Et si SAT était vraiment difficile?
 Quelques conséquences des hypothèses ETH et SETH

Bruno Escoffier, LIP6, Sorbonne Université

ALEA DAYS 2023

March 2023

But interesting (at least to me) and somehow fundamental questions

Classical dichotomy

Classical dichotomy

"There are two kinds of people in this world, my friend. Those who have guns and those who do not."

"There are two kinds of problems in this world, my friend. Those who have polytime algorithms and those who do not

Classical dichotomy

"There are two kinds of people in this world, my friend. Those who have guns and those who do not."

"There are two kinds of problems in this world, my friend. Those who have polytime algorithms and those who do not ... if $P \neq N P$."

Classical dichotomy

"There are two kinds of problems in this world, my friend. Those who have polytime algorithms and those who do not ... if $P \neq N P$."

Well this is nice . . . but not very precise!

Classical dichotomy

"There are two kinds of problems in this world, my friend. Those who have polytime algorithms and those who do not \ldots if $P \neq N P$."

Well this is nice . . . but not very precise!

- An $O\left(n^{5}\right)$ algorithm is not the same as a linear one!

Classical dichotomy

"There are two kinds of problems in this world, my friend. Those who have polytime algorithms and those who do not ... if $P \neq N P$."

Well this is nice . . . but not very precise!

- An $O\left(n^{5}\right)$ algorithm is not the same as a linear one! \rightarrow Algorithm design: try to reduce the complexity.

Classical dichotomy

Matrix multiplication: from $O\left(n^{3}\right)$ to $O\left(n^{2.3728596}\right)$

(source wikipedia)

Classical dichotomy

"There are two kinds of problems in this world, my friend. Those who have polytime algorithms and those who do not ... if $P \neq N P$."

Well this is nice . . . but not very precise!

- An $O\left(n^{5}\right)$ algorithm is not the same as a linear one!
\rightarrow Algorithm design: try to reduce the complexity.

Classical dichotomy

"There are two kinds of problems in this world, my friend. Those who have polytime algorithms and those who do not ... if $P \neq N P$."

Well this is nice . . . but not very precise!

- An $O\left(n^{5}\right)$ algorithm is not the same as a linear one! \rightarrow Algorithm design: try to reduce the complexity. But what about lower bounds??

Classical dichotomy

"There are two kinds of problems in this world, my friend. Those who have polytime algorithms and those who do not ... if $P \neq N P$."

Well this is nice . . . but not very precise!

- An $O\left(n^{5}\right)$ algorithm is not the same as a linear one! \rightarrow Algorithm design: try to reduce the complexity. But what about lower bounds??
- NP-complete problems: typically solvable in $O\left(c^{n}\right)$.
\rightarrow Can't we do better?

Classical dichotomy

"There are two kinds of problems in this world, my friend. Those who have polytime algorithms and those who do not \ldots if $P \neq N P$."

Well this is nice . . . but not very precise!

- An $O\left(n^{5}\right)$ algorithm is not the same as a linear one! \rightarrow Algorithm design: try to reduce the complexity. But what about lower bounds??
- NP-complete problems: typically solvable in $O\left(c^{n}\right)$. \rightarrow Can't we do better?

Find lower bounds, using a stronger hypothesis ...
... on Sat! $(P \neq N P \Leftrightarrow$ Sat $\notin P)$

Sat, k-Sat, ETH and SETH

Sat

- t boolean variables $\left(x_{1}, \ldots, x_{t}\right)$
- m clauses $C_{1}, \ldots, C_{m}\left(C_{1}=\left(x_{2} \vee \overline{x_{4}} \vee x_{5}\right), \ldots\right)$
- Is there a truth value which satisfies all clauses?
k-Sat: every clause has (exactly/at most) k literals.

Sat, k-Sat, ETH and SETH

Sat

- t boolean variables $\left(x_{1}, \ldots, x_{t}\right)$
- m clauses $C_{1}, \ldots, C_{m}\left(C_{1}=\left(x_{2} \vee \overline{x_{4}} \vee x_{5}\right), \ldots\right)$
- Is there a truth value which satisfies all clauses?
k-Sat: every clause has (exactly/at most) k literals.

What can we say about Sat/k-Sat?

\rightarrow Solvable in $2^{t} p o l y(t, m)=O^{*}\left(2^{t}\right)$.
\rightarrow Can we do better?

Sat, k-Sat, ETH and SETH

Sat

- t boolean variables $\left(x_{1}, \ldots, x_{t}\right)$
- m clauses $C_{1}, \ldots, C_{m}\left(C_{1}=\left(x_{2} \vee \overline{x_{4}} \vee x_{5}\right), \ldots\right)$
- Is there a truth value which satisfies all clauses?
k-Sat: every clause has (exactly/at most) k literals.

What can we say about Sat/k-Sat?

\rightarrow Solvable in $2^{t} p o l y(t, m)=O^{*}\left(2^{t}\right)$.
\rightarrow Can we do better? yes and no ...

3-Sat

$$
\begin{aligned}
C=\left(x_{1} \vee x_{2} \vee \overline{x_{3}}\right) & \rightarrow \\
& \left.\left.\begin{array}{l}
\text { only } 7 \text { possibilities } \\
\\
\left(\text { all but } x_{1}=x_{2}\right.
\end{array}\right) F, x_{3}=T\right) \\
& \rightarrow \text { test all of them } \\
& \rightarrow T(t)=7 T(t-3)
\end{aligned}
$$

3-Sat

$$
C=\left(x_{1} \vee x_{2} \vee \overline{x_{3}}\right) \quad \rightarrow \quad \text { only } 7 \text { possibilities }
$$

$$
\text { (all but } x_{1}=x_{2}=F, x_{3}=T \text {) }
$$

\rightarrow test all of them
$\rightarrow \quad T(t)=7 T(t-3)$
(instead of $T(t)=8 T(t-3)$
for exhaustive search)
3-Sat solvable in $O^{*}\left(c_{3}^{t}\right)$, with $c_{3}=7^{1 / 3}=1.9 \ldots<2$.

k-Sat

C of size $k \rightarrow$ only $2^{k}-1$ possibilities
\rightarrow test all of them
$\rightarrow \quad T(t)=\left(2^{k}-1\right) T(t-k)$
(instead of $T(t)=2^{k} T(t-k)$
for exhaustive search)
k-Sat solvable in $O^{*}\left(c_{k}^{t}\right)$, with $c_{k}=\left(2^{k}-1\right)^{1 / k}<2$.

Sat, k-Sat, ETH and SETH

Sat

- t boolean variables $\left(x_{1}, \ldots, x_{t}\right)$
- m clauses $C_{1}, \ldots, C_{m}\left(C_{1}=\left(x_{2} \vee \overline{x_{4}} \vee x_{5}\right), \ldots\right)$
- Is there a truth value which satisfies all clauses?
k-Sat: every clause has (exactly/at most) k literals.

What can we say about Sat/k-Sat?

\rightarrow Solvable in $2^{t} p o l y(t, m)=O^{*}\left(2^{t}\right)$.
\rightarrow Can we do better? yes and no ...
"Yes" for- k Sat.
Significantly better? Subexponential (in t) time?
And for Sat?

Sat, k-Sat, ETH and SETH

Subexponential time? Seems very hard to get, even for 3-Sat \rightarrow ETH.

Sat, k-Sat, ETH and SETH

Subexponential time? Seems very hard to get, even for 3-Sat \rightarrow ETH.

Definition

Let $\mu_{k}=\inf \left\{c \geq 0: k\right.$-Sat solvable in $\left.O^{*}\left(2^{c t}\right)\right\}$.
$\mu_{k}>0 \rightarrow$ exponential time is needed.
ETH - Exponential Time Hypothesis (Impagliazzo, Paturi, Ramamohan (1999))
$\mu_{3}>0$.

Sat, k-Sat, ETH and SETH

Subexponential time? Seems very hard to get, even for 3-Sat \rightarrow ETH.

Definition

Let $\mu_{k}=\inf \left\{c \geq 0: k\right.$-Sat solvable in $\left.O^{*}\left(2^{c t}\right)\right\}$.
$\mu_{k}>0 \rightarrow$ exponential time is needed.
ETH - Exponential Time Hypothesis (Impagliazzo, Paturi, Ramamohan (1999))
$\mu_{3}>0$.
And for Sat? No $O^{*}\left(2^{c t}\right)$ algorithm with $c<1$ is known!
SETH - Strong Exponential Time Hypothesis
$\mu_{k} \rightarrow_{k \rightarrow \infty} 1$.
(1) Introduction, ETH and SETH
(2) Lower bounds for NP-hard problems
(1) Subexponential time
(2) Parameterized complexity
(3) Lower bounds for polynomial problems
(0) Concluding remarks

Lower bounds for hard problems: subexponential time

ETH \rightarrow 3-Sat non solvable in subexponential time (wrt $t=\#$ variables).

Question

Can we show exponential lower bounds under ETH?

Independent set

Figure: Indep. set: set of pairwise non adjacent vertices

- Input: (G, k)

Question: $\alpha(G) \geq k$?

Lower bounds for hard problems: subexponential time

Independent set

Figure: Indep. set: set of pairwise non adjacent vertices

- Input: (G, k)

Question: $\alpha(G) \geq k$?

- Solvable in $O^{*}\left(2^{n}\right)$ ($n=$ \# vertices)
\rightarrow Not in subexponential time, under ETH?

Lower bounds for hard problems: subexponential time

Reduction 3-Sat \leq Independent Set

$$
\begin{aligned}
& c_{1}=\left(x_{1} \vee \bar{x}_{2} \vee \bar{x}_{4}\right) \\
& c_{2}=\left(x_{3} \vee x_{4} \vee x_{5}\right) \\
& c_{3}=\left(\bar{x}_{1} \vee \bar{x}_{3} \vee \bar{x}_{4}\right)
\end{aligned}
$$

I satisfiable iff $\alpha(G(I)) \geq m$
\rightarrow lower bound $2^{\epsilon n}$ for Independent Set (under ETH)?

Lower bounds for hard problems: subexponential time

Reduction 3-Sat \leq Independent Set

$$
\begin{aligned}
& c_{1}=\left(x_{1} \vee \bar{x}_{2} \vee \bar{x}_{4}\right) \\
& c_{2}=\left(x_{3} \vee x_{4} \vee x_{5}\right) \\
& c_{3}=\left(\bar{x}_{1} \vee \bar{x}_{3} \vee \bar{x}_{4}\right)
\end{aligned}
$$

I satisfiable iff $\alpha(G(I)) \geq m$
\rightarrow lower bound $2^{\epsilon n}$ for Independent Set (under ETH)?
No! (well, not yet)
$G(I)$ has $n=3 m$ vertices. $2^{o(n)}$ for IS does not give a $2^{o(t)}$ for 3-Sat (contradicting ETH), but a $2^{o(m)}$ (NOT contradicting ETH (yet)).

Lower bounds for hard problems: subexponential time

Reduction 3-Sat \leq Independent Set

$$
\begin{aligned}
& c_{1}=\left(x_{1} \vee \bar{x}_{2} \vee \bar{x}_{4}\right) \\
& c_{2}=\left(x_{3} \vee x_{4} \vee x_{5}\right) \\
& c_{3}=\left(\bar{x}_{1} \vee \bar{x}_{3} \vee \bar{x}_{4}\right)
\end{aligned}
$$

I satisfiable iff $\alpha(G(I)) \geq m$
\rightarrow lower bound $2^{\epsilon n}$ for Independent Set (under ETH)?
No! (well, not yet)
$G(I)$ has $n=3 m$ vertices. $2^{o(n)}$ for IS does not give a $2^{o(t)}$ for 3-Sat (contradicting ETH), but a $2^{\circ(m)}$ (NOT contradicting ETH (yet)).

We need a reduction where $n=O(t) \ldots$ or to work with 3-Sat instances with $m=O(t)$ clauses.

Lower bounds for hard problems: subexponential time

Sparsification lemma (Impagliazzo et al. (2001))
Let 3-Sat (B) be the restriction of 3-Sat to instances where $m \leq B t$. ETH holds iff $\exists B$ such that "it holds for $3-\operatorname{Sat}(B)$ "

Lower bounds for hard problems: subexponential time

Sparsification lemma (Impagliazzo et al. (2001))
Let 3-Sat (B) be the restriction of 3-Sat to instances where $m \leq B t$. ETH holds iff $\exists B$ such that "it holds for $3-\operatorname{Sat}(B)$ "

$$
\text { 3-Sat } \rightarrow \text { 3-Sat }(B) \rightarrow \text { Independent Set }
$$

Lower bounds for hard problems: subexponential time

Sparsification lemma (Impagliazzo et al. (2001))
Let 3-Sat (B) be the restriction of 3-Sat to instances where $m \leq B t$. ETH holds iff $\exists B$ such that "it holds for $3-\operatorname{Sat}(B)$ "

$$
\text { 3-Sat } \rightarrow \text { 3-Sat }(B) \rightarrow \text { Independent Set }
$$

Hardness of Independent Set

Under ETH, there exists $\epsilon>0$ such that Independent is not solvable in $2^{\epsilon n}$ (with $n=\#$ vertices).

And the same for many other problems (3-colorability, Hamiltonian path,...)

Lower bounds for hard problems: subexponential time

Question

Can we show exponential lower bounds under ETH?

Answer

Yes we can
... well, this was expected, but it was not that direct

By the way: shall we buy (S)ETH?

By the way: shall we buy (S)ETH?

Reminder

Under ETH, there exists $\epsilon>0$ such that Independent is not solvable in $2^{\epsilon n}$ (with $n=\#$ vertices).

Is the reverse true? Also for other problems?

By the way: shall we buy (S)ETH?

Reminder

Under ETH, there exists $\epsilon>0$ such that Independent is not solvable in $2^{\epsilon n}$ (with $n=\#$ vertices).

Is the reverse true? Also for other problems?
\rightarrow Yes: if ETH fails, then many well known optimization problems would be solvable in subexponential time.

By the way: shall we buy (S)ETH?

Reminder

Under ETH, there exists $\epsilon>0$ such that Independent is not solvable in $2^{\epsilon n}$ (with $n=\#$ vertices).

Is the reverse true? Also for other problems?
\rightarrow Yes: if ETH fails, then many well known optimization problems would be solvable in subexponential time.

Shall we buy SETH? (\Rightarrow no c^{t} algo for Sat with $c<2$)

By the way: shall we buy (S)ETH?

Reminder

Under ETH, there exists $\epsilon>0$ such that Independent is not solvable in $2^{\epsilon n}$ (with $n=\#$ vertices).

Is the reverse true? Also for other problems?
\rightarrow Yes: if ETH fails, then many well known optimization problems would be solvable in subexponential time.

Shall we buy SETH? (\Rightarrow no c^{t} algo for Sat with $c<2$) Well...

... but at least you should compete for the Godel prize if you disprove it!
(1) Introduction, ETH and SETH
(2) Lower bounds for NP-hard problems
(1) Subexponential time
(2) Parameterized complexity
(3) Lower bounds for polynomial problems
(0) Concluding remarks

Lower bounds for hard problems: paramaterized complexity

Independent set

Figure: Indep. set: set of pairwise non adjacent vertices

- Input: (G, k)

Question: $\alpha(G) \geq k$?

Lower bounds for hard problems: paramaterized complexity

Independent set

Figure: Indep. set: set of pairwise non adjacent vertices

- Input: (G, k)

Question: $\alpha(G) \geq k$?

- Solvable in $O\left(k^{2} n^{k}\right)$ ($n=\#$ vertices)
\rightarrow Can we improve the degree of the polynomial? Get rid of it?

Lower bounds for hard problems: paramaterized complexity

Independent set

Figure: Indep. set: set of pairwise non adjacent vertices

- Input: (G, k)

Question: $\alpha(G) \geq k$?

- Solvable in $O\left(k^{2} n^{k}\right)$ ($n=\#$ vertices)
\rightarrow Can we improve the degree of the polynomial? Get rid of it? Parameterized complexity.

Independent set

- Input: (G, k)

Parameter: k
Question: $\alpha(G) \geq k$?

- Solvable in $O\left(k^{2} n^{k}\right)$ ($n=\#$ vertices)
\rightarrow Can we improve the degree of the polynomial? Get rid of it?
Parameterized complexity.

Independent set

- Input: (G, k)

Parameter: k
Question: $\alpha(G) \geq k$?

- Solvable in $O\left(k^{2} n^{k}\right)$ ($n=\#$ vertices)
\rightarrow Can we improve the degree of the polynomial? Get rid of it?
Parameterized complexity.
\rightarrow Not solvable in $f(k) n^{c}$ (if FPT $\neq \mathrm{W}[1]$).

Independent set

- Input: (G, k)

Parameter: k
Question: $\alpha(G) \geq k$?

- Solvable in $O\left(k^{2} n^{k}\right)$ ($n=\#$ vertices)
\rightarrow Can we improve the degree of the polynomial? Get rid of it?
Parameterized complexity.
\rightarrow Not solvable in $f(k) n^{c}$ (if FPT $\neq \mathrm{W}[1]$).
In $2^{k} n^{\sqrt{k}}$? Or at least $f(k) n^{o(k)}$?

If I.S. solvable in $O\left(n^{o(k)}\right)$ then 3 -coloring solvable in $O\left(2^{o(n)}\right)$.

If I.S. solvable in $O\left(n^{o(k)}\right)$ then 3 -coloring solvable in $O\left(2^{o(n)}\right)$.

G: 3-colo rable?

\square

$$
\left|v_{i}\right|=\frac{n}{k}
$$

G 3-colorable iff $\alpha(H)=k$.

If I.S. solvable in $O\left(n^{o(k)}\right)$ then 3 -coloring solvable in $O\left(2^{\circ(n)}\right)$.

G: 3-colo cable?

$$
\left|v_{i}\right|=\frac{n}{k}
$$

G 3-colorable iff $\alpha(H)=k$.
$-\left|C_{i}\right| \leq 3^{n / k} \rightarrow H$ has $N \leq k 3^{n / k}$ vertices.
$\alpha(H)=k$? Time $N^{o(k)} \leq k^{o(k)} 3^{n . o(k) / k}=2^{o(n)}(k=\log n)$.

Lower bounds for hard problems: parameterized complexity

Lower bound

Under ETH, I.S. is not solvable in $O\left(n^{o(k)}\right)$

Lower bounds for hard problems: parameterized complexity

Lower bound

Under ETH, I.S. is not solvable in $O\left(n^{o(k)}\right)$ and not in $f(k) n^{o(k)}$, for any function f. (Chen, Chor, Fellows, Huang, Juedes, Kanj, and Xia (2005))

The same occurs for other problems (e.g., dominating set).

Lower bounds for hard problems: parameterized complexity

Lower bound

Under ETH, I.S. is not solvable in $O\left(n^{o(k)}\right)$ and not in $f(k) n^{o(k)}$, for any function f. (Chen, Chor, Fellows, Huang, Juedes, Kanj, and Xia (2005))

The same occurs for other problems (e.g., dominating set). \rightarrow Remark: use of non-polytime reduction.

Lower bounds for hard problems: parameterized complexity

Independent set

- Input: (G, k)

Parameter: k
Question: $\alpha(G) \geq k$?

- Solvable in $O\left(k^{2} n^{k}\right)$ ($n=\#$ vertices)
\rightarrow Can we improve the degree of the polynomial? Get rid of it?
Parameterized complexity.
\rightarrow Not solvable in $f(k) n^{c}$ (if FPT $\neq \mathrm{W}[1]$).
In $2^{k} n^{\sqrt{k}}$? Or at least $f(k) n^{o(k)}$?

Lower bounds for hard problems: parameterized complexity

Independent set

- Input: (G, k)

Parameter: k
Question: $\alpha(G) \geq k$?

- Solvable in $O\left(k^{2} n^{k}\right)$ ($n=\#$ vertices)
\rightarrow Can we improve the degree of the polynomial? Get rid of it?
Parameterized complexity.
\rightarrow Not solvable in $f(k) n^{c}$ (if FPT $\neq \mathrm{W}[1]$).
In $2^{k} n^{\sqrt{k}}$? Or at least $f(k) n^{o(k)}$?
\rightarrow No under ETH

Lower bounds for hard problems: parameterized complexity

Independent set

- Input: (G, k)

Parameter: k
Question: $\alpha(G) \geq k$?

- Solvable in $O\left(k^{2} n^{k}\right)$ ($n=\#$ vertices)
\rightarrow Can we improve the degree of the polynomial? Get rid of it?
Parameterized complexity.
\rightarrow Not solvable in $f(k) n^{c}$ (if FPT $\neq \mathrm{W}[1]$).
In $2^{k} n^{\sqrt{k}}$? Or at least $f(k) n^{o(k)}$?
\rightarrow No under ETH
In time $n^{c k}$ for some $c<1$?

Independent set

- Input: (G, k)

Parameter: k
Question: $\alpha(G) \geq k$?

- Solvable in $O\left(k^{2} n^{k}\right)$ ($n=\#$ vertices)
\rightarrow Can we improve the degree of the polynomial? Get rid of it?
Parameterized complexity.
\rightarrow Not solvable in $f(k) n^{c}$ (if FPT $\neq \mathrm{W}[1]$).
$\ln 2^{k} n^{\sqrt{k}}$? Or at least $f(k) n^{o(k)}$?
\rightarrow No under ETH
In time $n^{c k}$ for some $c<1$?
\rightarrow Well, doable for IS ... but not for other problems under SETH (even no $n^{k-\epsilon}$).

We can

\rightarrow Find lower bounds beyond polytime:

- under ETH (no $2^{\circ(n)}$, no $n^{o(k)}, \ldots$),
- under SETH, sharp bounds,
both in classical and parameterized complexity frameworks.
(1) Introduction, ETH and SETH
(2) Lower bounds for NP-hard problems
(1) Subexponential time
(2) Parameterized complexity
(3) Lower bounds for polynomial problems
(0) Concluding remarks

Lower bounds for polynomial problems

Dominating Set

Lower bounds for polynomial problems

Dominating Set

Dominating Set: S such that every vertex not in S has a neighbor in S.

Lower bounds for polynomial problems

Dominating Set

Dominating Set: S such that every vertex not in S has a neighbor in S.

- k-DS: does G has a D.S. of size k ?

Enumerating all subsets of size $k \rightarrow n^{k}$.
Can I avoid this? Can I solve 3-DS in $n^{3-\epsilon}$? k-DS in $n^{k-\epsilon}$ for some/any k ?

Lower bounds for polynomial problems

Dominating Set

Dominating Set: S such that every vertex not in S has a neighbor in S.

- k-DS: does G has a D.S. of size k ?

Enumerating all subsets of size $k \rightarrow n^{k}$.
Can I avoid this? Can I solve 3-DS in $n^{3-\epsilon}$? k-DS in $n^{k-\epsilon}$ for some/any k ?
No, under SETH! No $n^{3-\epsilon}$ for $3-D S$; $\forall k$, no $n^{k-\epsilon}$ for k-DS!!
$\forall k \geq 3, \epsilon>0$: if k-DS is solvable in $O\left(n^{k-\epsilon}\right)$ then SETH is false.

$\forall k \geq 3, \epsilon>0$: if k-DS is solvable in $O\left(n^{k-\epsilon}\right)$ then SETH is false.

G has a D.S. of size k iff the formula is satisfiable.
$\forall k \geq 3, \epsilon>0$: if k-DS is solvable in $O\left(n^{k-\epsilon}\right)$ then SETH is false.

G has a D.S. of size k iff the formula is satisfiable.
G has $n \leq k 2^{t / k}+m$ vertices $\rightarrow G$ has a D.S. of size k ?
Time $n^{k-\epsilon} \leq 2^{t(1-\epsilon / k)}$ poly $(m, t) \rightarrow$ SETH is false.

Lower bounds for polynomial problems

Lower bound for DS, also for other classical problems.
LCS (longest common subsequence)

Solvable in $O\left(n^{2}\right)(n=|U|=|W|)$ using DP

Lower bounds for polynomial problems

Lower bound for DS, also for other classical problems.

LCS (longest common subsequence)

Solvable in $O\left(n^{2}\right)(n=|U|=|W|)$ using DP
Theorem ((Abboud et al. 2015))
Under SETH, $\forall \epsilon>0, L C S$ is not solvable in $O\left(n^{2-\epsilon}\right)$.

We can
\rightarrow Find lower bounds for polytime problems, under SETH: fine-grained complexity.
(1) Introduction, ETH and SETH
(2) Lower bounds for NP-hard problems
(1) Subexponential time
(2) Parameterized complexity
(3) Lower bounds for polynomial problems
(a) Concluding remarks

Concluding remarks

Other topics:

- Lower bounds for other problems
- Lower bounds for approximation algorithms
- Randomized ETH

Lower bounds for other problems?

Back to independent set

Theorem

A graph has either an independent set of size $\left\lfloor\log _{2}(n) / 2\right\rfloor$, or a clique of size $\left\lfloor\log _{2}(n) / 2\right\rfloor$.

Lower bounds for other problems?

Back to independent set

Theorem

A graph has either an independent set of size $\left\lfloor\log _{2}(n) / 2\right\rfloor$, or a clique of size $\left\lfloor\log _{2}(n) / 2\right\rfloor$.
but can we determine which case(s) occur(s)?

Lower bounds for other problems?

Back to independent set

Theorem

A graph has either an independent set of size $\left\lfloor\log _{2}(n) / 2\right\rfloor$, or a clique of size $\left\lfloor\log _{2}(n) / 2\right\rfloor$.
but can we determine which case(s) occur(s)?

- A graph G
- Does $\alpha(G) \geq \log (n)$?

Lower bounds for other problems?

Back to independent set

Theorem

A graph has either an independent set of size $\left\lfloor\log _{2}(n) / 2\right\rfloor$, or a clique of size $\left\lfloor\log _{2}(n) / 2\right\rfloor$.
but can we determine which case(s) occur(s)?

- A graph G
- Does $\alpha(G) \geq \log (n)$?
\rightarrow solvable in $O\left(n^{O(\log n)}\right)=2^{\text {polylog } n}$
Not NP-complete (unless NP \subseteq QP)... but seems hard to solve in polytime!

Lower bounds for other problems?

Back to independent set

Theorem

A graph has either an independent set of size $\left\lfloor\log _{2}(n) / 2\right\rfloor$, or a clique of size $\left\lfloor\log _{2}(n) / 2\right\rfloor$.
but can we determine which case(s) occur(s)?

- A graph G
- Does $\alpha(G) \geq \log (n)$?
\rightarrow solvable in $O\left(n^{O(\log n)}\right)=2^{\text {polylog } n}$
Not NP-complete (unless NP \subseteq QP)... but seems hard to solve in polytime!

Theorem

It is not in P, and even not solvable in $n^{o(\log n)}$, under ETH!

Lower bounds for other problems?

We can

\rightarrow Get hardness results for problems "hard but not NP-complete", under ETH.

Concluding remarks

- Lower bounds for other problems
- Lower bounds for approximation algorithms
- Randomized ETH

Concluding remarks

Concluding remarks

Hardness of polynomial problems

Complexity Inside P

From a lecture of Karl Bringmann, https://www.cs.sbg.ac.at/~forster/ courses/polycomp/slides/polycomp11.pdf.

Some tight results under SETH

Under SETH

- I.S. is not solvable in $(2-\epsilon)^{t w} n^{c}$ with $t w=$ treewidth (Lokshtanov, Marx, and Saurabh 2010). For D.S.: no $(3-\epsilon)^{t w} n^{c}$.
- Many tight bounds for other parameters (pathwidth, cliquewidth,...) in parameterized complexity.
- No $(2-\epsilon)^{n}$ algorithm for hitting set.
- Diameter of a graph, under SETH: no $m^{2-\epsilon}$ (exact) algorithm (Roditty and Williams 2013), no ($2-\epsilon$)-approximation in $m^{1+o(1)}$ (even in sparse graphs), (Li'21, Dalirrooyfard Wei'20)
Subexponential time lower bounds under ETH: There is no $2^{o(\sqrt{n})}$ algorithm for Vertex Cover, 3-Colorability, and Hamiltonian Path for planar graphs.

(In)approximability

In polynomial time:

- $\forall c>0$: no c-approximation algorithm
- (and even) for all $\epsilon>0$: no $n^{\epsilon-1}$-approximation algorithm.

(In)approximability

In polynomial time:

- $\forall c>0$: no c-approximation algorithm
- (and even) for all $\epsilon>0$: no $n^{\epsilon-1}$-approximation algorithm.

Under ETH:

- $\forall c>0$: no $2^{n^{1-\epsilon}}$-time c-approximation algorithm. (Bonnet, Escoffier, Kim, Paschos, 2013)

(In)approximability

In polynomial time:

- $\forall c>0$: no c-approximation algorithm
- (and even) for all $\epsilon>0$: no $n^{\epsilon-1}$-approximation algorithm.

Under ETH:

- $\forall c>0$: no $2^{n^{1-\epsilon}}$-time c-approximation algorithm. (Bonnet, Escoffier, Kim, Paschos, 2013)
- \sqrt{n}-approximation: easy to get in $O^{*}\left(2^{\sqrt{n}}\right) \rightarrow$ subexponential time.

(In)approximability

In polynomial time:

- $\forall c>0$: no c-approximation algorithm
- (and even) for all $\epsilon>0$: no $n^{\epsilon-1}$-approximation algorithm.

Under ETH:

- $\forall c>0$: no $2^{n^{1-\epsilon}}$-time c-approximation algorithm. (Bonnet, Escoffier, Kim, Paschos, 2013)
- \sqrt{n}-approximation: easy to get in $O^{*}\left(2^{\sqrt{n}}\right) \rightarrow$ subexponential time. But no better! (The same for other ratios) (Chalermsook, Laekhanukit, Nanongkai, 2013)

Randomized ETH

Definition r-ETH (from Dell et al. 2012)

There is a constant $c>0$ such that no randomized algorithm can decide 3 -Sat in time $2^{c t}$ with error probability at most $1 / 3$.

Negative results under r-ETH:

- Computing the permanent of a 0-1 matrix of size $n \times n$ cannot be done in $2^{\circ(n)}$, and not even in time $2^{\circ(m)}$ where m is the number of non-zero elements.
- Some (tight) lower bounds for approximation ratios in subexponential time, e.g. in Katsikarelis, Lampis, Paschos 2019.

Also \#-ETH: $\exists c$ s.t. counting the number of sat. assignments for 3-SAT cannot be done in $2^{c t}$.

