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Motivation

Resale model Mineral Rights

Online platforms Ad auctions
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Auctions with interdependence

Input:

1

2

n

...

signal s1 ∈ S
v1 : Sn → R+

signal s2 ∈ S
v2 : Sn → R+

signal sn ∈ S
vn : Sn → R+

Output: allocation rule.
Distribution x1, x2, . . . , xn ∈ [0, 1].

Objective: social welfare.
Maximize SW =

∑
i xivi(s).

Constraint: truthfulness.
xi(vi(s), s−i,v−i) monotone in vi(s).

Guarantee: approximation ratio.
Upper bound on OPT/SW .
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Myerson’s Lemma

Theorem. If xi(vi(s), s−i,v−i) is monotone in vi(s), there exists a
payment scheme which makes truthful reporting an optimal strategy.

Proof. Set pi =
∫ vi(s)
0 xi(t, s−i,v−i)dt.

vi(s)

xi

Assumption. Each agent i maximize her utility ui = xivi − pi.
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Summary of existing results

Public valuations (vi’s are publicly known)

Independent values (vi(s) = si for all i)
→ optimal welfare [Vickrey’61].

Single-crossing (∂vi/∂si ≥ ∂vj/∂si for all i 6= j)
→ optimal welfare [Maskin’92].

Worst-case valuations
→ n lower-bound [EFFGK’19].

Submodular over signals
→ 2 lower-bound [EFFGK’19].
→ 3.3 approximation [LSZ’22].

Private valuations (vi’s are reported by agents)

Submodular over signals
→ O(log2 n) approximation [EGZ’22].
→ 5.55 approximation [this work].
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Part I

Public Valuation Functions
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Optimal welfare with single crossing

Assumption: ∂vi/∂si ≥ ∂vj/∂si for all i 6= j.

si ∈ [0, 1]

vi(si, s−i)

vj(si, s−i)

Algorithm (optimal). Define xi := 1[vi(s) > maxj 6=i vj(s)].

Lemma. Allocation xi(si, s−i) is monotone in si.

Corollary. Optimal can be implemented truthfully.

Proof. Relies on each vi(si, s−i) being monotone in si.
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Hardness in the worst case

Intuition: when everyone can decrease other agents’ values.

1

2

n

...

signal s1 ∈ {0, 1}
v1(s) = εs1 +

∏
i 6=1 si

signal s2 ∈ {0, 1}
v2(s) = εs2 +

∏
i 6=2 si

signal sn ∈ {0, 1}
vn(s) = εsn +

∏
i 6=n si

There exists an agent i such that

xi(1i,1−i) ≤ 1/n.

By monotonicity, we have

xi(0i,1−i) ≤ 1/n.

Approximation ratio with s = (0i,1−i)

OPT

SW
≥ 1

1/n+ (n− 1)ε
≈ n.
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Submodular over signals (SOS)

Definition. For all signal vectors s � s′, for all i and j, we require that

−vi

( )
sj , s−j

− vi

( )
s′j , s−j

≤ vi

( )
sj , s

′
−j

− vi

( )
s′j , s

′
−j

Lemma (sub-additive). For all signal vector s, we have

vi

( )
s

≤ vi

( )
sA,0B

+ vi

( )
0A, sB

With a random A ⊆ [n], we have vi(s) ≤ 2EA[vi(0A, s−A)].
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Constant approximation with SOS

Algorithm (from [EFFGK’19])

Partition buyers [n] = A ∪B at random.

Winner is i ∈ A who has the highest vi(si, sB,0A\{i}).

Set xi = PA[i winner].

Lemma. Allocation xi(si, s−i) is monotone in si.

Definition. Let i? := argmaxi vi(s) be the largest value buyer.

Lemma. PA[i? ∈ A] = 1/2.

Lemma. EA[vi?(si? , sB,0A\{i?}) | i? ∈ A] ≥ vi?(s)/2.

Theorem. The algorithm is a truthful 4-approximation.

10 / 20



Part II

Private Valuation Functions
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Hardness with single crossing!

Intuition: when everyone can decrease other agents’ values.

1

2

n

...

signal s1 ∈ {0, 1}
v1(s) =

∏
i si

signal s2 ∈ {0, 1}
v2(s) =

∏
i si

signal sn ∈ {0, 1}
vn(s) =

∏
i si

There exists an agent i such that

xi(1,v) ≤ 1/n.

If i lies (s̃i = 0 and ṽi(s) = 1 + si)

xi(0i,1−i, ṽi,v−i) ≤ 1/n.

Approx. ratio for (0i,1−i, ṽi,v−i)

OPT

SW
≥ 1

1/n
= n.
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Warmup mechanism

Assumption: each valuation only depends on d signals.

Algorithm (from [EGZ’22])

Buyer j is a candidate if vj(s) > vi(0j , s−i) for all i 6= j,
with ties broken in favor of lower indices.

Set xj = 1/(d+ 1) if j is a candidate, and xj = 0 otherwise.

Lemma. Candidate i? := argmaxi vi(s) is a candidate.

Lemma. There are at most d+ 1 candidates.

Proof. For each candidate j 6= i?, we must have

vi?(s) > vj(s) > vi?(0j , s−j)

hence vi?(s) depends on j’s signal.

Theorem. The algorithm is a truthful (d+ 1)-approximation.
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Submodular over signals

Definition. For all signal vectors s � s′, for all i and j, we require that

−vi

( )
sj , s−j

− vi

( )
s′j , s−j

≤ vi

( )
sj , s

′
−j

− vi

( )
s′j , s

′
−j

Lemma (self-bounding). For all signal vector s, we have

vi

( )
s

≥
∑
j∈[n]

vi

( )
sj , s−j

− vi

( )
0j , s−j

There is at most one j such that vi(0j , s−j) < vi(s)/2.
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Attempt #1

Assumption: each valuation is submodular over signals.

Algorithm #1 (with parameter C ≥ 1)

f(v) := round down v to the nearest 2k.

Buyer j is a candidate if f(vj(s)) > f(vi(0j , s−i)) for all i 6= j,
with ties broken in favor of lower indices.

Set xj = 1[i is a candidate]/C.

Lemma. Candidate i? := argmaxi f(vi(s)) is a candidate.

Lemma. There are at most a constant number C of candidates.

Does not work! If all vi(s) = 2.001 and vi(0j , s−j) = 1.999.
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Attempt #2

Assumption: each valuation is submodular over signals.

Algorithm #2 (with parameter C ≥ 1)

Draw r ∈ [0, 1] uniformly at random.

fr(v) := round down v to the nearest 2k+r.

Buyer j is a candidate if fr(vj(s)) > fr(vi(0j , s−i)) for all i 6= j,
with ties broken in favor of lower indices.

Set xj = Pr[i is a candidate]/C.

Lemma. Candidate i?r := argmaxi fr(vi(s)) is a candidate.

Lemma. There are at most a constant number C of candidates.

Does not work! Low indices having low values →
√
n candidates.
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Attempt #3

Assumption: each valuation is submodular over signals.

Algorithm #3 (with parameter C = 4)

Draw r ∈ [0, 1] and permutration π uniformly at random.

fr(v) := round down v to the nearest 2k+r.

Buyer j is a candidate if fr(vj(s)) > fr(vi(0j , s−i)) for all i 6= j,
with ties broken using π.

Set xj = Pr,π[i is a candidate]/C.

Lemma. Candidate i?r,π := argmaxi (fr(vi(s)), πi) is a candidate.

Lemma. There are at most C = 4 candidates in expectation.

Theorem. The algorithm is a truthful (8 ln 2)-approximation.

Proof. Calculation gives Er,π[vi?r,π(s)] ≥ maxi vi(s)/(2 ln 2).
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Extension #1

Extension: non-monotone valuation functions

Buyer 1 knows the color: s1 ∈ {•, •, •, •, ...}
Buyer 2 knows the shape: s2 ∈ {©,4,�,♦, ...}
...

Remark: with unordered signal spaces

vj(0i, s−i) is undefined.

Submodular over signals is undefined

Idea: replace zeros by infimums

Replace vi(0j , s−j) by vi(s−j) := inf{vi(s̃j , s−j) | s̃j ∈ Sj}
Self-bounding is well defined: vi(s) ≥

∑
j∈[n](vi(s)− vi(s−j)).
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Extension #2

Definition. Valuation vi is d-self-bounding (with d ≥ 1) if

d · vi(s) ≥
∑
j∈[n]

(vi(s)− vi(s−i))

Hierarchy of valution functions:

monotone SOS is 1-self-bounding

non-monotone SOS is 2-self-bounding

...

any function is n-self-bounding.

Lemma. There are at most C = 2 + 2d candidates in expectation.

Theorem. There is a truthful O(d) approximation (oblivious to d).

Proof. Set xi = Pr,π[i is a candidate]/(4 + 4 maxj 6=i dj).
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Conclusion

Results:

Constant approximation with private SOS valuations.

Extensions:

Non-monotone valuation functions.

Parametrized valuations: d-self-bounding → O(d)-approximation.

Allocating multiple (identical) items.

Future works:

Allocating multiple (non-identical) items.

Interdependence with other optimization problems.

Thank you!
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