

Efficiently solving connectivity queries on real algebraic curves

Rémi Prébet¹ joint work with Nazrul ISLAM² Adrien POTEAUX³

¹Sorbonne Université, LIP6, Paris, France
²Diebold Nixdorf, London, Canada
³Univ. Lille, CRIStAL, Lille, France

JNCF '23 - $8^{\rm th}$ March 2023

Context and problem statement

Semi-algebraic (s.a.) sets

Set of real solutions of systems of polynomial equations and inequalities

Fundamental problems in effective semi-algebraic geometry

Given a semi-algebraic set S,

- compute a real root classification of S
- compute a projection of S: quantifier elimination
- compute one point in each connected component of S
- decide if two points lie in the same connected component of S
- count the number of connected components of S

Context and problem statement

Semi-algebraic (s.a.) sets

Set of real solutions of systems of polynomial equations and inequalities

Fundamental problems in effective semi-algebraic geometry

Given a semi-algebraic set S,

- compute a real root classification of S
- compute a projection of S: quantifier elimination
- compute one point in each connected component of S
- decide if two points lie in the same connected component of S
- count the number of connected components of S

[Canny, 1988] Compute $\mathscr{R} \subset S$ one-dimensional, sharing its connectivity

Roadmap of (S, \mathcal{P})

It is a semi-algebraic curve $\mathscr{R} \subset S$, containing \mathcal{P} finite and such that for all connected components C of $S: C \cap \mathscr{R}$ is non-empty and connected

Proposition

 $\boldsymbol{y}, \boldsymbol{z} \in \mathcal{P}$ are path-connected in $S \iff$ they are in \mathscr{R}

Problem reduction

Arbitrary dimension

[Canny, 1988] Compute $\mathscr{R} \subset S$ one-dimensional, sharing its connectivity

Roadmap of (S, \mathcal{P})

It is a semi-algebraic curve $\mathscr{R} \subset S$, containing \mathcal{P} finite and such that for all connected components C of $S: C \cap \mathscr{R}$ is non-empty and connected

Proposition

 $\boldsymbol{y}, \boldsymbol{z} \in \mathcal{P}$ are path-connected in $S \iff$ they are in \mathscr{R}

Problem reduction

Arbitrary dimension

[Canny, 1988] Compute $\mathscr{R} \subset S$ one-dimensional, sharing its connectivity

Roadmap of (S, \mathcal{P})

It is a semi-algebraic curve $\mathscr{R} \subset S$, containing \mathcal{P} finite and such that for all connected components C of $S: C \cap \mathscr{R}$ is non-empty and connected

Proposition

 $\boldsymbol{y}, \boldsymbol{z} \in \mathcal{P}$ are path-connected in $S \iff$ they are in \mathscr{R}

x

 \mathcal{Q} [Canny, 1988] Compute $\mathscr{R} \subset S$ one-dimensional, sharing its connectivity

Roadmap of (S, \mathcal{P})

It is a semi-algebraic curve $\mathscr{R} \subset S$, containing \mathcal{P} finite and such that for all connected components C of $S: C \cap \mathscr{R}$ is non-empty and connected

Proposition

 $\boldsymbol{y}, \boldsymbol{z} \in \mathcal{P}$ are path-connected in $S \iff$ they are in \mathscr{R}

Data representation and quantitative estimate

Theorem

In a *generic* system of coordinates there exist...

Zero-dimensional parametrization of
$$\mathcal{P} \subset \mathbb{C}^n$$
 finite

...polynomials
$$(\lambda, \vartheta_2, \ldots, \vartheta_n) \subset \mathbb{Z}[x_1]$$
 s.t.

$$\mathcal{P} = \left\{ \left(\boldsymbol{x}_1, \frac{\vartheta_2(\boldsymbol{x}_1)}{\lambda'(\boldsymbol{x}_1)}, \dots, \frac{\vartheta_n(\boldsymbol{x}_1)}{\lambda'(\boldsymbol{x}_1)} \right) \middle| \lambda(\boldsymbol{x}_1) = 0 \right\}$$

One-dimensional parametrization of
$$\mathscr{C} \subset \mathbb{C}^n$$
 algebraic curve
...polynomials $(\omega, \rho_3, \dots, \rho_n) \subset \mathbb{Z}[x_1, x_2]$ s.t.
$$\mathscr{C} = \left\{ \begin{array}{c} \left(\boldsymbol{x}_1, \boldsymbol{x}_2, \frac{\rho_3(\boldsymbol{x}_1, \boldsymbol{x}_2)}{\partial x_2 \, \omega(\boldsymbol{x}_1, \boldsymbol{x}_2)}, \dots, \frac{\rho_n(\boldsymbol{x}_1, \boldsymbol{x}_2)}{\partial x_2 \, \omega(\boldsymbol{x}_1, \boldsymbol{x}_2)} \right) \\ \text{s.t. } \omega(\boldsymbol{x}_1, \boldsymbol{x}_2) = 0 \quad \text{and} \quad \partial_{x_2} \omega(\boldsymbol{x}_1, \boldsymbol{x}_2) \neq 0 \end{array} \right\}$$

Magnitude of a polynomial
$$f \in \mathbb{Z}[x_1, \ldots, x_n]$$
 has magnitude (δ, τ) if $\deg(f) \leq \delta$ and $|\text{coeffs}(f)| \leq 2^{\tau}$

Soft-O notation
$$\tilde{O}(N) = O(N \log(N)^a), \ a > 0$$

Data

- $\mathscr{R} \subset \mathbb{Z}[x_1, x_2]$ of magnitude (δ, τ) , encoding an algebraic curve $\mathscr{C} \subset \mathbb{C}^n$;
- $\mathscr{P} \subset \mathbb{Z}[x_1]$ of magnitude (δ, τ) , encoding a finite $\mathcal{P} \subset \mathscr{C}$;

Computing topology			
Ambient dimension	Bit complexity	Reference	
n = 2	$\tilde{O}(\delta^5(\delta+ au))$	[Kobel, Sagraloff; '15] D.Diatta, S.Diatta, Rouiller, Roy, Sagraloff; '22]	

Cylindrical Algebraic Decomposition [Collins, '75] [Kerber, Sagraloff; '12]

Multiple projections [Seidel, Wolpert; '05]

[Burr, Choi, Galehouse, Yap; '05]

- $\mathscr{R} \subset \mathbb{Z}[x_1, x_2]$ of magnitude (δ, τ) , encoding an algebraic curve $\mathscr{C} \subset \mathbb{C}^n$;
- $\mathscr{P} \subset \mathbb{Z}[x_1]$ of magnitude (δ, τ) , encoding a finite $\mathcal{P} \subset \mathscr{C}$;

Computing topology			
Ambient dimension	Bit complexity	Reference	
n=2	$\tilde{O}(\delta^5(\delta+\tau))$	[Kobel, Sagraloff; '15] D.Diatta, S.Diatta, Rouiller, Roy, Sagraloff; '22]	
n = 3	$\tilde{O}(\delta^{19}(\delta+\tau))$	[Jin, Cheng; '21]	

- $\mathscr{R} \subset \mathbb{Z}[x_1, x_2]$ of magnitude (δ, τ) , encoding an algebraic curve $\mathscr{C} \subset \mathbb{C}^n$;
- $\mathscr{P} \subset \mathbb{Z}[x_1]$ of magnitude (δ, τ) , encoding a finite $\mathcal{P} \subset \mathscr{C}$;

Computing topology			
Ambient dimension	Bit complexity	Reference	
n=2	$\tilde{O}(\delta^5(\delta+\tau))$	[Kobel, Sagraloff; '15] D.Diatta, S.Diatta, Rouiller, Roy, Sagraloff; '22]	
n = 3	$\tilde{O}(\delta^{19}(\delta+\tau))$	[Jin, Cheng; '21]	

- $\mathscr{R} \subset \mathbb{Z}[x_1, x_2]$ of magnitude (δ, τ) , encoding an algebraic curve $\mathscr{C} \subset \mathbb{C}^n$;
- $\mathscr{P} \subset \mathbb{Z}[x_1]$ of magnitude (δ, τ) , encoding a finite $\mathcal{P} \subset \mathscr{C}$;

Computing topology			
Ambient dimension	Bit complexity	Reference	
n=2	$\tilde{O}(\delta^5(\delta+\tau))$	[Kobel, Sagraloff; '15] D.Diatta, S.Diatta, Rouiller, Roy, Sagraloff; '22]	
n = 3	$\tilde{O}(\delta^{19}(\delta+\tau))$	[Jin, Cheng; '21]	

- $\mathscr{R} \subset \mathbb{Z}[x_1, x_2]$ of magnitude (δ, τ) , encoding an algebraic curve $\mathscr{C} \subset \mathbb{C}^n$;
- $\mathscr{P} \subset \mathbb{Z}[x_1]$ of magnitude (δ, τ) , encoding a finite $\mathcal{P} \subset \mathscr{C}$;

Computing topology			
Ambient dimension	Bit complexity	Reference	
n=2	$ ilde{O}(\delta^5(\delta+ au))$	[Kobel, Sagraloff; '15] D.Diatta, S.Diatta, Rouiller, Roy, Sagraloff; '22]	
n = 3	$\tilde{O}(\delta^{19}(\delta+\tau))$	[Jin, Cheng; '21]	

Computing connectivity - Main Result				
Ambient dimension	Bit complexity	Reference		
$n \ge 2$	$\tilde{O}(\delta^5(\delta+\tau))$ NEW!	[Islam, Poteaux, P.; 2023]		
Avoid computation of the complete topology!				

Apparent singularities: key idea

Apparent singularities

Projection induces new singularities: the case of nodes

Apparent singularities: key idea

Apparent singularities

Projection induces new singularities: the case of nodes

Data

 $\mathscr{C} \subset \mathbb{C}^n$ algebraic curve

 $\pi_3: \mathbb{C}^n \to \mathbb{C}^3$ projection on a generic 3D space $\pi_2: \mathbb{C}^n \to \mathbb{C}^2$ projection on a generic plane

Genericity assumptions

Data

 $\pi_3: \mathbb{C}^n \to \mathbb{C}^3$ projection on a generic 3D space $\pi_2: \mathbb{C}^n \to \mathbb{C}^2$ projection on a generic plane

Genericity assumptions

 (H_1) $\pi_2: \mathscr{C} \to \pi_2(\mathscr{C})$ is birational

 $\mathscr{C} \subset \mathbb{C}^n$ algebraic curve

 (H_2) $\pi_3:\mathscr{C}\to\pi_3(\mathscr{C})$ bijective

Data

 $\mathscr{C} \subset \mathbb{C}^n$ algebraic curve

 $\pi_3: \mathbb{C}^n \to \mathbb{C}^3$ projection on a generic 3D space $\pi_2: \mathbb{C}^n \to \mathbb{C}^2$ projection on a generic plane

Genericity assumptions

- (H_1) $\pi_2: \mathscr{C} \to \pi_2(\mathscr{C})$ is birational
- (H_2) $\pi_3:\mathscr{C}\to\pi_3(\mathscr{C})$ bijective

Data

 $\mathscr{C} \subset \mathbb{C}^n$ algebraic curve

 $\pi_3: \mathbb{C}^n \to \mathbb{C}^3$ projection on a generic 3D space $\pi_2: \mathbb{C}^n \to \mathbb{C}^2$ projection on a generic plane

Genericity assumptions

- (H_1) $\pi_2: \mathscr{C} \to \pi_2(\mathscr{C})$ is birational
- (H_2) $\pi_3:\mathscr{C}\to\pi_3(\mathscr{C})$ bijective
- (H_3) Overlaps involve at most two points
- (H_4) Overlaps introduce only nodes

Nodal apparent singularity

Data

 $\mathscr{C} \subset \mathbb{C}^n$ algebraic curve

 $\pi_3: \mathbb{C}^n \to \mathbb{C}^3$ projection on a generic 3D space $\pi_2: \mathbb{C}^n \to \mathbb{C}^2$ projection on a generic plane

Genericity assumptions

- (H_1) $\pi_2: \mathscr{C} \to \pi_2(\mathscr{C})$ is birational
- (H_2) $\pi_3:\mathscr{C}\to\pi_3(\mathscr{C})$ bijective
- (H₃) Overlaps involve at most two points
- (H_4) Overlaps introduce only nodes

TriSecants are exceptional secants

Proof: Trisecant lemma for singular projective curves

Kaminski Kanel-Belov Teicher: '08

Data

 $\mathscr{C} \subset \mathbb{C}^n$ algebraic curve

 $\pi_3: \mathbb{C}^n \to \mathbb{C}^3$ projection on a generic 3D space $\pi_2: \mathbb{C}^n \to \mathbb{C}^2$ projection on a generic plane

Genericity assumptions

- (H_1) $\pi_2: \mathscr{C} \to \pi_2(\mathscr{C})$ is birational
- (H_2) $\pi_3:\mathscr{C}\to\pi_3(\mathscr{C})$ bijective
- (H₃) Overlaps involve at most two points
- (H_4) Overlaps introduce only nodes

Input

- $\mathscr{R} \subset \mathbb{Z}[x_1, x_2]$ of magnitude (δ, τ) , encoding an algebraic curve $\mathscr{C} \subset \mathbb{C}^n$;
- $\mathscr{P} \subset \mathbb{Z}[x_1]$ of magnitude (δ, τ) , encoding a finite $\mathcal{P} \subset \mathscr{C}$;
- $\bullet~\mathscr{C}$ satisfies genericity assumptions w.r.t. $\mathcal P$

Output

- 1. $\mathscr{D}, \mathscr{Q} \leftarrow \mathsf{Proj2D}(\mathscr{R}), \mathsf{Proj2D}(\mathscr{P});$
- $\mathbf{2.} \hspace{0.1 cm} \mathscr{G} \leftarrow \mathsf{Topo2D}(\mathscr{D}, \mathscr{Q}); \\$
- 3. $\mathscr{Q}_{app} \leftarrow \mathsf{ApparentSingularities}(\mathscr{R})$
- 4. $\mathscr{G}' \leftarrow \mathsf{NodeResolution}(\mathscr{G}, \mathscr{Q}_{app});$
- 5. return ConnectGraph($\mathcal{Q}, \mathcal{G}'$);

Input

- $\mathscr{R} \subset \mathbb{Z}[x_1, x_2]$ of magnitude (δ, τ) , encoding an algebraic curve $\mathscr{C} \subset \mathbb{C}^n$;
- $\mathscr{P} \subset \mathbb{Z}[x_1]$ of magnitude (δ, τ) , encoding a finite $\mathcal{P} \subset \mathscr{C}$;
- $\bullet~\mathscr{C}$ satisfies genericity assumptions w.r.t. $\mathcal P$

Output

- $1. \hspace{0.1 cm} \mathscr{D}, \mathscr{Q} \gets \mathsf{Proj2D}(\mathscr{R}), \mathsf{Proj2D}(\mathscr{P}); \\$
- $\mathbf{2.} \hspace{0.1 cm} \mathscr{G} \leftarrow \mathsf{Topo2D}(\mathscr{D}, \mathscr{Q});$
- 3. $\mathscr{Q}_{app} \leftarrow \mathsf{ApparentSingularities}(\mathscr{R})$
- 4. $\mathscr{G}' \leftarrow \mathsf{NodeResolution}(\mathscr{G}, \mathscr{Q}_{app});$
- 5. return ConnectGraph($\mathcal{Q}, \mathcal{G}'$);

Input

- $\mathscr{R} \subset \mathbb{Z}[x_1, x_2]$ of magnitude (δ, τ) , encoding an algebraic curve $\mathscr{C} \subset \mathbb{C}^n$;
- $\mathscr{P} \subset \mathbb{Z}[x_1]$ of magnitude (δ, τ) , encoding a finite $\mathcal{P} \subset \mathscr{C}$;
- $\bullet~\mathscr{C}$ satisfies genericity assumptions w.r.t. $\mathcal P$

Output

A partition of $\mathcal{P} \cap \mathbb{R}^n$ w.r.t. the s.a. connected components of $\mathscr{C} \cap \mathbb{R}^n$.

- $1. \hspace{0.1 cm} \mathscr{D}, \mathscr{Q} \leftarrow \mathsf{Proj2D}(\mathscr{R}), \mathsf{Proj2D}(\mathscr{P}); \\$
- $2. \hspace{0.1 cm} \mathscr{G} \leftarrow \mathsf{Topo2D}(\mathscr{D}, \mathscr{Q});$
- 3. $\mathscr{Q}_{app} \leftarrow \mathsf{ApparentSingularities}(\mathscr{R})$
- 4. $\mathscr{G}' \leftarrow \mathsf{NodeResolution}(\mathscr{G}, \mathscr{Q}_{app});$
- 5. return ConnectGraph($\mathcal{Q}, \mathcal{G}'$);

Planar topology computation

Bit complexity: $\tilde{O}(\delta^5(\delta + \tau))$

Cylindrical algebraic decomposition

Method introduced by G. Collins in 1975

Input

- $\mathscr{R} \subset \mathbb{Z}[x_1, x_2]$ of magnitude (δ, τ) , encoding an algebraic curve $\mathscr{C} \subset \mathbb{C}^n$;
- $\mathscr{P} \subset \mathbb{Z}[x_1]$ of magnitude (δ, τ) , encoding a finite $\mathcal{P} \subset \mathscr{C}$;
- $\bullet~\mathscr{C}$ satisfies genericity assumptions w.r.t. $\mathcal P$

Output

- $1. \hspace{0.1 cm} \mathscr{D}, \mathscr{Q} \gets \mathsf{Proj2D}(\mathscr{R}), \mathsf{Proj2D}(\mathscr{P}); \\$
- $2. \hspace{0.1 cm} \mathscr{G} \leftarrow \mathsf{Topo2D}(\mathscr{D}, \mathscr{Q}); \\$
- 3. $\mathscr{Q}_{app} \leftarrow \mathsf{ApparentSingularities}(\mathscr{R});$
- 4. $\mathscr{G}' \leftarrow \mathsf{NodeResolution}(\mathscr{G}, \mathscr{Q}_{app});$
- 5. return ConnectGraph($\mathcal{Q}, \mathcal{G}'$);

Input

- $\mathscr{R} \subset \mathbb{Z}[x_1, x_2]$ of magnitude (δ, τ) , encoding an algebraic curve $\mathscr{C} \subset \mathbb{C}^n$;
- $\mathscr{P} \subset \mathbb{Z}[x_1]$ of magnitude (δ, τ) , encoding a finite $\mathcal{P} \subset \mathscr{C}$;
- $\bullet~\mathscr{C}$ satisfies genericity assumptions w.r.t. $\mathcal P$

Output

Witness apparent singularities

•
$$\mathscr{R} = (\omega, \rho_3, \dots, \rho_n) \subset \mathbb{Z}[x, y]$$
 encoding $\mathscr{C} \subset \mathbb{C}^n$ in generic position

•
$$\mathcal{A}(x,y) = \partial_{x_2}^2 \boldsymbol{\omega} \cdot \partial_{x_1} \boldsymbol{\rho_3} - \partial_{x_1 x_2}^2 \boldsymbol{\omega} \cdot \partial_{x_2} \boldsymbol{\rho_3} \in \mathbb{Z}[x,y]$$

Proposition - Generalization of [El Kahoui; '08]

A node (α, β) is an **apparent singularity** if and only if $\mathcal{A}(\alpha, \beta) \neq 0$

Computational aspect **Q**

- 1. Non-vanishing can be tested using gcd computations
- 2. Gcd computations can be done modulo a prime number

Input

- $\mathscr{R} \subset \mathbb{Z}[x_1, x_2]$ of magnitude (δ, τ) , encoding an algebraic curve $\mathscr{C} \subset \mathbb{C}^n$;
- $\mathscr{P} \subset \mathbb{Z}[x_1]$ of magnitude (δ, τ) , encoding a finite $\mathcal{P} \subset \mathscr{C}$;
- $\bullet~\mathscr{C}$ satisfies genericity assumptions w.r.t. $\mathcal P$

Output

- $1. \hspace{0.1 cm} \mathcal{D}, \mathcal{Q} \leftarrow \mathsf{Proj2D}(\mathcal{R}), \mathsf{Proj2D}(\mathcal{P}); \\$
- $2. \hspace{0.1 cm} \mathscr{G} \leftarrow \mathsf{Topo2D}(\mathscr{D}, \mathscr{Q}); \\$
- 3. $\mathscr{Q}_{app} \leftarrow \mathsf{ApparentSingularities}(\mathscr{R});$
- 4. $\mathscr{G}' \leftarrow \mathsf{NodeResolution}(\mathscr{G}, \mathscr{Q}_{app});$
- 5. return ConnectGraph($\mathcal{Q}, \mathcal{G}'$);

Input

- $\mathscr{R} \subset \mathbb{Z}[x_1, x_2]$ of magnitude (δ, τ) , encoding an algebraic curve $\mathscr{C} \subset \mathbb{C}^n$;
- $\mathscr{P} \subset \mathbb{Z}[x_1]$ of magnitude (δ, τ) , encoding a finite $\mathcal{P} \subset \mathscr{C}$;
- $\bullet~\mathscr{C}$ satisfies genericity assumptions w.r.t. $\mathcal P$

Output

- $1. \hspace{0.1 cm} \mathscr{D}, \mathscr{Q} \leftarrow \mathsf{Proj2D}(\mathscr{R}), \mathsf{Proj2D}(\mathscr{P}); \\$
- $2. \hspace{0.1 cm} \mathscr{G} \leftarrow \mathsf{Topo2D}(\mathscr{D}, \mathscr{Q}); \\$
- 3. $\mathscr{Q}_{app} \leftarrow \mathsf{ApparentSingularities}(\mathscr{R});$
- 4. $\mathscr{G}' \leftarrow \mathsf{NodeResolution}(\mathscr{G}, \mathscr{Q}_{app});$
- 5. return ConnectGraph($\mathscr{Q}, \mathscr{G}'$);

Input

- $\mathscr{R} \subset \mathbb{Z}[x_1, x_2]$ of magnitude (δ, τ) , encoding an algebraic curve $\mathscr{C} \subset \mathbb{C}^n$;
- $\mathscr{P} \subset \mathbb{Z}[x_1]$ of magnitude (δ, τ) , encoding a finite $\mathcal{P} \subset \mathscr{C}$;
- $\bullet~\mathscr{C}$ satisfies genericity assumptions w.r.t. $\mathcal P$

Output

- $1. \hspace{0.1 cm} \mathcal{D}, \mathcal{Q} \leftarrow \mathsf{Proj2D}(\mathcal{R}), \mathsf{Proj2D}(\mathcal{P}); \\$
- $2. \hspace{0.1 cm} \mathscr{G} \leftarrow \mathsf{Topo2D}(\mathscr{D}, \mathscr{Q}); \\$
- 3. $\mathscr{Q}_{app} \leftarrow \mathsf{ApparentSingularities}(\mathscr{R});$
- 4. $\mathscr{G}' \leftarrow \mathsf{NodeResolution}(\mathscr{G}, \mathscr{Q}_{app});$
- 5. return ConnectGraph($\mathscr{Q}, \mathscr{G}'$);

Input

- $\mathscr{R} \subset \mathbb{Z}[x_1, x_2]$ of magnitude (δ, τ) , encoding an algebraic curve $\mathscr{C} \subset \mathbb{C}^n$;
- $\mathscr{P} \subset \mathbb{Z}[x_1]$ of magnitude (δ, τ) , encoding a finite $\mathcal{P} \subset \mathscr{C}$;
- $\bullet~\mathscr{C}$ satisfies genericity assumptions w.r.t. $\mathcal P$

Output

A partition of $\mathcal{P} \cap \mathbb{R}^n$ w.r.t. the s.a. connected components of $\mathscr{C} \cap \mathbb{R}^n$.

- $1. \hspace{0.1 cm} \mathscr{D}, \mathscr{Q} \leftarrow \mathsf{Proj2D}(\mathscr{R}), \mathsf{Proj2D}(\mathscr{P}); \\$
- $2. \hspace{0.1 cm} \mathscr{G} \leftarrow \mathsf{Topo2D}(\mathscr{D}, \mathscr{Q}); \\$
- 3. $\mathscr{Q}_{app} \leftarrow \mathsf{ApparentSingularities}(\mathscr{R});$
- 4. $\mathscr{G}' \leftarrow \mathsf{NodeResolution}(\mathscr{G}, \mathscr{Q}_{app});$
- 5. return ConnectGraph($\mathscr{Q}, \mathscr{G}'$);

 $\frac{\text{Overall Complexity}}{\tilde{O}(\delta^5(\delta+\tau))}$

Conclusion

Summary

Connectivity for roughly the *same price* than **planar topology**:

- \checkmark Assumptions *generically* holds
- Identify apparent singularity with modular GCD computations
- Avoid the costly lifting step from plane topology

arXiv > cs > arXiv:2302.11347

Computer Science > Symbolic Computation

[Submitted on 22 Feb 2023]

Algorithm for connectivity queries on real algebraic curves

Nazrul Islam (Diebold Nixdorf), Adrien Poteaux (CRIStAL), Rémi Prébet (PolSys)

Future work

Extension to this work:

- Adapt to algebraic curves given as union
- Generalize to *semi-algebraic* curves
- Investigate the connectivity of plane curves

Practical aspects:

- Develop an optimized implementation
- o Solve challenging applications together with roadmap algorithms

Conclusion

Summary

Connectivity for roughly the *same price* than **planar topology**:

- \checkmark Assumptions *generically* holds
- Identify apparent singularity with modular GCD computations
- Avoid the costly lifting step from plane topology

arXiv > cs > arXiv:2302.11347

Computer Science > Symbolic Computation

[Submitted on 22 Feb 2023]

Algorithm for connectivity queries on real algebraic curves

Nazrul Islam (Diebold Nixdorf), Adrien Poteaux (CRIStAL), Rémi Prébet (PolSys)

Future work

Extension to this work:

- Adapt to algebraic curves given as union
- Generalize to *semi-algebraic* curves
- Investigate the connectivity of plane curves

Practical aspects:

- Develop an optimized implementation
- Solve challenging applications together with roadmap algorithms

Thank you for your attention!

Generic projection: avoid bad directions

For plane and space projection			
Г	Dim. of	Bad directions	Bad directions
	bad directions	for π_2	for π_3
Γ	≤ 1	Ø	Ø
	≤ 2	$< \infty$	Ø