

Harvard John A. Paulson School of Engineering and Applied Sciences

Platform Equilibrium: analyzing social welfare in online marketplaces Gary Qiurui Ma

CIRM | 2023

Joint work with

Alon Eden Hebrew University of Jerusalem

David Parkes Harvard

PRESS RELEASE JUNE 8, 2020

COVID-19 to Plunge Global Economy into Worst Recession since World War II

PRESS RELEASE JUNE 8, 2020

COVID-19 to Plunge Global Economy into Worst Recession since World War II

Topics ✓ Stock Picks Lists & Rankings Magazine Data Advisor Penta

ECONOMY AND POLICY UP AND DOWN WALL STREET

Are We Heading for a Historic Economic Collapse? Why the U.S. GDP Could Fall by 40%.

PRESS RELEASE JUNE 8, 2020

COVID-19 to Plunge Global Economy into Worst Recession since World War II

Dow Jones

US:DJIA

Dow Jones

US:AMZN

Amazon

US:DJIA

Dow Jones

US:AMZN

Amazon

US:DJIA

 WHO WE ARE
 WHAT WE DO
 WHERE WE WORK
 UNDERSTANDING POVERTY
 WORK WITH US

 This page in: English
 Español
 Français

PRESS RELEASE JUNE 29, 2022

Who We Are / News

COVID-19 Drives Global Surge in use of Digital Payments

Uber Eats

McKinsey & Company

Ordering in: The rapid evolution of food delivery

"restaurants' traditional profit margins of 7 to 22 percent make covering the platforms' delivery commissions unsustainable as delivery orders become a larger part of a restaurant's business"

Uber Eats

McKinsey & Company

Ordering in: The rapid evolution of food delivery

"restaurants' traditional profit margins of 7 to 22 percent make covering the platforms' delivery commissions unsustainable as delivery orders become a larger part of a restaurant's business"

Delivery companies are fighting city amazon commission caps. Does anybody win? "Jersey City capped delivery app fees charged to restaurants at 10%.

deliveroo

"Jersey City capped delivery app fees charged to restaurants at 10%. The next day, Uber Eats added a \$3 delivery fee to local orders"

To what extent do revenue-maximizing platforms enhance market efficiency?

To what extent do revenue-maximizing platforms enhance market efficiency?

How regulation helps improve market efficiency?

Uber Eats

(1) allocation $\mathbf{a} = (a_1, \dots, a_n)$ (2) item prices $\mathbf{p} = (p_1, \dots, p_m)$

Such that

- 1. For buyer $\forall i, a_i$ maximizes *i*'s utility
- 2. Unallocated items have 0 price

(1) allocation $\mathbf{a} = (a_1, \dots, a_n)$ (2) item prices $\mathbf{p} = (p_1, \dots, p_m)$

Such that

- 1. For buyer $\forall i, a_i$ maximizes *i*'s utility
- 2. Unallocated items have 0 price

First Welfare Theorem: Walrasian allocations maximize SW

(1) allocation $\mathbf{a} = (a_1, \dots, a_n)$ (2) item prices $\mathbf{p} = (p_1, \dots, p_m)$

Such that

- 1. For buyer $\forall i, a_i$ maximizes *i*'s utility
- 2. Unallocated items have 0 price

First Welfare Theorem: Walrasian allocations maximize SW

Max Walrasian prices: for seller $\forall j \quad p_j = W(S, B) - W(S \setminus \{j\}, B)$

(1) allocation $\mathbf{a} = (a_1, \dots, a_n)$ (2) item prices $\mathbf{p} = (p_1, \dots, p_m)$

Such that

- 1. For buyer $\forall i, a_i$ maximizes *i*'s utility
- 2. Unallocated items have 0 price

First Welfare Theorem: Walrasian allocations maximize SW

Max Walrasian prices: for seller $\forall j \quad p_j = W(S, B) - W(S \setminus \{j\}, B)$

j's contribution to welfare

Unit-demand buyers

Unit-supply sellers

Unit-demand buyers

Unit-supply sellers

Without a platform

Transactions via active links

Unit-demand buyers

Unit-supply sellers

Without a platform

Transactions via active links Walrasian Equilibrium (WE) is formed

Unit-demand buyers

Unit-supply sellers

Without a platform

Transactions via active links

Walrasian Equilibrium (WE) is formed

Might be (very) inefficient

Unit-demand buyers

Unit-supply sellers

Unit-demand buyers

Unit-supply sellers

With Platform

Unit-demand buyers

Unit-supply sellers

With Platform

Transaction fee α (e.g. 25%)

Unit-demand buyers

Unit-supply sellers

With Platform

Transaction fee α (e.g. 25%)

Sellers join – connect to all

Unit-demand buyers

Unit-supply sellers

With Platform

Transaction fee α (e.g. 25%)

Sellers join – connect to all

A Walrasian Eq. is formed

Unit-demand buyers

Unit-supply sellers

With Platform

Transaction fee α (e.g. 25%)

Sellers join – connect to all

A Walrasian Eq. is formed

Joining sellers pay $\alpha \cdot p_i$

1. Market is given: sellers, buyers, valuations, active/inactive links

- 1. Market is given: sellers, buyers, valuations, active/inactive links
- 2. Platform chooses fee α

- 1. Market is given: sellers, buyers, valuations, active/inactive links
- 2. Platform chooses fee α
- 3. Sellers form an equilibrium in the game (Platform breaks ties)

- 1. Market is given: sellers, buyers, valuations, active/inactive links
- 2. Platform chooses fee α
- 3. Sellers form an equilibrium in the game (Platform breaks ties)

Seller *i* joins the platform if $(1 - \alpha) \cdot p_i^{on} > p_i^{off}$
Platform Game (chronological)

- 1. Market is given: sellers, buyers, valuations, active/inactive links
- 2. Platform chooses fee α
- 3. Sellers form an equilibrium in the game (Platform breaks ties)

Seller *i* joins the platform if
$$(1 - \alpha) \cdot p_i^{on} > p_i^{off}$$

Platform's goal: maximize its revenue

Platform Game (chronological)

- 1. Market is given: sellers, buyers, valuations, active/inactive links
- 2. Platform chooses fee α
- 3. Sellers form an equilibrium in the game (Platform breaks ties)

Seller *i* joins the platform if
$$(1 - \alpha) \cdot p_i^{on} > p_i^{off}$$

Platform's goal: maximize its revenue

What's the efficiency gain?

Efficiency Gain For a Selfish Platform Result 1: In homogenous goods markets,

Efficiency Gain For a Selfish Platform Result 1: In homogenous goods markets,

Result 1: In homogenous goods markets, an Algo. such that for any # of sellers, it finds an α to induce a pure equilibrium where # of sellers join.

Result 1: In homogenous goods markets, an Algo. such that for any # of sellers, it finds an α to induce a pure equilibrium where # of sellers join.

Result 2 Without regulation: homo. goods – a selfish platform induces PoA $O(\log(\min\{n, m\}))$. This is tight.

Result 1: In homogenous goods markets, an Algo. such that for any # of sellers, it finds an α to induce a pure equilibrium where # of sellers join.

Result 2 Without regulation: homo. goods – a selfish platform induces PoA $O(\log(\min\{n, m\}))$. This is tight.

Result 3 With regulation: heterogenous goods – a selfish platform when regulated to set a fee $\leq \alpha$, PoA is $\frac{2-\alpha}{1-\alpha}$. This is tight.

Result 1: In homogenous goods markets, an Algo. such that for any # of sellers, it finds an α to induce a pure equilibrium where # of sellers join.

Result 2 Without regulation: homo. goods – a selfish platform induces PoA $O(\log(\min\{n, m\}))$. This is tight.

Result 3 With regulation: heterogenous goods – a selfish platform when regulated to set a fee $\leq \alpha$, PoA is $\frac{2-\alpha}{1-\alpha}$. This is tight.

Fee $\leq 30\%$ \rightarrow Welfare is at least 41.17% fraction of optimal welfare

Result 1: In homogenous goods markets, an Algo. such that for any # of sellers, it finds an α to induce a pure equilibrium where # of sellers join.

Result 2 Without regulation: homo. goods – a selfish platform induces PoA $O(\log(\min\{n, m\}))$. This is tight.

Result 3 With regulation: heterogenous goods – a selfish platform when regulated to set a fee $\leq \alpha$, PoA is $\frac{2-\alpha}{1-\alpha}$. This is tight.

Fee $\leq 30\%$ \rightarrow Welfare is at least 41.17% fraction of optimal welfare

Platforms	Amazon	UberEats	DoorDash	Grubhub
Commission Rate	8%-17%	15%-30%	15%-30%	15%-25%
Table 1. Platforms and their commission rate in the US from 2021-2022. ³				

Re1: Pure Eq. Doesn't Always Exist

Re1: Algo for Pure Eq for homo. goods

Thm. For homo. goods, as α is lowered, sellers join one by one, forming pure equilibria.

Re1: Algo for Pure Eq for homo. goods

Thm. For homo. goods, as α is lowered, sellers join one by one, forming pure equilibria.

Joined sellers won't drop off

Re1: Algo for Pure Eq for homo. goods

Thm. For homo. goods, as α is lowered, sellers join one by one, forming pure equilibria.

Joined sellers won't drop off

Our results also extend to mixed Eq.

 $\alpha^* = 1$

(sellers have 0 revenue)

 $\alpha^* = 1$

(sellers have 0 revenue)

Any number of joining sellers is an eq.

 $\alpha^* = 1$

(sellers have 0 revenue)

Any number of joining sellers is an eq.

1 seller join \rightarrow rev = $n + \epsilon$

 $\alpha^* = 1$

(sellers have 0 revenue)

Any number of joining sellers is an eq.

1 seller join
$$\rightarrow$$
 rev = $n + \epsilon$
i sellers join \rightarrow rev = $\frac{n}{i} \cdot i = n$

 $\alpha^* = 1$

(sellers have 0 revenue)

Any number of joining sellers is an eq.

1 seller join
$$\Rightarrow$$
 rev = $n + \epsilon$
i sellers join \Rightarrow rev = $\frac{n}{i} \cdot i = n$
 $Eq = n + \epsilon$ $OPT = \epsilon + \sum_{i} \frac{n}{i} = n \cdot H_n + \epsilon$ $PoA = \Omega(\log n)$

Prove welfare guarantee via revenue guarantee

Prove welfare guarantee via revenue guarantee

Assume: no links, $\alpha = 1$

Prove welfare guarantee via revenue guarantee

Assume: no links, $\alpha = 1$

Prove welfare guarantee via revenue guarantee

Assume: no links, $\alpha = 1$

i sellers join: $\text{Rev} = i \cdot v_i$

 $\operatorname{Rev}^* \ge i \cdot v_i \Rightarrow \sum_i \operatorname{Rev}^*/i \ge \sum_i v_i = OPT \Rightarrow \operatorname{Rev}^* \ge OPT/H_n$

Prove welfare guarantee via revenue guarantee

Prove welfare guarantee via revenue guarantee

With links

Platform continuously lowers α , pick some number of sellers joining, and lower bound desired α .

How regulation helps improve market efficiency?

Re3: $\frac{2-\alpha}{1-\alpha}$ for heterogenous valuations

Re3:
$$\frac{2-\alpha}{1-\alpha}$$
 for heterogenous valuations

Pure Eq. $\forall \alpha$, every pure equilibrium is a $\left(\frac{2-\alpha}{1-\alpha}\right)$ -approx. to OPT.

Re3: $\frac{2-\alpha}{1-\alpha}$ for heterogenous valuations

- Pure Eq. $\forall \alpha$, every pure equilibrium is a $\left(\frac{2-\alpha}{1-\alpha}\right)$ -approx. to OPT.
- Extending to mixed
- Given mixed strategies $\mathbf{x} = (x_1, \dots, x_n)$
- Define a **Bayesian** game:
 - $\forall i \begin{cases} w. p. x_i & i \text{ is connected to all} \\ w. p (1 x_i) & i \text{ uses orignal links} \end{cases}$
- If *i* joins, *i* is connected to all, pays fee α

Re3:
$$\frac{2-\alpha}{1-\alpha}$$
 for heterogenous valuations

- Pure Eq. $\forall \alpha$, every pure equilibrium is a $\left(\frac{2-\alpha}{1-\alpha}\right)$ -approx. to OPT.
- Extending to mixed
- Given mixed strategies $\mathbf{x} = (x_1, \dots, x_n)$
- Define a **Bayesian** game:

$$\forall i \begin{cases} w. p. x_i & i \text{ is connected to all} \\ w. p (1 - x_i) & i \text{ uses orignal links} \end{cases}$$

If *i* joins, *i* is connected to all, pays fee α

Pure PoA $\left(\frac{2-\alpha}{1-\alpha}\right)$ for the Bayesian game
Re3: $\frac{2-\alpha}{1-\alpha}$ for heterogenous valuations

- Pure Eq. $\forall \alpha$, every pure equilibrium is a $\left(\frac{2-\alpha}{1-\alpha}\right)$ -approx. to OPT.
- Extending to mixed
- Given mixed strategies $\mathbf{x} = (x_1, \dots, x_n)$
- Define a **Bayesian** game:

$$\forall i \begin{cases} w. p. x_i & i \text{ is connected to all} \\ w. p (1 - x_i) & i \text{ uses orignal links} \end{cases}$$

If *i* joins, *i* is connected to all, pays fee α

Pure PoA $\left(\frac{2-\alpha}{1-\alpha}\right)$ for the Bayesian game x is a mixed eq. in the original game \Rightarrow no agents join is a pure eq. in the stochastic game

α transaction fee

ActiveInactive

Extensions

- Beyond unit-demand
- Effects of production costs
- Platform matching

Next Steps

- More general valuation
- Competing platforms
- •?

One Liner Under slight regulation, platforms can give robust welfare guarantees

