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Context and problem statement

Semi-algebraic (s.a.) sets

Set of real solutions of systems of polynomial equations and inequalities

Physics

[Le, Safey El Din; ’22]

Computational geometry

[Le, Manevich, Paulmann; ’21]

Biochemistry

[Telek, Feliu; ’23] Robotics[
Chablat, P., Safey El Din,

Salunkhe, Wenger; ’22

]
Fundamental problems in effective semi-algebraic geometry

Given a semi-algebraic set S,

• compute a real root classification of S

• compute a projection of S: quantifier elimination

• compute one point in each connected component of S

• decide if two points lie in the same connected component of S

• count the number of connected components of S
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Reduction to curves: Roadmaps

[Canny, 1988] Compute R ⊂ S one-dimensional, sharing its connectivity

Roadmap of (S,P)

It is a semi-algebraic curve R ⊂ S, containing P finite and such that

for all connected components C of S: C ∩R is non-empty and connected

Proposition

y,z ∈ P are path-connected in S ⇐⇒ they are in R

Problem reduction

Arbitrary dimension

=⇒
Roadmap

Dimension 1 =⇒
Our problem

Finite graph

z
y

x
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Data representation and quantitative estimate

Theorem

In a generic system of coordinates there exist...

Zero-dimensional parametrization of P ⊂ Cn finite

...polynomials (λ, ϑ2, . . . , ϑn) ⊂ Z[x1] s.t.

P =

{(
x1,

ϑ2(x1)

λ′(x1)
, . . . ,

ϑn(x1)

λ′(x1)

)∣∣∣∣λ(x1) = 0

}

One-dimensional parametrization of C ⊂ Cn algebraic curve

...polynomials (ω, ρ3, . . . , ρn) ⊂ Z[x1, x2] s.t.

C =


(
x1,x2,

ρ3(x1,x2)

∂x2ω(x1,x2)
, . . . ,

ρn(x1,x2)

∂x2ω(x1,x2)

)
s.t. ω(x1,x2) = 0 and ∂x2ω(x1,x2) 6= 0



Magnitude of a polynomial

f ∈ Z[x1, . . . , xn] has magnitude (δ, τ) if

deg(f) ≤ δ and |coeffs(f)| ≤ 2τ

Soft-O notation

Õ(N) = O(N log(N)a), a > 0
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Results

Data

• R ⊂ Z[x1, x2] of magnitude (δ, τ), encoding an algebraic curve C ⊂ Cn;

• P ⊂ Z[x1] of magnitude (δ, τ), encoding a finite P ⊂ C ;

Computing topology

Ambient dimension Bit complexity Reference

n = 2 Õ(δ5(δ + τ))
[Kobel, Sagraloff; ’15][

D.Diatta, S.Diatta,
Rouiller, Roy, Sagraloff; ’22

]

n = 3 Õ(δ19(δ + τ)) [Jin, Cheng; ’21]

Cylindrical Algebraic Decomposition

[Collins, ’75] [Kerber, Sagraloff; ’12]

Multiple projections

[Seidel, Wolpert; ’05]

Subdivision

[Burr, Choi, Galehouse, Yap; ’05]

Computing connectivity - Main Result

Ambient dimension Bit complexity Reference

n ≥ 2 Õ(δ5(δ + τ)) [Islam, Poteaux, P.; 2023]

Avoid computation of the complete topology!
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n ≥ 2 Õ(δ5(δ + τ)) [Islam, Poteaux, P.; 2023]

Avoid computation of the complete topology!

5



Results

Data

• R ⊂ Z[x1, x2] of magnitude (δ, τ), encoding an algebraic curve C ⊂ Cn;

• P ⊂ Z[x1] of magnitude (δ, τ), encoding a finite P ⊂ C ;

Computing topology

Ambient dimension Bit complexity Reference
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Apparent singularities: key idea

Apparent singularities

Projection induces new singularities: the case of nodes

Below Same Above

Key idea

Local connectivity does not depend of the relative position

Only two cases to consider!
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Genericity assumptions

Data

C ⊂ Cn algebraic curve
π3 : Cn → C3 projection on a generic 3D space

π2 : Cn → C2 projection on a generic plane

Genericity assumptions

(H1) π2 : C → π2(C ) is birational

(H2) π3 : C → π3(C ) bijective

(H3) Overlaps involve at most two points

(H4) Overlaps introduce only nodes

Secants are exceptional lines

[Shafarevich, ’13]

Secants with coplanar tangents are exceptional secants

Proof: Generalize results from literature

[Mumford; ’76]

[
Fortuna, Gianni
Trager; ’09

]
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Algorithm

Input

• R ⊂ Z[x1, x2] of magnitude (δ, τ), encoding an algebraic curve C ⊂ Cn;

• P ⊂ Z[x1] of magnitude (δ, τ), encoding a finite P ⊂ C ;

• C satisfies genericity assumptions w.r.t. P

Output

A partition of P ∩ Rn w.r.t. the s.a. connected components of C ∩ Rn.

1. D ,Q ← Proj2D(R),Proj2D(P);

2. G ← Topo2D(D ,Q);

3. Qapp ← ApparentSingularities(R)

4. G ′ ← NodeResolution(G , Qapp);

5. return ConnectGraph(Q, G ′);

Planar topology computation

Bit complexity: Õ(δ5(δ + τ))
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Computing the topology of plane curves

Cylindrical algebraic decomposition

Method introduced by G. Collins in 1975
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Computing the topology of plane curves

Complexity bottleneck→ Isolating critical boxes

Isolation of some univariate polynomials with algebraic coefficients

Complexity: Õ(δ5(δ + τ))

[Kobel, Sagraloff; ’15][
D.Diatta, S.Diatta,

Rouiller, Roy, Sagraloff; ’22

]
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Complexity: Õ(δ5(δ + τ))

[Kobel, Sagraloff; ’15][
D.Diatta, S.Diatta,

Rouiller, Roy, Sagraloff; ’22

]

9



Computing the topology of plane curves

Complexity bottleneck→ Isolating critical boxes

Isolation of some univariate polynomials with algebraic coefficients

Complexity: Õ(δ5(δ + τ))
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Witness apparent singularities

• R = (ω,ρ3, . . . , ρn) ⊂ Z[x, y] encoding C ⊂ Cn in generic position;

• A(x, y) = ∂2
x2
ω · ∂x1ρ3 − ∂2

x1x2
ω · ∂x2ρ3 ∈ Z[x, y]

Proposition - Generalization of [El Kahoui; ’08]

A node (α, β) is an apparent singularity if and only if A(α, β) 6= 0

A(α, β) 6= 0 A(α,β) = 0 A(α, β) 6= 0

Computational aspect

1. Non-vanishing can be tested using gcd computations

2. Gcd computations can be done modulo a prime number
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Conclusion

Summary

Connectivity for roughly the same price

than planar topology:

Assumptions generically holds

Identify apparent singularity with

modular GCD computations

Avoid the costly lifting step from

plane topology

Future work

Extension to this work:

◦ Adapt to algebraic curves given as union

◦ Generalize to semi-algebraic curves

◦ Investigate the connectivity of plane curves

z
y

x

Practical aspects:

◦ Develop an optimized implementation

◦ Solve challenging applications together with roadmap algorithms

Thank you for your attention!
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Generic projection: avoid bad directions

Generic affine subspace

E : of dimension k ≥ 1

E⊥: orthogonal of E (codimension k)

Remark

Projection: on E ⇔ in the direction of E⊥

Generic intersection of with varieties

Let D be an algebraic set of dimension ≤ l then,

E ∩D is

{
finite if l = k

empty if l < k

[Shafarevitch] [Lakshmibai et al.]

For plane and space projection

Dim. of

bad directions

Bad directions

for π2

Bad directions

for π3

≤ 1 ∅ ∅
≤ 2 <∞ ∅

14


