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Context and problem statement

Set of real solutions of systems of polynomial equations and inequalities

S+E=2SEL 8, + B
K3

P+Sp == PS, S5 Py + S,
K9

P+E+—=PE % P, +E
K12
W2, 4, e, 8, H10

Physics Computational geometry [Telek, Feliu; *23]
[Le, Safey El Din; '22] [Le, Manevich, Paulmann; '21]

Biochemistry

[

Robotics

Chablat, P., Safey El Din,
Salunkhe, Wenger; '22

Given a semi-algebraic set S,

e compute a real root classification of S
e compute a projection of S: quantifier elimination

e compute one point in each connected component of S

e count the number of connected components of S

e decide if two points lie in the same connected component of S

]
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Reduction to curves: Roadmaps

Q [Canny, 1988] Compute # C S one-dimensional, sharing its connectivity

It is a semi-algebraic curve # C S, containing P finite and such that
for all connected components C' of S: C'NZ is non-empty and connected

Proposition

Yy, z € P are path-connected in S <=> they are in %

Problem reduction

Arbitrary dimension
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Reduction to curves: Roadmaps

Q [Canny, 1988] Compute Z C S one-dimensional, sharing its connectivity
Roadmap of (S, P)
It is a semi-algebraic curve # C S, containing P finite and such that
for all connected components C of S: C NZ is non-empty and connected
Proposition

Y,z € P are path-connected in S <= they are in #Z

Problem reduction

Arbitrary dimension ——=  Dimension 1 — Finite graph
ROADMAP Our problem




Data representation and quantitative estimate

Theorem

In a generic system of coordinates there exist...

Zero-dimensional parametrization of P C C" finite €T3

P={(on Tl 5o e =0}

One-dimensional parametrization of ¥ C C™ algebraic curve

...polynomials (X, 92,...,9,) C Z[z1] s.t. T ‘,

]
I— ]

...polynomials (w, p3, ..., pn) C Z[z1, z2] s.t.
p3(z1,®2) pn(z1,22)
(wl’ T2, Oggw(my, @)’ " "7 am;w(whﬂw))

© —
s.t. w(x1,x2) =0 and Jp,w(x1,x2) #0

w(zy,22) =0
Magpnitude of a polynomial
Soft-O notation
f € Z[zy, ..., x,) has magnitude (6, 7) if

deg(f) <6 and |coeffs(f)| < 27 O(N) = O(Nlog(N)*), a >0



Results

Data

o % C Zlz1,z2] of magnitude (8, 7), encoding an algebraic curve ¢ C C™;

o P C Z[z1] of magnitude (8, 7), encoding a finite P C €;

Ambient dimension Bit complexity Reference

~ Kobel, Sagraloff; 15
n=2 0(65(5-‘1-7')) [ ’ g 5 1
D.Diatta, S.Diatta,
Rouiller, Roy, Sagraloff; 22

e —
— \ =N
FE
é’k’*\\ee o B
\-%\ TN
Cylindrical Algebraic Decomposition Multiple projections Subdivision

[Collins, 75]  [Kerber, Sagraloff; "12] [Seidel, Wolpert; "05] [Burr, Choi, Galehouse, Yap; '05]



® % C L[z, x3] of magnitude (6, 7), encoding an algebraic curve ¥ C C";

o P C Z[z1] of magnitude (J, 7), encoding a finite P C €;

Ambient dimension

Bit complexity

Reference

[Kobel, Sagraloff; ’15]

- (S5
n=2 O (3 + ) [ D.Diatta, S.Diatta, ]
Rouiller, Roy, Sagraloff; 22
n=3 6(519(5 + 7)) [Jin, Cheng; ’21]

¢ O
>

9 (Cf)

S > 5



Results

Data

o Z C Z[z1,z2] of magnitude (4, 7), encoding an algebraic curve € C C™;

o P C Z[z1] of magnitude (8, 7), encoding a finite P C €;

Ambient dimension

Bit complexity

Reference

n=2

O(8°(8 + 7))

[

[Kobel, Sagraloff; ’15]

D.Diatta, S.Diatta,
Rouiller, Roy, Sagraloff; 22

]

n =3

06 (6 + 1))

[Jin, Cheng; ’21]
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non-singular,

S
= D

Apparent singularities:




Results

Data

o Z C L[z, x2] of magnitude (4, 7), encoding an algebraic curve € C C™;

o Z C Zlx1] of magnitude (4, 7), encoding a finite P C €;

Computing topology

Ambient dimension

Bit complexity

Reference

[Kobel, Sagraloff; ’15]

=2 O(8°
" O( (6 u T)) [ D.Diatta, S.Diatta, ]
Rouiller, Roy, Sagraloff; '22
n =3 0(619(5 =+ T)) [Jin, Cheng; ’21]

Computing connectivity - Main Result

Ambient dimension

Bit complexity

Reference

n>2

0(8°(8 + 1))

[Islam, Poteaux, P.; 2023]

Avoid computation of the complete topology!

o



Apparent singularities: key idea

‘ Projection induces new singularities: the case of nodes \

e
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Apparent singularities: key idea

Apparent singularities

Projection induces new singularities: the case of nodes

Y Y Y
™ (%)
Apparent singularity Space Singularity Apparent singularity
Key idea

Local connectivity does not depend of the relative position

Only two cases to consider!



% C C" algebraic curve w3 : C* — C® projection on a generic 3D space
g : C* — C? projection on a generic plane
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(Hi) w2 : € — m2(%¥) is birational
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Genericity assumptions

Data

% C C" algebraic curve 73 : C* — C3 projection on a generic 8D space
7o : C™ — C? projection on a generic plane

Genericity assumptions

(Hy) w2 : € — 72(%) is birational
(H2) w3 : € — 73(%) bijective

Secants are exceptional lines

Basic Algebraic
Geometry 1

@wws [Shafarevich, ’13]



% C C" algebraic curve w3 : C* — C® projection on a generic 3D space
g : C* — C? projection on a generic plane

(Hi) w2 : € — m2(%¥) is birational
(H2) 73 : € — w3(%) bijective

(H3) Overlaps involve at most two points

(H4) Overlaps introduce only nodes

A

71'2(%) T

Nodal apparent singularity




Genericity assumptions

Data

% C C" algebraic curve 73 : C* — C3 projection on a generic 8D space
g : C* — C? projection on a generic plane

Genericity assumptions

(Hy) w2 : € — 72(%) is birational
(H2) w3 : € — 73(%) bijective

(H3) Overlaps involve at most two points

(H4) Overlaps introduce only nodes

TriSecants are exceptional secants
© Proof: Trisecant lemma for
singular projective curves
© [Kalllillski :|

Kanel-Belov
Teicher; ’08



Genericity assumptions

Data

% C C" algebraic curve 73 : C* — C3 projection on a generic 8D space
g : C* — C? projection on a generic plane

Genericity assumptions

(Hy) w2 : € — 72(%) is birational
(H2) w3 : € — 73(%) bijective
(Hs) Overlaps involve at most two points

(H4) Overlaps introduce only nodes

Secants with coplanar tangents are exceptional secants

Proof: Generalize results from literature

[Mumford; *76]

Fortuna, Gianni
Trager; 09



e # C Z[z1,x2] of magnitude (4, 7), encoding an algebraic curve 4 C C";

e Z C Z[z1] of magnitude (6, 7), encoding a finite P C €;

e ¢ satisfies genericity assumptions w.r.t. P

A partition of P NR™ w.r.t. the s.a. connected components of ¥ NR™.

5

9,2 + Proj2D(%), Proj2D(2);

. Qapp < ApparentSingularities(Z) (g

%' < NodeResolution(¥, Zapp);

. return ConnectGraph(2, 4'); Q

[SAB NI R
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e ¢ satisfies genericity assumptions w.r.t. P

A partition of P NR™ w.r.t. the s.a. connected components of ¥ NR™.

5

. 9,2 + Proj2D(Z), Proj2D(Z);
. Qapp < ApparentSingularities(Z) (g

%' < NodeResolution(¥, Zapp);

. return ConnectGraph(2, 4'); Q

7'('2((5)

<O D

. 3
[SAB NI R




Algorithm

o % C Z[z1,z2] of magnitude (4, 7), encoding an algebraic curve 4 C C™;

e P C Z[z1] of magnitude (4, 7), encoding a finite P C ¢;

e ¢ satisfies genericity assumptions w.r.t. P

A partition of P NR™ w.r.t. the s.a. connected components of ¥ NR™.

. 9,2 + Proj2D(Z), Proj2D(Z);

1

2. % + Topo2D(2, 2); Q
3. Qapp < ApparentSingularities(%) (K

4

5

. 9" < NodeResolution(¥, Zapp);

. return ConnectGraph(2, 4'); o

Bit complexity: O(6%(6 + 7)) 9 ((5) “




Computing the topology of plane curves

Cylindrical algebraic decomposition

Method introduced by G. Collins in 1975
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Computing the topology of plane curves
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Computing the topology of plane curves

Y

(e5) Qy (3

Qg

071

Qg



Computing the topology of plane curves

T

a1 Q2 (O3 a4 Q5 Qg
Complexity bottleneck—> Isolating critical boxes

Isolation of some univariate polynomials with algebraic coefficients

[Kobel, Sagraloff; ’15]

Complexity: O(6°(8 + 7)) ‘ D.Diatta, S.Diatta,
Rouiller, Roy, Sagraloff; ’22




o % C Z[z1,z2] of magnitude (4, 7), encoding an algebraic curve 4 C C™;

e P C Z[z1] of magnitude (4, 7), encoding a finite P C ¢;

e ¢ satisfies genericity assumptions w.r.t. P

A partition of P NR™ w.r.t. the s.a. connected components of ¥ NR™.

2,2 < Proj2D(Z), Proj2D(2);

. 4 + Topo2D(2, 2); Q
. Qapp < ApparentSingularities(Z); (K

%' < NodeResolution(¥, Zapp);

. return ConnectGraph(2, 4'); Q

7'('2((5) @

— <>

[SAB NI R



Algorithm

X C Z|z1,x2] of magnitude (6, 7), encoding an algebraic curve ¢ C C™;

P C Z[z1] of magnitude (J,7), encoding a finite P C ¢

¢ satisfies genericity assumptions w.r.t. P

A partition of P NR™ w.r.t. the s.a. connected components of ¥ NR™.

Tt W N =

. 9,2 + Proj2D(Z), Proj2D(Z);

. 4 + Topo2D(2, 2); >
. Qapp < ApparentSingularities(2); (f

. 4’ < NodeResolution(¥, Zapp);

. return ConnectGraph(2, 4'); <

non-singular,

Apparent sing.

Bit complexity: O(65(8 + 7))




Witness apparent singularities

o # = (w,p3,...,pn) C Z[z,y] encoding ¥ C C™ in generic position;
o A(z,y) = 02,w - 8o, p3 — 82 4,w - Dy p3 € L[z, Y]

Proposition - Generalization of [El Kahoui; '08]

A node (o, 8) is an apparent singularity if and only if A(a, 8) # 0

(%) x

Y

¥

Computational aspect ¢

1. Non-vanishing can be tested using gcd computations

2. Gced computations can be done modulo a prime number

11
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Algorithm

o % C Z[z1,z2] of magnitude (4, 7), encoding an algebraic curve 4 C C™;
e P C Z[z1] of magnitude (4, 7), encoding a finite P C ¢;

e ¢ satisfies genericity assumptions w.r.t. P

A partition of P NR™ w.r.t. the s.a. connected components of ¥ NR™.

1. 9,2 < Proj2D(Z), Proj2D(2);

2. 4 <+ Topo2D(7, 2); Q
3. 2app < ApparentSingularities(Z); (K

4. 4’ <+ NodeResolution(¥, Zapp);

5

. return ConnectGraph(2, 4'); o

g/

—_—

O(85(6 + 7))




Conclusion

Summary

VA N
Connectivity for roughly the same price d :\lV » 6 » EDRHEEISLY

than planar topology: Computer Science > Symbolic Computation

v Assumptions generically holds [Submitted on 22 Feb 2023]

v Identify apparent singularity with Algorithm for connectivity queries
modular GCD computations on real algebraic curves

v~ Avoid the costly lifting step from Nazrul Islam (Diebold Nixdorf), Adrien Poteaux (CRIStAL),

planc topology Rémi Prébet (PolSys)

Future work

Extension to this work:
o Adapt to algebraic curves given as union
o Generalize to semi-algebraic curves

o Investigate the connectivity of plane curves

Practical aspects:
o Develop an optimized implementation

o Solve challenging applications together with roadmap algorithms
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Summary

Connectivity for roughly the same price d :\lV » 6 » EDRHEEISLY

than planar topology: Computer Science > Symbolic Computation

v Assumptions generically holds [Submitted on 22 Feb 2023]

v Identify apparent singularity with Algorithm for connectivity queries
modular GCD computations on real algebraic curves

v~ Avoid the costly lifting step from Nazrul Islam (Diebold Nixdorf), Adrien Poteaux (CRIStAL),

planc topology Rémi Prébet (PolSys)

Future work

Extension to this work:
o Adapt to algebraic curves given as union
o Generalize to semi-algebraic curves

o Investigate the connectivity of plane curves

Practical aspects:
o Develop an optimized implementation

o Solve challenging applications together with roadmap algorithms

Thank you for your attention!
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Generic projection: avoid bad directions

Generic affine subspace

E : of dimension k > 1

E*: orthogonal of E (codimension k)

Remark

Projection: on E < in the direction of E*

Generic intersection of with varieties

Let D be an algebraic set of dimension < [ then,

finite

ENDis {
empty

ifl=k
ifl <k

For plane and space projection

Bas‘i‘cAIgebraic
Geometry 1

[Shafarevitch]

EL

e
Stnboma

The
Grassmannian
Variety

Qe

[Lakshmibai et al.]

Dim. of Bad directions Bad directions
bad directions for mo for w3
<1 0 (]
<2 < oo 0
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