College Admissions with Housing Quotas

Denis Sokolov FairPlay team

CIRM

December 14th, 2023

イロト イポト イヨト イヨト

Roadmap

- General framework: possible applications
- College housing crisis
- Stable matching: six types of blocking contracts
- Take-House-from-Applicant-Stability
- Not-Compromised-Request-from-One-Agent-Stability
- Blocking domination: IP solution
- Concluding remarks

< ロト (同) (三) (三)

Roadmap

• General framework: possible applications

- College housing crisis
- Stable matching: six types of blocking contracts
- Take-House-from-Applicant-Stability
- Not-Compromised-Request-from-One-Agent-Stability
- Blocking domination: IP solution
- Concluding remarks

イロト イポト イヨト イヨト

This paper considers two-sided matching markets of the following structure:

- c: quota q_c;
- *d*: **quota** q_d , and **strict preferences** over \cup {*a*} $\cup \emptyset$;
- *a*: strict preferences over $(\cup \{d\} \times \{0,1\}) \cup \emptyset$.

< ロト (同) (三) (三)

This paper considers two-sided matching markets of the following structure:

c: quota q_c;

• *d*: **quota** q_d , and **strict preferences** over \cup {*a*} $\cup \emptyset$;

• *a*: strict preferences over $(\cup \{d\} \times \{0,1\}) \cup \emptyset$.

< ロト (同) (三) (三)

This paper considers two-sided matching markets of the following structure:

- c: quota q_c;
- *d*: quota q_d , and strict preferences over $\cup \{a\} \cup \emptyset$;
- *a*: strict preferences over $(\cup \{d\} \times \{0,1\}) \cup \emptyset$.

(D) (A) (A) (A) (A)

This paper considers two-sided matching markets of the following structure:

- c: quota q_c;
- *d*: quota q_d , and strict preferences over $\cup \{a\} \cup \emptyset$;
- a: strict preferences over $(\cup \{d\} \times \{0,1\}) \cup \emptyset$.

< ロト (同) (三) (三)

This paper considers two-sided matching markets of the following structure:

- c: quota q_c;
- *d*: quota q_d , and strict preferences over $\cup \{a\} \cup \emptyset$;
- a: strict preferences over (∪{d} × {0,1}) ∪ Ø.

< ロト (同) (三) (三)

This paper considers two-sided matching markets of the following structure:

- c: quota q_c;
- *d*: quota q_d , and strict preferences over $\cup \{a\} \cup \emptyset$;
- a: strict preferences over $(\cup \{d\} \times \{0,1\}) \cup \emptyset$.

イロト イポト イヨト イヨト

Under the Japanese medical residency matching market (Kamada and Kojima) we have:

- *c* is a **region** that can accept no more than *q_c* doctors;
- *d* is a hospital that can accept no more than *q*_d doctors;
- *a* is a **doctor** with strict preferences over \cup {*d*} $\cup \emptyset$.

< ロト (同) (三) (三)

Under the Japanese medical residency matching market (Kamada and Kojima) we have:

- c is a region that can accept no more than q_c doctors;
- d is a **hospital** that can accept no more than q_d doctors;
- *a* is a **doctor** with strict preferences over $\cup \{d\} \cup \emptyset$.

Under the Japanese medical residency matching market (Kamada and Kojima) we have:

- c is a region that can accept no more than q_c doctors;
- d is a **hospital** that can accept no more than q_d doctors;
- *a* is a **doctor** with strict preferences over $\cup \{d\} \cup \emptyset$.

Under the Japanese medical residency matching market (Kamada and Kojima) we have:

- c is a **region** that can accept no more than q_c doctors;
- d is a **hospital** that can accept no more than q_d doctors;
- *a* is a **doctor** with strict preferences over $\cup \{d\} \cup \emptyset$.

Hungary: College Admissions with State-Funding Suppose that the government sets a national *quota for state-financed places* in each subject, then we have:

- c is a **subject** that has q_c state-finances places to distribute;
- d is a **department** that can accept no more than q_d applicants¹;
- a is an applicant.

D. Sokolov (FairPlay team)

CA with Housing Quotas

College Admissions with Housing

Suppose that each college has its own dormitory with a fixed amount of *beds* to give during the admissions process, then we have:

- c is a college that has q_c beds to distribute;
- *d* is a **department** that can accept no more than *q_d* applicants;
- a is an applicant.

College Admissions with Housing Quotas

A college admissions market with housing quotas (CAH) is a tuple $\Delta = \langle A, D, C, (P_a)_{a \in A}, (P_d, q_d)_{d \in D}, (q_c)_{c \in C} \rangle.$

Roadmap

- General framework: possible applications
- College housing crisis
- Stable matching: six types of blocking contracts
- Take-House-from-Applicant-Stability
- Not-Compromised-Request-from-One-Agent-Stability
- Blocking domination: IP solution
- Concluding remarks

イロト イポト イヨト イヨト

College Housing Crisis: The U.S.

Live Now	Markets	Industries	Technology	Politics	Wealth	Pursuits	Opinion	Businessweek	Equality	Green	CityLab	Crypto	More
CityLab Housing Student Housing Crisis Offers Hard Lessons for U.S. Colleges While undergrads at some U.S. campuses sleep in their cars, struggling schools have a surplus of dom rooms.													
							The L	Vashington scracy Dies in Dar	Post				
HIGHER E	DUCATION												
					_		-						
Ris scr	sing an	g re ıble	ents e for	ad • af	d t for	o c da	olle ble	ege s hou	stuc sin	dei ig	nts	2	
Ris scr A tight F	sin am	g re nble	ents e for	ad • af	d t for e for car	o c da mpus life	olle ble	ege s hou	stuc sin		nts ²	sts for o	dorm
	sing am nousing IEWS	g re ble market au	ents for nd renewe	ad af d desire	dt for e for car show	oc da mpus life	olle ble have le	ege s hou ft some sch	stuc sin		nts ² vaiting lii	sts for o	dorm
Ris SCI Atight P DON HC STU	sing am nousing EWS EWS ousin Ider	g re nble ^{market ar} vid ng sh	ents for nd renewe E0 L	ad af d desire	dt for e for car sноw soan	oc da mpus life vs ring	olle ble have le guns in rent	ege s hou ft some sch		le1 lg l long v l. 6	nts ² vaiting li iii S col	sts for a	dorm

sis Stable

Matching?

HfA-St. NC

IC-RfOA-St.

om. Con

College Housing Crisis: Europe

FRENCH EDUCATION • M CAMPUS

Share

France's chronic student housing shortage blocks access to education for less well-off

France has only 380,000 spots in public or private residences for 2.7 million students. Many of them have to work in order to find a place to live.

telex

The pressing need for more student housing in Budapest

ENGLISH January 16. 2023. – 06:19 PM () updated

Student housing

'Devastated' UK students forced to live in neighbouring cities in university accommodation crisis

A surge in the number of 18-year-olds combined with a lack of housing and landlords switching to Airbnb create a perfect storm

College Housing Crisis in Paris

... considering the significant shortage of student housing in the Paris region. This lack of accommodation is particularly acute in the Créteil region, where no fewer than four universities and 130 schools are located. This area, which covers the Seine-Saint-Denis region and all of eastern Paris, has only 5,300 CROUS housing places for 160,000 students.

Le Monde, June 10th, 2022

< ロト (同) (三) (三)

There are 3 applicants, and 3 departments in 2 colleges: $c_1 = \{d_1, d_2\}$ and $c_2 = \{d_3\}$. Each department has a **unit capacity**. Preferences are:

a_1	<i>a</i> ₂	a ₃	$\{d_1$	d_2	$\{d_3\}$	
d_1	d_1	d_1	a ₁	a_1	a ₁	
d_2	d_2	d_2	a ₂	a ₂	a ₂	
d ₃	d ₃	d ₃	a ₃	a ₃	a ₃	

The unique stable matching is $\{(a_1, d_1), (a_2, d_2), (a_3, d_3)\}$. After admissions it turns out that each college has exactly one

both a_1 and a_2 always need a bed, while a_3 never needs one.

Applicant a_2 does not get a bed and drops out of the college.

Final matching: $\{(a_1, d_1, 1), (a_3, d_3, 0)\}.$

There are 3 applicants, and 3 departments in 2 colleges: $c_1 = \{d_1, d_2\}$ and $c_2 = \{d_3\}$. Each department has a **unit capacity**. Preferences are:

a_1	<i>a</i> ₂	a ₃	$\{d_1$	d_2	$\{d_3\}$	
d_1	d_1	d_1	<i>a</i> 1	a_1	a_1	
d_2	d_2	d_2	a ₂	<i>a</i> 2	<i>a</i> 2	
d ₃	d ₃	d_3	a ₃	a ₃	a ₃	

The unique stable matching is $\{(a_1, d_1), (a_2, d_2), (a_3, d_3)\}$.

After admissions it turns out that each college has exactly one bed, both a_1 and a_2 always need a bed, while a_3 never needs one. Applicant a_2 does not get a bed and drops out of the college. Final matching: { $(a_1, d_1, 1), (a_3, d_3, 0)$ }.

0000

There are 3 applicants, and 3 departments in 2 colleges: $c_1 = \{d_1, d_2\}$ and $c_2 = \{d_3\}$. Each department has a **unit capacity**. Preferences are:

a_1	<i>a</i> ₂	a ₃	$\{d_1$	d_2	$\{d_3\}$
$(d_1, 1)$	$(d_1, 1)$	$(d_1, 0)$	<i>a</i> 1	a_1	a ₁
$(d_2, 1)$	$(d_2, 1)$	$(d_2, 0)$	a ₂	<i>a</i> 2	a ₂
$(d_3, 1)$	$(d_3, 1)$	$(d_3, 0)$	a ₃	a ₃	a 3

After admissions it turns out that each college has exactly one bed, both a_1 and a_2 always need a bed, while a_3 never needs one.

(日) (周) (日) (日) (日) (日)

0000

There are 3 applicants, and 3 departments in 2 colleges: $c_1 = \{d_1, d_2\}$ and $c_2 = \{d_3\}$. Each department has a **unit capacity**. Preferences are:

a_1	<i>a</i> ₂	a ₃	$\{d_1$	d_2	$\{d_3\}$
$(d_1, 1)$	$(d_1, 1)$	$(d_1, 0)$	<i>a</i> 1	a_1	a_1
$(d_2, 1)$	$(d_2, 1)$	$(d_2, 0)$	a ₂	<i>a</i> 2	a ₂
$(d_3, 1)$	$(d_3, 1)$	$(d_3, 0)$	a ₃	a ₃	a ₃

After admissions it turns out that each college has exactly one bed, both a_1 and a_2 always need a bed, while a_3 never needs one. Applicant a_2 does not get a bed and drops out of the college.

0000

There are 3 applicants, and 3 departments in 2 colleges: $c_1 = \{d_1, d_2\}$ and $c_2 = \{d_3\}$. Each department has a **unit capacity**. Preferences are:

a_1	<i>a</i> ₂	a ₃	$\{d_1$	d_2	$\{d_3\}$
$(d_1, 1)$	$(d_1, 1)$	$(d_1, 0)$	<i>a</i> 1	a ₁	a_1
$(d_2, 1)$	$(d_2, 1)$	$(d_2, 0)$	a ₂	a ₂	a ₂
$(d_3, 1)$	$(d_3, 1)$	$(d_3, 0)$	a ₃	a ₃	a 3

After admissions it turns out that each college has exactly one bed, both a_1 and a_2 always need a bed, while a_3 never needs one. Applicant a_2 does not get housing and drops out of the college. Final matching: $\{(a_1, d_1, 1), (a_3, d_3, 0)\}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つくべ

0000

There are 3 applicants, and 3 departments in 2 colleges: $c_1 = \{d_1, d_2\}$ and $c_2 = \{d_3\}$. Each department has a **unit capacity**. Preferences are:

a_1	<i>a</i> ₂	a ₃	$\{d_1$	d_2	$\{d_3\}$
$(d_1, 1)$	$(d_1, 1)$	$(d_1, 0)$	<i>a</i> 1	a ₁	a_1
$(d_2, 1)$	$(d_2, 1)$	$(d_2, 0)$	a ₂	a ₂	<i>a</i> 2
$(d_3, 1)$	$(d_3, 1)$	$(d_3, 0)$	a ₃	a ₃	a 3

After admissions it turns out that each college has exactly one bed, both a_1 and a_2 always need a bed, while a_3 never needs one. Applicant a_2 does not get housing and drops out of the college. Final matching: $\{(a_1, d_1, 1), (a_3, d_3, 0)\}$ is not stable!

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つくべ

0000

There are 3 applicants, and 3 departments in 2 colleges: $c_1 = \{d_1, d_2\}$ and $c_2 = \{d_3\}$. Each department has a **unit capacity**. Preferences are:

a ₁	<i>a</i> 2	a ₃	$\{d_1$	d_2	$\{d_3\}$
$(d_1, 1)$	$(d_1, 1)$	$(d_1, 0)$	<i>a</i> 1	a_1	a_1
$(d_2, 1)$	$(d_2, 1)$	$(d_2, 0)$	a ₂	a ₂	a ₂
$(d_3, 1)$	$(d_3, 1)$	$(d_3, 0)$	a ₃	a ₃	a 3

After admissions it turns out that each college has exactly one bed, both a_1 and a_2 always need a bed, while a_3 never needs one. Applicant a_2 does not get housing and drops out of the college. Final matching: $\{(a_1, d_1, 1), (a_3, d_3, 0)\}$ is not stable!

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つくべ

Roadmap

- General framework: possible applications
- College housing crisis
- Stable matching: six types of blocking contracts
- Take-House-from-Applicant-Stability
- Not-Compromised-Request-from-One-Agent-Stability
- Blocking domination: IP solution
- Concluding remarks

イロト イポト イヨト イヨト

Fairness and Non-Wastefulness (Balinski and Sönmez, 1999)

The **absence of blocking pairs** for a matching can be guaranteed by the following features of this matching:

- A matching is **fair** if a higher-priority applicant can never envy the assignment of a lower-priority applicant for any department.
- A matching is **non-wasteful** if an applicant never wants an empty slot at a department that treats this applicant as acceptable.

イロト イポト イヨト イヨト

Stable Matching?

There can be **four types** of (i'-by-i)-blocking contracts for a matching μ . Suppose that a chosen contract with(out) housing $\in \mu$ is blocked by a not chosen contract with(out) housing $\notin \mu$. Thus, we should have:

and

 $(\mu \setminus \{(a', d, i'), \mu_a\}) \cup (a, d, i)$ is feasible.

if $i \leq i'$ (no additional college resource is needed).

Stable Matching?

There can be **four types** of (i'-by-i)-blocking contracts for a matching μ . Suppose that a chosen contract with(out) housing $\in \mu$ is blocked by a not chosen contract with(out) housing $\notin \mu$. Thus, we should have:

$$\begin{array}{c|cccc} a & a' & \cdots & d & \cdots \\ \hline (d,i) & (d,i') & & a \\ \mu_a & & & a' \end{array}$$

diiu

 $(\mu \setminus \{(a', d, i'), \mu_a\}) \cup (a, d, i)$ is feasible.

if $i \leq i'$ (no additional college resource is needed).

D. Sokolov (FairPlay team)

CA with Housing Quotas

December, 202

Fairness: (No Housing-by-Housing)-Blocking

Stable Matching?

Now consider a (NH-by-H)-blocking: a chosen contract without housing $\in \mu$ is blocked by a not chosen contract with housing $\notin \mu$:

and

$(\mu \setminus \{(a', d, 0), \mu_a\}) \cup (a, d, 1)$ is feasible.

after a gives up on μ_a , a college c(d) has an **empty bed**.

Fairness: (No Housing-by-Housing)-Blocking

Stable Matching?

Now consider a (NH-by-H)-blocking: a chosen contract without housing $\in \mu$ is blocked by a not chosen contract with housing $\notin \mu$:

and

 $(\mu \setminus \{(a', d, 0), \mu_a\}) \cup (a, d, 1)$ is feasible.

after a gives up on μ_a , a college c(d) has an empty bed.

Stable Matching?

There are 3 applicants, and 3 departments in 2 colleges: $c_1 = \{d_1, d_2\}$ and $c_2 = \{d_3\}$. Each department has a **unit capacity**, and each college has exactly **one bed**. Preferences are:

a_1	<i>a</i> 2	a ₃	$\{d_1$	d_2	$\{d_3\}$
$(d_1, 1)$	$(d_1, 1)$	$(d_1, 0)$	a ₁	a_1	a_1
$(d_2, 1)$	$(d_2, 1)$	$(d_2, 0)$	a ₂	a ₂	a ₂
$(d_3, 1)$	$(d_3, 1)$	$(d_3, 0)$	a ₃	a ₃	a ₃

Final matching: $\{(a_1, d_1, 1), (a_3, d_3, 0)\}.$

• Contract (a₂, d₃, 1) is (NH-by-H)-blocking.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Stable Matching?

There are 3 applicants, and 3 departments in 2 colleges: $c_1 = \{d_1, d_2\}$ and $c_2 = \{d_3\}$. Each department has a **unit capacity**, and each college has exactly **one bed**. Preferences are:

a_1	<i>a</i> ₂	a ₃	$\{d_1$	d_2	$\{d_3\}$
$(d_1,1)$	$(d_1, 1)$	$(d_1, 0)$	a ₁	a ₁	a_1
$(d_2, 1)$	$(d_2, 1)$	$(d_2, 0)$	a ₂	a ₂	a ₂
$(d_3, 1)$	$(d_3, 1)$	$(d_3, 0)$	a ₃	a ₃	a ₃

Final matching: $\{(a_1, d_1, 1), (a_3, d_3, 0)\}$ is unfair!

• Contract (a₂, d₃, 1) is (NH-by-H)-blocking.

イロト イポト イヨト イヨト

Non-Wastefulness: (Ø-by-No Housing)-Blocking

There can be two types of (\emptyset -by-*i*)-blocking contracts for a matching μ .

First, consider a (\emptyset -by-NH)-blocking: when an unfilled department slot is blocked by a not chosen contract without housing $\notin \mu$:

а	• • •	d	• • •
(d, 0)		а	
μ_{a}		Ø	

and

 $(\mu \setminus \mu_a) \cup (a, d, 0)$ is feasible.

Non-Wastefulness: (Ø-by-No Housing)-Blocking

There can be two types of (\emptyset -by-*i*)-blocking contracts for a matching μ .

First, consider a (\emptyset -by-NH)-blocking: when an unfilled department slot is blocked by a not chosen contract without housing $\notin \mu$:

а	• • •	d	•••
(d, 0)		а	
μ_{a}		Ø	

and

 $(\mu \setminus \mu_a) \cup (a, d, 0)$ is feasible.

イロト イポト イヨト イヨト
Non-Wastefulness: (Ø-by-Housing)-Blocking

Stable Matching?

Second, consider a (\emptyset -by-H)-blocking: when an unfilled department slot is blocked by a not chosen contract with housing $\notin \mu$:

а	•••	d	•••
(d, 1)		а	
μ_{a}		Ø	

and

$(\mu \setminus \mu_a) \cup (a, d, 1)$ is feasible.

after a gives up on μ_a , a college c(d) has an **empty bed**.

D. Sokolov (FairPlay team)

CA with Housing Quotas

Non-Wastefulness: (Ø-by-Housing)-Blocking

Stable Matching?

Second, consider a (\emptyset -by-H)-blocking: when an unfilled department slot is blocked by a not chosen contract with housing $\notin \mu$:

а	• • •	d	• • •
(d, 1)		а	
μ_{a}		Ø	

and

 $(\mu \setminus \mu_a) \cup (a, d, 1)$ is feasible.

after a gives up on μ_a , a college c(d) has an **empty bed**.

There are 3 applicants, and 3 departments in 2 colleges: $c_1 = \{d_1, d_2\}$ and $c_2 = \{d_3\}$. Each department has a **unit capacity**, and each college has exactly **one bed**. Preferences are:

a_1	<i>a</i> ₂	a ₃	$\{d_1$	d_2	$\{d_3\}$
$(d_1, 1)$	$(d_1, 1)$	$(d_1, 0)$	<i>a</i> 1	a ₁	a_1
$(d_2, 1)$	$(d_2, 1)$	$(d_2, 0)$	a ₂	a ₂	<i>a</i> 2
$(d_3, 1)$	$(d_3, 1)$	$(d_3, 0)$	a ₃	a ₃	a 3

Final matching: $\{(a_1, d_1, 1), (a_3, d_3, 0)\}$ is unfair!

• Contract (a₂, d₃, 1) is (NH-by-H)-blocking.

• Contract (*a*₃, *d*₂, 0) is (Ø-by-NH)-blocking.

There are 3 applicants, and 3 departments in 2 colleges: $c_1 = \{d_1, d_2\}$ and $c_2 = \{d_3\}$. Each department has a **unit capacity**, and each college has exactly **one bed**. Preferences are:

a_1	<i>a</i> ₂	<i>a</i> 3	$\{d_1$	d_2	$\{d_3\}$
$(d_1, 1)$	$(d_1, 1)$	$(d_1, 0)$	<i>a</i> ₁	a ₁	a_1
$(d_2, 1)$	$(d_2, 1)$	$(d_2, 0)$	a ₂	a ₂	<i>a</i> 2
$(d_3, 1)$	$(d_3, 1)$	$(d_3, 0)$	a ₃	a ₃	a ₃

Final matching: $\{(a_1, d_1, 1), (a_3, d_3, 0)\}$ is unfair and wasteful!

- Contract (a₂, d₃, 1) is (NH-by-H)-blocking.
- Contract (a₃, d₂, 0) is (Ø-by-NH)-blocking.

Six Types of Blocking Contracts

μ		Туре		College Resource
	(NH	-by-	NH)	_
Unfair	(H	-by-	NH)	_
Unian	(H	-by-	H)	-
	(NH	-by-	H)	\checkmark
Mastaful	(Ø	-by-	NH)	-
vvasterur	(Ø	-by-	H)	\checkmark

イロト イヨト イヨト イヨト

э

There are 3 applicants, and 3 departments in 2 colleges: $c_1 = \{d_1, d_2\}$ and $c_2 = \{d_3\}$. Each department has a **unit capacity**, and each college has exactly **one bed**. Preferences are:

a_1	<i>a</i> ₂	a ₃	$\{d_1$	d_2	d ₃
$(d_1, 1)$	$(d_1, 1)$	$(d_1, 0)$	<i>a</i> 1	a_1	a_1
$(d_2, 1)$	$(d_2, 1)$	$(d_2, 0)$	a ₂	a ₂	<i>a</i> 2
$(d_3, 1)$	$(d_3, 1)$	$(d_3, 0)$	a ₃	a ₃	a ₃

Final matching: $\{(a_1, d_1, 1), (a_3, d_3, 0)\}$ is not stable!

Stable Matching?

Stable matching: $\{(a_1, d_1, 1), (a_2, d_3, 1), (a_3, d_2, 0)\}^2$.

²Both blocking contracts are satisfied.

There are 3 applicants, and 3 departments in 2 colleges: $c_1 = \{d_1, d_2\}$ and $c_2 = \{d_3\}$. Each department has a **unit capacity**, and each college has exactly **one bed**. Preferences are:

a_1	<i>a</i> ₂	a ₃	$\{d_1$	d_2	d ₃
$(d_1, 1)$	$(d_1, 1)$	$(d_1, 0)$	a_1	a_1	a_1
$(d_2, 1)$	$(d_2, 1)$	$(d_2, 0)$	a ₂	a ₂	a 2
$(d_3, 1)$	$(d_3, 1)$	$(d_3, 0)$	a ₃	a ₃	a ₃

Final matching: $\{(a_1, d_1, 1), (a_3, d_3, 0)\}$ is not stable! Stable matching: $\{(a_1, d_1, 1), (a_2, d_3, 1), (a_3, d_2, 0)\}^2$.

Stable Matching?

²Both blocking contracts are satisfied.

Consider the following CAH with 2 applicants and 2 departments in one college. Quotas are $q_{d_1} = q_{d_2} = q_c = 1$. Preferences are:

a_1	<i>a</i> ₂	$\{d_1$	d_2
$(d_1, 1)$	$(d_2, 1)$	a ₂	a_1
$(d_2, 1)$	$(d_1, 1)$	a_1	a 2

There is no stable matching under this market:

- {} and { $(a_2, d_1, 1)$ } have a (\varnothing -by-H)-blocking contract { $(a_2, d_2, 1)$ };
- $\{(a_2, d_2, 1)\}$ has a (H-by-H)-blocking contract $\{(a_1, d_2, 1)\};$
- $\{(a_1, d_2, 1)\}$ has a (\varnothing -by-H)-blocking contract $\{(a_1, d_1, 1)\}$;
- $\{(a_1, d_1, 1)\}$ has a (H-by-H)-blocking contract $\{(a_2, d_1, 1)\}$.

(a)

Consider the following CAH with 2 applicants and 2 departments in one college. Quotas are $q_{d_1} = q_{d_2} = q_c = 1$. Preferences are:

a_1	a ₂	$\{d_1$	d_2
$(d_1, 1)$	$(d_2, 1)$	a ₂	a ₁
$(d_2, 1)$	$(d_1, 1)$	a_1	a ₂

There is no stable matching under this market:

- {} and { $(a_2, d_1, 1)$ } have a (\varnothing -by-H)-blocking contract { $(a_2, d_2, 1)$ };
- $\{(a_2, d_2, 1)\}$ has a (H-by-H)-blocking contract $\{(a_1, d_2, 1)\}$;
- $\{(a_1, d_2, 1)\}$ has a (\emptyset -by-H)-blocking contract $\{(a_1, d_1, 1)\}$;
- $\{(a_1, d_1, 1)\}$ has a (H-by-H)-blocking contract $\{(a_2, d_1, 1)\}$.

Consider the following CAH with 2 applicants and 2 departments in one college. Quotas are $q_{d_1} = q_{d_2} = q_c = 1$. Preferences are:

There is no stable matching under this market:

- {} and { $(a_2, d_1, 1)$ } have a (\varnothing -by-H)-blocking contract { $(a_2, d_2, 1)$ };
- $\{(a_2, d_2, 1)\}$ has a (H-by-H)-blocking contract $\{(a_1, d_2, 1)\}$;
- $\{(a_1, d_2, 1)\}$ has a (\varnothing -by-H)-blocking contract $\{(a_1, d_1, 1)\}$;
- $\{(a_1, d_1, 1)\}$ has a (H-by-H)-blocking contract $\{(a_2, d_1, 1)\}$.

Consider the following CAH with 2 applicants and 2 departments in one college. Quotas are $q_{d_1} = q_{d_2} = q_c = 1$. Preferences are:

There is no stable matching under this market:

- {} and { $(a_2, d_1, 1)$ } have a (\emptyset -by-H)-blocking contract { $(a_2, d_2, 1)$ };
- $\{(a_2, d_2, 1)\}$ has a (H-by-H)-blocking contract $\{(a_1, d_2, 1)\}$;
- { $(a_1, d_2, 1)$ } has a (\emptyset -by-H)-blocking contract { $(a_1, d_1, 1)$ };
- $\{(a_1, d_1, 1)\}$ has a (H-by-H)-blocking contract $\{(a_2, d_1, 1)\}$.

Consider the following CAH with 2 applicants and 2 departments in one college. Quotas are $q_{d_1} = q_{d_2} = q_c = 1$. Preferences are:

There is no stable matching under this market:

- {} and { $(a_2, d_1, 1)$ } have a (\emptyset -by-H)-blocking contract { $(a_2, d_2, 1)$ };
- $\{(a_2, d_2, 1)\}$ has a (H-by-H)-blocking contract $\{(a_1, d_2, 1)\}$;
- $\{(a_1, d_2, 1)\}$ has a (\emptyset -by-H)-blocking contract $\{(a_1, d_1, 1)\}$;

• $\{(a_1, d_1, 1)\}$ has a (H-by-H)-blocking contract $\{(a_2, d_1, 1)\}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ○ ○○○

Consider the following CAH with 2 applicants and 2 departments in one college. Quotas are $q_{d_1} = q_{d_2} = q_c = 1$. Preferences are:

There is no stable matching under this market:

- {} and { $(a_2, d_1, 1)$ } have a (\emptyset -by-H)-blocking contract { $(a_2, d_2, 1)$ };
- $\{(a_2, d_2, 1)\}$ has a (H-by-H)-blocking contract $\{(a_1, d_2, 1)\}$;
- $\{(a_1, d_2, 1)\}$ has a (Ø-by-H)-blocking contract $\{(a_1, d_1, 1)\}$;
- $\{(a_1, d_1, 1)\}$ has a (H-by-H)-blocking contract $\{(a_2, d_1, 1)\}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ○ ○○○

Roadmap

- General framework: possible applications
- College housing crisis
- Stable matching: six types of blocking contracts
- Take-House-from-Applicant-Stability
- Not-Compromised-Request-from-One-Agent-Stability
- Blocking domination: IP solution
- Concluding remarks

イロト イポト イヨト イヨト

Blocking Contracts under THfA-Stability

Proposition

A blocking contract is not tolerated under THfA-stability if and only if it requires an additional college resource.

THfA-st. μ		Туре		College Resource
	(NH	-by-	NH)	_
Unfair	(H	-by-	NH)	
Untair	(H	-by-	H)	
	(NH	-by-	H)	\checkmark
Mactoful	$(\varnothing$	-by-	NH)	_
vvastelui	(Ø	-by-	H)	\checkmark

<ロト <問ト < ヨト < ヨト

Framework 00000

Not Chosen Applicant Claims an Empty Seat

Consider the following CAH with **4 applicants** and **2 colleges** containing **2 departments each**. First college quotas are $q_{d_1} = q_{d_2} = q_{c_1} = 1$. Second college quotas are $q_{d_3} = 2$, $q_{d_4} = q_{c_2} = 1$. Preferences are:

a_1	a ₂	a ₃	a ₄	$\{d_1$	d_2	$\{d_3$	d_4
$(d_1, 1)$	$(d_2, 1)$	$(d_3, 1)$	$(d_4, 0)$	a ₂	a ₁	a_1	a4
$(d_2, 1)$	$(d_1,1)$			a ₁	a ₂	a ₃	
$(d_3, 0)$							

Cumulative offer mechanism with Ch_d^* (no stable matching):

- Step 0: c_1 gives bed to d_1 , and c_2 gives bed to d_4 .
- Final matching: $\{(a_1, d_3, 0), (a_2, d_1, 1), (a_4, d_4, 0)\}.$

Bad news: not admitted applicant a_3 has a (\emptyset -by-H)-blocking contract.

イロト イポト イヨト イヨト

Not Chosen Applicant Claims an Empty Seat

Consider the following CAH with **4** applicants and **2** colleges containing **2** departments each. First college quotas are $q_{d_1} = q_{d_2} = q_{c_1} = 1$. Second college quotas are $q_{d_3} = 2$, $q_{d_4} = q_{c_2} = 1$. Preferences are:

THfA-St.

a_1	a ₂	a ₃	a_4	$\left\{ \frac{d_1}{d_1} \right\}$	d_2	$\{d_3$	<mark>d</mark> 4}
$(d_1, 1)$	$(d_2, 1)$	$(d_3, 1)$	$(d_4, 0)$	a ₂	a ₁	a ₁	a4
$(d_2, 1)$	$(d_1,1)$			a ₁	a ₂	a ₃	
$(d_3, 0)$							

Cumulative offer mechanism with Ch_d^* (no stable matching):

• Step 0: c_1 gives bed to d_1 , and c_2 gives bed to d_4 .

• Final matching: $\{(a_1, d_3, 0), (a_2, d_1, 1), (a_4, d_4, 0)\}.$

Bad news: not admitted applicant a_3 has a (\emptyset -by-H)-blocking contract.

(a)

Not Chosen Applicant Claims an Empty Seat

Consider the following CAH with **4** applicants and **2** colleges containing **2** departments each. First college quotas are $q_{d_1} = q_{d_2} = q_{c_1} = 1$. Second college quotas are $q_{d_3} = 2$, $q_{d_4} = q_{c_2} = 1$. Preferences are:

THfA-St.

a_1	a ₂	a ₃	a_4	$\left\{ \frac{d_1}{d_1} \right\}$	d_2	$\{d_3$	<mark>d</mark> 4}
$(d_1, 1)$	$(d_2, 1)$	$(d_3, 1)$	$(d_4, 0)$	a ₂	a ₁	<i>a</i> 1	a 4
$(d_2, 1)$	$(d_1,1)$			a ₁	a ₂	a ₃	
$(d_3, 0)$							

Cumulative offer mechanism with Ch_d^* (no stable matching):

- Step 0: c_1 gives bed to d_1 , and c_2 gives bed to d_4 .
- Final matching: $\{(a_1, d_3, 0), (a_2, d_1, 1), (a_4, d_4, 0)\}$.

Bad news: not admitted applicant a_3 has a (\emptyset -by-H)-blocking contract.

. . .

(D) (A) (A) (A) (A)

Not Chosen Applicant Claims an Empty Seat

Consider the following CAH with **4 applicants** and **2 colleges** containing **2 departments each**. First college quotas are $q_{d_1} = q_{d_2} = q_{c_1} = 1$. Second college quotas are $q_{d_3} = 2$, $q_{d_4} = q_{c_2} = 1$. Preferences are:

THfA-St.

a_1	a ₂	a ₃	a_4	$\left\{ \frac{d_1}{d_1} \right\}$	d_2	$\{d_3$	<mark>d</mark> 4}
$(d_1, 1)$	$(d_2, 1)$	$(d_3, 1)$	$(d_4, 0)$	a ₂	a ₁	a ₁	a 4
$(d_2, 1)$	$(d_1, 1)$			a ₁	a ₂	a ₃	
$(d_3, 0)$							

Cumulative offer mechanism with Ch_d^* (no stable matching):

• Step 0: c_1 gives bed to d_1 , and c_2 gives bed to d_4 .

• Final matching: $\{(a_1, d_3, 0), (a_2, d_1, 1), (a_4, d_4, 0)\}$.

Bad news: not admitted applicant a_3 has a (\emptyset -by-H)-blocking contract.

. . .

< ロト (同) (三) (三)

Roadmap

- General framework: possible applications
- College housing crisis
- Stable matching: six types of blocking contracts
- Take-House-from-Applicant-Stability
- Not-Compromised-Request-from-One-Agent-Stability
- Blocking domination: IP solution
- Concluding remarks

イロト イポト イヨト イヨト

Compromised (\varnothing -by-H)-Blocking Contract

We call a (\emptyset -by-H)-blocking under μ contract (a, d, 1) a compromised blocking contract if there exists another applicant a', s.t.

- a' has an acceptable pair (d,1) that he prefers to $\mu_{a'}$,
- *d* prefers *a*′ to *a*, and
- (a', d, 1) is not (Ø-by-H)-blocking.

イロト イポト イヨト イヨト

Compromised Contract: Example

Recall the following CAH with 2 applicants and 2 departments in one college. Quotas are $q_{d_1} = q_{d_2} = q_c = 1$. Preferences are:

a_1	a ₂	$\{d_1$	d_2
$(d_1, 1)$	$(d_2, 1)$	a 2	a ₁
$(d_2, 1)$	$(d_1, 1)$	a_1	a 2

Consider the following matching: $\{(a_2, d_1, 1)\}$.

There is only one blocking contract: (\emptyset -by-H)-blocking {($a_2, d_2, 1$)}.

But it is **compromised**, since there is another applicant a_1 , s.t.

- $(d_2, 1)$ is acceptable for a_1 ,
- d_2 prefers a_1 to a_2 , but
- $\{(a_2, d_1, 1), (a_1, d_2, 1)\}$ is not feasible.

(ロ) (周) (ヨ) (ヨ) (ヨ) (0)

Compromised Contract: Example

Recall the following CAH with 2 applicants and 2 departments in one college. Quotas are $q_{d_1} = q_{d_2} = q_c = 1$. Preferences are:

a_1	a 2	$\{d_1$	d_2
$(d_1, 1)$	$(d_2, 1)$	a 2	a ₁
$(d_2, 1)$	$(d_1, 1)$	a_1	a 2

Consider the following NC-RfOA-stable matching: $\{(a_2, d_1, 1)\}$.

There is only one blocking contract: $(\emptyset$ -by-H)-blocking $\{(a_2, d_2, 1)\}$.

But it is **compromised**, since there is another applicant a_1 , s.t.

- $(d_2, 1)$ is acceptable for a_1 ,
- d_2 prefers a_1 to a_2 , but
- $\{(a_2, d_1, 1), (a_1, d_2, 1)\}$ is not feasible.

(ロ) (周) (ヨ) (ヨ) (ヨ) (0)

Seven Types of Blocking Contracts

THfA-st. μ		Тур	е	College Resource
	(NH	-by-	NH)	_
Unfair	(H	-by-	NH)	_
Oman	(H	-by-	H)	—
	(NH	-by-	H)	\checkmark
	$(\varnothing$	-by-	NH)	—
Wasteful	(Ø	-by-	H) ^{nc}	\checkmark
	(Ø	-by-	H) ^c	\checkmark

・ロト ・ 四ト ・ ヨト ・ ヨト

э

Not-Compromised-Request-from-One-Agent Protocol

A not stable matching μ is chosen. Once an applicant *a* with a blocking contract (a, d, i) decides to go for it, the following **sequence of events should happen**:

- a gives up on μ_a (all resources from μ_a are now returned back to a corresponding college);
- 2 a approaches a college of interest c(d) and,
 - ▶ if i = 0, requests a needed place at d either from c(d), or from an admitted to d lower ranked applicant;
 - ▶ if i = 1, requests both a needed place at d and a bed either from an admitted to d lower ranked applicant, or directly from college c(d), if (a, d, i) is not compromised.

If after this sequence applicant a is not admitted with (d, i) then we tolerate this blocking contract (a, d, i) under Not-Compromised-Request-from-One-Agent protocol.

Not-Compromised-Request-from-One-Agent-Stability

NC-RfOA-Stable Matching

A matching is **NC-RfOA-stable** if it is individually rational, and any blocking contract is tolerated under NC-RfOA protocol.

NC-RfOA-st. μ	Туре		е	College Resource
	(NH	-by-	NH)	
Unfair	(H	-by-	NH)	
Unian	(H	-by-	H)	
	(NH	-by-	H)	\checkmark
	(Ø	-by-	NH)	—
Wasteful	$(\varnothing$	-by-	H) ^{nc}	\checkmark
	(Ø	-by-	H) ^c	\checkmark

<ロト <問ト < ヨト < ヨト

No Unfilled Seats Are Desired By Not Admitted Applicants

Proposition

If there exists a (\emptyset -by-H)-blocking contract (a, d, 1) under a NC-RfOAstable matching, then applicant a is already admitted to c(d).

イロト イポト イヨト イヨト

For each department **align** its preferences over applicants with applicants preferences over acceptable contracts for this department.

Given the set of **cutoffs** for department preferences over contracts (each department has one **seat cutoff** that is weakly lower than one **housing cutoff**) we can always construct an *allocation*: each applicant chooses the best pair (d, i) which is above the corresponding cutoff.

a_1	<i>a</i> ₂	$\{d_1$	d_2
$(d_1, 1)$	$(d_2, 1)$	a ₂	a_1
$(d_2, 1)$	$(d_1, 1)$	a ₁	a ₂
	$(d_2, 0)$		

Allocation: $\{(a_1, d_2, 1), (a_2, d_2, 1)\}$

For each department **align** its preferences over applicants with applicants preferences over acceptable contracts for this department.

Given the set of **cutoffs** for department preferences over contracts (each department has one **seat cutoff** that is weakly lower than one **housing cutoff**) we can always construct an *allocation*: each applicant chooses the best pair (d, i) which is above the corresponding cutoff.

a_1	<i>a</i> ₂	$\{d_1$	d_2
$(d_1, 1)$	$(d_2, 1)$	$(a_2, 1)$	$(a_1, 1)$
$(d_2, 1)$	$(d_1, 1)$	$(a_1,1)$	$(a_2, 1)$
	$(d_2, 0)$		$(a_2, 0)$

Allocation: $\{(a_1, d_2, 1), (a_2, d_2, 1)\}$

<ロト <問ト < ヨト < ヨト

For each department **align** its preferences over applicants with applicants preferences over acceptable contracts for this department.

Given the set of **cutoffs** for department preferences over contracts (each department has one **seat cutoff** that is weakly lower than one **housing cutoff**) we can always construct an *allocation*: each applicant chooses the best pair (d, i) which is above the corresponding cutoff.

a_1	a ₂	$\{d_1$	d_2
$(d_1, 1)$	$(d_2, 1)$	$(a_2, 1)$	$(a_1, 1)$
$(d_2, 1)$	$(d_1, 1)$	$(a_1,1)$	$(a_2, 1)$
	$(d_2, 0)$		$(a_2, 0)$

Allocation: $\{(a_1, d_2, 1), (a_2, d_2, 1)\}$

For each department **align** its preferences over applicants with applicants preferences over acceptable contracts for this department.

Given the set of **cutoffs** for department preferences over contracts (each department has one **seat cutoff** that is weakly lower than one housing **cutoff**) we can always construct an *allocation*: each applicant chooses the best pair (d, i) which is above the corresponding cutoff.

a_1	a ₂	$\{d_1$	d_2
$(d_1, 1)$	$(d_2, 1)$	$(a_2, 1)$	$(a_1, 1)$
$(d_2, 1)$	$(d_1, 1)$	$(a_1, 1)$	$(a_2, 1)$
	$(d_2, 0)$		$(a_2, 0)$

Allocation: $\{(a_1, d_2, 1), (a_2, d_2, 1)\}$

For each department **align** its preferences over applicants with applicants preferences over acceptable contracts for this department.

Given the set of **cutoffs** for department preferences over contracts (each department has one **seat cutoff** that is weakly lower than one housing **cutoff**) we can always construct an *allocation*: each applicant chooses the best pair (d, i) which is above the corresponding cutoff.

a_1	a ₂	$\{d_1$	d_2
$(d_1, 1)$	$(d_2, 1)$	$(a_2, 1)$	$(a_1, 1)$
$(d_2, 1)$	$(d_1,1)$	$(a_1,1)$	$(a_2, 1)$
	$(d_2, 0)$		$(a_2, 0)$

Allocation: $\{(a_1, d_2, 1), (a_2, d_2, 1)\}$

_

For each department **align** its preferences over applicants with applicants preferences over acceptable contracts for this department.

Given the set of **cutoffs** for department preferences over contracts (each department has one **seat cutoff** that is weakly lower than one **housing cutoff**) we can always construct an *allocation*: each applicant chooses the best pair (d, i) which is above the corresponding cutoff.

a_1	<i>a</i> 2	$\{d_1$	d_2
$(d_1, 1)$	$(d_2, 1)$	$(a_2, 1)$	$(a_1, 1)$
$(d_2, 1)$	$(d_1, 1)$	$(a_1,1)$	$(a_2, 1)$
	$(d_2, 0)$		$(a_2, 0)$

Allocation: $\{(a_1, d_2, 1), (a_2, d_2, 1)\}$

NC-RfOA-Stable Mechanism

- Align department preferences over applicants with applicants preferences over contracts. Set the highest cutoffs (no contracts can be chosen).
- Consider each department one by one and try to decrease its housing cutoff, such that the resulting allocation is feasible.
- If there have been considered all departments without a cutoff update, then continue by trying to decrease seat cutoffs one by one, such that the resulting allocation is feasible.
- Once the allocation has changed, go to the second step (continue trying with housing cutoffs again). Otherwise, if there are no more possible seat cutoff updates, terminate the procedure.

イロト イポト イヨト イヨト

 Align department preferences over applicants with applicants preferences over contracts. Set the highest cutoffs (no contracts can be chosen).

NC-RfOA-St.

- Consider each department one by one and try to decrease its housing cutoff, such that the resulting allocation is feasible.
- If there have been considered all departments without a cutoff update, then continue by trying to decrease seat cutoffs one by one, such that the resulting allocation is feasible.
- Once the allocation has changed, go to the second step (continue trying with housing cutoffs again). Otherwise, if there are no more possible seat cutoff updates, terminate the procedure.

イロト イポト イヨト イヨト

 Align department preferences over applicants with applicants preferences over contracts. Set the highest cutoffs (no contracts can be chosen).

NC-RfOA-St.

- Consider each department one by one and try to decrease its housing cutoff, such that the resulting allocation is feasible.
- If there have been considered all departments without a cutoff update, then continue by trying to decrease seat cutoffs one by one, such that the resulting allocation is feasible.
- Once the allocation has changed, go to the second step (continue trying with housing cutoffs again). Otherwise, if there are no more possible seat cutoff updates, terminate the procedure.

イロト イボト イヨト イヨト
Align department preferences over applicants with applicants preferences over contracts. Set the highest cutoffs (no contracts can be chosen).

NC-RfOA-St.

- Consider each department one by one and try to decrease its housing cutoff, such that the resulting allocation is feasible.
- If there have been considered all departments without a cutoff update, then continue by trying to decrease seat cutoffs one by one, such that the resulting allocation is feasible.
- Once the allocation has changed, go to the second step (continue trying with housing cutoffs again). Otherwise, if there are no more possible seat cutoff updates, terminate the procedure.

Consider the following CAH with 5 applicants and 2 colleges with 2 departments each. All quotas are unit quotas. Preferences are:

a_1	<i>a</i> ₂	a ₃	<i>a</i> 4	a_5	$\{d_1$	d_2	$\{d_3$	d_4
$(d_1, 1)$	$(d_2, 1)$	$(d_4, 0)$	$(d_3, 1)$	$(d_4, 1)$	a ₃	a_1	a4	<i>a</i> 5
$(d_2, 1)$	$(d_1, 1)$	$(d_1, 1)$			a ₂	a ₂		a ₃
	$(d_2, 0)$				a_1			

All quotas are unit quotas. Aligned preferences are:

a_1	a ₂	a ₃	a ₄	<i>a</i> 5	$\{d_1$	d_2	$\{d_3$	$d_4\}$
$(d_1, 1)$	$(d_2, 1)$	$(d_4, 0)$	$(d_3, 1)$	$(d_4, 1)$	$(a_3, 1)$	$(a_1, 1)$	$(a_4, 1)$	$(a_5, 1)$
$(d_2, 1)$	$(d_1, 1)$	$(d_1, 1)$			$(a_2, 1)$	$(a_2, 1)$		$(a_3, 0)$
	$(d_2, 0)$				$(a_1, 1)$	$(a_2, 0)$		

Seat cutoffs: – Housing cutoffs: – Matching: {}.

Resulting NC-RfOA-stable matching:

All quotas are unit quotas. Aligned preferences are:

a_1	<i>a</i> ₂	a ₃	a_4	a_5	$\{d_1$	d_2	{ <i>d</i> ₃	d_4
$(d_1, 1)$	$(d_2, 1)$	$(d_4, 0)$	$(d_3, 1)$	$(d_4, 1)$	$\overline{(a_3,1)}$	$\overline{(a_1,1)}$	$\overline{(a_4,1)}$	$\overline{(a_5,1)}$
$(d_2, 1)$	$(d_1, 1)$	$(d_1, 1)$			$(a_2, 1)$	$(a_2, 1)$		$(a_3, 0)$
	$(d_2, 0)$				$(a_1, 1)$	$(a_2, 0)$		

Seat cutoffs: – Housing cutoffs: – Matching: {}.

Resulting NC-RfOA-stable matching:

All quotas are unit quotas. Aligned preferences are:

a_1	a ₂	a ₃	a ₄	a5	$\{d_1$	d_2	$\{d_3$	$d_4\}$
$(d_1, 1)$	$(d_2, 1)$	$(d_4, 0)$	$(d_3, 1)$	$(d_4, 1)$	$(a_3, 1)$	$\overline{(a_1,1)}$	$\overline{(a_4,1)}$	$\overline{(a_5,1)}$
$(d_2, 1)$	$(d_1, 1)$	$(d_1, 1)$			$\overline{(a_2,1)}$	$(a_2, 1)$		$(a_3, 0)$
	$(d_2, 0)$				$(a_1, 1)$	$(a_2, 0)$		

Seat cutoffs: – Housing cutoffs: – Matching: $\{(a_3, d_1, 1)\}$.

Resulting NC-RfOA-stable matching:

All quotas are unit quotas. Aligned preferences are:

a_1	a ₂	a ₃	a ₄	a_5	$\{d_1$	d_2	$\{d_3$	d_4
$(d_1, 1)$	$(d_2, 1)$	$(d_4, 0)$	$(d_3, 1)$	$(d_4, 1)$	$(a_3, 1)$	$\overline{(a_1,1)}$	$(a_4, 1)$	$\overline{(a_5,1)}$
$(d_2, 1)$	$(d_1, 1)$	$(d_1, 1)$			$(a_2, 1)$	$(a_2, 1)$		(<i>a</i> ₃ , 0)
	$(d_2, 0)$				$(a_1, 1)$	$(a_2, 0)$		

Seat cutoffs: – Housing cutoffs: – Matching: $\{(a_3, d_1, 1), (a_4, d_3, 1)\}.$

Resulting NC-RfOA-stable matching:

All quotas are unit quotas. Aligned preferences are:

a_1	a ₂	a ₃	a ₄	a_5	$\{d_1$	d_2	{ <i>d</i> ₃	d_4
$(d_1, 1)$	$(d_2, 1)$	$(d_4, 0)$	$(d_3, 1)$	$(d_4, 1)$	$(a_3, 1)$	$\overline{(a_1,1)}$	$(a_4, 1)$	$\overline{(a_5,1)}$
$(d_2, 1)$	$(d_1, 1)$	$(d_1, 1)$			$(a_2, 1)$	$(a_2, 1)$		$(a_3, 0)$
	$(d_2, 0)$				$\overline{(a_1,1)}$	$(a_2, 0)$		

Seat cutoffs: – Housing cutoffs: – Matching: $\{(a_3, d_1, 1), (a_4, d_3, 1)\}.$

Resulting NC-RfOA-stable matching:

All quotas are unit quotas. Aligned preferences are:

a_1	a ₂	a ₃	a ₄	a_5	$\{d_1$	d_2	{ <i>d</i> ₃	d_4
$(d_1, 1)$	$(d_2, 1)$	$(d_4, 0)$	$(d_3, 1)$	$(d_4, 1)$	$(a_3, 1)$	$(a_1,1)$	$(a_4, 1)$	$\overline{(a_5,1)}$
$(d_2, 1)$	$(d_1, 1)$	$(d_1, 1)$			$(a_2, 1)$	$(a_2, 1)$		$(a_3, 0)$
	$(d_2, 0)$				$\overline{(a_1,1)}$	$(a_2, 0)$		

Seat cutoffs: – Housing cutoffs: – Matching: $\{(a_3, d_1, 1), (a_4, d_3, 1)\}.$

Resulting NC-RfOA-stable matching:

All quotas are unit quotas. Aligned preferences are:

a_1	a ₂	a ₃	a ₄	a_5	$\{d_1$	d_2	$\{d_3$	$d_4\}$
$(d_1, 1)$	$(d_2, 1)$	$(d_4, 0)$	$(d_3, 1)$	$(d_4, 1)$	$(a_3, 1)$	$(a_1,1)$	$(a_4, 1)$	$(a_5,1)$
$(d_2, 1)$	$(d_1, 1)$	$(d_1, 1)$			$(a_2, 1)$	$(a_2, 1)$		$(a_3, 0)$
	$(d_2, 0)$				$\overline{(a_1,1)}$	$(a_2, 0)$		

Seat cutoffs: – Housing cutoffs: – Matching: $\{(a_3, d_1, 1), (a_4, d_3, 1)\}.$

Resulting NC-RfOA-stable matching:

All quotas are unit quotas. Aligned preferences are:

a_1	a ₂	a ₃	a_4	a_5	$\{d_1$	d_2	$\{d_3$	$d_4\}$
$(d_1, 1)$	$(d_2, 1)$	$(d_4, 0)$	$(d_3, 1)$	$(d_4, 1)$	$(a_3, 1)$	$(a_1,1)$	$(a_4, 1)$	$(a_5,1)$
$(d_2, 1)$	$(d_1, 1)$	$(d_1, 1)$			$(a_2, 1)$	$(a_2, 1)$		$(a_3, 0)$
	$(d_2, 0)$				$(a_1, 1)$	$(a_2, 0)$		

Seat cutoffs: – Housing cutoffs: – Matching: $\{(a_3, d_1, 1), (a_4, d_3, 1)\}.$

Resulting NC-RfOA-stable matching:

All quotas are unit quotas. Aligned preferences are:

a_1	<i>a</i> ₂	a ₃	a_4	a_5	$\{d_1$	d_2	$\{d_3$	$d_4\}$
$(d_1, 1)$	$(d_2, 1)$	$(d_4, 0)$	$(d_3, 1)$	$(d_4, 1)$	$(a_3, 1)$	$(a_1,1)$	$(a_4, 1)$	$(a_5,1)$
$(d_2, 1)$	$(d_1, 1)$	$(d_1, 1)$			$(a_2, 1)$	$(a_2, 1)$		$(a_3, 0)$
	$(d_2, 0)$				$(a_1, 1)$	$(a_2, 0)$		

Seat cutoffs: – Housing cutoffs: – Matching: $\{(a_3, d_1, 1), (a_4, d_3, 1)\}.$

Resulting NC-RfOA-stable matching:

All quotas are unit quotas. Aligned preferences are:

a_1	a ₂	a ₃	a_4	a_5	$\{d_1$	d_2	$\{d_3$	$d_4\}$
$(d_1, 1)$	$(d_2, 1)$	$(d_4, 0)$	$(d_3, 1)$	$(d_4, 1)$	$(a_3, 1)$	$(a_1,1)$	$(a_4, 1)$	$(a_5,1)$
$(d_2, 1)$	$(d_1, 1)$	$(d_1,1)$			$(a_2, 1)$	$(a_2, 1)$		$(a_3, 0)$
	$(d_2, 0)$				$(a_1, 1)$	$(a_2, 0)$		

Seat cutoffs: – Housing cutoffs: – Matching: $\{(a_3, d_4, 0), (a_4, d_3, 1)\}.$

Resulting NC-RfOA-stable matching:

All quotas are unit quotas. Aligned preferences are:

Seat cutoffs: – Housing cutoffs: – Matching: $\{(a_3, d_4, 0), (a_4, d_3, 1), (a_2, d_1, 1)\}$.

Resulting NC-RfOA-stable matching:

All quotas are unit quotas. Aligned preferences are:

a_1	a ₂	a ₃	a ₄	<i>a</i> 5	$\{d_1$	d_2	$\{d_3$	$d_4\}$
$(d_1, 1)$	$(d_2, 1)$	$(d_4, 0)$	$(d_3, 1)$	$(d_4, 1)$	$(a_3, 1)$	$(a_1,1)$	$(a_4, 1)$	$(a_5,1)$
$(d_2, 1)$	$(d_1, 1)$	$(d_1, 1)$			$(a_2, 1)$	$(a_2, 1)$		$(a_3, 0)$
	$(d_2, 0)$				$(a_1,1)$	$(a_2, 0)$		

Seat cutoffs: – Housing cutoffs: – Matching: $\{(a_3, d_4, 0), (a_4, d_3, 1), (a_2, d_1, 1)\}$.

Resulting NC-RfOA-stable matching:

All quotas are unit quotas. Aligned preferences are:

Seat cutoffs: – Housing cutoffs: – Matching: $\{(a_3, d_4, 0), (a_4, d_3, 1), (a_2, d_1, 1)\}$.

Resulting NC-RfOA-stable matching: $\{(a_3, d_4, 0), (a_4, d_3, 1), (a_2, d_1, 1)\}$.

NC-RfOA-Stable Mechanism: Results

Proposition

Cutoff Minimizing mechanism is NC-RfOA-stable, and not strategy-proof.

Corollary NC-RfOA-stable matching always exists.

Proposition

Cutoff Minimizing mechanism may not find a stable matching if it exists.

イロト イポト イヨト イヨト

Roadmap

- General framework: possible applications
- College housing crisis
- Stable matching: six types of blocking contracts
- Take-House-from-Applicant-Stability
- Not-Compromised-Request-from-One-Agent-Stability
- Blocking domination: IP solution

Concluding remarks

イロト イポト イヨト イヨト

Consider two matchings μ and μ'. For each department d take the best applicant with a blocking contract a_d under μ and the best applicant with a blocking contract a'_d under μ' (if any, otherwise, set a_d = Ø or a'_d = Ø). We say that μ blocking-dominates μ' if a'_d R_d a_d for all d ∈ D, and a'_{d'} P_{d'} a_{d'} for some d' ∈ D.

μ blocking-dominates μ

< ロ > < 同 > < 回 > < 回 > < 回 > <

Consider two matchings μ and μ'. For each department d take the best applicant with a blocking contract a_d under μ and the best applicant with a blocking contract a'_d under μ' (if any, otherwise, set a_d = Ø or a'_d = Ø). We say that μ blocking-dominates μ' if a'_d R_d a_d for all d ∈ D, and a'_{d'} P_{d'} a_{d'} for some d' ∈ D.

d_1	d_2
÷	÷
a_1	a ₂
÷	÷
a ₃	a ₄

μ blocking-dominates μ

< ロ > < 同 > < 回 > < 回 > < 回 > <

Consider two matchings μ and μ'. For each department d take the best applicant with a blocking contract a_d under μ and the best applicant with a blocking contract a'_d under μ' (if any, otherwise, set a_d = Ø or a'_d = Ø). We say that μ blocking-dominates μ' if a'_d R_d a_d for all d ∈ D, and a'_{d'} P_{d'} a_{d'} for some d' ∈ D.

d_1	d_2
÷	÷
a_1	a 2
÷	÷
a ₃	<i>a</i> 4

μ blocking-dominates μ'

< ロ > < 同 > < 回 > < 回 > < 回 > <

Consider two matchings μ and μ'. For each department d take the best applicant with a blocking contract a_d under μ and the best applicant with a blocking contract a'_d under μ' (if any, otherwise, set a_d = Ø or a'_d = Ø). We say that μ blocking-dominates μ' if a'_d R_d a_d for all d ∈ D, and a'_{d'} P_{d'} a_{d'} for some d' ∈ D.

d_1	<i>d</i> ₂
÷	÷
a ₁	a ₂
÷	÷
a ₃	a ₄

μ blocking-dominates μ'

Consider two matchings μ and μ'. For each department d take the best applicant with a blocking contract a_d under μ and the best applicant with a blocking contract a'_d under μ' (if any, otherwise, set a_d = Ø or a'_d = Ø). We say that μ blocking-dominates μ' if a'_d R_d a_d for all d ∈ D, and a'_{d'} P_{d'} a_{d'} for some d' ∈ D.

d_1	d_2
÷	÷
a_1	<i>a</i> 2
÷	÷
a ₃	<i>a</i> 4

μ blocking-dominates μ'

Consider two matchings μ and μ'. For each department d take the best applicant with a blocking contract a_d under μ and the best applicant with a blocking contract a'_d under μ' (if any, otherwise, set a_d = Ø or a'_d = Ø). We say that μ blocking-dominates μ' if a'_d R_d a_d for all d ∈ D, and a'_{d'} P_{d'} a_{d'} for some d' ∈ D.

d_1	<i>d</i> ₂
÷	÷
a ₁	a ₂
÷	÷
a ₃	a ₄

μ^\prime is not comparable to $\mu^{\prime\prime}$

Consider two matchings μ and μ'. For each department d take the best applicant with a blocking contract a_d under μ and the best applicant with a blocking contract a'_d under μ' (if any, otherwise, set a_d = Ø or a'_d = Ø). We say that μ blocking-dominates μ' if a'_d R_d a_d for all d ∈ D, and a'_{d'} P_{d'} a_{d'} for some d' ∈ D.

d_1	d_2
÷	÷
a ₁	a 2
÷	÷
a ₃	a ₄

μ' is not comparable to μ''

Consider two matchings μ and μ'. For each department d take the best applicant with a blocking contract a_d under μ and the best applicant with a blocking contract a'_d under μ' (if any, otherwise, set a_d = Ø or a'_d = Ø). We say that μ blocking-dominates μ' if a'_d R_d a_d for all d ∈ D, and a'_{d'} P_{d'} a_{d'} for some d' ∈ D.

d_1	d_2
÷	÷
a_1	a 2
÷	÷
a ₃	a_4

μ' is not comparable to μ''

Trimmed Sub-Market

- Take a CAH Δ, and for each department align its preferences over applicants with applicants preferences over acceptable contracts.
- Induced department preferences over contracts under trimmed sub-market of Δ:

$$\begin{array}{c|cccc} d_1 & d_2 & d_3 \\ \hline (a_1,1) & (a_2,0) & (a_4,1) \\ (a_2,0) & (a_4,1) & (a_3,1) \\ (a_3,1) & (a_1,1) & (a_2,0) \\ (a_3,0) & (a_1,0) & (a_1,1) \\ (a_4,1) & (a_3,1) & (a_1,0) \end{array}$$

- Take a CAH Δ, and for each department align its preferences over applicants with applicants preferences over acceptable contracts.
- Induced department preferences over contracts under trimmed sub-market of Δ:

$$\begin{array}{c|cccc} d_1 & d_2 & d_3 \\ \hline (a_1,1) & (a_2,0) & (a_4,1) \\ (a_2,0) & (a_4,1) & (a_3,1) \\ (a_3,1) & (a_1,1) & (a_2,0) \\ (a_3,0) & (a_1,0) & (a_1,1) \\ (a_4,1) & (a_3,1) & (a_1,0) \end{array}$$

D. Sokolov (FairPlay team)

CA with Housing Quotas

◆□ → < @ → < 臣 → < 臣 →</p>
December 2023

- Take a CAH Δ , and for each department align its preferences over applicants with applicants preferences over acceptable contracts.
- Induced department preferences over contracts under trimmed sub-market of Δ:

$$\begin{array}{c|ccccc} d_1 & d_2 & d_3 \\ \hline (a_1,1) & (a_2,0) & (a_4,1) \\ (a_2,0) & (a_4,1) & (a_3,1) \\ (a_3,1) & (a_1,1) & (a_2,0) \\ (a_3,0) & (a_1,0) & (a_1,1) \\ (a_4,1) & (a_3,1) & (a_1,0) \end{array}$$

イロト イポト イヨト イヨト

Trimmed Sub-Market

- Take a CAH Δ , and for each department align its preferences over applicants with applicants preferences over acceptable contracts.
- Induced department preferences over contracts under trimmed sub-market of Δ (setting trim thresholds):

$$\begin{array}{c|cccc} d_1 & d_2 & d_3 \\ \hline (a_1,1) & (a_2,0) & (a_4,1) \\ \hline (a_2,0) & (a_4,1) & (a_3,1) \\ \hline (a_3,1) & (a_1,1) & (a_2,0) \\ (a_3,0) & (a_1,0) & (a_1,1) \\ (a_4,1) & (a_3,1) & \overline{(a_1,0)} \end{array}$$

Trimmed Sub-Market

- Take a CAH Δ , and for each department align its preferences over applicants with applicants preferences over acceptable contracts.
- Induced department preferences over contracts under trimmed sub-market of Δ:

$$\begin{array}{c|cccc} d_1 & d_2 & d_3 \\ \hline (a_1,1) & (a_2,0) & (a_4,1) \\ (a_2,0) & & (a_3,1) \\ & & & (a_2,0) \\ (a_3,0) & (a_1,0) & (a_1,1) \\ & & & (a_1,0) \end{array}$$

- Take a CAH Δ, align departments' preferences over applicants with applicants preferences over acceptable contracts.
- Oliving the trim thresholds such that there still exists a stable matching, s.t. under Δ: if an applicant claims an empty seat at some department d, then she is for sure admitted to college c(d).
- **③** Take the resulting trimmed sub-market Δ' .
- \bigcirc Find a student-undominated stable matching under Δ' .

Theorem

IP procedure produces a blocking-undominated NC-RfOA-stable matching. Moreover, it produces an undominated stable matching if there exists one.

- Take a CAH Δ, align departments' preferences over applicants with applicants preferences over acceptable contracts.
- Ominimize the trim thresholds such that there still exists a stable matching, s.t. under Δ: if an applicant claims an empty seat at some department d, then she is for sure admitted to college c(d).
- **②** Take the resulting trimmed sub-market Δ' .
- **O Find a student-undominated stable matching under** Δ' .

Theorem

IP procedure produces a blocking-undominated NC-RfOA-stable matching. Moreover, it produces an undominated stable matching if there exists one.

< ロト (同) (三) (三)

- Take a CAH Δ, align departments' preferences over applicants with applicants preferences over acceptable contracts.
- Ominimize the trim thresholds such that there still exists a stable matching, s.t. under Δ: if an applicant claims an empty seat at some department d, then she is for sure admitted to college c(d).
- **③** Take the resulting trimmed sub-market Δ' .
- **Over the setup of the stable of the stable**

Theorem

IP procedure produces a blocking-undominated NC-RfOA-stable matching. Moreover, it produces an undominated stable matching if there exists one.

< ロト (同) (三) (三)

- Take a CAH Δ, align departments' preferences over applicants with applicants preferences over acceptable contracts.
- Ominimize the trim thresholds such that there still exists a stable matching, s.t. under Δ: if an applicant claims an empty seat at some department d, then she is for sure admitted to college c(d).
- **③** Take the resulting trimmed sub-market Δ' .
- **9** Find a student-undominated stable matching under Δ' .

Theorem

IP procedure produces a blocking-undominated NC-RfOA-stable matching. Moreover, it produces an undominated stable matching if there exists one.

< ロト (同) (三) (三)

- Take a CAH Δ, align departments' preferences over applicants with applicants preferences over acceptable contracts.
- Ominimize the trim thresholds such that there still exists a stable matching, s.t. under Δ: if an applicant claims an empty seat at some department d, then she is for sure admitted to college c(d).
- **③** Take the resulting trimmed sub-market Δ' .
- **9** Find a student-undominated stable matching under Δ' .

Theorem

IP procedure produces a blocking-undominated NC-RfOA-stable matching. Moreover, it produces an undominated stable matching if there exists one.

< ロト (同) (三) (三)

Roadmap

- General framework: possible applications
- College housing crisis
- Stable matching: six types of blocking contracts
- Take-House-from-Applicant-Stability
- Not-Compromised-Request-from-One-Agent-Stability
- Blocking domination: IP solution

Concluding remarks

イロト イポト イヨト イヨト
Concluding Remarks

- This paper considers a brand-new matching problem with many applications and focuses on one of them: college admissions with housing quotas.
- It proposes two relaxations of stability that restore existence:
 - Take-House-from-Applicant-stability with a strategy-proof Cumulative Offer process with Ch^{*}_d, and
 - stronger Not-Compromised-Request-from-One-Agent-stability with Cutoff Minimizing mechanism.
- Cutoff Minimizing mechanism may not find an existing stable matching. Thus, I propose a new notion of blocking-undominated matching and construct an IP solution that always yields a blockingundominated NC-RfOA-stable matching.
- Future research: more types of contracts; overlapping regions; other ways to extend THfA-stability.

(日) (周) (日) (日) (日)

3