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Ad allocation on the internet

For the advertizing company:
▶ Different companies, each

with a limited budget
▶ Ad-User compatibility based

on criteria such as visited
website, location...

→ Ad-User bipartite graph
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Users are revealed sequentially and the matching is built on
the fly: Online Matching
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Matching on a Bipartite graph

A matching is a set of edges with no com-
mon vertices.

U V

11

22

3 3

A matching

3



Matching on a Bipartite graph

A matching is a set of edges with no com-
mon vertices.
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Online Matching

For t = 1, ..., |V|:
▶ vt arrives along with its edges
▶ the algorithm can match it to a free

vertex in U
▶ the decision is final
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Evaluating the performance
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Our objective: Maximize algorithms’ competitive ratio

Definition
The competitive ratio is defined as:

C.R. = min
G

E[ALG(G)]
OPT(G)

Note that 0 ≤ C.R. ≤ 1, and the higher the better.
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Users’ arrival: the usual assumptions

▶ Adversarial (Adv): G can be any graph, the vertices of V arrive in any order,
▶ Random Order (RO): G can be any graph, the vertices of V arrive in random order,
▶ Stochastic (IID): The vertices of V are drawn iid from a distribution. (precise definition

given latter)

C.R.(Adv) ≤ C.R.(RO) ≤ C.R.(IID)
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Algorithms and pre-existing litterature



GREEDY Algorithm in the case of Adversarial user arrivals

Algorithm 1: GREEDY Algorithm

for t = 1, .., |V| do
Match vt to any free neighbor;

end

Theorem
In the Adversarial setting,

C.R.(GREEDY) =
1
2
.
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C.R.(GREEDY) ≥ 1
2
.

Proof : For every "missed" match, there is at
least one "successful" match.
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Adversarial users’ arrival: a better algorithm, (Ad) RANKING

Algorithm 2: (Ad) RANKING Algorithm

Draw a random permutation π;
for i = 1, .., |U| do

Assign to ui rank π(i);
end
for t = 1, .., |V| do

Match vt to its lowest ranked free neighbor;
end
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Ad RANKING

Theorem [Karp et al., 1990]
In the Adversarial setting,

C.R.(RANKING) ≥ 1− 1
e
.

Note : 1− 1
e ≈ 0.63

Adversarial is the worst case, but in real situations, the users’ characteristics are not
adversarial !
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A stochasticity assumption: Known IID
There is a distribution over k fixed users’ known types from which the incoming vertices

are drawn i.i.d. [Feldman et al., 2009].

UU

type 1 type 2

. . .

type k
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A first naive solution:

▶ Compute an optimal matching on the expected graph
▶ Match the first incoming vertex of each type according to that matching.

U E[V]
1

2

3

Guide

U V
3

2

2

Constructed Matching

CR = 1− 1
e

A better one : Compute an alternative matching on the expected graph and use it as a
graph in case of a second arrival.
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In a nutshell :

▶ (Involved) algorithms get a better competitive ratio (≥ 0.716),
[Manshadi et al., 12, Jaillet and Lu, 14, Huang et al., 22] ,

▶ CR upper bounded by 0.823 [Manshadi et al., 12],
▶ CR of GREEDY still 1− 1

e ,
▶ Experiments tell a different story [Borodin et al., 2018].
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Our work: Online Matching in Random
Graphs



In the Configuration Model

▶ CM is a classical random graph model introduced by Bollobas in the 80s,
▶ A graph from the CM is close to a graph taken uniformly at random among those with

a fixed degree distribution.

Theorem [Noiry, Perchet, S. ; 2021], informal
The size of the matching produced by GREEDY can be approximated w.h.p. by the solution
of an ODE that depends on the degree distribution.

Related works: [Mastin and Jaillet, 2013, Aoudi et al., 2022, Aamand et al., 2022]

No correlations between the connections!
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Handling correlation: The 1-D Geometric
Model



1-D Random Geometric graph
Motivation

▶ Campaigns & users have features Ui ∈ Rd and Vj ∈ Rd

▶ Connected if "close enough" (for some Kernel)

Model : Random geometric graph Geom(U ,V, c):

▶ N points in U drawn iid uniformly in [0, 1],
▶ N points in V drawn iid uniformly in [0, 1],
▶ Edge between u ∈ U and v ∈ V iff:

|u− v| ≤ c
N
.

0 1
U

V 16



Offline Maximum matching
Proposition
The algorithm matching free vertices from left to right produces a maximum matching.

0 1
U

V

Remark:

▶ not a direct consequence of 1D metric OT,
▶ Similar arguments: there exits a maximum matching with no crossing rays that

matches every vertex to its leftmost free neighbor.
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Computing the Maximum Matching Size
Step 1: Modify the graph generating process.
Random geometric graph Geom’(U ,V, c):

▶ U and V drawn from a Poisson Point Process of intensity 1 in [0,N],
▶ Edge between u ∈ U and v ∈ V iff |u− v| ≤ c.

0 N
U
V

∼ E(1)

Expected matching sizes in the two model
With γ∗(c,N) andM∗(c,N) the exp. sizes of the matchings in the two models:

|γ∗(c,N)− M∗(c,N)| ≤ 4(1 +
√
N lnN).
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Step 2: Generate the graph together with the matching.

Three situations possible:

▶ Successful match !

U
V

=⇒ generate next points in U and V .

▶ Last point in U too far behind.

U
V

=⇒ generate next point in U .

▶ Last point in V too far behind.

U
V

=⇒ generate next point in V .
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The size of the gap between the two last generated points at time t is a random walk ψ(t)
s.t. :

ψ(t + 1)− ψ(t) ∼


Lap(0, 1) if |ψ(t)| ≤ c
Exp(1) if ψ(t) ≤ −c
−Exp(1) if ψ(t) ≥ c

Proposition

lim
N→∞

M∗(c,N)
N

=
c

c+ 1
2
.
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Online Matching in the 1-D Geometric
Model



Match to the closest point algorithm

The incoming point is matched to its closest available neighbor.

0 1
U

V

21



Theorem

Let κ(c,N) be the size of the matching obtained bymatch to the closest point algorithm on
G(X ,Y, c/N), then

κ(c,N) P−−−−→
N→+∞

1−
∫ +∞

0
f(x, 1)dx

with f(x, t) the solution of the following differential equation

∂f(x, t)
∂t

=−min(x, 2c)f(x, t)−
∫ +∞

0

min(x′, 2c)f(x′, t)f(x, t)∫ +∞
0 f(x′, t)dx′

dx′

+
1∫ +∞

0 f(x′, t)dx′

∫ x

0
min(x′, 2c)f(x′, t)f(x − x′, t)dx′

with the following initial conditions

f(x, 0) = e−x.
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Key to obtaining the PDEs: Finding the right quantities to track.

The matching algorithm is studied on a modified graph:

0
1

X Y

Poissonization

N0 ∼Poi(N)

N0 = N + 1

0
1

U Y

Rounding

⌊U⌋ :={
⌊uN3/2⌋
N3/2

}

0
1

⌊U⌋ Y

Discard

0
1

Ũ Y

Gluing

0

Figure 1: Graph Rounding
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Track the gap sizes between remaining free vertices

Nt = number of free vertices at iteration t.

ut(i) = coordinate of the (remaining) ith free vertex

For ℓ ∈ [N3/2], define

Fk,N(ℓ, t) :=
∣∣∣∣{i ∈ [Nt] s.t. (ut(i + 1)− ut(i)) =

ℓ

kN

}∣∣∣∣ ,
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On an example

F9(1, 0) = 3

F9(2, 0) = 3

F9(4, 0) = F9(5, 0) = F9(6, 0) = 1

For all other ℓ ∈ [30]:

F9(ℓ, 0) = 0

−→

F9(1, 1) = 1

F9(2, 1) = 4

F9(4, 1) = F9(5, 1) = F9(6, 1) = 1

For all other ℓ ∈ [30]:

F9(ℓ, 1) = 0 25



Why are the gaps nice quantities?

Relation with matching size

M(t) = N0 −
∑
ℓ

Fk,N(ℓ, t).

Relation with probability of matching
With pt the probability of getting a match at iteration t.

pt =
1
kN

∑
ℓ

min(2c, ℓ)Fk,N(ℓ, t).
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Are they tractable?

▶ Thanks to the discretization, Fk,N(ℓ, 0) concentrates,
▶ At every iteration, the gaps are ordered uniformly at random→ explicit expression for

the expected evolution.

Markov discrete process with initial condition concentration and "nice" expected
evolution:

Differential Equation Method, Wormald,95

27



1. Discrete system: There exists ΦN such that:

E[Fk,N(ℓ, t + 1)− Fk,N(ℓ, t) | Ft] = Φk,N
(
Fk,N(0, t), . . . , Fk,N(kN, t)

)
+ o(1).

2. PDEs. Solutions asymptotically close to

∂fk(ℓ, t)
∂t

= Φk
(
fk(0, t)+ℓ=0∞, ℓ

)
.

with initial conditions: fk(ℓ, 0) = k(1− e−
1
k )2e−

ℓ
k .

3. Control of errors. With f the function of the theorem,

∀t ∈ [0, 1], || f(., t)− fk(., t) ||L1≲
1
k
.
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Competitive ratio
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Link with metric matching on the line

▶ Ui and Vj are iid uniformly on [0, 1]
▶ Vt must be matched to some Um(t) with cost d(Um(t), Vt)
▶ OPT is OT, costO(

√
N)

▶ After (1− δ)N points, the total cost of Match to the Closest [Akbarpour, 21, Balkanski,
22] isO

( 1
δ

)
Performance of Match to the Closest
After (1− δ)N points, the total cost of Match to the Closest converges in probability to
0.5

( 1
δ − 1

)
.
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Experimental Results
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Thank you for listening !
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