

900
s0

800
40
bits

700 30

bits|

600 20
10

500

400 n 20 40 n 60 80 100

] 20 40 60 80 100

Figure: Difference in bits
Figure: Norms in finite fields between [Guillevic 19] and
our results as a function of n

Haetham AL ASWAD Individual Discrete Logarithm with Sublattice Reduction



[Guillevic 19]
Smoothing using sublattices
Practice results

Smoothness step g thing using BKZ

Finite fields classification

p = Lpn(a,c) = elcto(D)log(p)* log log(p")

W=+
WIN +
—_ X

Q



Smoothness step

Finite fields classification

[Guillevic 19]

Smoothing using sublattices
Practice results

Smoothing using BKZ

p = Lpn(a,c) = elcto(D)log(p)* log log(p")

W=+

WIN +

e

large characteristic

F e

Fp F

p
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Smoothness step g thing using BKZ

Finite fields classification

p = Lpn(a,c) = elcto(D)log(p)* log log(p")

Q

o
Wl +
WIN +

[

medium characteristic large characteristic

F 6 F. F,



[Guillevic 19]
Smoothing using sublattices
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Smoothness step g thing using BKZ

Finite fields classification

p = Lpn(a,c) = elcto(D)log(p)* log log(p")

} : : e
1 2
0 3 3 1
small characteristic medium characteristic large characteristic
Fon pri sz Fp
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Smoothing using sublattices
Practice results

Smoothing using BKZ

Smoothness step

1 3/15

Lpn (3,42
2 Using
$ Waterloo
£
8
£ 1 3
kS
_-§ using LLL| using LLL,
._§

o
1 1 2
3 2 3 1
medium characteristic large characteristic

Figure: Even extension degress with JLSV1 polynomial selection
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Individual logarithm complexity

1
Lon (3:4/%

Using
Waterloo

Smoothness step

[Guillevic 19]

Smoothing using sublattices
Practice results

Smoothing using BKZ

Lpo (%’ \3/3)

using LLL
or BKZ

using LLL, BKZ, or an
enumeration algorithm

Wl

1
2

wWIN
—_

medium characteristic

large characteristic

Figure: Even extension degress with JLSV1 polynomial selection
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Individual logarithm complexity

Smoothness step

1
Lon (3:4/%

Using
Waterloo

Lpr (% \%)

[Guillevic 19]

Smoothing using sublattices
Practice results

Smoothing using BKZ

Lpo (%’ \3/3)

using BKZ

using LLL
or BKZ

using LLL, BKZ, or an
enumeration algorithm

1
2

Wl

wWIN
—_

medium characteristic

large characteristic

Figure: Even extension degress with JLSV1 polynomial selection
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[Guillevic 19]
Smoothing using sublattices
Practice results

Smoothness step g thing using BKZ

Takeaway

In practice: Use sublattices for
large composite extensions.

X1 <)<1
0

X0 X

X2
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[Guillevic 19]
Smoothing using sublattices
Practice results

Smoothness step g thing using BKZ

Takeaway

In practice: Use sublattices for In theory: Use BKZ instead of
large composite extensions. LLL.

X2 o (3. 3%)

1
Xl <)< Waterloo
0 W@%) (%)

X0 X

BKZ LLL, LLL, BKZ,
BKZ Enumeration

W=
N
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Smoothing using sublattices
Practice results

Smoothness step g thing using BKZ

Takeaway

In practice: Use sublattices for In theory: Use BKZ instead of
large composite extensions. LLL.

X2 o (3. 3%)

1
Xl <)< Waterloo
0 W@%) (%)

X0 X

BKZ LLL, LLL, BKZ,
BKZ Enumeration

N[ =

1
3

Thank you |
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