Constant Approximation for Private Interdependent Valuations CIRM – From matchings to markets

Alon Eden Hebrew Univ.

Michal Feldman Tel Aviv Univ.

Kira Goldner Boston Univ.

 $\begin{array}{l} {\rm Simon~Mauras} \\ {\rm TAU} \rightarrow {\rm INRIA} \end{array}$

Divya Mohan Tel Aviv Univ.

Motivation

Resale model

Mineral Rights

TESLA

Online platforms

Ad auctions

HERSHEY

 \mathcal{S}

• Input:

signal $s_1 \in \mathcal{S}$ $v_1 : \mathcal{S}^n \to \mathbb{R}_+$

signal
$$s_2 \in$$

 $v_2 : S^n \to [$

:

signal
$$s_n \in \mathcal{S}$$

 $v_n : \mathcal{S}^n \to \mathbb{R}_+$

- **Output:** allocation rule. Distribution $x_1, x_2, \ldots, x_n \in [0, 1]$.
- **Objective:** social welfare. Maximize $SW = \sum_i x_i v_i(\mathbf{s})$.
- Constraint: truthfulness. $x_i(v_i(\mathbf{s}), \mathbf{s}_{-i}, \mathbf{v}_{-i})$ monotone in $v_i(\mathbf{s})$.
- Guarantee: approximation ratio. Upper bound on *OPT/SW*.

Myerson's Lemma

Theorem. If $x_i(v_i(\mathbf{s}), \mathbf{s}_{-i}, \mathbf{v}_{-i})$ is **monotone** in $v_i(\mathbf{s})$, there exists a payment scheme which makes **truthful** reporting an optimal strategy.

Proof. Set $p_i = \int_0^{v_i(\mathbf{s})} x_i(t, \mathbf{s}_{-i}, \mathbf{v}_{-i}) dt$.

Assumption. Each agent *i* maximize her utility $u_i = x_i v_i - p_i$.

Myerson's Lemma

Theorem. If $x_i(v_i(\mathbf{s}), \mathbf{s}_{-i}, \mathbf{v}_{-i})$ is monotone in $v_i(\mathbf{s})$, there exists a payment scheme which makes **truthful** reporting an optimal strategy.

Proof. Set
$$p_i = \int_0^{v_i(\mathbf{s})} x_i(t, \mathbf{s}_{-i}, \mathbf{v}_{-i}) \mathrm{d}t.$$

Assumption. Each agent *i* maximize her utility $u_i = x_i v_i - p_i$.

Myerson's Lemma

Theorem. If $x_i(v_i(\mathbf{s}), \mathbf{s}_{-i}, \mathbf{v}_{-i})$ is **monotone** in $v_i(\mathbf{s})$, there exists a payment scheme which makes **truthful** reporting an optimal strategy.

Proof. Set $p_i = \int_0^{v_i(\mathbf{s})} x_i(t, \mathbf{s}_{-i}, \mathbf{v}_{-i}) dt$.

Assumption. Each agent *i* maximize her utility $u_i = x_i v_i - p_i$.

Summary of existing results

Public valuations (v_i 's are publicly known)

• Independent values $(v_i(\mathbf{s}) = s_i \text{ for all } i)$

 $\rightarrow\,$ optimal welfare [Vickrey'61].

• Single-crossing $(\partial v_i/\partial s_i \ge \partial v_j/\partial s_i$ for all $i \ne j$)

 \rightarrow optimal welfare [Maskin'92].

• Worst-case valuations

 \rightarrow *n* lower-bound [EFFGK'19].

• Submodular over signals

- \rightarrow 2 lower-bound [EFFGK'19].
- \rightarrow 3.3 approximation [LSZ'22].

Private valuations (v_i 's are reported by agents)

- Submodular over signals
 - $\rightarrow \mathcal{O}(\log^2 n)$ approximation [EGZ'22].
 - $\rightarrow~5.55$ approximation [this work].

Part I

Public Valuation Functions

Optimal welfare with single crossing

Assumption: $\partial v_i / \partial s_i \geq \partial v_j / \partial s_i$ for all $i \neq j$.

Algorithm (optimal). Define $x_i := \mathbb{1}[v_i(\mathbf{s}) > \max_{j \neq i} v_j(\mathbf{s})].$

Lemma. Allocation $x_i(s_i, \mathbf{s}_{-i})$ is **monotone** in s_i .

Corollary. Optimal can be implemented **truthfully**. *Proof.* Relies on each $v_i(s_i, \mathbf{s}_{-i})$ being monotone in s_i . Intuition: when everyone can decrease other agents' values.

signal
$$s_1 \in \{0, 1\}$$

 $v_1(\mathbf{s}) = \varepsilon s_1 + \prod_{i \neq 1} s_i$

:

signal
$$s_2 \in \{0, 1\}$$

 $v_2(\mathbf{s}) = \varepsilon s_2 + \prod_{i \neq 2} s_i$

There exists an agent i such that

$$x_i(1_i, \mathbf{1}_{-i}) \le 1/n.$$

By monotonicity, we have

$$x_i(0_i, \mathbf{1}_{-i}) \le 1/n.$$

Approximation ratio with $\mathbf{s} = (0_i, \mathbf{1}_{-i})$

$$\frac{OPT}{SW} \ge \frac{1}{1/n + (n-1)\varepsilon} \approx n.$$

signal
$$s_n \in \{0, 1\}$$

 $v_n(\mathbf{s}) = \varepsilon s_n + \prod_{i \neq n} s_i$

Definition. For all signal vectors $\mathbf{s} \succeq \mathbf{s}'$, for all *i* and *j*, we require that

$$v_i \left(\begin{vmatrix} \mathbf{i} \\ \mathbf{j} \\ \mathbf{j}$$

Lemma (sub-additive). For all signal vector s, we have

With a random $A \subseteq [n]$, we have $v_i(\mathbf{s}) \leq 2\mathbb{E}_A[v_i(\mathbf{0}_A, \mathbf{s}_{-A})]$.

Constant approximation with SOS

Algorithm (from [EFFGK'19])

- Partition buyers $[n] = A \cup B$ at random.
- Winner is $i \in A$ who has the highest $v_i(s_i, \mathbf{s}_B, \mathbf{0}_{A \setminus \{i\}})$.
- Set $x_i = \mathbb{P}_A[i \text{ winner}].$

Lemma. Allocation $x_i(s_i, \mathbf{s}_{-i})$ is **monotone** in s_i .

Definition. Let $i^* := \operatorname{argmax}_i v_i(\mathbf{s})$ be the largest value buyer.

Lemma. $\mathbb{P}_A[i^* \in A] = 1/2.$

Lemma. $\mathbb{E}_A[v_{i^\star}(s_{i^\star}, \mathbf{s}_B, \mathbf{0}_{A \setminus \{i^\star\}}) \mid i^\star \in A] \ge v_{i^\star}(\mathbf{s})/2.$

Theorem. The algorithm is a truthful 4-approximation.

Part II

Private Valuation Functions

Intuition: when everyone can decrease other agents' values.

,

2

:

signal $s_1 \in \{0, 1\}$
$v_1(\mathbf{s}) = \prod_i s_i$
signal $s_2 \in \{0, 1\}$

signal $s_n \in \{0, 1\}$ $v_n(\mathbf{s}) = \prod_i s_i$

$$v_2(\mathbf{s}) = \prod_i s_i$$

There exists an agent
$$i$$
 such that
 $x_i(\mathbf{1}, \mathbf{v}) \leq 1/n.$
If i lies $(\tilde{s}_i = 0 \text{ and } \tilde{v}_i(\mathbf{s}) = 1 + s_i)$
 $x_i(0_i, \mathbf{1}_{-i}, \tilde{v}_i, \mathbf{v}_{-i}) \leq 1/n.$
Approx. ratio for $(0_i, \mathbf{1}_{-i}, \tilde{v}_i, \mathbf{v}_{-i})$
 $\frac{OPT}{SW} \geq \frac{1}{1/n} = n.$

Warmup mechanism

Assumption: each valuation only depends on d signals.

Algorithm (from [EGZ'22])

- Buyer j is a candidate if $v_j(\mathbf{s}) > v_i(0_j, \mathbf{s}_{-i})$ for all $i \neq j$, with ties broken in favor of lower indices.
- Set $x_j = 1/(d+1)$ if j is a candidate, and $x_j = 0$ otherwise.

Lemma. Candidate $i^* := \operatorname{argmax}_i v_i(\mathbf{s})$ is a candidate.

Lemma. There are at most d + 1 candidates. *Proof.* For each candidate $j \neq i^*$, we must have

$$v_{i^{\star}}(\mathbf{s}) > v_{j}(\mathbf{s}) > v_{i^{\star}}(0_{j}, \mathbf{s}_{-j})$$

hence $v_{i^{\star}}(\mathbf{s})$ depends on j's signal.

Theorem. The algorithm is a truthful (d + 1)-approximation.

Definition. For all signal vectors $\mathbf{s} \succeq \mathbf{s}'$, for all *i* and *j*, we require that

$$v_i \left(\begin{vmatrix} \mathbf{i} \\ \mathbf{j} \\ \mathbf{j}$$

Lemma (self-bounding). For all signal vector s, we have

$$v_i\left(\left| \underset{\mathbf{s}_j}{|\mathbf{j}_j|}\right|\right) \geq \sum_{j \in [n]} v_i\left(\left| \underset{s_j, \mathbf{s}_{-j}}{|\mathbf{j}_j|}\right|\right) - v_i\left(\left| \underset{\mathbf{0}_j, \mathbf{s}_{-j}}{|\mathbf{j}_j|}\right|\right)$$

There is at most one j such that $v_i(0_j, \mathbf{s}_{-j}) < v_i(\mathbf{s})/2$.

Assumption: each valuation is submodular over signals.

Algorithm #1 (with parameter $C \ge 1$)

- f(v) := round down v to the nearest 2^k .
- Buyer j is a candidate if $f(v_j(\mathbf{s})) > f(v_i(0_j, \mathbf{s}_{-i}))$ for all $i \neq j$, with ties broken in favor of lower indices.
- Set $x_j = \mathbb{1}[i \text{ is a candidate}]/C$.

Lemma. Candidate $i^* := \operatorname{argmax}_i f(v_i(\mathbf{s}))$ is a candidate.

Lemma. There are at most a constant number C of candidates.

Does not work! If all $v_i(s) = 2.001$ and $v_i(0_j, s_{-j}) = 1.999$.

Assumption: each valuation is submodular over signals.

Algorithm #2 (with parameter $C \ge 1$)

- Draw $r \in [0, 1]$ uniformly at random.
- $f_r(v) :=$ round down v to the nearest 2^{k+r} .
- Buyer j is a **candidate** if $f_r(v_j(\mathbf{s})) > f_r(v_i(0_j, \mathbf{s}_{-i}))$ for all $i \neq j$, with ties broken in favor of lower indices.

• Set
$$x_j = \mathbb{P}_r[i \text{ is a candidate}]/C$$
.

Lemma. Candidate $i_r^{\star} := \operatorname{argmax}_i f_r(v_i(\mathbf{s}))$ is a candidate.

Lemma. There are at most a constant number C of candidates. **Does not work!** Low indices having low values $\rightarrow \sqrt{n}$ candidates.

Attempt #3

Assumption: each valuation is submodular over signals.

Algorithm #3 (with parameter C = 4)

- Draw $r \in [0, 1]$ and permutation π uniformly at random.
- $f_r(v) :=$ round down v to the nearest 2^{k+r} .
- Buyer j is a **candidate** if $f_r(v_j(\mathbf{s})) > f_r(v_i(0_j, \mathbf{s}_{-i}))$ for all $i \neq j$, with ties broken using π .
- Set $x_j = \mathbb{P}_{r,\pi}[i \text{ is a candidate}]/C$.

Lemma. Candidate $i_{r,\pi}^{\star} := \operatorname{argmax}_i (f_r(v_i(\mathbf{s})), \pi_i)$ is a candidate.

Lemma. There are at most C = 4 candidates in expectation.

Theorem. The algorithm is a truthful $(8 \ln 2)$ -approximation. *Proof.* Calculation gives $\mathbb{E}_{r,\pi}[v_{i_{r,\pi}^{\star}}(\mathbf{s})] \geq \max_i v_i(\mathbf{s})/(2 \ln 2).$ **Extension:** non-monotone valuation functions

- Buyer 1 knows the color: $s_1 \in \{\bullet, \bullet, \bullet, \bullet, ...\}$
- Buyer 2 knows the shape: $s_2 \in \{\bigcirc, \triangle, \Box, \Diamond, ...\}$

• ...

Remark: with unordered signal spaces

- $v_j(0_i, \mathbf{s}_{-i})$ is undefined.
- Submodular over signals is undefined

Idea: replace zeros by infimums

- Replace $v_i(0_j, \mathbf{s}_{-j})$ by $\underline{v}_i(\mathbf{s}_{-j}) := \inf\{v_i(\tilde{s}_j, \mathbf{s}_{-j}) \mid \tilde{s}_j \in \mathcal{S}_j\}$
- Self-bounding is well defined: $v_i(\mathbf{s}) \ge \sum_{j \in [n]} (v_i(\mathbf{s}) \underline{v}_i(\mathbf{s}_{-j})).$

Definition. Valuation v_i is *d*-self-bounding (with $d \ge 1$) if

$$d \cdot v_i(\mathbf{s}) \ge \sum_{j \in [n]} (v_i(\mathbf{s}) - \underline{v}_i(\mathbf{s}_{-i}))$$

Hierarchy of valution functions:

- monotone SOS is 1-self-bounding
- non-monotone SOS is 2-self-bounding

• ...

• any function is *n*-self-bounding.

Lemma. There are at most C = 2 + 2d candidates in expectation.

Theorem. There is a truthful $\mathcal{O}(d)$ approximation (oblivious to d). *Proof.* Set $x_i = \mathbb{P}_{r,\pi}[i \text{ is a candidate}]/(4 + 4 \max_{j \neq i} d_j).$

Results:

• Constant approximation with private SOS valuations.

Extensions:

- Non-monotone valuation functions.
- Parametrized valuations: d-self-bounding $\rightarrow \mathcal{O}(d)$ -approximation.
- Allocating multiple (identical) items.

Future works:

- Allocating multiple (non-identical) items.
- Interdependence with other optimization problems.

Thank you!