Pivotal Sampling for Online Stochastic Matching

Mark Braverman

Mahsa Derakhshan

Tristan
Pollner

Amin Saberi

David Wajc

• Build a matching online in a weighted bipartite graph between **online nodes** and **offline nodes**

• Each online node $t \in \{1,2,\ldots,T\}$ arrives with known probability p_t

$$p_1 = 1$$

$$p_2 = 0.2$$

$$p_3 = 0.8$$

• Build a matching online in a weighted bipartite graph between **online nodes** and **offline nodes**

• Each online node $t \in \{1, 2, ..., T\}$ arrives with known probability p_t

$$p_1 = 1$$

$$p_2 = 0.2$$

$$p_3 = 0.8$$

• Build a matching online in a weighted bipartite graph between **online nodes** and **offline nodes**

• Each online node $t \in \{1, 2, ..., T\}$ arrives with known probability p_t

$$p_1 = 1$$

$$p_2 = 0.2$$

$$p_3 = 0.8$$

• Build a matching online in a weighted bipartite graph between **online nodes** and **offline nodes**

• Each online node $t \in \{1,2,\ldots,T\}$ arrives with known probability p_t

$$p_1 = 1$$

$$p_2 = 0.2$$

$$p_3 = 0.8$$

• Build a matching online in a weighted bipartite graph between **online nodes** and **offline nodes**

• Each online node $t \in \{1, 2, ..., T\}$ arrives with known probability p_t

$$p_1 = 1$$

$$p_2 = 0.2$$

$$p_3 = 0.8$$

• Build a matching online in a weighted bipartite graph between **online nodes** and **offline nodes**

• Each online node $t \in \{1, 2, ..., T\}$ arrives with known probability p_t

$$p_1 = 1$$

$$p_2 = 0.2$$

$$p_3 = 0.8$$

- 0.5-competitive online algorithms
- One offline node: [KSG'78]
- Multiple offline nodes: [FGL'14, EFGT'20]

- 0.5-competitive online algorithms
- One offline node: [KSG'78]
- Multiple offline nodes: [FGL'14, EFGT'20]

Often called prophet inequalities

0.5-competitive online algorithms

- One offline node: [KSG'78]
- Multiple offline nodes: [FGL'14, EFGT'20]

Often called prophet inequalities

Also for k-unit allocation [Alaei'11], Matroids [KW'12], General Downwards-Closed [Rubinstein'16], I.I.D. Matching [FMMM'2009, MOS'10, ...], ...

0.5-competitive online algorithms

- One offline node: [KSG'78]
- Multiple offline nodes: [FGL'14, EFGT'20]

Often called prophet inequalities

• Also for *k*-unit allocation [Alaei'11], Matroids [KW'12], General Downwards-Closed [Rubinstein'16], I.I.D. Matching [FMMM'2009, MOS'10, ...], ...

Observation. 0.5 is tight in the worst case.

Our Benchmark

Competitive analysis has a strong benchmark.

Our Benchmark

Competitive analysis has a strong benchmark.

Our Benchmark. $OPT_{on} :=$ the optimal online algorithm

Our Benchmark

Competitive analysis has a strong benchmark.

Our Benchmark. $OPT_{on} :=$ the optimal online algorithm

Can compute exactly by solving the Bellman equation (exponential time)

Hardness [PPSW'21]. There exists $\epsilon > 0$ such that it is PSPACE-hard to $(1 - \epsilon)$ -approximate OPT_{on} .

Algorithm. New best approximation ratio for polynomial-time algorithms.

Hardness [PPSW'21]. There exists $\epsilon > 0$ such that it is PSPACE-hard to $(1 - \epsilon)$ -approximate OPT_{on} .

Algorithm. New best approximation ratio for polynomial-time algorithms.

Line of Work. $0.51 \rightarrow 0.526 \rightarrow 0.632 \rightarrow 0.65 \rightarrow 0.671$ PPSW'21 SW'21 BDM'22 NSW'22 BDPSW'23

Hardness [PPSW'21]. There exists $\epsilon > 0$ such that it is PSPACE-hard to $(1 - \epsilon)$ -approximate OPT_{on} .

Algorithm. New best approximation ratio for polynomial-time algorithms.

Yesterday

Line of Work. $0.51 \rightarrow 0.526 \rightarrow 0.632 \rightarrow 0.65 \rightarrow 0.671$ PPSW'21 SW'21 BDM'22 BDPSW'23

Hardness [PPSW'21]. There exists $\epsilon > 0$ such that it is PSPACE-hard to $(1 - \epsilon)$ -approximate OPT_{on} .

Algorithm. New best approximation ratio for polynomial-time algorithms.

Yesterday

Today

Line of Work.
$$0.51 \rightarrow 0.526$$

PPSW'21 SW'21 $\rightarrow 0.632 \rightarrow 0.65$

BDM'22 $\rightarrow 0.671$

BDPSW'23

Hardness [PPSW'21]. There exists $\epsilon > 0$ such that it is PSPACE-hard to $(1 - \epsilon)$ -approximate OPT_{on} .

Algorithm. New best approximation ratio for polynomial-time algorithms.

Remainder of talk: Edges have $\{0,1\}$ weights

Main Ingredients

Pivotal Sampling

• Technique for correlating proposals from offline nodes

Analysis of Correlation of Offline Nodes

• Show offline nodes satisfy negative cylinder dependence (NCD)

New Tail Expectation Bounds

For sums of NCD random variables

Matching with Independent Proposals

Solve Linear Programming Relaxation

For each online *t*:

For each free i, propose independently w.p. $\frac{x_{i,t}}{p_t \left(1 - \sum_{t' < t} x_{i,t'}\right)}$

$$\frac{x_{i,t}}{p_t \left(1 - \sum_{t' < t} x_{i,t'}\right)}$$

Prop_≠ ← set of proposing offline nodes

For $i^* := \max(\text{Prop}_t)$, match to t iff t arrives

For $i \in \text{Prop}_{\downarrow} \setminus \{i^*\}$, discard independently w.p. p_t

Linear Programming Relaxation for OPT_{on}

Matching with Independent Proposals

Solve Linear Programming Relaxation

For each online *t*:

For each free i, propose independently w.p. $\frac{x_{i,t}}{p_t \left(1 - \sum_{t' < t} x_{i,t'}\right)}$

$$\frac{x_{i,t}}{p_t \left(1 - \sum_{t' < t} x_{i,t'}\right)}$$

Prop_≠ ← set of proposing offline nodes

For $i^* := \max(\text{Prop}_t)$, match to t iff t arrives

For $i \in \text{Prop}_{\downarrow} \setminus \{i^*\}$, discard independently w.p. p_t

Independent proposals can't beat (1 - 1/e)

$$\Pr[\ge 1 \text{ proposal}] = 1 - (1 - 1/n)^n$$
$$\rightarrow 1 - 1/e$$

Algorithmic Contribution: Correlating Proposals

Algorithmic Contribution: Correlating Proposals

Pivotal Sampling

Input: Proposal probabilities $\{r_1, r_2, ..., r_n\}$

Output: Random subset S of [n], satisfying

(i) $\Pr[i \in S] = r_i$

(ii)
$$\Pr[S \text{ intersects } \{1, 2, ..., k\}] = \min\left(1, \sum_{i=1}^{k} r_i\right)$$

(iii) $\{\mathbb{I}[i \in S]\}_i$ are negatively associated

Input. Proposal probabilities $(r_1, r_2, ..., r_n) \in [0,1]^n$

Input. Proposal probabilities
$$(r_1, r_2, ..., r_n) \in [0,1]^n$$
 $r_1 = 0.3$ $r_2 = 0.6$ $r_3 = 0.7$

$$r_1 = 0.3$$

$$r_2 = 0.6$$

$$r_3 = 0.7$$

```
Input. Proposal probabilities (r_1, r_2, ..., r_n) \in [0,1]^n
```

$$r_1 = 0.3$$
 $r_2 = 0.6$

$$r_2 = 0.6$$

$$r_3 = 0.7$$

Algorithm. If r_i denotes first fractional marginal, and r_i the next, apply $Pivot(r_i, r_i)$

Pivot

Input. Proposal probabilities $(r_1, r_2, ..., r_n) \in [0,1]^n$

$$r_1 = 0.3$$
 $r_2 = 0.6$

$$r_2 = 0.6$$

$$r_3 = 0.7$$

Algorithm. If r_i denotes first fractional marginal, and r_i the next, apply $Pivot(r_i, r_i)$

Pivot

Input. Proposal probabilities $(r_1, r_2, ..., r_n) \in [0,1]^n$

$$r_1 = 0.3$$

$$r_2 = 0.6$$

$$r_3 = 0.7$$

Algorithm. If r_i denotes first fractional marginal, and r_j the next, apply $Pivot(r_i, r_j)$

- $\bullet R_i + R_j = r_i + r_j$
- (R_i, R_j) has a $\{0,1\}$ value
- $\mathbb{E}[R_i] = r_i$

Pivot

Input. Proposal probabilities $(r_1, r_2, ..., r_n) \in [0,1]^n$

Algorithm. If r_i denotes first fractional marginal, and r_j the next, apply $Pivot(r_i, r_j)$

- $\bullet R_i + R_j = r_i + r_j$
- (R_i, R_j) has a $\{0,1\}$ value
- $\mathbb{E}[R_i] = r_i$

Pivot

Input. Proposal probabilities $(r_1, r_2, ..., r_n) \in [0,1]^n$

Algorithm. If r_i denotes first fractional marginal, and r_j the next, apply $Pivot(r_i, r_j)$

- $\bullet R_i + R_j = r_i + r_j$
- (R_i, R_j) has a $\{0,1\}$ value
- $\mathbb{E}[R_i] = r_i$

$$R_1 = 0 \qquad R_2 = 0.9 \qquad R_1 = 0.9 \qquad R_2 = 0$$

Pivot

Input. Proposal probabilities $(r_1, r_2, ..., r_n) \in [0,1]^n$

Algorithm. If r_i denotes first fractional marginal, and r_i the next, apply $Pivot(r_i, r_i)$

- $\bullet R_i + R_j = r_i + r_j$
- (R_i, R_i) has a $\{0,1\}$ value
- $\mathbb{E}[R_i] = r_i$

$$R_1 = 0 \qquad R_2 = 0.9 \qquad R_1 = 0.9 \qquad R_2 = 0$$

Pivot

Input. Proposal probabilities $(r_1, r_2, ..., r_n) \in [0,1]^n$

Algorithm. If r_i denotes first fractional marginal, and r_j the next, apply $Pivot(r_i, r_j)$

- $\bullet R_i + R_j = r_i + r_j$
- (R_i, R_i) has a $\{0,1\}$ value
- $\mathbb{E}[R_i] = r_i$

$$R_1 = 0$$
 $R_2 = 0.9$ $r_3 = 0.7$

Pivot

Input. Proposal probabilities $(r_1, r_2, ..., r_n) \in [0,1]^n$

Algorithm. If r_i denotes first fractional marginal, and r_i the next, apply $Pivot(r_i, r_i)$

 $Pivot(r_i, r_j)$ outputs a random pair $(R_i, R_j) \in [0,1]^2$ such that:

- $\bullet R_i + R_j = r_i + r_j$
- (R_i, R_i) has a $\{0,1\}$ value
- $\mathbb{E}[R_i] = r_i$

$$R_1 = 0 \qquad R_2 = 0.9 \qquad R_1 = 0.9 \qquad R_2 = 0$$

$$R_1 = 0 R_2 = 0.9 r_3 = 0.7$$

Pivot

Matching via Pivotal Sampling

 $F_{i,t} = \mathbb{I}[i \text{ not matched/discarded at } t]$

For $i^* := \max(\text{Prop}_t)$, match to t iff t arrives

For $i \in \text{Prop}_t \setminus \{i^*\}$, discard independently w.p. p_t

Negative Correlation of Offline Nodes

 $F_{i,t} := \mathbb{I}[i \text{ not matched or discarded before } t'\text{s arrival}]$

Lemma. $\{F_{i,t}\}_i$ satisfy **negative cylinder dependence (NCD)**. I.e., for any subset of offline nodes S,

$$\Pr\left[\bigwedge_{i\in S}F_{i,t}\right]\leq \prod_{i\in S}\Pr[F_{i,t}] \quad \text{and} \quad \Pr\left[\bigwedge_{i\in S}\overline{F_{i,t}}\right]\leq \prod_{i\in S}\Pr[\overline{F_{i,t}}].$$

- $\bullet \Pr[F_{i,t}] = 1/n$
- i's proposal probability = 1

- $\Pr[F_{i,t}] = 1/n$
- i's proposal probability = 1

$\{F_{i,t}\}_i$ perfectly negatively correlated	
$\{F_{i,t}\}_i$ independent	
$\{F_{i,t}\}_i$ perfectly positively correlated	

- $\Pr[F_{i,t}] = 1/n$
- i's proposal probability = 1

$\{F_{i,t}\}_i$ perfectly negatively correlated	1-approximate on <i>t</i>
$\{F_{i,t}\}_i$ independent	
$\{F_{i,t}\}_i$ perfectly positively correlated	

- $\Pr[F_{i,t}] = 1/n$
- i's proposal probability = 1

$\{F_{i,t}\}_i$ perfectly negatively correlated	1-approximate on <i>t</i>
$\{F_{i,t}\}_i$ independent	(1 - 1/e)-approximate on t
$\{F_{i,t}\}_i$ perfectly positively correlated	

- $\Pr[F_{i,t}] = 1/n$
- i's proposal probability = 1

$\{F_{i,t}\}_i$ perfectly negatively correlated	1-approximate on <i>t</i>
$\{F_{i,t}\}_i$ independent	(1 - 1/e)-approximate on t
$\{F_{i,t}\}_i$ perfectly positively correlated	0-approximate on t

$$= p_t \cdot \Pr\left[\text{Pivotal-Sampling}\left(\left(\frac{x_{i,t}}{p_t \left(1 - \sum_{t' < t} x_{i,t'} \right)} \cdot F_{i,t} \right)_i \right) \text{ intersects } [n] \right]$$

$$= p_t \cdot \Pr\left[\text{Pivotal-Sampling}\left(\left(\frac{x_{i,t}}{p_t \left(1 - \sum_{t' < t} x_{i,t'} \right)} \cdot F_{i,t} \right)_i \right) \text{ intersects } [n] \right]$$

$$= p_t \cdot \mathbb{E} \left[\min \left(1, \sum_{i} \frac{x_{i,t}}{p_t \left(1 - \sum_{t' < t} x_{i,t'} \right)} \cdot F_{i,t} \right) \right]$$

$$= p_t \cdot \Pr\left[\text{Pivotal-Sampling}\left(\left(\frac{x_{i,t}}{p_t \left(1 - \sum_{t' < t} x_{i,t'} \right)} \cdot F_{i,t} \right)_i \right) \text{ intersects } [n] \right]$$

$$= p_t \cdot \mathbb{E} \left[\min \left(1, \sum_{i} \frac{x_{i,t}}{p_t \left(1 - \sum_{t' < t} x_{i,t'} \right)} \cdot F_{i,t} \right) \right]$$

$$= p_t \cdot \mathbb{E}\left[\min\left(1, R_t\right)\right]$$

$$= p_t \cdot \Pr\left[\text{Pivotal-Sampling}\left(\left(\frac{x_{i,t}}{p_t \left(1 - \sum_{t' < t} x_{i,t'} \right)} \cdot F_{i,t} \right)_i \right) \text{ intersects } [n] \right]$$

$$= p_t \cdot \mathbb{E} \left[\min \left(1, \sum_{i} \frac{x_{i,t}}{p_t \left(1 - \sum_{t' < t} x_{i,t'} \right)} \cdot F_{i,t} \right) \right]$$

$$\begin{aligned} \mathsf{APX-Ratio} &\geq \frac{\sum_{t} \Pr[t \; \mathsf{matched}]}{\sum_{i,t} x_{i,t}} \\ &= \frac{\sum_{t} p_{t} \cdot \mathbb{E}[\min(1,R_{t})]}{\sum_{i,t} x_{i,t}} \end{aligned}$$

$$\begin{aligned} \mathsf{APX-Ratio} &\geq \frac{\sum_{t} \Pr[t \; \mathsf{matched}]}{\sum_{i,t} x_{i,t}} \\ &= \frac{\sum_{t} p_{t} \cdot \mathbb{E}[\min(1,R_{t})]}{\sum_{i,t} x_{i,t}} \end{aligned}$$

Analysis. New lower bounds on $\mathbb{E}[\min(1,R_t)]$, when R_t is the sum of weighted **NCD** Bernoullis.

$$\begin{aligned} \mathsf{APX-Ratio} &\geq \frac{\sum_{t} \Pr[t \; \mathsf{matched}]}{\sum_{i,t} x_{i,t}} \\ &= \frac{\sum_{t} p_{t} \cdot \mathbb{E}[\min(1,R_{t})]}{\sum_{i,t} x_{i,t}} \end{aligned}$$

Analysis. New lower bounds on $\mathbb{E}[\min(1,R_t)]$, when R_t is the sum of weighted **NCD** Bernoullis.

Comment. Same algorithmic template + lower bounds apply to the edgeweighted case, with an additional pre-processing step where we *rescale* the LP solution.

Extensions

More General Arrival Model. Extension to when online vertices have a *general distribution* over their neighborhood.

Vertex-Weighted. Can improve analysis to a 0.685-approximation (state-of-the-art).

Conclusion and Future Directions

Pivotal Sampling for Online Matching.

- ullet New best approximation ratios vs OPT_{on} benchmark
- Negative Cylinder Dependence (NCD) of offline nodes
- New tail expectation bounds for sums of NCD Random Variables

Conclusion and Future Directions

Pivotal Sampling for Online Matching.

- ullet New best approximation ratios vs OPT_{on} benchmark
- Negative Cylinder Dependence (NCD) of offline nodes
- New tail expectation bounds for sums of NCD Random Variables

Questions.

1. Better analysis of our algorithms? Closing the gap?

2. Constraints beyond matching?

Conclusion and Future Directions

Pivotal Sampling for Online Matching.

- ullet New best approximation ratios vs OPT_{on} benchmark
- Negative Cylinder Dependence (NCD) of offline nodes
- New tail expectation bounds for sums of NCD Random Variables

Questions.

1. Better analysis of our algorithms? Closing the gap?

2. Constraints beyond matching?

Thank you!