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Introduction

Learning with multiple agents
environment depends on others’ actions
harder to learn (non i.i.d. data)
competition between agents

Cognitive radio networks: SUs learn
channels with best transmission quality

→ what interactions between learning agents?
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Main challenges

Centralized −→ Decentralized

n samples

n samples

n samples

n samples

gathering the data speeds learning up

Cooperative −→ Competitive

Cooperate Defect

Cooperate 3,3 0,5

Defect 5,0 1,1

Prisoner 2

P
ris

on
er

1
Prisoner’s dilemma (rewards)

best selfish strategy = defect
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Multi-armed bandits
A 5 minutes course
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Multi-armed bandits (MAB)

online learning problem
widely used in online recommendation
allows nice theory
many existing variations
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Stochastic MAB

For t = 1, . . . ,T :
pull arm π(t) in [K ] := {1, . . . ,K}, based on previous observations
observe reward Xπ(t)(t) ∈ [0, 1] with Xk of mean µk (drawn i.i.d.)

Notation: statistic order of means µ(1) ≥ µ(2) ≥ . . . ≥ µ(K)

Goal: maximize total reward or, equivalently, minimize regret

RT = µ(1)T −
T∑
t=1

E[Xπ(t)]

Exploration/exploitation dilemma: only observe reward of pulled arm
exploration: pull all arms to estimate µµµ
exploitation: pull seemingly best arm to maximise short term reward
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Successive Eliminations algorithm

A = [K ]
while card(A)>1 do

Pull all arms in A once
for all k ∈ A such that
maxi∈A µ̂i +

√
2 log(T )

Ti
≥ µ̂k −

√
2 log(T )

Tk
do

A ← A \ {k}
end

end
Pull best empirical arm until the end

µ(1)

µk

∆k

confidence intervals
of size 2

√
2 log(T )

Tk

µ̂(1)

µ̂k

µ̂(1)

µ̂k

µ̂(1)

µ̂k

Arm k is eliminated after ≈ log(T )
(µ(1)−µk )2

pulls whp (Hoeffding inequality)

RT ≲
∑

k>2
log(T )

µ(1)−µ(k)

Optimal regret bound: no algorithm can do better
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Multiplayer bandits
Reaching centralized performance

8 / 34



Motivation: Cognitive Radios

licensed bands: Opportunistic Spectrum Access
arm ↔ availability from primary users

un-licensed bands: IoT communications
arm ↔ background traffic

what about multiple devices?
→ several users cannot transmit

on same channel
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Model: single player

Stochastic bandits
K arms (frequency bands)

Player

X1(t)

X1(t)0

X2(t)

X2(t)X2(t)

X3(t)

X3(t)

X4(t)

X4(t)

µ1 µ2 µ3 µ4

P
ullarm

1

Collision

reward X1(t)

observe X1(t)

For t = 1, . . . ,T , pull π(t)

based on observations history

Goal: minimize regret

RT = T maxk µk −
∑T

t=1 µπ(t)

noisy
rewards

means

9 / 34



Model: multiplayer

Stochastic bandits [Multiplayer]
K arms (frequency bands), M players (secondary users)

Player 1 Player 2 Player 3

X1(t)

X1(t)

0 X2(t)

X2(t)

X2(t) X3(t)

X3(t)

X4(t)

X4(t)

µ1 µ2 µ3 µ4

Collision

For t = 1, . . . ,T , pull π(t)

based on observations history

Goal: minimize regret

RT = T maxk µk −
∑T

t=1 µπ(t)

reward r1 = X1(t)1no collision

observe 1no collision and X1(t)

noisy
rewards

means
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Model

M players pull arms πm(t) at each round t = 1, . . . ,T (m ∈ [M])
K arms with rewards Xk(t)

i.i.d.∼ Bernoulli(µk) (K ≥ M)

Observe separately Xπm(t)(t) and 1no collision on πm(t)

Notation: µ(1) ≥ µ(2) ≥ . . . ≥ µ(K)

Goal: minimize regret

RT = T
M∑

m=1

µ(m)︸ ︷︷ ︸
best possible reward

− E


T∑
t=1

M∑
m=1

µπm(t)1no collision on πm(t)︸ ︷︷ ︸
actual reward



→ find M best arms
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First intuitions

Centralized optimal algorithms: RT ≈
∑
k>M

log(T )

µ(M) − µ(k)

Prior belief for decentralized case: RT ≳ M
∑
k>M

log(T )

µ(M) − µ(k)

holds for algorithms without collisions
→ recent optimal algorithms force many collisions

collision = immediate cost 1
collision is an information bit: 1collision ∈ {0, 1}
single information bit can have a huge long term value

centralized bound achievable when enforcing collisions
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Communication trick

Feedback: observe separately Xπm(t)(t) and 1no collision on πm(t)

1collision = bit sent between players

Player j Player i

send B

B = (1, 0, . . . , 0, 1)

pull i , j , . . . , j , i pull i , i , . . . , i , i

collisions = (1, 0, . . . , 0, 1)

Communication Protocol
input : empirical means (µ̂m

k )k=1,...,K
for i , j , k ∈ [M]× [M]× [K ] do

Player j sends µ̂j
k in binary to player i // p bits for 2p observations

end

Enable communication between players
Gather statistics → centralized performance
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SIC-MMAB

SIC-MMAB
m,M ← Initialize // K log(T ) rounds
for p = 1, . . . ,∞ until M best arms found do

Pull each active arm 2p times // explore
Communication Protocol // M2Kp rounds
Eliminate suboptimal arms

end
Pull M best arms until T // exploit

Initialization: estimate M + assign unique ranks in [M] to players

Eliminate k when there are M arms i such that

µ̂i − 3

√
log(T )

2Ti︸ ︷︷ ︸
confidence bound

≥ µ̂k + 3

√
log(T )

2Tk
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SIC-MMAB

Exploration ends after ∼ K log(T )
∆2 rounds with ∆ := µ(M) − µ(M+1)

→ N ∼ log
(

log(T )
∆2

)
epochs and M2KN2 communication rounds

Theorem (SIC-MMAB1)

RT ≲
∑
k>M

log(T )

µ(M) − µ(k)︸ ︷︷ ︸
exploration

+MK log(T )︸ ︷︷ ︸
initialization

+ o(log(T ))︸ ︷︷ ︸
communication

Wang et al. (2020) later improved the initialization and communication

Same regret as centralized!

1Boursier E. and Perchet V. SIC-MMAB: synchronisation involves communication in multiplayer
multi-armed bandits. NeurIPS 2019.
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Heterogeneous case

Heterogeneous: arm means µm
k differ among the M players

Utility of matching π: U(π) =
∑M

m=1 µ
m
π(m)

Goal: find best player-arm matching U∗ = maxπ U(π)

RT = TU∗︸︷︷︸
best possible reward

− E


T∑
t=1

M∑
m=1

µm
πm(t)1no collision on πm(t)︸ ︷︷ ︸

actual reward



→ adapt SIC-MMAB with some tweaks RT ≲
M3K log(T )

∆

where ∆ := U∗ − max
U(π)<U∗

U(π)
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Closing the gap between centralized and decentralized

Homogeneous: Wang et al. (2020)
Homogeneous + no sensing (only observe Xk(t)1no collision on k): Huang et al.
(2021)
Heterogeneous: Shi et al. (2021)

→ decentralized no harder than centralized in multiplayer bandits

Hard communication undesirable in practice, but best in theory

Weakness in the current formulation
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Towards a new formulation
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Towards a new formulation

Focus too much on dependence in T?
▶ in large networks, dependence in M,K can be more important than log(T )

Players should not be cooperative?2

2Boursier E. and Perchet V. Selfish robustness and equilibria in multi-player bandits.
COLT 2020.
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Selfish Players

Goal: small regret and robust to selfish behaviors (ε-Nash equilibrium)

Definition (ε-Nash equilibrium)
sss = (s1, . . . , sM) is an ε-Nash equilibrium if for any player m and strategy s ′

Rewm
T (s

′, s−ms−ms−m) ≤ Rewm
T (sss) + ε.

Unilaterally deviate from ε-Nash equilibrium =⇒ earn at most ε more (in T
rounds)

SIC-MMAB with additional tricks:
robust initialization
detection of malicious behavior when sending messages
cut out extreme statistics from estimation
trigger collective punishment if malicious behavior
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Selfish Players
Detect malicious behavior

Only way to corrupt communication: transform 0→ 1 (create collision)

Player j Player i

send B

B = (1, 0, . . . , 0, 0)

Corruption

B̃ = (1, 0, . . . , 1, 0)

receive B̃ =
(1, 0, . . . , 1, 0)

receive B̃
resend B̃

B̃ = (1, 0, . . . , 1, 0)

B̃ = (1, 0, . . . , 1, 0)B̂ = (1, 1, . . . , 1, 0)

Corruption

receive B̂ =
(1, 1, . . . , 1, 0)

receive B̂

Corruption
iff B ̸= B̂

B̂ = (1, 1, . . . , 1, 0)

detect corruption in sent messages
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Selfish Players
Collective punishment

Grim Trigger: malicious player detected → collective punishment until T . How?

1st idea: sample any arm with probability 1
K .

Selfish player can earn µ(1)(1− 1/K )M−1 → not enough.

2nd idea: sample arm k with proba ≈ 1−
(
γ
∑M

j=1 µ(j)

Mµk

) 1
M−1

.

Selfish player earns ≈ γ
∑M

j=1 µ(j)

M on k . Relative loss 1− γ → great!

Theorem
Playing SIC-GT for all players:

1 E[RT ] ≲
∑

k>M
log(T )

µ(M)−µ(k)
+MK 2 log(T )

2 ε-Nash equilibrium with: ε ≲
∑

k>M
log(T )

µ(M)−µ(k)
+ K3 log(T )

µ(K)
.
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Towards a new formulation

Hard communication undesirable in practice, but best in theory

Weakness in the current formulation?

Focus too much on dependence in T?

Players should not be cooperative? SIC-MMAB still possible
→ what about stronger notions of equilibria? (e.g., subgame perfect eq.)

Players should not be synchronized
▶ enter/leave the game at different times

→ non communicating algorithm possible, but for a weak dynamic model
▶ no shared time discretization (asynchronous)

→ see Hugo’s talk for a first solution in multiplayer bandits
→ weaker asynchronicity for queuing systems
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Decentralized queuing systems
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Motivation

Classical repeated games ←→ repetition of the same single round game
no dependence on the past, except in learning

Road traffic
independence of rounds

Second-by-second packet routing
Dropped packets have to be resent in
next rounds

→ Learning in repeated games with carryover?

23 / 34



Model: single queue

At each t = 1, . . . ,∞
packet arrives with proba λ
sends a packet to server k ∈ [K ]

server k clears with proba µk

if fails → packet back in queue
...

success

λ

µ1

µ2

µK

→ multi-armed bandits approach
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Model: multiple queues

M queues (M ≤ K )

Heterogeneous arrival rates λi
each queue chooses πm(t) ∈ [K ]

Server treats one packet at a time
▶ chooses oldest packet

...

success

fail

λ2

µ1

µK

λ3

λ1

µ2

→ outcome depends on the packets’ age (carryover)
→ multiplayer bandits approach?
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Stability

Q i
t number of packets in queue i at time t

A queue i is stable if for any r , there is a constant Cr > 0 such that

E[(Q i
t)

r ] ≤ Cr ∀t ∈ N

Define slack

η = max

{
η′ ∈ R+ | ∀m ∈ [M], η′

m∑
i=1

λ(i) ≤
m∑
i=1

µ(i)

}

Centralized case: there is a stable strategy iff η > 1

Goal: decentralized stable strategies for small η

25 / 34



Centralized case

Single queue, single server

λ µ

Random walk (with frontier at 0)
λ < µ → negative bias, stable
λ = µ → no bias, queue size grows in

√
t

λ > µ → positive bias, queue size in (λ− µ)t

=⇒ centralized strategy stable iff η > 1

25 / 34



Frameworks comparison

Multiplayer Bandits Decentralized Queuing Systems

symmetric collision asymmetric collision

synchronous idle if no packet left

minimize regret stability

η

No stable
strategies

Stable centralized strategies

Stable no (policy) regret strategies

Stable NE without learning

Stable decentralized strategies

0 1 e
e−1

2

patience is not enough to go below η = 2
→ need for coordination/cooperation between players
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A stable learning strategy

Assumptions:
queues know M and pre-assigned ranks i ∈ [M]

shared randomness between queues
no collision sensing

Theorem3

If η > 1 and all queues follow ADeQuA, then the system is stable.

ADeQuA: at each t, using shared randomness

{
explore with proba εt
exploit with proba 1− εt

Exploration: estimate µ + use collisions to estimate λ
Exploitation: joint distribution over servers

3Sentenac F., Boursier E. and Perchet V. Decentralized Learning in Online Queuing Systems.
NeurIPS 2021.
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Exploration

All queues explore simultaneously and explore either µµµ or λλλ with proba εt

Explore µµµ: queues choose servers without colliding
→ accurate estimations of all µk

Assumption: servers break ties in packets’ age uniformly at random

Explore λλλ: when queue i explores queue j , both choose same server k with packet
generated at t (if it exists)
i clears with probability (1− λj

2 )µk → estimate λj
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Exploitation: centralized

When centralized:
ϕ : (λ̂, µ̂) 7→ P, marginals ensuring stability (dominant mapping)
ψ : P 7→ A, coupling without collision (Birkhoff von Neumann decomposition)

Centralized exploitation
Draw ω ∼ U(0, 1) // shared randomness

Play ψ(ϕ(λ̂, µ̂))(ω)

When decentralized:
compute mapping Âi = ψ(ϕ(λ̂i , µ̂i )) : [0, 1]→ RM

play Âi (ω)(i)
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Exploitation: decentralized

Compute mapping Âi = ψ(ϕ(λ̂i , µ̂i ))

Problem: estimates (λ̂i , µ̂i ) differ (but are close)
General dominant mappings and BvN decompositions are non-continuous

∥Âi − Âj∥ arbitrarily large =⇒ too many collisions

If ϕ and ψ regular → ∥Âi − Âj∥ small
=⇒ small amount of collisions

Challenge: design regular dominant mapping and BvN decomposition
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Dominant mapping

Goal ϕ : RN × RK → Bisto(N,K ) such that for any (λ, µ):

λ < Pµ if possible

Usual dominant mappings sort λ and µ → discontinuity

ϕ(λ, µ) = argmin
P∈Bisto(N,K)

max
i∈[N]
− ln

( K∑
j=1

Pi,jµj − λi
)
+

1
2K
∥P∥22.

locally Lipschitz objective
strong convexity =⇒ regularity of argmin

optimization methods to approximate ϕ
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Birkoff von Neumann decomposition

Goal ψ : Bisto(N,K )→ P(SN,K ) such that for any matrix P:

E[ψ(P)] = P

Birkoff algorithm: computation of successive perfect matchings
→ not necessarily continuous
→ can be made continuous by computing minimal cost matchings wrt to some
(arbitrary) cost

Pω∼U(0,1)(ψ(P̂
i )(ω) ̸= ψ(P̂ j)(ω))︸ ︷︷ ︸

≥ probability of collision

≤ 22K2
∥P̂ i − P̂ j∥∞.

→ exponential dependency yields large number of packets at intermediate times
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Simulations
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Hard instance, η < 2.

No regret strategies: unstable
ADeQuA: stable & number of
packets decreases after learning
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Easy instance, η > 2.

both strategies stable
No regret better suited to easy
instances?
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Recap

Decentralized sequential learning
centralized performance possible in multiplayer bandits, queuing systems...
still holds for competitive players
synchronicity of players is oversimplifying?
first (weak) solutions for both dynamic and asynchronous models

Perspectives
design learning strategies wrt stronger equilibria
general dynamic/asynchronous model
relation to other problems (decentralized queuing, competing bandits . . . )
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Thank you!



Counter Example (first phase)
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→ accumulate packets during this phase
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Counter Example (second phase)
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Counter Example (second phase)
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Second phase of length (1− α)T
No collision

→ clear packets during this phase
if α large enough, still accumulate overall Ω(T ) packets

→ unstable
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Counter example (no policy regret)
What if queue i deviates and plays p ∈ P([K ]) at each round?

2
N −

1
N2

1
N

1
N

2
N −

1
N2

2
N −

1
N2

1
N

1
N

2
N −

1
N2

First phase
→ clear all packets
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for α small enough, accumulate more packets when deviating
→ No policy regret strategies!
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Priority choice

A server can treat only one packet at a time.
Which packet to choose?

At random?
→ unstable Nash equilibria with large η (≳ N1/3)

......
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1
2

c
N1/3

1
N2/3

2
N1/3

c
N1/3

N = K
λ1 = 2

N1/3 and λi = 1
N2/3 for all i ≥ 2

µ1 = 1
2 and λi = c

N1/3 for all i ≥ 2

queue 1 cannot clear

4 / 5



Priority choice

A server can treat only one packet at a time.
Which packet to choose?

Treat oldest packet
→ force better Nash equilibria
→ carryover effect

if some queue accumulates packets → gets priority
bad performance for other queues on the long run → incites to cooperation
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Patient game

Define game G = ([N], (ci )
n
i=1,µµµ,λλλ) with

Action Space: pi ∈ P([K ])

Cost Function: All queues choose their server ait ∼ pi at each time step and

ci (pi ,p−ip−ip−i ) = lim
t→+∞

T i
t

t

T i
t is the age of the oldest packet in queue i at time t

this limit exists (deterministically)
queue i is stable =⇒ ci (pi ,p−ip−ip−i ) = 0
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