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Two-sided matching markets

Applications: online dating, school choice, resident matching, etc.

Stability: resistance to single-party deviation
Often study random preferences: easier to generalize; “quality” vs “luck”
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Stable matching markets with logit-based preferences

n agents on each side (“women” and “men”) with logit-based random
preferences

Woman i’s preference is generated from a logit model with stochastic vector
âi = (âij)j∈[n] ∈ Rn

+

E.g., âi = (1/2, 1/3, 1/6) ⇒ man 1 is 3 times more attractive to woman i (ex
ante) than man 2

Â: matrix with âi’s as rows; similarly B̂ for men
Stability: no blocking pairs
Rank of an agent: index of her matched partner in her preference
Working examples:

Homogeneous case (uniform preferences): Â = B̂ = 1
n
1n

Community structures: A = B = 2
n

(
1n/2 0n/2

0n/2 1n/2

)
Public popularities: âi = a for all i, b̂j = b for all j
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Our objectives

Understand the welfare structure in this general model:

Which agents are more competitive/popular?
Is the market well connected?
What do rank distributions look like?
What welfare should we expect on each side?

What do those even mean in a heterogeneous market?

Goal: Under certain connectivity condition on the market, all stable outcomes
behave in a certain way that reflects fitness of agents.

â Ultimately helping market designers to better analyze and enhance market
efficiency, e.g., revealing inefficiency, identifying disadvantaged groups, etc.
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Contents

1 Motivation: key questions

2 Preparation: fitness of agents and contiguity of market

3 Results: characterizing welfare distribution

4 Sketch of analysis

5 Open directions
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Literature

Uniformly random preferences
Number of stable matchings (≈ n logn

e
), optimal and pessimal average ranks

of each side (Pittel 1989)
Number of stable partners; “law of hyperbola”: product of average ranks of
the two sides ≈ n (Pittel 1992)
Unbalanced markets: short side advantage (Ashlagi, Kanoria, and Leshno
2017; Cai and Thomas 2022)

Markets with public scores (Immorlica and Mahdian 2015; Kojima and
Pathak 2009; Ashlagi, Braverman, and Hassidim 2014,etc.)
Distribution of match characteristics (Menzel 2015; Pęski 2017)

Probability of a pair being matched
General preference model, many agents of each type
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Preparation: fitness of agents and contiguity of market
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Fitness of agents

Question
Can we characterize ex-ante competitiveness (“average popularity”) of agents in a
market independent of the realized stable matching?

Example (Public fitness)

Â =


Dan Evan Fran

Amy 1/2 1/3 1/6
Betty 1/2 1/3 1/6
Cindy 1/2 1/3 1/6

 B̂ =


Amy Betty Cindy

Dan 1/5 3/10 1/2
Evan 1/5 3/10 1/2
Fran 1/5 3/10 1/2


What about markets with non-public fitness?

Ashlagi, Braverman, Zhao Welfare Structure in Two-sided Random Matching Markets 8 / 20



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Fitness of agents

Question
Can we characterize ex-ante competitiveness (“average popularity”) of agents in a
market independent of the realized stable matching?

Example (Public fitness)

Â =


Dan Evan Fran

Amy 1/2 1/3 1/6
Betty 1/2 1/3 1/6
Cindy 1/2 1/3 1/6

 B̂ =


Amy Betty Cindy

Dan 1/5 3/10 1/2
Evan 1/5 3/10 1/2
Fran 1/5 3/10 1/2



What about markets with non-public fitness?

Ashlagi, Braverman, Zhao Welfare Structure in Two-sided Random Matching Markets 8 / 20



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Fitness of agents

Question
Can we characterize ex-ante competitiveness (“average popularity”) of agents in a
market independent of the realized stable matching?

Example (Public fitness)
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Fitness through mutual scaling

Observation
Rescaling the rows of Â and B̂ (i.e., A← diag(ϕ)Â and B← diag(ψ)B̂ with
ϕ,ψ ∈ Rn

+) has no impact on the preference model.

There exist an essentially unique rescaling (ϕ,ψ) such that

M = nA ◦B⊤

is doubly stochastic (having unit row and column sums).

M: mutual matrix
ϕ and ψ: (anti-)fitness of the women and men
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Fitness through mutual scaling

Observation
Rescaling the rows of Â and B̂ (i.e., A← diag(ϕ)Â and B← diag(ψ)B̂ with
ϕ,ψ ∈ Rn

+) has no impact on the preference model.
There exist an essentially unique rescaling (ϕ,ψ) such that

M = nA ◦B⊤

is doubly stochastic (having unit row and column sums).

M: mutual matrix
ϕ and ψ: (anti-)fitness of the women and men
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Example: public popularity (revisited)

Â =


Dan Evan Fran

Amy 1/2 1/3 1/6
Betty 1/2 1/3 1/6
Cindy 1/2 1/3 1/6



ϕ ∝

Amy 1/2
Betty 1/3
Cindy 1/5



B̂ =


Amy Betty Cindy

Dan 1/5 3/10 1/2
Evan 1/5 3/10 1/2
Fran 1/5 3/10 1/2



ψ ∝

Dan 2
Evan 3
Fran 6
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Connectivity of the market

Example (Sub-markets)

Consider A = B = 2
n

(
1 0
0 1

)
. The market decomposes into two independent

sub-markets.

We can only hope to characterize markets that are “well connected”.

Assumption (Connectivity)
There exists C <∞ independent of n such that

aij
aij′

,
bji
bji′
≤ C ∀i, i′, j, j′.

The uniform case is the special case when C = 1

Bounded spectral gaps of A,B, and M are probably sufficient
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Results: characterizing welfare distribution
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Welfare characterization

We measure satisfaction of an agent by her rank-to-(anti-)fitness (RTF) ratio:
Given an agent’s fitness, smaller rank means happier
Given an agent’s rank, larger (anti-)fitness means happier

Theorem (Informal)
Whp, in every stable matching, the followings hold:

1 Product of two sides’ average RTFs is close to n;
â Trade-off between the two sides

2 Empirical distribution of RTFs on each side is close to exponential.
â Anti-concentration due to stability constraint
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Example: the uniform case
Each agent’s preference is a uniformly random ordering of the opposite side.

Corollary (Informal, uniform case)
Whp, in every stable matching, the followings hold:

1 Product of two sides’ average ranks is close to n; (law of hyperbola, Pittel 1992)
2 Empirical distribution of ranks on each side is close to exponential.

Example (Random serial dictatorship)

Non-exponential rank distribution
Failure of “law of hyperbola”
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Discussion: stable matchings vs RSD

(a) Woman-optimal stable matching (b) RSD

The advantaged side has the same average rank in both matchings (coupon
collector), but very different distributions

The deferred acceptance mechanism is symmetric: ordering of proposing
does not matter; RSD is not: ordering matters

â Max entropy heuristics: in stable matchings, average rank captures “all
info”; in RSD, there is extra info
Average rank on the disadvantaged side is sublinear in WOSM, yet linear in
RSD
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Sketch of analysis
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An equivalent preference model

Rank is discrete – hard to work with, use a continuous proxy:
Each woman i generates a value Xij ∼ Exp(naij) independently for each
man j

Woman i prefers man j to j′ ⇐⇒ Xij < Xij′

Men’s preferences are generated analogously
â Smaller value and smaller (anti-)fitness ↭ smaller rank. Suffices to consider
empirical distribution of values
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Estimate likelihood of stability

Consider {Amy↔ Dan, Betty↔ Evan, Cindy↔ Fran}

Let x1, . . . , x3 and y1, . . . , y3 be the realized values
Likelihood of stability given values

(1− P(Amy, Evan block))(1− P(Amy, Fran block)) · · · (1− P(Cindy, Evan block))
= (1− Fna12(x1)Fnb21(y2))(1− Fna13(x1)Fnb31(y3)) · · · (1− Fna32(x3)Fnb23(y2))

≈
∏
i ̸=j

(1− n2aijbjixiyj) ≈
∏
i,j

(1− nmijxiyj)≈ exp(−nx⊤My)

≈ exp(−
∑

xiyj)

where Fλ(z) = 1− e−λz denotes exponential CDF
Use contiguity assumption to show nx⊤My ≈

∑
i,j xiyj for likely matchings

â Happens when x,y are both in the principal eigenspace of M
In posterior, x conditional upon stability “looks like” i.i.d. Exp(

∑
yj)

samples
Use standard concentration inequalities and union bound to finish proof
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Discussion

Summary: Characterization of rank/welfare distribution in stable matchings
Global trade-off between the sides
Intrinsic quality of agents
Exponential histogram of RTF

Results and analysis extend to almost stable matchings, including almost
balanced markets (with sublinear imbalance)
â Look at large sub-markets
The connectivity condition can be relaxed
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Open directions

Many-to-one and many-to-many matchings, multi-sided matchings,
correlated preferences, etc.
Generalization of the connectivity condition (analogous to expansion of
graphs)
Empirical evidence (e.g., from NRMP)
Efficient algorithms for inferring/learning fitness and connectivity from
ex-post observations (preferences and outcomes)

Goal: Help identify market failures and enhance market efficiency

Thank you!
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