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Prior Work

Often called prophet inequalities

0.5-competitive online algorithms


• One offline node: [KSG’78]


• Multiple offline nodes: [FGL’14, EFGT’20]

Observation.  is tight in the worst case. 0.5

• Also for -unit allocation [Alaei’11], Matroids 
[KW’12], General Downwards-Closed 
[Rubinstein’16], I.I.D. Matching [FMMM’2009, 
MOS’10, …], …

k
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Competitive analysis has a strong benchmark.
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Our Results

Algorithm. New best approximation ratio for polynomial-time 
algorithms. 

Line of Work. 0.51 → 0.526 → 0.632 → 0.65 → 0.671
PPSW’21 SW’21 BDM’22 NSW’22 BDPSW’23

Hardness [PPSW’21]. There exists  such that it is       
PSPACE-hard to -approximate .

ϵ > 0
(1 − ϵ) OPTon

Today

Remainder of talk: Edges have  weights{0,1}

Yesterday



Main Ingredients

Pivotal Sampling

• Technique for correlating proposals from offline nodes

Analysis of Correlation of Offline Nodes

• Show offline nodes satisfy negative cylinder dependence (NCD)

New Tail Expectation Bounds 

• For sums of NCD random variables



Matching with Independent Proposals

Solve Linear Programming Relaxation


For each online :


For each free , propose independently w.p. 


set of proposing offline nodes


For , match to  iff  arrives


For , discard independently w.p. 

t

i
xi,t

pt (1 − ∑t′￼<t xi,t′￼)
Propt ←

i* := max(Propt) t t

i ∈ Propt∖{i*} pt
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Independent proposals can’t beat   (1 − 1/e)

⋮

1/n

1/n

1/n

p1 = 1

 offline nodesn

Pr[ ≥ 1 proposal] = 1 − (1 − 1/n)n

→ 1 − 1/e
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Algorithmic Contribution: Correlating Proposals

⋮

Input: Proposal probabilities 


Output: Random subset  of , satisfying 


(i)  


(ii) 


(iii)  are negatively associated 


{r1, r2, …, rn}
S [n]

Pr[i ∈ S] = ri

Pr[S intersects {1,2,…, k}] = min (1,
k

∑
i=1

ri)
{𝕀[i ∈ S]}i

Pivotal Sampling

r1

r2

rn
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Matching via Pivotal Sampling

For each :


    Pivotal-Sampling 


For , match to  iff  arrives


For , discard independently w.p. 


t

Propt ←
xi,t

pt ⋅ (1 − ∑t′￼<t xi,t′￼)
⋅ Fi,t

i

i* := max(Propt) t t

i ∈ Propt∖{i*} pt

Fi,t = 𝕀[i not matched/discarded at t]



Negative Correlation of Offline Nodes

Lemma.  satisfy negative cylinder dependence (NCD). I.e., for any 
subset of offline nodes , 


{Fi,t}i
S

Pr [⋀
i∈S

Fi,t] ≤ ∏
i∈S

Pr[Fi,t] Pr [⋀
i∈S

Fi,t] ≤ ∏
i∈S

Pr[Fi,t] .

or discarded 
Fi,t := 𝕀[i not matched  before t's arrival]

and
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1

2

n

⋮
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•  
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Pr[t matched] = pt ⋅ Pr[ ≥ 1 proposal]

= pt ⋅ Pr Pivotal-Sampling
xi,t

pt (1 − ∑t′￼<t xi,t′￼)
⋅ Fi,t

i

 intersects [n]

= pt ⋅ 𝔼 min 1,∑
i

xi,t

pt (1 − ∑t′￼<t xi,t′￼)
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Proof of Approximation Ratio

APX-Ratio ≥
∑t Pr[t matched]

∑i,t xi,t

=
∑t pt ⋅ 𝔼[min(1,Rt)]

∑i,t xi,t

Analysis. New lower bounds on , when  is the sum of 
weighted NCD Bernoullis. 

𝔼[min(1,Rt)] Rt

Comment. Same algorithmic template + lower bounds apply to the edge-
weighted case, with an additional pre-processing step where we rescale the 
LP solution. 



More General Arrival Model. Extension to when online vertices 
have a general distribution over their neighborhood. 

Extensions

Vertex-Weighted. Can improve analysis to a -approximation 
(state-of-the-art). 

0.685
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Pivotal Sampling for Online Matching.


• New best approximation ratios vs  benchmark


• Negative Cylinder Dependence (NCD) of offline nodes


• New tail expectation bounds for sums of NCD Random Variables 

OPTon

Conclusion and Future Directions

Questions. 


1. Better analysis of our algorithms? Closing the gap? 


2. Constraints beyond matching?

Thank you!


