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Ad allocation on the internet

For the advertizing company:

° - » Different companies, each
| with a limited budget
MANGO @ ® r]?a » Ad-User compatibility based
$aumont . on criteria such as visited
P website, location...
® o o

Carrefour

— Ad-User bipartite graph



Users are revealed sequentially and the matching is built on
the fly: Online Matching



Matching on a Bipartite graph

A matching is a set of edges with no com-

mon vertices.

A matching
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A matching is a set of edges with no com-
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Online Matching

Fort=1,...,|V|

>
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vt arrives along with its edges
the algorithm can match it to a free
vertexinU

the decision is final
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Online Matching

Fort=1,...,|V|
> v; arrives along with its edges

» the algorithm can match it to a free
vertexinU

» the decision is final
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Evaluating the performance
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Our objective: Maximize algorithms’ competitive ratio

Definition
The competitive ratio is defined as:

. E[ALG(G)]

C.R. = mgln OPT(Q)

Note that 0 < C.R. < 1, and the higher the better.



Users’ arrival: the usual assumptions

» Adversarial (Adv): G can be any graph, the vertices of V arrive in any order,
» Random Order (RO): G can be any graph, the vertices of }V arrive in random order,

> Stochastic (IID): The vertices of V are drawn iid from a distribution. (precise definition
given latter)

C.R.(Adv) < C.R.(RO) < C.R.(IID)



Algorithms and pre-existing litterature



GREEDY Algorithm in the case of Adversarial user arrivals

Algorithm 1: GREEDY Algorithm

fort=1,..,|V|do
| Match v; to any free neighbor;
end

Theorem
In the Adversarial setting,

1
C.R.(GREEDY) = .



1
C.R.(GREEDY) > 5

Proof: For every "missed" match, thereis at
least one "successful" match.
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Adversarial users’ arrival: a better algorithm, (Ad) RANKING

Algorithm 2: (Ad) RANKING Algorithm

Draw a random permutation ;
fori=1,..,|U|do

| Assign to u; rank 7 (/);
end
fort=1,..,|V|do

| Match v; to its lowest ranked free neighbor;
end
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Ad RANKING

Theorem [Karp et al., 1990]
In the Adversarial setting,

1
C.R.(RANKING) > 1 — =

Note:1— 1~ 0.63

Adversarial is the worst case, but in real situations, the users’ characteristics are not
adversarial !

11



A stochasticity assumption: Known [ID

There is a distribution over k fixed users’ known types from which the incoming vertices
aredrawni.i.d. [Feldman et al., 2009].

° ® °
G

.

typel type 2 type k
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A first naive solution:

» Compute an optimal matching on the expected graph
> Match the first incoming vertex of each type according to that matching.

u E[V] u %
1

2 0 )
3 ® e2
Guide Constructed Matching
1
CR=1-—
e

A better one : Compute an alternative matching on the expected graph and use it as a
graph in case of a second arrival.
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In a nutshell :
> (Involved) algorithms get a better competitive ratio (> 0.716),
[Manshadi et al., 12, Jaillet and Lu, 14, Huang et al., 22] ,
» CRupper bounded by 0.823 [Manshadi et al., 12],
> CRof GREEDYstill 1 — £,
» Experiments tell a different story [Borodin et al., 2018].

14



Our work: Online Matching in Random
Graphs



In the Configuration Model

> CMisa classical random graph model introduced by Bollobas in the 80s,

» Agraph from the CM is close to a graph taken uniformly at random among those with
a fixed degree distribution.

Theorem [Noiry, Perchet, S. ; 2021], informal
The size of the matching produced by GREEDY can be approximated w.h.p. by the solution
of an ODE that depends on the degree distribution.

Related works: [Mastin and Jaillet, 2013, Aoudi et al., 2022, Aamand et al., 2022]

No correlations between the connections!
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Handling correlation: The 1-D Geometric
Model



1-D Random Geometric graph

Motivation

> Campaigns & users have features U; € R? and V; € RY
» Connected if "close enough" (for some Kernel)

Model : Random geometric graph Geom(i/, V, ¢):

» N pointsini{ drawn iid uniformly in [0, 1],
» N pointsinV drawn iid uniformly in [0, 1],
> Edge betweenu € U{ andv € Viff:

lu—v| <

=0

U
0 1
v
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Offline Maximum matching

Proposition
The algorithm matching free vertices from left to right produces a maximum matching.

u
0 1
v

» not a direct consequence of 1D metric OT,

Remark:

> Similar arguments: there exits a maximum matching with no crossing rays that
matches every vertex to its leftmost free neighbor.
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Computing the Maximum Matching Size

Step 1: Modify the graph generating process.
Random geometric graph Geom’(U/, V, ¢):

» U and V drawn from a Poisson Point Process of intensity 1 in [0, N],
> Edgebetweenu € U andv € Viffju —v| <c.

<

Expected matching sizes in the two model
With v*(c, N) and M*(c, N) the exp. sizes of the matchings in the two models:

7 (¢, N) — M*(c, N)| < 4(1 + VNInN).
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Step 2: Generate the graph together with the matching.
Three situations possible:

» Successful match!

= generate next pointsin/ and V.

» Last pointin Y/ too far behind.

VAR 1

= generate next pointin /.

> Last pointin )V too far behind.

U
1%

<=

U
1%
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The size of the gap between the two last generated points at time t is a random walk 1(t)
sit.:

Lap(0,1)if [y(t)] < ¢
B(E+1) —(0) ~ { Bxp(1) ifu(t) < —c
—Exp(1) ify(t) > ¢

Proposition

. M*(c,N) c
lim = T
N— oo N c+ 3
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Online Matching in the 1-D Geometric
Model



Match to the closest point algorithm

The incoming point is matched to its closest available neighbor.

U
0 1
\ iy,
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Theorem

Let x(c, N) be the size of the matching obtained by match to the closest point algorithm on
G(X,Y,c/N),then

“+o0o

Kk(c,N) —— 1 — / F(x, 1)dx
N—4-o00 0

with f(x, t) the solution of the following differential equation

+o0 H / /
of(x, t) —  min(x, 20)f(x, £) — / min(x’, 2c)f (X', t)f (x, t)dX,
ot 0 ST, tyax!

1 X 0
+—_ min(x’, 2c)f(x’, )f(x — X', t)dx’
0+°°f(xf,t)dx//o SR J

with the following initial conditions
f(x,0) =e™
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Key to obtaining the PDEs: Finding the right quantities to track.

The matching algorithm is studied on a modified graph:

x oY u -y -y u -y
— — — —
0
Poissonization Rounding Discard Gluing
No ~Poi(N)
U] =
No=N+1
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Track the gap sizes between remaining free vertices

N¢ = number of free vertices at iteration t.
ut(i) = coordinate of the (remaining) it" free vertex

For ¢ € [N3/?], define

Fk,N(ga t) =

{ie[Nt]s.t. (u (+l)—ut())—€}
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On an example

Fo(1,0) =3

Fs(2,0) =3
Fo(4,0) = Fo(5,0) = Fe(6,0) = 1

For all other ¢ € [30]:

Fo(£,0) =0

Fo(1,1) =1

Fo(2,1) = 4
Fo(4,1) = Fo(5,1) = Fe(6,1) = 1

For all other ¢ € [30]:

F9(€a 1) =0 25



Why are the gaps nice quantities?

Relation with matching size

M(t) = No — > Fin(£, ).
l

Relation with probability of matching
With p; the probability of getting a match at iteration t.

1 .
Pt= 1 ZZ: min(2c, £)Fy n(4, t).
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Are they tractable?

» Thanks to the discretization, F; y(¢, 0) concentrates,
> At every iteration, the gaps are ordered uniformly at random — explicit expression for
the expected evolution.

Markov discrete process with initial condition concentration and "nice" expected
evolution:

Differential Equation Method, Wormald,95
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. Discrete system: There exists ®y such that:

E[Fin(C, t + 1) — Fn(€, t) | Fe] = Pun (Fin(0,t), ..., Fn(kN, 1)) + o(1).

. PDEs. Solutions asymptotically close to

Of (L, t)
ot

= ¢'k (fk(O, t)z_:OOO, 6) .

with initial conditions: f4(¢,0) = k(1 — e_%)ze_f.

. Control of errors. With f the function of the theorem,

1
vt € [07 1]7 H f('at)_fk('7t) HLISJ ;
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Competitive ratio

0.97

0.96

Competitive Ratio
o
w
un
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Cc parameter
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Link with metric matching on the line

» U;and V; areiid uniformly on [0, 1]
>V must be matched to some U,y with cost d(Up ), Vi)
» OPTis OT, cost O(v/N)
> After (1 — )N points, the total cost of Match to the Closest [Akbarpour, 21, Balkanski,
22]is O (3)
Performance of Match to the Closest

After (1 — 0)N points, the total cost of Match to the Closest converges in probability to
0.5(5—1).
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Experimental Results

0.61 — experimental value

0.6 — theoretical value

0.4 04

0.2 0.2
—— experimental value
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Thank you for listening !



[4 Aamand, A., Chen, J., and Indyk, P. (2022).
(optimal) online bipartite matching with degree information.
Advances in Neural Information Processing Systems, 35:5724-5737.

[4 Aoudi, M. H. A. D., Moyal, P., and Robin, V. (2022).
Markovian online matching algorithms on large bipartite random graphs.
Methodology and Computing in Applied Probability, 24(4):3195-3225.
[3 Borodin, A., Karavasilis, C., and Pankratov, D. (2018).
An experimental study of algorithms for online bipartite matching.
[4 Feldman, J., Mehta, A., Mirrokni, V., and Muthukrishnan, S. (2009).
Online stochastic matching: Beating 1-1/e.

In 2009 50th Annual IEEE Symposium on Foundations of Computer Science, pages
117-126. IEEE.

4 Karp, R. M., Vazirani, U. V., and Vazirani, V. V. (1990).

31



An optimal algorithm for on-line bipartite matching.

In Proceedings of the twenty-second annual ACM symposium on Theory of computing,
pages 352-358.

Mastin, A. and Jaillet, P. (2013).

Greedy online bipartite matching on random graphs.
arXiv preprint arXiv:1307.2536.

31



	Algorithms and pre-existing litterature
	Our work: Online Matching in Random Graphs
	Handling correlation: The 1-D Geometric Model
	Online Matching in the 1-D Geometric Model

