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Introduction Setting Cautious Greedy Conclusion

Bandits

K arms

For t ∈ {1, . . . , T}:

1. Choose arm kt ∈ [K ]
2. Receive reward Xkt ,t subgaussian with mean µkt

3. Observe Xkt ,t

Goal: Maximize E[∑T
t=1 Xkt ,t ]

Comparator: maxk∈[K ] E[∑T
t=1 Xk,t ] = Tµ(K)

Regret: R = Tµ(K) − E[∑T
t=1 Xkt ,t ]

Optimal algorithms achieve R ≈ ∑K−1
k=1

log(T )
µ(K)−µ(k)

(Auer, 2002)
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Bandits with multiple plays

K arms, M ≤ K choices

For t ∈ {1, . . . , T}:

1. Choose M arms k1,t , . . . , kM,t ∈ [K ]
2. Receive reward ∑M

m=1 Xkm,t ,t where Xk,t ∼ B(µk)
3. Observe Xk1,t ,t , . . . , XkM,t ,t

Goal: Maximize E[∑T
t=1

∑M
m=1 Xkm,t ,t ]

Comparator: T ∑K
k=K−M+1 µ(k)

Regret: R = T ∑K
k=K−M+1 µ(k) − E[∑T

t=1
∑M

m=1 Xkm,t ,t ]

Optimal algorithms achieve R ≈ ∑K−M
k=1

log(T )
µ(K)−µ(k)

(Komiyama,
2015)
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Multiplayer bandits

K arms, M ≤ K players

For t ∈ {1, . . . , T}:

1. Each player m chooses an arm km,t ∈ [K ]
2. Each player m receives

Xkm,t ,t 1{Exactly one player pulls arm km,t}︸ ︷︷ ︸
ηkm,t ,t

3. Each player m observes Xkm,t ,tηkm,t ,t , ηkm,t ,t

Regret: R = T ∑K
k=K−M+1 µ(k) − E[∑T

t=1
∑M

m=1 Xkm,t ,tηkm,t ,t ]

Optimal algorithms achieve R ≈ ∑K−M
k=1

log(T )
µ(K)−µ(k)

(Boursier,
2019) (Wang, 2020)
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Asynchronous Multiplayer bandits

K arms, M > K players, (pm)M
m=1 activation probabilities

For t ∈ {1, . . . , T}:

1. Each player m chooses an arm km,t ∈ [K ]
2. Each player m is active with probability pm

3. Each player m receives
Xkm,t ,t 1{Exactly one player is active and pulls arm km,t}︸ ︷︷ ︸

ηkm,t ,t

4. Each player m observe Xkm,t ,tηkm,t ,t , ηkm,t ,t

Regret: R = maxk1,...,kM∈[K ]
∑T

t=1 E[∑M
m=1 Xkm,tηkm,t ] −∑T

t=1 E[∑M
m=1 Xkm,t ,tηkm,t ,t ]
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Asynchronous Multiplayer bandits

M

K
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Asynchronous Multiplayer bandits

M

K
Player 4 receives X3,t

Player 1, 2 receive 0 but observes η1,t = 0
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Asynchronous Multiplayer bandits

• (Bonnefois, 2017) Selfish algorithms are promising
• (Dakdouk, 2022) O(T 2

3 ) regret with limited
communication
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Communication model

By (Dakdouk 2022):
Communication abilities
At each t, players can either

1. Attempt to send a message to a gateway
(one player at a time)

2. Listen to messages from the gateway

• Succeeds with probability pg

• Does not cost anything
• We keep count of the number of communication attempts

12
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Communication model

• After τ attemps a communication fails with probability
(1 − pg)τ

• After τ = log(T )
− log(1−pg ) attemps a communication fails with

probability 1
T

• On average after 1
pg

attemps, the communication succeeds

(Dakdouk 2022): Õ( 1
pg

) expected communication attempts
(at most Õ( log(T )

− log(1−pg )))
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Assumptions

Homogeneous activation probabilities
∀m ∈ [M], pm = p

14
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Assumptions

Define M(t) = (M1(t), . . . , MK (t))
Mk = number of players choosing arm k at time t

Total expected reward at time t

= E[
K∑

k=1
Xk,t1{Exactly 1 player is active among Mk(t)}]

= E[
K∑

k=1
µk pMk(t)(1 − p)Mk(t)−1︸ ︷︷ ︸

g(Mk(t))

]

= E[⟨µ, g(M(t))⟩]

15
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Assumptions

Define M∗ = argmaxM,
∑K

k=1 Mk=M E[⟨µ, g(M)⟩]
Upper bound on optimal allocation
∀k ∈ [K ], M∗

k ≤ − 1
log(1−p)

0 100 200
x

0.0

0.2

g(
x
)

maxM,
∑K

k=1 Mk=M,Mk≤− 1
log(1−p)

⟨µ, g(M)⟩ easy to solve
(Bonnefois, 2017) (Dakdouk, 2022)
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Results

M > K , p < 1, number of communications Õ(log(T )) in
expectation and at most Õ(log2(T ))

Define ν∗ = ∥M∗∥0 = |{k , M∗
k = 0}|

R = Õ(1
r +

ν∗∑
ν=1

log(T )
µ(ν∗+1) − µ(ν)

)

r : data-dependent gap, dependency in K , M, p, pg hidden.
Lower bounds

• ν∗ = 0: The dependency in r is optimal
• ν∗ > 0: The term ∑ν∗

ν=1
log(T )

µ(ν∗+1)−µ(ν)
is optimal.
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Quasi-centralized Cautious Greedy

K arms, M > K players, p activation probability

For t ∈ {1, . . . , T}:

1. Choose an assignment of player M(t)
2. Each player m is active with probability p
3. Receive ⟨Xt , η(M(t))⟩, Xi ,t ∼ B(µi)
4. Observe Xt ⊙ η(M(t)) and η(M(t))

Regret: R = ∑T
t=1 E[⟨µ, g(M∗) − g(M(t))⟩]

Regret of Cautious Greedy RCG = Õ(1
r + ∑ν∗

ν=1
log(T )

µ(ν∗+1)−µ(ν)
)

18
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Why is constant regret possible ?

Assume ν∗ = 0 i.e. support(M∗) = [K ]

Greedy

• Compute µ̂i(t) =
∑t

τ=1 Xi,tηi,t∑t
τ=1 ηi,t

• Play argmax{M,
∑K

k=1 Mk≤M,Mk≤ −1
log(1−p) }⟨µ̂(t), g(M)⟩

19
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Why is constant regret possible ?

R =
T∑

t=1
E[⟨µ, g(M∗) − g(M(t))⟩]

≤
T∑

t=1
E[⟨µ − µ̂(t), g(M∗) − g(M(t))⟩]

≲
T∑

t=1
E[∥µ − µ̂(t)∥∞1{M(t) ̸= M∗}

Call Mµ̂ = argminM⟨µ̂, g(M)⟩:

r = min{µ̂,Mµ̂ ̸=M∗} ∥µ̂ − µ∥∞

20
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Why is constant regret possible

R ≲
T∑

t=1
E[∥µ − µ̂(t)∥∞1{M(t) ̸= M∗}

=
T∑

t=1
rP(∥µ − µ̂(t)∥∞ > r) +

∫ ∞

r
P(∥µ − µ̂(t)∥∞ > u)du

Number of samples on arm k =
t∑

τ=1
η(Mk(t))

Expected number of samples on arm k =
t∑

τ=1
E[g(Mk(t))]

≥ pE[g(1)] = pt
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Introduction Setting Cautious Greedy Conclusion

What could go wrong ?

When greedy fails

• Play Greedy assuming ν∗ = 0 (full support)

What if ν∗ > 0 ?
• Maintain a lower bound ν of ν∗

Building a lower bound on ν∗

Step 0: ν = 0

Step 1: µ̂L, µ̂U such that whp: µ̂L ≤ µ ≤ µ̂U

Step 2: rL = max{M,
∑K

k=1 Mk=K ,Mk≤ −1
log(1−p) }⟨µ̂

L, g(M)⟩

Step 3: rU
ν = max{M,

∑K
k=1 Mk=K ,Mk≤ −1

log(1−p) ,∥M∗∥=ν}⟨µ̂
U , g(M)⟩

Step 4: If rH
ν < rL: ν∗ > ν → Set ν = ν + 1 and go to Step 3
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Introduction Setting Cautious Greedy Conclusion

Estimating the support

Wrong support
• Estimate ν, ν ≤ ν∗

• If ν = 0 play Greedy
argmax{M,

∑K
k=1 Mk=M,Mk≤− 1

log(1−p),Mk >0}
⟨µ̂(t), g(M)⟩

• If ν > 0, many supports are possible, how to choose ?

Successive accept and reject
(Bubeck, 2012)

• If µ̂U
k < µ̂L

(ν+1) → Reject
• If µ̂L

k > µ̂U
(ν) → Accept
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Estimating the support

Successive accept and reject
(Bubeck, 2012)

• If µ̂U
k < µ̂L

(ν+1) → Reject
• If µ̂L

k > µ̂U
(ν) → Accept

Rejects and accepts
• What does it mean to reject ? A rejected arm is never

assigned players again
• What does it mean to accept ? An accepted arm is

played at every round until ν increases
• Rotate among other arms in a Round Robin fashion

24
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Illustration

K
Play
argmax{M,

∑K
k=1 Mk=K ,Mk≤− 1

log(1−p) ,M2>0,M3>0,M4>0}⟨µ̂(t), g(M)⟩
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Illustration

K
ν∗ = 0

Accepted arms: ∅

Rejected arms: ∅
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Analysis

Regret decomposition
Call

Mν = argmaxM,∥M∥0=ν⟨µ, g(M)⟩

ME = argmaxM,∀k∈E,Mk>0⟨µ, g(M)⟩

R = E[
T∑

t=1
⟨µ, g(M∗) − g(M(t))⟩]

= E[
T∑

t=1
⟨µ, g(M∗) − g(Mν(t))⟩] + E[

T∑
t=1

⟨µ, g(Mν(t)) − g(ME(t))⟩]

+ E[
T∑

t=1
⟨µ, g(ME(t)) − g(M(t))⟩]
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Regret due to the mismatch between ν and ν∗

Cost of using ν instead of ν∗

⟨µ, g(M∗)⟩ − max{M,∥M∥0=ν}⟨µ, g(M)⟩
How long it takes to increase ν

ν increases when:
⟨µ̂L(t), g(M∗)⟩ > max{M,∥M∥0=ν}⟨µ̂H(t), g(M)⟩

⇐⇒

⟨µ − O(
√

log(T )
t ), g(M∗)⟩ > max

{M,∥M∥0=ν}
⟨µ + O(

√
log(T )

t ), g(M)⟩

⟨µ, g(M∗)⟩ − max
{M,∥M∥0=ν}

⟨µ, g(M)⟩ > O(
√

log(T )
t )

It takes t = O( log(T )
(⟨µ,g(M∗)⟩−max{M,∥M∥0=ν}⟨µ,g(M)⟩)2 ) steps
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Communication

• Split the algorithm in phases of size (2s)log(T )
s=1

• If 2s < 16M log(2TM)
log(1−pg ) play greedy with ν = 0

• Otherwise, only make updates (µ̂, accepted arms,
rejected arms, ν) at the end of a phase

• At each phase, reserve 1
4M rounds for player m to

communicate statistics
• At each phase, reserve 1

4M rounds for player m to receive
statistics

Phases costs a factor 2

The low probability of miscommunication compensates errors
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Lower bounds

ν∗ = 0
K = 2 arms, M = 2N + 1 players p ≤ 1

M+1 , r0 < p
12 ,

T ≥ 1
16g(M)r2

0
. For any algorithm A, there exists rewards µ s.t

r(µ) = r0 and
E[RA] ≥ 1

256Mr0
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Lower bounds

ν∗ = 1
For any M ≥ 5, ν∗ > 0, p ≤ 1

M+1 , any gaps
∆(1), . . . , ∆(ν∗) ≤ p

8(M−4) , and for any consistent algorithm A,
there exists (µ1, . . . , µν∗+2) s.t µ(ν∗+1) − µ(ν) = ∆(ν) for all
ν ∈ [ν∗] and for some c :

lim inf
T→∞

ERA

log(T ) ≥
ν∗∑

ν=1

c
∆(ν)

.
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Lower bounds

ν∗ = 0
Either µ = (1/2, 1/2 + ∆), µ = (1/2 + ∆, 1/2) with ∆ ≤ p

2

1. r = ∆/2.
2. Best solutions are M∗ = (N , N + 1) or M∗ = (N + 1, N)
3. Similar to a 2-arm bandits with full info: E[RA] ≥ exp(−1)

128∆

ν∗ = 1
Either µ = (µ0, µ1, µ1 + ∆)1/2 + ∆) or µ = (µ0, µ1, µ1 − ∆
with ∆ ≤ p

2

1. Best solutions are M∗ = (M − 1, 1, 0) or (M − 1, 0, 1)
2. E[RA] ≥ log(T )

∆

37



Introduction Setting Cautious Greedy Conclusion

Lower bounds

ν∗ = 0
Either µ = (1/2, 1/2 + ∆), µ = (1/2 + ∆, 1/2) with ∆ ≤ p

2

1. r = ∆/2.
2. Best solutions are M∗ = (N , N + 1) or M∗ = (N + 1, N)
3. Similar to a 2-arm bandits with full info: E[RA] ≥ exp(−1)

128∆

ν∗ = 1
Either µ = (µ0, µ1, µ1 + ∆)1/2 + ∆) or µ = (µ0, µ1, µ1 − ∆
with ∆ ≤ p

2

1. Best solutions are M∗ = (M − 1, 1, 0) or (M − 1, 0, 1)
2. E[RA] ≥ log(T )

∆ 37



Introduction Setting Cautious Greedy Conclusion

Simulations

Horizon T
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ν∗ = 0 (top) ν∗ = 1 (bottom)
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Conclusion

Contribution
• Cautious Greedy: optimal dependency in T , r and

(µν∗+1 − µν)ν∗
ν=1

• Average log(T ) communication steps

Future work

• No communications (Selfish algorithms)
• Better dependency in K , M, p, pg

• Anytime version

Thank you !
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