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0.5-competitive online algorithms

e One offline node: [KSG'78]

* Multiple offline nodes: [FGL'14, EFGT'20]

Often called prophet inequalities

e Also for k-unit allocation [Alaei’11], Matroids
[KW'12], General Downwards-Closed
[Rubinstein’16], I.1.D. Matching [FMMM'2009,
MOS'10, ...], ...

Observation. 0.5 is tight in the worst case.
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Our Benchmark. OPT,, := the optimal online algorithm

Can compute exactly by solving the Bellman equation (exponential time)
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Our Results

Hardness [PPSW’'21]. There exists € > 0 such that it is
PSPACE-hard to (1 — €)-approximate OPT .

Algorithm. New best approximation ratio for polynomial-time
algorithms.

Today

Line of Work. 0.51 — 0.526 -» 0.632 -5 0.658> 0.671
PPSW21 SW21 | BDM’22 ENSW220 BDPSW’23

Remainder of talk: Edges have {0,1} weights



Main Ingredients

Pivotal Sampling

* Technique for correlating proposals from offline nodes

Analysis of Correlation of Offline Nodes
e Show offline nodes satisty negative cylinder dependence (NCD)

New Tail Expectation Bounds

e For sums of NCD random variables
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Independent proposals can’t beat (1 — 1/¢)

n oftfline nodes

Pr[ > 1 proposal] =1 - (1 — 1/n)"
— 1 —1/e
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Pivotal Sampling

Input: Proposal probabilities {7, r,, ..., 1, }
Output: Random subset S of [n], satistying
(i) Pr[i € S] =,

k
(if) Pr[S intersects {1,2,..., k}] = min (1, Z ri)

=1

(ii)) {1[i € S]}, are negatively associatea
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Matching via Pivotal Sampling

F;, = I[i not matched/discarded at ]

For each t:

it
pt ) (1 - zt’<t 'xi,t/)

For i* := maX(Propt), match to t iff £ arrives

Propt «— PivotaI-SampIing ' Fi,t

For i € Prop \{i*}, discard independently w.p. p,




Negative Correlation of Offline Nodes

F;, ;= [[i not matched or discarded betore #'s arrival]

Lemma. {F;,},; satisty negative cylinder dependence (NCD). l.e., for any
subset of offline nodes S,

Pr [/\Fi,t] S HPr[Fi,t] ano Pr l/\ﬁf] = HPr[E] '
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Importance of Correlation of {F, },

Example. Offlinenodesi =1, 2, ...,n
e Pr[F; ] = 1/n

® i's proposal probability = 1

negatively correlated
{F;,}; independent (I — 1/e)-approximate on ¢

UFi,}; pertectly 0-approximate on ¢
positively correlated PP
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Pr[t matched] = p, - Pr[ > 1 proposal]

Aj ¢

Pt (1 . Zkt xi,r’)

= p, - Pr | Pivotal-Sampling

- F; .| | intersects [n]

B _ - Aj ¢ 2
=p,-E |min|1, ) F,,

i Pt (1 . Zkt xi,t’)

=p, - E lmin (1,Rt)] «—— R, = sum of [0,1]-weighted NCD Bernoullis
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Proof of Approximation Ratio

ZtPr[t matched]

Zt p,- E [mm(l,Rt)]

ztlt

APX-Ratio >

Analysis. New lower bounds on E[min(1,R))], when R, is the sum of
weighted NCD Bernoullis.

Comment. Same algorithmic template + lower bounds apply to the edge-

weighted case, with an additional pre-processing step where we rescale the
LP solution.



Extensions

More General Arrival Model. Extension to when online vertices
have a general distribution over their neighborhood.

Vertex-Weighted. Can improve analysis to a 0.685-approximation
(state-of-the-art).
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