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Auctions with interdependence

o Input: o Output: allocation rule.
Distribution z1, xo, ..., z, € [0,1].
O  signal 51 € S

d1PD

=

vy : 8" = Ry e Objective: social welfare.
Maximize SW = )", x;v;(s).
QO  signal so €S

B
vy : 8" — Ry o Constraint: truthfulness.
x;(vi(s),s_i, v_;) monotone in v;(s).
e Guarantee: approximation ratio.
Upper bound on OPT/SW.
‘> signal s, € S

’UnZSn—>R+
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Myerson’s Lemma

Theorem. If x;(v;(s),s_;, v_;) is monotone in v;(s), there exists a
payment scheme which makes truthful reporting an optimal strategy.

Proof. Set p; = (;Ji(s) zi(t, s, v_g)dt.

T

AN

> v;(s)

Assumption. Each agent ¢+ maximize her utility u; = z;v; — p;.
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Summary of existing results

Public valuations (v;’s are publicly known)

e Independent values (v;(s) = s; for all 7)
— optimal welfare [Vickrey’61].

e Single-crossing (dv;/0s; > 0vj/0s; for all i # j)
— optimal welfare [Maskin’92].

@ Worst-case valuations
— n lower-bound [EFFGK’19)].

e Submodular over signals
— 2 lower-bound [EFFGK’19)].
— 3.3 approximation [LSZ’22].

Private valuations (v;’s are reported by agents)
e Submodular over signals
— O(log” n) approximation [EGZ'22].
— 5.55 approximation [this work].
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Part 1

Public Valuation Functions
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Optimal welfare with single crossing

Assumption: Jv;/0s; > Ov;/0s; for all i # j.

> s; € [0,1]
Algorithm (optimal). Define z; := 1[v;(s) > max;; vj(s)].
Lemma. Allocation z;(s;,s_;) is monotone in s;.

Corollary. Optimal can be implemented truthfully.

Proof. Relies on each v;(s;,s_;) being monotone in s;.
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Hardness in the worst case

Intuition: when everyone can decrease other agents’ values.

‘> signal s; € {0,1} There exists an agent ¢ such that
v1(8) = €81 + | |z Si
( ) HZ#I ‘ .%'z‘(li, 1—i) S l/n
O  signal s € {0,1
2P signal s; € {0, 1} By monotonicity, we have

va(s) = esg + Hi7é2 Si
xi(Oi, 1_2‘) < 1/77,.

Approximation ratio with s = (0;,1_;)

OPT>
SW — 1/n+(n—1)

O  signal s, € {0,1}
vn(s) = esn + Hi;én Si

=~ MN.
9
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Submodular over signals (SOS)

Definition. For all signal vectors s = s/, for all 7 and j, we require that

() ) = i) )

Sjy8—j S—j Sj ,s_ SjyS_j
Lemma (sub-additive). For all signal vector s, we have

”i(wﬁm = (.x.H.. ) i Ui(i-“-w)

s4,0p 04,58
With a random A C [n], we have v;(s) < 2E4[v;(04,s_4)].
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Constant approximation with SOS

Algorithm (from [EFFGK’19])
e Partition buyers [n] = AU B at random.
o Winner is i € A who has the highest v;(s;,s5,04\1i})-

e Set x; = P4[i winner].
Lemma. Allocation z;(s;,s_;) is monotone in s;.
Definition. Let ¢* := argmax; v;(s) be the largest value buyer.
Lemma. P4[i* € A =1/2.
Lemma. Elvis(si,8B,04\(+}) | 1" € A] > v3x(s)/2.

Theorem. The algorithm is a truthful 4-approximation.
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Part 11

Private Valuation Functions

You know nothing




Hardness with single crossing!

Intuition: when everyone can decrease other agents’ values.

o .

D signal s; € {0,1}
vi(s) = I1I; s

o .

) signal sg € {0,1}

va(s) =[1; si

O  signal s, € {0,1}
un(s) = []; si

There exists an agent ¢ such that
zi(1,v) < 1/n.
If ¢ lies (8; = 0 and 7;(s) = 1 + s;)
2 (05, 15,0, v_;) < 1/n.
Approx. ratio for (0;,1_;,0;,v_;)

orr 1,
S ~—1/n
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Warmup mechanism

Assumption: each valuation only depends on d signals.

Algorithm (from [EGZ'22])
e Buyer j is a candidate if vj(s) > v;(0;,s_;) for all i # j,
with ties broken in favor of lower indices.
e Set x; =1/(d+1) if j is a candidate, and z; = 0 otherwise.

Lemma. Candidate i* := argmax; v;(s) is a candidate.

Lemma. There are at most d + 1 candidates.

Proof. For each candidate j # i*, we must have
vix(s) > vj(s) > vix (05,5-5)
hence v;(s) depends on j’s signal.

Theorem. The algorithm is a truthful (d + 1)-approximation.
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Submodular over signals

Definition. For all signal vectors s = &', for all 7 and j, we require that

””(UUW ) ”<LLW) - <"Jm;ﬂ> o <*~z»w>

jyS—j j,Sf/ .‘v‘HS_j Sj,s
Lemma (self-bounding). For all signal vector s, we have

w(ﬂ“W) > v(

Jeln]
There is at most one j such that v;(0;,s_;) < v;i(s)/2.

—=J
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Attempt #1

Assumption: each valuation is submodular over signals.

Algorithm #1 (with parameter C' > 1)
o f(v) := round down v to the nearest 2¥.
e Buyer j is a candidate if f(v;(s)) > f(vi(0;,s—;)) for all ¢ # j,
with ties broken in favor of lower indices.
e Set x; = 1[i is a candidate]/C.

Lemma. Candidate i* := argmax; f(v;(s)) is a candidate.
Does not work! If all v;(s) = 2.001 and v;(0;,s_;) = 1.999.
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Attempt #2

Assumption: each valuation is submodular over signals.

Algorithm #2 (with parameter C' > 1)
e Draw r € [0, 1] uniformly at random.
o f.(v) := round down v to the nearest 287,

e Buyer j is a candidate if f,.(v;(s)) > f.(vi(0j,5—;)) for all i # j,
with ties broken in favor of lower indices.

e Set x; = P,[i is a candidate]/C.

Lemma. Candidate i} := argmax; f,(v;(s)) is a candidate.

Does not work! Low indices having low values — /n candidates.
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Attempt #3

Assumption: each valuation is submodular over signals.

Algorithm #3 (with parameter C' = 4)
e Draw r € [0,1] and permutration 7 uniformly at random.
o f,(v) :=round down v to the nearest 2++7.
e Buyer j is a candidate if f,(v;(s)) > f,(v;i(05,s_;)) for all i # j,
with ties broken using 7.

o Set x; = P, [i is a candidate]/C.
Lemma. Candidate iy , := argmax; (f-(vi(s)), m;) is a candidate.
Lemma. There are at most C' = 4 candidates in expectation.

Theorem. The algorithm is a truthful (81n2)-approximation.
Proof. Calculation gives E; r[vix (s)] > max; vi(s)/(21n2).
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Extension #1

Extension: non-monotone valuation functions
e Buyer 1 knows the color: s; € {e,0,0 0 ...}

e Buyer 2 knows the shape: so € {O,A,0,0,...}

Remark: with unordered signal spaces
e v;(0;,s_;) is undefined.

e Submodular over signals is undefined

Idea: replace zeros by infimums
e Replace v;(05,s—;) by v;(s—;) := inf{v;(5;,s5_;) | 5; € S;}
o Self-bounding is well defined: vi(s) = 3 ;e (vi(s) — vi(s—5))-
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Extension #2

Definition. Valuation v; is d-self-bounding (with d > 1) if
d-vi(s) > Y (vi(s) — v;(s—))
Jeln]

Hierarchy of valution functions:
e monotone SOS is 1-self-bounding

e non-monotone SOS is 2-self-bounding

e any function is n-self-bounding.
Lemma. There are at most C' = 2 + 2d candidates in expectation.

Theorem. There is a truthful O(d) approximation (oblivious to d).
Proof. Set x; = P, [i is a candidate]/(4 4 4 max;; d;).
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Conclusion

Results:

o Constant approximation with private SOS valuations.

Extensions:
e Non-monotone valuation functions.

e Parametrized valuations: d-self-bounding — O(d)-approximation.

e Allocating multiple (identical) items.

Future works:
e Allocating multiple (non-identical) items.

o Interdependence with other optimization problems.

Thank you!
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