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Bilateral Trade and Two-sided Markets



One vs Two sided markets

One sided market

• Buyers want to buy

• Mechanism and sellers coincide

• VCG-like optimal mechanisms

Two sided market

• Buyers want to buy

• Sellers want to sell

• The mechanism intermediates between the two parties

• Both buyers and sellers are strategic agents
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Warm up: Bilateral Trade

Seller s has an item, which buyer b wants.

Seller has value vs for keeping it, buyer has value vb for buying it.

vb and vs are drawn from independent distributions Db, Ds.

Social Welfare
Maximize social welfare!

SW = (vb − vs)Itrade + vs,
i.e., the value of the player holding the item in the end.
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Wanted List: Mechanism Design

us =

ps − vs if s sells the item

vs otherwise
ub =

vb − pb if b buys the item

0 otherwise

Individual Rationality (IR)
Participation does not have negative utility for the agents.

Incentive Compatibility / Truthfulness (IC)
Each agent maximizes his utility when reporting his true valuation, given the other
agents’ reports.

Budget Balance (BB)
The mechanism does not pay more money to the agents than it collects from them.
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Bilateral Trade: The Problem with Truthfulness

Easy Algorithm: propose price vs ≤ p ≤ vb, trade if both accept.

IC Problem: price of an agent cannot depend on his reported value

Obvious solution: set ps = vb and pb = vs.

VCG is not budget-balanced

• Trade occurs only when vs ≤ vb.

• Taking the item away from the seller costs vs in social welfare: b pays vs.

• Introducing s and his item yields social welfare vb: s is paid vb.
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Myerson-Satterthwaite Impossibility

Myerson-Satterthwaite Theorem
No mechanism for bilateral trade is IR, IC, BB and at the same time
maximizes the social welfare even in the Bayesian setting.
[Myerson, Satterthwaite, 1983]
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Known Results with Access to Prior Information

Mechanisms with Full Prior Information

Bilateral Trade:
0.72/0.71 approximation.

[Cai,Zhu,STOC 2023], [Liu,Ren, Wang,STOC 2023]

Prior-Information Tradeoff:

• Knowing full distributions: usually unrealistic

• Knowing nothing: bad for mechanism’s performance
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Mechanism Design with limited information

• How good are mechanisms that use limited or no a-priori
information?

• Two main possibilities to learn from the environment
1. Sampling: Near optimal mechanisms that use a single

sample from each prior distribution, and this is the minimum
amount of information needed!

2. Strategic interaction: Online learning of regret minimizing
mechanisms for repeated bilateral trade
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Inapproximability of mechanisms without prior information

Myerson-Satterthwaite-Theorem
No mechanism for bilateral trade is IR, IC, BB and at the same time
maximizes the social welfare.
[Myerson, Satterthwaite , 1983]

Impossibility Theorem
No IC, BB, IR mechanism without knowledge about the underlying
distributions Db, Ds can achieve an α-approximation to the optimal social
welfare, for any α ∈ R>0.
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Proof Glimpse: How to price?

Prices: between vs and vb, but

• ps ≤ pb - BB!

• can’t use vs for ps or vb for pb - not IC!

• can’t use vs for pb and vb for ps - not BB!

Find the feasible interval in an infinite range of numbers...
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Proof Glimpse: How to price? (Deterministic Mechanism)

Imagine to be b, with vb ≥ α · vs

• To maintain the approximation, the mechanism has to trade
• To be incentive compatible, the price has to be the same for all v′b ≥ α · vs
• To be individually rational and budget balanced pb ∈ [vs, α · vs]

Imagine to be s, with vs ≤ vb
α

• To maintain the approximation, the mechanism has to trade
• To be incentive compatible, the price has to be the same for all v′s ≤

vb
α

• To be individually rational and budget balanced ps ∈ [
vb
α
, vb]

If [ vb
α
, vb] ∩ [vs, α · vs] = ∅ there is no hope to post the right price.
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Single Sample Mechanisms
Paul Dütting, Federico Fusco, Philip Lazos, Stefano Leonardi, Rebecca

Reiffenhäuser (2021,2022)



Single Sample from the Sellers Heals Impossibility

Idea: sample could give us a hint towards the feasible price interval!
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Minimum Prior Knowledge: Single Sample

Proposition: Sample Access Enables Constant Approximation
Posting v′s from Ds as price is a 2 approximation for the bilateral trade problem

Solution: Draw a sample v′s from Ds!

• vs ≤ v′s with probability ≥ 1/2

• E[v′s] = E[vs], and E[v′s|vs ≤ v′s] ≤ 2E[vs].

Intuition: For price p = v′s, s will accept w.pr. ≥ 1/2 and if b rejects, that’s ok
since the seller value (in exp.) is also good!
Note: Instead of a sample, any percentile works fine, too. E.g., same
approximation for having the median. Blumrosen and Dobzinski [2014, 2016]
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Results with Limited Prior Information

Results with Limited Prior Information

Lower Bound of 2 when only {Ds}s∈S known:
no deterministic mechanism for bilateral trade achieves approximation
better than 2 when only information about the seller distributions is used.

[Blumrosen, Dobzinski, 2016]

Limited Information seems to work quite well!
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No Mechanism better than 2-Approx. with One Seller Sample

Theorem (Single-Sample 2-Lower Bound)
There exists no (deterministic), IR IC and BB mechanism that approximates social
welfare better than to a factor of 2 and uses only a single sample from the seller
distribution.

• Here, mechanisms have access to randomness (via the available
sample). Therefore, this generalizes the existing deterministic 2 lower
bound.
[Dütting, Fusco, Lazos, Leonardi, Reiffenhäser, STOC 2021 ]

• This lower bound has recently been extended to randomized fixed price
mechanisms that use one single sample.
[Liu, Ren, Wang, STOC 2023]
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Blackbox Result for XOS Buyers

Theorem (Black Box I)

Denote by α the approximation guarantee of any one-sided IR, IC offline/online
mechanism for maximizing social welfare for XOS valuations.

There exists a two-sided mechanism for XOS buyers and unit-supply sellers that is
IR, IC, BB, uses a single sample from each seller and provides a

max{2α,3}

approximation to the optimal social welfare.

The two-sided mechanism inherits the offline/online properties of the one-sided
mechanism on the buyer side and is offline on the seller side.
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Blackbox Construction

• Promise each seller s to get v′s for his item, if accepts, add s to Ŝ
• Report to M the modified buyers’ valuations:

v̂b(T) =
∑
s∈T

(ab,T(s)− v′s), where T = argmaxT∗⊆T∩Ŝ

vb(T∗)−
∑
s∈T⋆

v′s


• In addition to the mechanism price, charge each buyer b the sum of seller

samples
∑

s∈Ab
v′s for his bundle.

• Pay sellers the promised amount (if item was allocated).
17/40
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vb(T∗)−
∑
s∈T⋆

v′s


• In addition to the mechanism price, charge each buyer b the sum of seller

samples
∑

s∈Ab
v′s for his bundle.

• Pay sellers the promised amount (if item was allocated).
17/40



Blackbox Construction

• Promise each seller s to get v′s for his item, if accepts, add s to Ŝ
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Results from Blackbox Application

For example, we obtain the following single-sample IR IC BB mechanisms:

• 2e for max-weight matching
Online random order on the buyer side, offline sellers.
Using: [Reiffenhäuser, 2019.]

• O((log logm)2) for general XOS buyers
Offline on the buyer and seller side.
Using: [Assadi, Kesselheim, Singla, 2021]
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Regret Analysis of Bilateral Trade
Nicolò Cesa-Bianchi, Tommaso Cesari, Roberto Colomboni, Federico

Fusco, Stefano Leonardi (2021,2023)



Bilateral Trade

A seller and a buyer join an online platform to trade a good or a service

• The seller wants to sell at a price greater than some value S

• The buyer wants to buy at a price smaller than some value B

• The values are private information

Goal: Design an efficient mechanism to intermediate between the agents that
is robust to strategic behaviour
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Desired Properties

1. Individually rational (seller and buyer should not lose money in the trade)

2. Dominant strategy incentive compatibile (Agents incentivized to be
truthful)

3. Strongly budget balanced (no subsidy, no money draining)

4. Economically efficient (no trading opportunity is lost)

Theorem (Myerson and Satterthwaite, 1981)
No mechanism satisfying 1− 4 exists even in the Bayesian setting.
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Posted-price mechanisms

Theorem (Colini-Baldeschi, de Keijzer, Leonardi and Turchetta, 2016)
All mechanism satisfying 1− 3 are posted-price mechanism.

Posted price: the mechanism proposes a price without consulting the agents

One single price for buyer/seller - Strong Budget Balance

• Seller and buyer arrive with private valuations S and B

• The platform posts a price p, independently

• If S ≤ p ≤ B, then the trade happens
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The Gain from Trade

For Regret Minimization, which is an additive approximation, we can restrict to
the net increase in social welfare induced by the mechanism

Gain from trade

GFT(p,S,B) =
(

(B− p)︸ ︷︷ ︸
buyer’s net gain

+ (p− S)︸ ︷︷ ︸
seller’s net gain

)
I{S ≤ p ≤ B}︸ ︷︷ ︸

trade happens

=

(B− S)I{S ≤ p ≤ B}

Goal: maximize the total gain from trade over a sequence of trades without
any preliminary information on buyers and sellers valuations
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Feedback models and generating process

For t = 1,2, . . .

1. Seller and buyer arrive with hidden valuations St,Bt ∈ [0,1]

2. The platform posts a price pt ∈ [0,1]

3. The platform observes a feedback signal Zt

4. The seller and the buyer leave

• Full feedback (direct revelation): Zt = (St,Bt)

• Two-bits feedback (posted-price): Zt =
(
I{St ≤ pt}, I{pt ≤ Bt}

)
• One-bit feedback (minimal): Zt = I{St ≤ pt ≤ Bt}

The price pt is determined by Z1, . . . , Zt−1 and possibly by internal
randomization

Different generation models of the sequence (S1,B1), (S2,B2), . . . of
valuations

• Adversarial setting: unknown deterministic sequence
• Stochasthic setting: i.i.d. random variables from an unknown joint
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Regret minimization

Compete against best fixed-price strategy

RT = max
p∈[0,1]

E

[
T∑

t=1

GFT(p,St,Bt)−
T∑

t=1

GFT(pt,St,Bt)

]

Our Contribution: Full characterization of the different regret regimes for
different combinations of:

• Feedback Models

• Sequence generation Models
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Adversarial Model

A linear lower bound on the regret
Given any randomized algorithm, we construct a deterministic sequence
(S1,B1), (S2,B2), . . . of valuations such that

1. The probability that pt ∈ [St,Bt] is at most 1
2

2. There exists p∗ ∈
⋂
t≥1

[St,Bt]

3. Bt − St ≥ 1−ε
2

This implies RT ≥ 1−ε
4 · T = Ω(T) even under full feedback

The sequence of valuations is inspired from the construction of Cantor’s
ternary set
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Regret Regimes - Adversarial Setting

Stochastic Adversarial
Full Ω(T)
Two-bits T
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Stochastic valuations and full feedback

The sequence (S1,B1), (S2,B2), . . . is i.i.d. with fixed but unknown distribution

p∗ ∈ argmax
p∈[0,1]

E [GFT(p)]

Full feedback

• (St,Bt) observed in each round, so algorithm can compute
GFT(p,St,Bt), ∀p

• We can run follow the best price pt = argmax
p∈[0,1]

Êt
[
GFT(p)

]︸ ︷︷ ︸
empiricalGFT

• For any sequence (S1,B1), . . . , (St−1,Bt−1) of valuations
E [GFT(p∗)]− E [GFT(pt)] ≤ 2 max

p∈[0,1]

∣∣∣E [GFT(p)]− Êt
[
GFT(p)

]∣∣∣
• We can use uniform convergence over the class{

GFT(p, ·, ·) : 0 ≤ p ≤ 1
}

of real-valued functions on [0,1]2

• This gives RT = O
(√

T ln T
)
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Lower bound

RT = Ω
(√

T
)

even when seller and buyer valuations are independent with
bounded densities.

Proof: reduction from experts

Figure: Seller distribution in green,
buyer distribution either red or blue

Figure: Gains from trade of the two
scenarios
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Regret Regimes - Direct Revelation Mechanisms

Stochastic Adversarial

Full Θ(
√
T) Ω(T)

Two-bits T
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Two-bits feedback - Assumptions needed!

• I{St ≤ pt} and I{pt ≤ Bt} observed at each step

• There exist independent valuations (S,B) with unbounded density such
that RT = Ω(T) . Needle in a haystack phenomenon

• There exist correlated valuations (S,B) with bounded density such that
RT = Ω(T) . Indistinguishable distributions
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Regret Regimes - Posted Price Mechanisms

Stochastic Adversarial
iid +indep. +bounded +indep. & bounded adv

Full O(
√
T)

√
T

√
T Ω(

√
T) Ω(T)

Two-bits T Ω(T) Ω(T) T
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Leveraging independence - Decomposition lemma

E [GFT(p)] = (B− S)I{S ≤ p ≤ B}

=

∫ p

0
P
(
S ≤ x, p ≤ B

)
dx +

∫ 1

p
P
(
S ≤ p, x ≤ B

)
dx

Using independence:

E [GFT(p)] = P(p ≤ B)
∫ p

0
P(S ≤ x) dx + P(S ≤ p)

∫ 1

p
P(x ≤ B) dx

If U is uniform over [0,1] and independent on S and B, then

E [GFT(p)] = P(p ≤ B)P(S ≤ U ≤ p) + P(S ≤ p)P(p ≤ U ≤ B)

It is possible to estimate the blue terms via sampling!
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Scouting Bandits

1. ε-grid of prices over [0,1]

2. Post random prices to estimate P(S ≤ U ≤ p) and P(p ≤ U ≤ B) for each
p in the ε-grid

3. Bandits: built a uniform grid and play a bandit algorithm on the points of
the grid replacing the blue terms with their approximations.

Grid OK because the boundedness assumption on S and B distributions
makes E [GFT(p)] Lipschitz

RT ≤ 1
ε2

ln
1
ε︸ ︷︷ ︸

random expl.

+ ε T︸︷︷︸
approx. error

+
√

T/ε︸ ︷︷ ︸
bandit regret

= O
(
T2/3 ln T

)
for ε = T−1/3
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Regret Regimes . Posted Price Mechanisms

Stochastic Adversarial
iid +indep. +bounded +indep. & bounded adv

Full O(
√
T)

√
T

√
T Ω(

√
T) Ω(T)

Two-bits T Ω(T) Ω(T) Θ(T2/3) T
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Competing against a weaker adversary

Stochastic model

• Posted price mechanisms require buyer/seller independence and
smooth distributions.

• Two-bit feedback is required.

Weaker adversarial models

• Smooth Adversary

Definition (Haghtalab, Roughgarden, 2021)
Let X be a domain supporting a uniform distribution ν. A measure µ on X is
said to be σ-smooth if for all measurable subsets A ⊆ X, we have
µ(A) ≤ ν(A)

σ
.
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Smooth Adversary

Weak Budget Balance Mechanisms (two prices) are strictly superior to Strong
Budget Balance Mechanisms (one price) in the Smooth Adversarial setting

Full Feedback Two-bit Feedback One-bit Feedback

Single Price Õ(
√
T) Ω(T) Ω(T)

Two Prices Ω(
√
T) Ω(T3/4) Õ(T3/4)

[Cesa-Bianchi, Cesari, Colomboni, Fusco, Leonardi, COLT 2023]
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The Ω(T3/4) Lower Bound

A family of σ-smooth adversaries:

• The valuations (St,Bt) are drawn i.i.d. according to a fixed distribution,
obliviously of the actions of the learner.

• We build this family of distributions by suitable perturbations over a base
distribution, whose support is given by the union of the six squares
Q1, . . . ,Q6 .
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The Ω(T3/4) Lower Bound

• We consider a perturbation such that the sequence of seller/buyer
evaluations (S,B), (S1,B1), (S2,B2), . . . is i.i.d. ands it is σ-smooth, for all
σ ≤ 1/9.

• Finding the best of K arms requires to pull each arm Ω( 1
2 ) time with no

guarantee of any reward. Alternatively, the algorithm can exploit a
random arm at each step by incurring a regret .

• The lower bound is Ω
(
min( K

ϵ2
, ϵT)

)
to obtaining with K = T1/4 and

ϵ = T−1/4 minimax regret Ω(T3/4)
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Conclusions and Open Problems

Conclusions:

• Limited information, even one single sample, can be sufficient to provide
near optimal approximation mechanisms.

• Efficient learning of mechanisms through repeated interaction with the
agents is possible in some settings.

Open problems:

• learning in strategic interaction between agents with carry over between
rounds.

• Budget balance along the whole time horizon.

• Fair division of the gain from trade between buyers and sellers across
time.
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Thanks!
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