Learning Pricing Mechanisms in Two-sided Markets

Stefano Leonardi (Sapienza University of Rome)

From Matchings to Markets, CIRM, 11-15 September 2023

Based on joint work with

- Paul Dütting, Federico Fusco, Philip Lazos, Rebecca Reiffenhäuser [2021]
- Nicolò Cesa-Bianchi, Tommaso Cesari, Roberto Colomboni and Federico Fusco
 [2021, 2023]

Bilateral Trade and Two-sided Markets

One sided market

- Buyers want to buy
- Mechanism and sellers coincide
- VCG-like optimal mechanisms

Two sided market

- Buyers want to buy
- Sellers want to sell
- The mechanism intermediates between the two parties
- Both buyers and sellers are strategic agents

One sided market

- Buyers want to buy
- Mechanism and sellers coincide
- VCG-like optimal mechanisms

Two sided market

- Buyers want to buy
- Sellers want to sell
- The mechanism intermediates between the two parties
- Both buyers and sellers are strategic agents

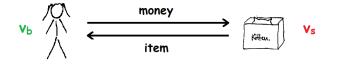
Seller has value v_s for keeping it, buyer has value v_b for buying it.

 v_b and v_s are drawn from independent distributions D_b , D_s .

Social Welfare

$$SW = (v_b - v_s)\mathbb{I}_{trade} + v_s,$$

i.e., the value of the player holding the item in the end



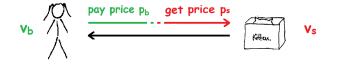
Seller has value v_s for keeping it, buyer has value v_b for buying it.

 v_b and v_s are drawn from independent distributions D_b , D_s .

Social Welfare Maximize social welfare!

$$SW = (v_b - v_s) \mathbb{I}_{trade} + v_s,$$

i.e., the value of the player holding the item in the end.



Seller has value v_s for keeping it, buyer has value v_b for buying it.

 v_b and v_s are drawn from independent distributions D_b , D_s .

Social Welfare Maximize social welfare! $SW = (v_b - v_s)I_{trade} + v_s,$ i.e., the value of the player holding the item in the end.

Seller has value v_s for keeping it, buyer has value v_b for buying it.

 v_b and v_s are drawn from independent distributions D_b , D_s .

Social Welfare

Maximize social welfare!

$$SW = (v_b - v_s)\mathbb{I}_{trade} + v_s,$$

i.e., the value of the player holding the item in the end.

$$u_{s} = \begin{cases} p_{s} - v_{s} & \text{if } s \text{ sells the item} \\ v_{s} & \text{otherwise} \end{cases} \quad u_{b} = \begin{cases} v_{b} - p_{b} & \text{if } b \text{ buys the item} \\ 0 & \text{otherwise} \end{cases}$$

Participation does not have negative utility for the agents.

Incentive Compatibility / Truthfulness (IC)

Each agent maximizes his utility when reporting his true valuation, given the other agents' reports.

Budget Balance (BB)

$$u_{s} = \begin{cases} p_{s} - v_{s} & \text{if } s \text{ sells the item} \\ v_{s} & \text{otherwise} \end{cases} \quad u_{b} = \begin{cases} v_{b} - p_{b} & \text{if } b \text{ buys the item} \\ 0 & \text{otherwise} \end{cases}$$

Participation does not have negative utility for the agents.

Incentive Compatibility / Truthfulness (IC)

Each agent maximizes his utility when reporting his true valuation, given the other agents' reports.

Budget Balance (BB)

$$u_{s} = \begin{cases} p_{s} - v_{s} & \text{if } s \text{ sells the item} \\ v_{s} & \text{otherwise} \end{cases} \quad u_{b} = \begin{cases} v_{b} - p_{b} & \text{if } b \text{ buys the item} \\ 0 & \text{otherwise} \end{cases}$$

Participation does not have negative utility for the agents.

Incentive Compatibility / Truthfulness (IC)

Each agent maximizes his utility when reporting his true valuation, given the other agents' reports.

Budget Balance (BB)

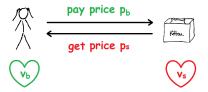
$$u_{s} = \begin{cases} p_{s} - v_{s} & \text{if } s \text{ sells the item} \\ v_{s} & \text{otherwise} \end{cases} \quad u_{b} = \begin{cases} v_{b} - p_{b} & \text{if } b \text{ buys the item} \\ 0 & \text{otherwise} \end{cases}$$

Participation does not have negative utility for the agents.

Incentive Compatibility / Truthfulness (IC)

Each agent maximizes his utility when reporting his true valuation, given the other agents' reports.

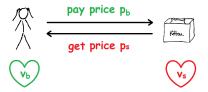
Budget Balance (BB)



IC Problem: price of an agent cannot depend on his reported value

Obvious solution: set $p_s = v_b$ and $p_b = v_s$.

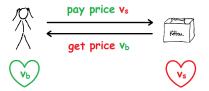
- Trade occurs only when $v_s \leq v_b$.
- Taking the item away from the seller costs v_s in social welfare: b pays v_s .
- Introducing s and his item yields social welfare v_b: s is paid v_b.



IC Problem: price of an agent cannot depend on his reported value

Obvious solution: set $p_s = v_b$ and $p_b = v_s$.

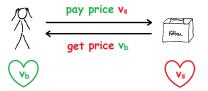
- Trade occurs only when $v_s \leq v_b$.
- Taking the item away from the seller costs v_s in social welfare: b pays v_s .
- Introducing s and his item yields social welfare v_b: s is paid v_b.



IC Problem: price of an agent cannot depend on his reported value

Obvious solution: set $p_s = v_b$ and $p_b = v_s$.

- Trade occurs only when $v_s \leq v_b$.
- Taking the item away from the seller costs v_s in social welfare: b pays v_s .
- Introducing s and his item yields social welfare v_b: s is paid v_b.



IC Problem: price of an agent cannot depend on his reported value

Obvious solution: set $p_s = v_b$ and $p_b = v_s$.

- Trade occurs only when $v_s \leq v_b$.
- Taking the item away from the seller costs v_s in social welfare: b pays v_s .
- Introducing s and his item yields social welfare v_b : s is paid v_b .

Myerson-Satterthwaite Theorem

No mechanism for bilateral trade is IR, IC, BB and at the same time maximizes the social welfare even in the Bayesian setting. [Myerson, Satterthwaite, 1983]

Myerson-Satterthwaite Theorem

No mechanism for bilateral trade is IR, IC, BB and at the same time maximizes the social welfare even in the Bayesian setting. [Myerson, Satterthwaite, 1983]

Mechanisms with Full Prior Information

Bilateral Trade:

0.72/0.71 approximation.

[Cai,Zhu,STOC 2023], [Liu,Ren, Wang,STOC 2023]

Prior-Information Tradeoff:

- Knowing full distributions: usually unrealistic
- Knowing nothing: bad for mechanism's performance

- How good are mechanisms that use limited or no a-priori information?
- Two main possibilities to learn from the environment
 - 1. **Sampling:** Near optimal mechanisms that use a single sample from each prior distribution, and this is the minimum amount of information needed!
 - 2. **Strategic interaction:** Online learning of regret minimizing mechanisms for repeated bilateral trade

Myerson-Satterthwaite-Theorem

No mechanism for bilateral trade is IR, IC, BB and at the same time maximizes the social welfare.

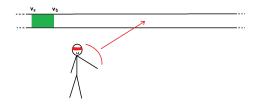
[Myerson, Satterthwaite , 1983]

Impossibility Theorem

No IC, BB, IR mechanism without knowledge about the underlying distributions D_b , D_s can achieve an α -approximation to the optimal social welfare, for any $\alpha \in \mathbb{R}_{>0}$.

Prices: between vs and vb, but

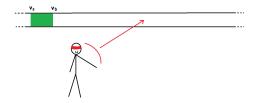
- *p*_s ≤ *p*_b BB!
- can't use v_s for p_s or v_b for p_b not IC!
- can't use v_s for p_b and v_b for p_s not BB!



Find the *feasible* interval in an infinite range of numbers...

Prices: between vs and vb, but

- *p*_s ≤ *p*_b BB!
- can't use v_s for p_s or v_b for p_b not IC!
- can't use v_s for p_b and v_b for p_s not BB!



Find the *feasible* interval in an infinite range of numbers...

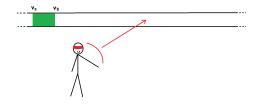
Imagine to be *b*, with $v_b \ge \alpha \cdot v_s$

- To maintain the approximation, the mechanism has to trade
- To be incentive compatible, the price has to be the same for all $v'_{h} \geq \alpha \cdot v_{s}$
- To be individually rational and budget balanced $p_b \in [v_s, \alpha \cdot v_s]$

Imagine to be *s*, with $v_s \leq \frac{v_b}{\alpha}$

- To maintain the approximation, the mechanism has to trade
- To be incentive compatible, the price has to be the same for all $v'_{s} \leq rac{v_{b}}{\alpha}$
- To be individually rational and budget balanced $p_s \in [\frac{v_b}{\alpha}, v_b]$

If $[\frac{v_b}{\alpha}, v_b] \cap [v_s, \alpha \cdot v_s] = \emptyset$ there is no hope to post the right price.



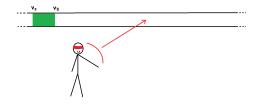
Imagine to be *b*, with $v_b \ge \alpha \cdot v_s$

- To maintain the approximation, the mechanism has to trade
- To be incentive compatible, the price has to be the same for all $v'_{h} \geq \alpha \cdot v_{s}$
- To be individually rational and budget balanced $p_b \in [v_s, \alpha \cdot v_s]$

Imagine to be s, with $v_s \leq \frac{v_b}{\alpha}$

- To maintain the approximation, the mechanism has to trade
- To be incentive compatible, the price has to be the same for all $v'_{s} \leq \frac{v_{b}}{\alpha}$
- To be individually rational and budget balanced $p_{s} \in [rac{v_{b}}{lpha}, v_{b}]$

If $[rac{v_b}{lpha},v_b]\cap [v_{s},lpha\cdot v_{s}]=\emptyset$ there is no hope to post the right price.



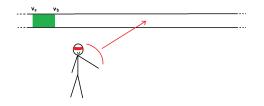
Imagine to be *b*, with $v_b \ge \alpha \cdot v_s$

- To maintain the approximation, the mechanism has to trade
- To be incentive compatible, the price has to be the same for all $v'_{h} \geq \alpha \cdot v_{s}$
- To be individually rational and budget balanced $p_b \in [v_s, \alpha \cdot v_s]$

Imagine to be s, with $v_s \leq \frac{v_b}{\alpha}$

- To maintain the approximation, the mechanism has to trade
- To be incentive compatible, the price has to be the same for all $v'_{s} \leq \frac{v_{b}}{\alpha}$
- To be individually rational and budget balanced $p_s \in [\frac{v_b}{\alpha}, v_b]$

If $[\frac{v_b}{\alpha}, v_b] \cap [v_s, \alpha \cdot v_s] = \emptyset$ there is no hope to post the right price.



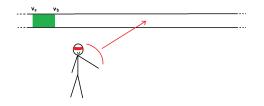
Imagine to be *b*, with $v_b \ge \alpha \cdot v_s$

- To maintain the approximation, the mechanism has to trade
- To be incentive compatible, the price has to be the same for all $v'_{h} \geq \alpha \cdot v_{s}$
- To be individually rational and budget balanced $p_b \in [v_s, \alpha \cdot v_s]$

Imagine to be s, with $v_s \leq \frac{v_b}{\alpha}$

- To maintain the approximation, the mechanism has to trade
- To be incentive compatible, the price has to be the same for all $v'_{s} \leq \frac{v_{b}}{\alpha}$
- To be individually rational and budget balanced $p_s \in [\frac{v_b}{\alpha}, v_b]$

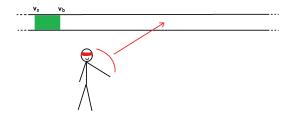
If $[\frac{v_b}{\alpha}, v_b] \cap [v_s, \alpha \cdot v_s] = \emptyset$ there is no hope to post the right price.



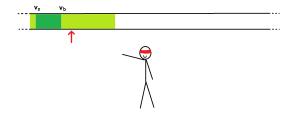
Single Sample Mechanisms

Paul Dütting, Federico Fusco, Philip Lazos, Stefano Leonardi, Rebecca

Reiffenhäuser (2021,2022)



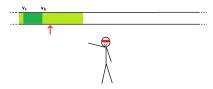
Idea: sample could give us a hint towards the feasible price interval!



Idea: sample could give us a hint towards the feasible price interval!

Proposition: Sample Access Enables Constant Approximation

Posting v'_s from D_s as price is a 2 approximation for the bilateral trade problem



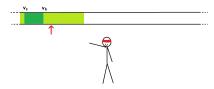
Solution: Draw a **sample** v'_s from D_s!

- $v_s \leq v'_s$ with probability $\geq 1/2$
- $\mathbb{E}[v'_s] = \mathbb{E}[v_s]$, and $\mathbb{E}[v'_s|v_s \le v'_s] \le 2\mathbb{E}[v_s]$.

Intuition: For price $p = v'_s$, *s* will accept w.pr. $\ge 1/2$ and if *b* rejects, that's ok since the seller value (in exp.) is also good! **Note:** Instead of a sample, any percentile works fine, too. E.g., same approximation for having the *median*. Blummosen and Dotzinski [2014, 2016]

Proposition: Sample Access Enables Constant Approximation

Posting v'_s from D_s as price is a 2 approximation for the bilateral trade problem



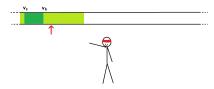
Solution: Draw a **sample** v'_s from D_s!

- + $\nu_{\text{s}} \leq \nu_{\text{s}}'$ with probability $\geq 1/2$
- $\bullet \ \mathbb{E}[v_s'] = \mathbb{E}[v_s] \text{, and } \mathbb{E}[v_s'|v_s \leq v_s'] \leq 2\mathbb{E}[v_s].$

Intuition: For price $p = v'_s$, *s* will accept w.pr. $\geq 1/2$ and if *b* rejects, that's ok since the seller value (in exp.) is also good! **Note:** Instead of a sample, any percentile works fine, too. E.g., same approximation for having the *median*. Blummosen and Dobzinski (2014, 2016)

Proposition: Sample Access Enables Constant Approximation

Posting v'_s from D_s as price is a 2 approximation for the bilateral trade problem



Solution: Draw a **sample** v'_s from D_s!

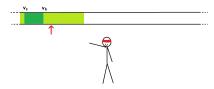
- + $\nu_{\text{s}} \leq \nu_{\text{s}}'$ with probability $\geq 1/2$
- $\bullet \ \mathbb{E}[v_s'] = \mathbb{E}[v_s] \text{, and } \mathbb{E}[v_s'|v_s \leq v_s'] \leq 2\mathbb{E}[v_s].$

Intuition: For price $p = v'_s$, *s* will accept w.pr. $\ge 1/2$ and if *b* rejects, that's ok since the seller value (in exp.) is also good!

Note: Instead of a sample, any percentile works fine, too. E.g., same approximation for having the *median*. Blumnosen and Dobzinski [2014, 2016]

Proposition: Sample Access Enables Constant Approximation

Posting v'_s from D_s as price is a 2 approximation for the bilateral trade problem



Solution: Draw a **sample** v'_s from D_s!

- + $\nu_{\text{s}} \leq \nu_{\text{s}}'$ with probability $\geq 1/2$
- $\bullet \ \mathbb{E}[v_s'] = \mathbb{E}[v_s] \text{, and } \mathbb{E}[v_s'|v_s \leq v_s'] \leq 2\mathbb{E}[v_s].$

Intuition: For price $p = v'_s$, s will accept w.pr. $\ge 1/2$ and if b rejects, that's ok since the seller value (in exp.) is also good! **Note:** Instead of a sample, any percentile works fine, too. E.g., same approximation for having the *median*. Blumrosen and Dobzinski [2014, 2016]

Results with Limited Prior Information

Lower Bound of 2 when only $\{D_s\}_{s\in S}$ known:

no deterministic mechanism for bilateral trade achieves approximation better than **2** when only information about the seller distributions is used.

[Blumrosen, Dobzinski, 2016]

Limited Information seems to work quite well!

Theorem (Single-Sample 2-Lower Bound)

There exists no (deterministic), IR IC and BB mechanism that approximates social welfare better than to a factor of 2 and uses only a single sample from the seller distribution.

Here, mechanisms have access to randomness (via the available sample). Therefore, this generalizes the existing deterministic 2 lower bound.

[Dütting, Fusco, Lazos, Leonardi, Reiffenhäser, STOC 2021]

 This lower bound has recently been extended to randomized fixed price mechanisms that use one single sample.
 [Liu, Ren, Wang, STOC 2023]

Theorem (Black Box I)

Denote by α the approximation guarantee of any one-sided IR, IC offline/online mechanism for maximizing social welfare for XOS valuations.

There exists a two-sided mechanism for XOS buyers and unit-supply sellers that is IR, IC, BB, uses a single sample from each seller and provides a

 $\max\{2\alpha,3\}$

approximation to the optimal social welfare.

The two-sided mechanism inherits the offline/online properties of the one-sided mechanism on the buyer side and is offline on the seller side.

Theorem (Black Box I)

Denote by α the approximation guarantee of any one-sided IR, IC offline/online mechanism for maximizing social welfare for XOS valuations.

There exists a two-sided mechanism for XOS buyers and unit-supply sellers that is IR, IC, BB, uses a single sample from each seller and provides a

$\max\{2lpha, 3\}$

approximation to the optimal social welfare.

The two-sided mechanism inherits the offline/online properties of the one-sided mechanism on the buyer side and is offline on the seller side.

Theorem (Black Box I)

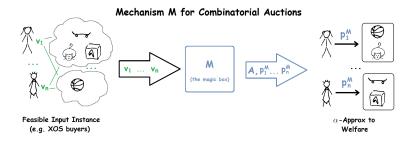
Denote by α the approximation guarantee of any one-sided IR, IC offline/online mechanism for maximizing social welfare for XOS valuations.

There exists a two-sided mechanism for XOS buyers and unit-supply sellers that is IR, IC, BB, uses a single sample from each seller and provides a

$\max\{2lpha, 3\}$

approximation to the optimal social welfare.

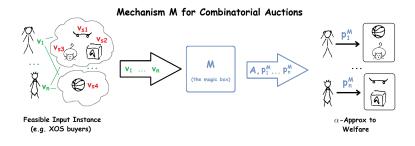
The two-sided mechanism inherits the offline/online properties of the one-sided mechanism on the buyer side and is offline on the seller side.



- Promise each seller s to get v'_s for his item, if accepts, add s to \hat{S}
- Report to M the modified buyers' valuations:

$$\hat{y}_b(T) = \sum_{s \in \overline{T}} (a_{b,\overline{T}}(s) - v'_s), \quad \text{where } \overline{T} = \operatorname{argmax}_{T^* \subseteq T \cap \hat{S}} \left\{ v_b(T^*) - \sum_{s \in T^*} v'_s
ight\}$$

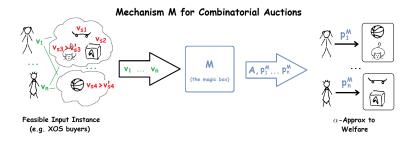
- In addition to the mechanism price, charge each buyer *b* the sum of seller samples $\sum_{s \in A_s} v'_s$ for his bundle.
- Pay sellers the promised amount (if item was allocated).



- Promise each seller s to get v'_s for his item, if accepts, add s to \hat{S}
- Report to M the modified buyers' valuations:

$$\hat{v}_b(T) = \sum_{s \in \overline{T}} (a_{b,\overline{T}}(s) - v'_s), \quad \text{where } \overline{T} = \operatorname{argmax}_{T^* \subseteq T \cap \hat{S}} \left\{ v_b(T^*) - \sum_{s \in T^*} v'_s \right\}$$

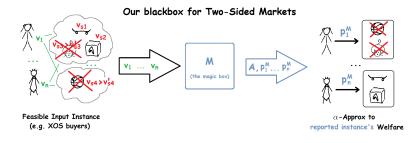
- In addition to the mechanism price, charge each buyer b the sum of seller samples ∑_{s∈A_b} v'_s for his bundle.
- Pay sellers the promised amount (if item was allocated).



- Promise each seller s to get v'_s for his item, if accepts, add s to \hat{S}
- Report to M the modified buyers' valuations:

$$\hat{v}_b(T) = \sum_{s \in \overline{T}} (a_{b,\overline{T}}(s) - v'_s), \quad \text{where } \overline{T} = \operatorname{argmax}_{T^* \subseteq T \cap \hat{S}} \left\{ v_b(T^*) - \sum_{s \in T^*} v'_s
ight\}$$

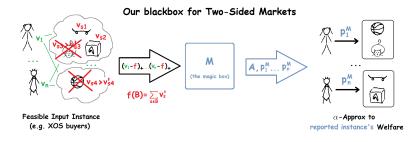
- In addition to the mechanism price, charge each buyer *b* the sum of seller samples $\sum_{s \in A_n} v'_s$ for his bundle.
- Pay sellers the promised amount (if item was allocated).



- Promise each seller s to get v'_s for his item, if accepts, add s to \hat{S}
- Report to *M* the modified buyers' valuations:

$$\widehat{V}_b(T) = \sum_{s \in \overline{T}} (a_{b,\overline{T}}(s) - v'_s), \quad \text{where } \overline{T} = \operatorname{argmax}_{T^* \subseteq T \cap \widehat{S}} \left\{ v_b(T^*) - \sum_{s \in T^*} v'_s
ight\}$$

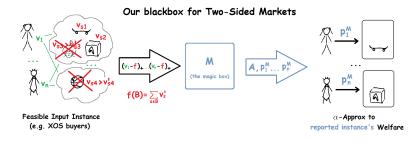
- In addition to the mechanism price, charge each buyer *b* the sum of seller samples $\sum_{s \in A_s} v'_s$ for his bundle.
- Pay sellers the promised amount (if item was allocated).



- Promise each seller s to get v'_s for his item, if accepts, add s to \hat{S}
- Report to *M* the modified buyers' valuations:

$$\hat{v}_b(T) = \sum_{s \in \overline{T}} (a_{b,\overline{T}}(s) - v'_s), \quad \text{where } \overline{T} = \operatorname{argmax}_{T^* \subseteq T \cap \hat{S}} \left\{ v_b(T^*) - \sum_{s \in T^*} v'_s \right\}$$

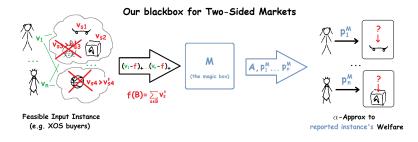
- In addition to the mechanism price, charge each buyer b the sum of seller samples \sum_{s \in A_b} v'_s for his bundle.
- Pay sellers the promised amount (if item was allocated).



- Promise each seller s to get v'_s for his item, if accepts, add s to \hat{S}
- Report to *M* the modified buyers' valuations:

$$\hat{v}_b(T) = \sum_{s \in \overline{T}} (a_{b,\overline{T}}(s) - v'_s), \quad \text{where } \overline{T} = \operatorname{argmax}_{T^* \subseteq T \cap \hat{S}} \left\{ v_b(T^*) - \sum_{s \in T^*} v'_s \right\}$$

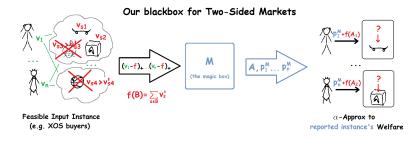
- In addition to the mechanism price, charge each buyer b the sum of seller samples \sum_{s \in A_b} v'_s for his bundle.
- Pay sellers the promised amount (if item was allocated).



- Promise each seller s to get v'_s for his item, if accepts, add s to \hat{S}
- Report to *M* the modified buyers' valuations:

$$\hat{v}_b(T) = \sum_{s \in \overline{T}} (a_{b,\overline{T}}(s) - v'_s), \quad \text{where } \overline{T} = \operatorname{argmax}_{T^* \subseteq T \cap \hat{S}} \left\{ v_b(T^*) - \sum_{s \in T^*} v'_s \right\}$$

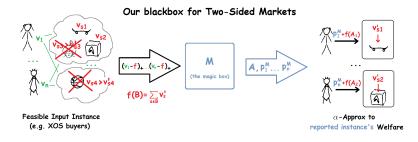
- In addition to the mechanism price, charge each buyer b the sum of seller samples \sum_{s \in A_b} v'_s for his bundle.
- Pay sellers the promised amount (if item was allocated).



- Promise each seller s to get v'_s for his item, if accepts, add s to \hat{S}
- Report to *M* the modified buyers' valuations:

$$\hat{v}_b(T) = \sum_{s \in \overline{T}} (a_{b,\overline{T}}(s) - v'_s), \quad \text{where } \overline{T} = \operatorname{argmax}_{T^* \subseteq T \cap \hat{S}} \left\{ v_b(T^*) - \sum_{s \in T^*} v'_s \right\}$$

- In addition to the mechanism price, charge each buyer b the sum of seller samples \sum_{s \in A_b} v'_s for his bundle.
- Pay sellers the promised amount (if item was allocated).



- Promise each seller s to get v'_s for his item, if accepts, add s to \hat{S}
- Report to *M* the modified buyers' valuations:

$$\hat{v}_b(T) = \sum_{s \in \overline{T}} (a_{b,\overline{T}}(s) - v'_s), \quad \text{where } \overline{T} = \text{argmax}_{T^* \subseteq T \cap \hat{S}} \left\{ v_b(T^*) - \sum_{s \in T^*} v'_s \right\}$$

- In addition to the mechanism price, charge each buyer b the sum of seller samples $\sum_{s\in A_b}v_s'$ for his bundle.
- Pay sellers the promised amount (if item was allocated).

For example, we obtain the following single-sample IR IC BB mechanisms:

• 2e for max-weight matching

Online random order on the buyer side, offline sellers. Using: [Reiffenhäuser, 2019.]

• $O((\log \log m)^2)$ for general XOS buyers Offline on the buyer and seller side.

Using: [Assadi, Kesselheim, Singla, 2021]

Regret Analysis of Bilateral Trade

Nicolò Cesa-Bianchi, Tommaso Cesari, Roberto Colomboni, Federico

Fusco, Stefano Leonardi (2021,2023)

A seller and a buyer join an online platform to trade a good or a service

- The seller wants to sell at a price greater than some value S
- The buyer wants to buy at a price smaller than some value **B**
- The values are *private* information

Goal: Design an *efficient* mechanism to intermediate between the agents that is robust to *strategic behaviour*

A seller and a buyer join an online platform to trade a good or a service

- The seller wants to sell at a price greater than some value S
- The buyer wants to buy at a price smaller than some value **B**
- The values are *private* information

Goal: Design an *efficient* mechanism to intermediate between the agents that is robust to *strategic behaviour*

- 1. Individually rational (seller and buyer should not *lose* money in the trade)
- 2. Dominant strategy incentive compatibile (Agents incentivized to be *truthful*)
- 3. Strongly budget balanced (no subsidy, no money draining)
- 4. Economically efficient (no *trading opportunity* is lost)

Theorem (Myerson and Satterthwaite, 1981) No mechanism satisfying 1 – 4 exists even in the Bayesian setting.

- 1. Individually rational (seller and buyer should not *lose* money in the trade)
- 2. Dominant strategy incentive compatibile (Agents incentivized to be *truthful*)
- 3. Strongly budget balanced (no subsidy, no money draining)
- 4. Economically efficient (no *trading opportunity* is lost)

Theorem (Myerson and Satterthwaite, 1981)

No mechanism satisfying 1 - 4 exists even in the Bayesian setting.

- 1. Individually rational (seller and buyer should not *lose* money in the trade)
- 2. Dominant strategy incentive compatibile (Agents incentivized to be *truthful*)
- 3. Strongly budget balanced (no subsidy, no money draining)
- 4. Economically efficient (no *trading opportunity* is lost)

Theorem (Myerson and Satterthwaite, 1981)

No mechanism satisfying 1 - 4 exists even in the Bayesian setting.

Theorem (Colini-Baldeschi, de Keijzer, Leonardi and Turchetta, 2016) All mechanism satisfying 1 – 3 are posted-price mechanism.

Posted price: the mechanism proposes a price without consulting the agents

One single price for buyer/seller - Strong Budget Balance

- Seller and buyer arrive with private valuations *S* and *B*
- The platform posts a price *p*, independently
- If $S \le p \le B$, then the trade happens

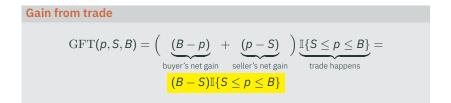
Theorem (Colini-Baldeschi, de Keijzer, Leonardi and Turchetta, 2016) All mechanism satisfying 1 – 3 are posted-price mechanism.

Posted price: the mechanism proposes a *price* without consulting the agents

One single price for buyer/seller - Strong Budget Balance

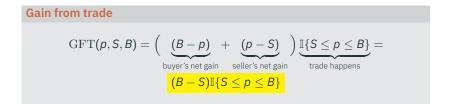
- Seller and buyer arrive with private valuations S and B
- The platform posts a price *p*, independently
- If $S \le p \le B$, then the trade happens

For *Regret Minimization*, which is an additive approximation, we can restrict to the net increase in social welfare induced by the mechanism



Goal: maximize the total gain from trade over a sequence of trades without any *preliminary* information on buyers and sellers valuations

For *Regret Minimization*, which is an additive approximation, we can restrict to the net increase in social welfare induced by the mechanism



Goal: maximize the total gain from trade over a sequence of trades without any *preliminary* information on buyers and sellers valuations

For t = 1, 2, ...

- 1. Seller and buyer arrive with hidden valuations $S_t, B_t \in [0, 1]$
- 2. The platform posts a price $p_t \in [0, 1]$
- 3. The platform observes a *feedback signal* Z_t
- 4. The seller and the buyer leave
 - Full feedback (direct revelation): $Z_t = (S_t, B_t)$
 - Two-bits feedback (posted-price): $Z_t = (\mathbb{I}\{S_t \le p_t\}, \mathbb{I}\{p_t \le B_t\})$
 - One-bit feedback (minimal): $Z_t = \mathbb{I}\{S_t \le p_t \le B_t\}$

The price p_t is determined by Z_1, \ldots, Z_{t-1} and possibly by internal randomization

Different generation models of the sequence (*S*₁, *B*₁), (*S*₂, *B*₂), . . . of valuations

- · Adversarial setting: unknown deterministic sequence
- Stochasthic setting: *i.i.d.* random variables from an unknown joint distribution

For t = 1, 2, ...

- 1. Seller and buyer arrive with hidden valuations $S_t, B_t \in [0, 1]$
- 2. The platform posts a price $p_t \in [0, 1]$
- 3. The platform observes a *feedback signal* Z_t
- 4. The seller and the buyer leave
 - Full feedback (direct revelation): $Z_t = (S_t, B_t)$
 - Two-bits feedback (posted-price): $Z_t = (\mathbb{I}\{S_t \le p_t\}, \mathbb{I}\{p_t \le B_t\})$
 - One-bit feedback (minimal): $Z_t = \mathbb{I}\{S_t \le p_t \le B_t\}$

The price p_t is determined by Z_1, \ldots, Z_{t-1} and possibly by internal randomization

- Adversarial setting: unknown deterministic sequence
- Stochasthic setting: *i.i.d.* random variables from an unknown joint distribution

For t = 1, 2, ...

- 1. Seller and buyer arrive with hidden valuations $S_t, B_t \in [0, 1]$
- 2. The platform posts a price $p_t \in [0, 1]$
- 3. The platform observes a *feedback signal* Z_t
- 4. The seller and the buyer leave
 - Full feedback (direct revelation): $Z_t = (S_t, B_t)$
 - Two-bits feedback (posted-price): $Z_t = (\mathbb{I}\{S_t \le p_t\}, \mathbb{I}\{p_t \le B_t\})$
 - One-bit feedback (minimal): $Z_t = \mathbb{I}\{S_t \le p_t \le B_t\}$

The price p_t is determined by Z_1, \ldots, Z_{t-1} and possibly by internal randomization

- Adversarial setting: unknown deterministic sequence
- Stochasthic setting: *i.i.d.* random variables from an unknown joint distribution

For t = 1, 2, ...

- 1. Seller and buyer arrive with hidden valuations $S_t, B_t \in [0, 1]$
- 2. The platform posts a price $p_t \in [0, 1]$
- 3. The platform observes a *feedback signal* Z_t
- 4. The seller and the buyer leave
 - Full feedback (direct revelation): $Z_t = (S_t, B_t)$
 - Two-bits feedback (posted-price): $Z_t = (\mathbb{I}\{S_t \le p_t\}, \mathbb{I}\{p_t \le B_t\})$
 - One-bit feedback (minimal): $Z_t = \mathbb{I}\{S_t \le p_t \le B_t\}$

The price p_t is determined by Z_1, \ldots, Z_{t-1} and possibly by internal randomization

- · Adversarial setting: unknown deterministic sequence
- Stochasthic setting: *i.i.d.* random variables from an unknown joint distribution

For t = 1, 2, ...

- 1. Seller and buyer arrive with hidden valuations $S_t, B_t \in [0, 1]$
- 2. The platform posts a price $p_t \in [0, 1]$
- 3. The platform observes a *feedback signal* Z_t
- 4. The seller and the buyer leave
 - Full feedback (direct revelation): $Z_t = (S_t, B_t)$
 - Two-bits feedback (posted-price): $Z_t = (\mathbb{I}\{S_t \le p_t\}, \mathbb{I}\{p_t \le B_t\})$
 - One-bit feedback (minimal): $Z_t = \mathbb{I}\{S_t \le p_t \le B_t\}$

The price p_t is determined by Z_1, \ldots, Z_{t-1} and possibly by internal randomization

- · Adversarial setting: unknown deterministic sequence
- Stochasthic setting: *i.i.d.* random variables from an unknown joint distribution

For t = 1, 2, ...

- 1. Seller and buyer arrive with hidden valuations $S_t, B_t \in [0, 1]$
- 2. The platform posts a price $p_t \in [0, 1]$
- 3. The platform observes a *feedback signal* Z_t
- 4. The seller and the buyer leave
 - Full feedback (direct revelation): $Z_t = (S_t, B_t)$
 - Two-bits feedback (posted-price): $Z_t = (\mathbb{I}\{S_t \le p_t\}, \mathbb{I}\{p_t \le B_t\})$
 - One-bit feedback (minimal): $Z_t = \mathbb{I}\{S_t \le p_t \le B_t\}$

The price p_t is determined by Z_1, \ldots, Z_{t-1} and possibly by internal randomization

- · Adversarial setting: unknown deterministic sequence
- Stochasthic setting: *i.i.d.* random variables from an unknown joint distribution

For t = 1, 2, ...

- 1. Seller and buyer arrive with hidden valuations $S_t, B_t \in [0, 1]$
- 2. The platform posts a price $p_t \in [0, 1]$
- 3. The platform observes a *feedback signal* Z_t
- 4. The seller and the buyer leave
 - Full feedback (direct revelation): $Z_t = (S_t, B_t)$
 - Two-bits feedback (posted-price): $Z_t = (\mathbb{I}\{S_t \le p_t\}, \mathbb{I}\{p_t \le B_t\})$
 - One-bit feedback (minimal): $Z_t = \mathbb{I}\{S_t \le p_t \le B_t\}$

The price p_t is determined by Z_1, \ldots, Z_{t-1} and possibly by internal randomization

- Adversarial setting: unknown deterministic sequence
- Stochasthic setting: *i.i.d.* random variables from an unknown joint distribution

Compete against best fixed-price strategy

$$R_{T} = \max_{\rho \in [0,1]} \mathbb{E} \left[\sum_{t=1}^{T} \operatorname{GFT}(\rho, S_{t}, B_{t}) - \sum_{t=1}^{T} \operatorname{GFT}(\rho_{t}, S_{t}, B_{t}) \right]$$

Our Contribution: Full characterization of the different *regret regimes* for different combinations of:

- Feedback Models
- Sequence generation Models

Given any randomized algorithm, we construct a deterministic sequence $(S_1, B_1), (S_2, B_2), \ldots$ of valuations such that

1. The probability that $p_t \in [S_t, B_t]$ is at most $\frac{1}{2}$

2. There exists
$$p^* \in \bigcap [S_t, B_t]$$

3.
$$B_t - S_t > \frac{1-\varepsilon}{2}$$

This implies $R_T \geq \frac{1-\varepsilon}{4} \cdot T = \Omega(T)$ even under full feedback

Given any randomized algorithm, we construct a deterministic sequence $(S_1, B_1), (S_2, B_2), \ldots$ of valuations such that

1. The probability that $p_t \in [S_t, B_t]$ is at most $\frac{1}{2}$

2. There exists
$$p^* \in \bigcap_{t>1} [S_t, B_t]$$

3. $B_t - S_t \geq \frac{1-\varepsilon}{2}$

This implies $R_T \geq \frac{1-\varepsilon}{4} \cdot T = \Omega(T)$ even under *full feedback*

Given any randomized algorithm, we construct a deterministic sequence $(S_1, B_1), (S_2, B_2), \ldots$ of valuations such that

1. The probability that $p_t \in [S_t, B_t]$ is at most $\frac{1}{2}$

2. There exists
$$p^* \in \bigcap_{t \ge 1} [S_t, B_t]$$

3.
$$B_t - S_t \geq \frac{1-\varepsilon}{2}$$

This implies $R_T \ge \frac{1-\varepsilon}{4} \cdot T = \Omega(T)$ even under *full feedback*

Given any randomized algorithm, we construct a deterministic sequence $(S_1, B_1), (S_2, B_2), \ldots$ of valuations such that

1. The probability that $p_t \in [S_t, B_t]$ is at most $\frac{1}{2}$

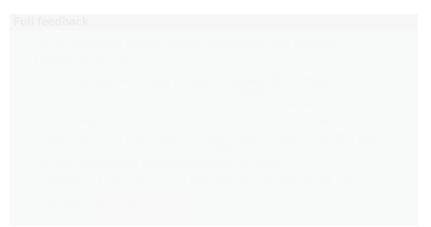
2. There exists
$$p^* \in \bigcap_{t \ge 1} [S_t, B_t]$$

3.
$$B_t - S_t \geq \frac{1-\varepsilon}{2}$$

This implies $R_T \ge \frac{1-\varepsilon}{4} \cdot T = \Omega(T)$ even under *full feedback*

	Stochastic	Adversarial
Full		<u>Ω(</u> <i>T</i>)
Two-bits		Т

 $p^* \in \operatorname*{arg\,max}_{p \in [0,1]} \mathbb{E}\left[\operatorname{GFT}(p)\right]$



 $p^* \in \operatorname*{arg\,max}_{p \in [0,1]} \mathbb{E}\left[\operatorname{GFT}(p)\right]$

- (S_t, B_t) observed in each round, so algorithm can compute $GFT(p, S_t, B_t), \forall p$
- We can run follow the best price $p_t = \underset{p \in [0,1]}{\arg \max} \underbrace{\mathbb{E}_t[GFT(p)]}_{p \in [0,1]}$
- For any sequence $(S_1, B_1), \dots, (S_{t-1}, B_{t-1})$ of valuations $\mathbb{E}[\operatorname{GFT}(p^*)] - \mathbb{E}[\operatorname{GFT}(p_t)] \leq 2 \max_{\rho \in [0,1]} |\mathbb{E}[\operatorname{GFT}(p)] - \widehat{\mathbb{E}}_t[\operatorname{GFT}(p)]$
- We can use *uniform convergence* over the class $\{GFT(p,\cdot,\cdot): 0 \le p \le 1\}$ of real-valued functions on $[0,1]^2$
- This gives $R_T = \mathcal{O}(\sqrt{T \ln T})$

 $p^* \in \operatorname*{arg\,max}_{p \in [0,1]} \mathbb{E}\left[\operatorname{GFT}(p)\right]$

- (S_t, B_t) observed in each round, so algorithm can compute $GFT(p, S_t, B_t), \forall p$
- We can run follow the best price $p_t = \underset{p \in [0,1]}{\arg \max} \underbrace{\widehat{\mathbb{E}}_t[GFT(p)]}_{empiricalGFT}$
- For any sequence $(S_1, B_1), \dots, (S_{t-1}, B_{t-1})$ of valuations $\mathbb{E}[\operatorname{GFT}(p^*)] - \mathbb{E}[\operatorname{GFT}(p_t)] \leq 2 \max_{p \in [0,1]} |\mathbb{E}[\operatorname{GFT}(p)] - \widehat{\mathbb{E}}_t[\operatorname{GFT}(p)]$
- We can use *uniform convergence* over the class $\{GFT(p,\cdot,\cdot): 0 \le p \le 1\}$ of real-valued functions on $[0,1]^2$
- This gives $R_T = \mathcal{O}(\sqrt{T \ln T})$

 $p^* \in \operatorname*{arg\,max}_{p \in [0,1]} \mathbb{E}\left[\operatorname{GFT}(p)\right]$

- (S_t, B_t) observed in each round, so algorithm can compute $GFT(p, S_t, B_t), \forall p$
- We can run follow the best price $p_t = \underset{p \in [0,1]}{\arg \max} \underbrace{\widehat{\mathbb{E}}_t \left[\operatorname{GFT}(p) \right]}_{\text{empirical} \operatorname{GFT}}$
- For any sequence $(S_1, B_1), \dots, (S_{t-1}, B_{t-1})$ of valuations $\mathbb{E}[\operatorname{GFT}(p^*)] - \mathbb{E}[\operatorname{GFT}(p_t)] \leq 2 \max_{p \in [0,1]} \left| \mathbb{E}[\operatorname{GFT}(p)] - \widehat{\mathbb{E}}_t[\operatorname{GFT}(p)] \right|$
- We can use *uniform convergence* over the class $\{GFT(p, \cdot, \cdot) : 0 \le p \le 1\}$ of real-valued functions on $[0, 1]^2$
- This gives $R_T = \mathcal{O}(\sqrt{T \ln T})$

 $p^* \in \operatorname*{arg\,max}_{p \in [0,1]} \mathbb{E}\left[\operatorname{GFT}(p)\right]$

- (S_t, B_t) observed in each round, so algorithm can compute $GFT(p, S_t, B_t), \forall p$
- We can run *follow the best price* $p_t = \underset{p \in [0,1]}{\operatorname{arg max}} \underbrace{\widehat{\mathbb{E}}_t \left[\operatorname{GFT}(p) \right]}_{empirical \operatorname{GFT}}$
- For any sequence $(S_1, B_1), \dots, (S_{t-1}, B_{t-1})$ of valuations $\mathbb{E}[\operatorname{GFT}(p^*)] - \mathbb{E}[\operatorname{GFT}(p_t)] \leq 2 \max_{p \in [0,1]} \left| \mathbb{E}[\operatorname{GFT}(p)] - \widehat{\mathbb{E}}_t[\operatorname{GFT}(p)] \right|$
- We can use *uniform convergence* over the class $\{GFT(p,\cdot,\cdot): 0 \le p \le 1\}$ of real-valued functions on $[0,1]^2$
- This gives $R_T = \mathcal{O}(\sqrt{T \ln T})$

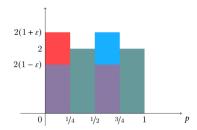
 $p^* \in \operatorname*{arg\,max}_{p \in [0,1]} \mathbb{E}\left[\operatorname{GFT}(p)\right]$

- (S_t, B_t) observed in each round, so algorithm can compute $GFT(p, S_t, B_t), \forall p$
- We can run *follow the best price* $p_t = \underset{p \in [0,1]}{\operatorname{arg max}} \underbrace{\widehat{\mathbb{E}}_t \left[\operatorname{GFT}(p) \right]}_{empirical \operatorname{GFT}}$
- For any sequence $(S_1, B_1), \dots, (S_{t-1}, B_{t-1})$ of valuations $\mathbb{E}[\operatorname{GFT}(p^*)] - \mathbb{E}[\operatorname{GFT}(p_t)] \leq 2 \max_{p \in [0,1]} \left| \mathbb{E}[\operatorname{GFT}(p)] - \widehat{\mathbb{E}}_t[\operatorname{GFT}(p)] \right|$
- We can use *uniform convergence* over the class $\{GFT(p,\cdot,\cdot): 0 \le p \le 1\}$ of real-valued functions on $[0,1]^2$

• This gives
$$R_T = \mathcal{O}(\sqrt{T \ln T})$$

 $R_T = \Omega(\sqrt{T})$ even when seller and buyer valuations are *independent* with *bounded densities*.

Proof: reduction from experts



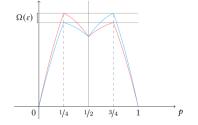


Figure: Seller distribution in green, buyer distribution either red or blue

Figure: Gains from trade of the two scenarios

	Stochastic	Adversarial	
Full	$\Theta(\sqrt{T})$	<u>Ω(</u> 7)	
Two-bits		Т	

- $\mathbb{I}{S_t \leq p_t}$ and $\mathbb{I}{p_t \leq B_t}$ observed at each step
- There exist independent valuations (S, B) with unbounded density such that $R_T = \Omega(T)$. Needle in a haystack phenomenon
- There exist correlated valuations (S, B) with bounded density such that $R_T = \Omega(T)$. Indistinguishable distributions

- $\mathbb{I}{S_t \leq p_t}$ and $\mathbb{I}{p_t \leq B_t}$ observed at each step
- There exist independent valuations (S, B) with unbounded density such that $R_T = \Omega(T)$. Needle in a haystack phenomenon
- There exist correlated valuations (S, B) with bounded density such that $R_T = \Omega(T)$. Indistinguishable distributions

	Stochastic			Adversarial	
	iid	+indep.	+bounded	+indep. & bounded	adv
Full	$\mathcal{O}(\sqrt{T})$	\sqrt{T}	\sqrt{T}	$\Omega(\sqrt{T})$	<u>Ω(7)</u>
Two-bits	Т	$\Omega(T)$	<u>Ω(</u> <i>T</i>)		Т

$$\mathbb{E}\left[\operatorname{GFT}(\rho)\right] = (B - S)\mathbb{I}\{S \le \rho \le B\}$$
$$= \int_0^{\rho} \mathbb{P}\left(S \le x, \, \rho \le B\right) \mathrm{d}x + \int_{\rho}^{1} \mathbb{P}\left(S \le \rho, \, x \le B\right) \mathrm{d}x$$

Using independence:

$$\mathbb{E}\left[\operatorname{GFT}(p)\right] = \mathbb{P}(p \leq B) \int_0^p \mathbb{P}(S \leq x) \, \mathrm{d}x + \mathbb{P}(S \leq p) \int_p^1 \mathbb{P}(x \leq B) \, \mathrm{d}x$$

If *U* is uniform over [0, 1] and independent on *S* and *B*, then

 $\mathbb{E}\left[\operatorname{GFT}(\rho)\right] = \mathbb{P}(\rho \leq B)\mathbb{P}(S \leq U \leq \rho) + \mathbb{P}(S \leq \rho)\mathbb{P}(\rho \leq U \leq B)$

It is possible to estimate the blue terms via sampling!

$$\mathbb{E}\left[\operatorname{GFT}(\rho)\right] = (B - S)\mathbb{I}\{S \le \rho \le B\}$$
$$= \int_0^{\rho} \mathbb{P}\left(S \le x, \, \rho \le B\right) \mathrm{d}x + \int_{\rho}^{1} \mathbb{P}\left(S \le \rho, \, x \le B\right) \mathrm{d}x$$

Using independence:

$$\mathbb{E}\left[\operatorname{GFT}(p)\right] = \mathbb{P}(p \leq B) \int_0^p \mathbb{P}(S \leq x) \, \mathrm{d}x + \mathbb{P}(S \leq p) \int_p^1 \mathbb{P}(x \leq B) \, \mathrm{d}x$$

If U is uniform over [0, 1] and independent on S and B, then

 $\mathbb{E}\left[\operatorname{GFT}(p)\right] = \mathbb{P}(p \leq B)\mathbb{P}(S \leq U \leq p) + \mathbb{P}(S \leq p)\mathbb{P}(p \leq U \leq B)$

It is possible to estimate the blue terms via sampling!

1. ε -grid of prices over [0, 1]

- 2. Post random prices to estimate $\mathbb{P}(S \le U \le p)$ and $\mathbb{P}(p \le U \le B)$ for each p in the ε -grid
- 3. Bandits: built a uniform grid and play a bandit algorithm on the points of the grid replacing the blue terms with their *approximations*.

$$R_T \leq \underbrace{\frac{1}{\varepsilon^2} \ln \frac{1}{\varepsilon}}_{\text{random expl.}} + \underbrace{\varepsilon T}_{\text{approx. error}} + \underbrace{\sqrt{T/\varepsilon}}_{\text{bandit regret}} \text{ for } \varepsilon = T^{-1/3}$$

- 1. ε -grid of prices over [0, 1]
- Post random prices to estimate P(S ≤ U ≤ p) and P(p ≤ U ≤ B) for each p in the ε-grid
- 3. Bandits: built a uniform grid and play a bandit algorithm on the points of the grid replacing the blue terms with their *approximations*.

$$R_T \leq \underbrace{\frac{1}{\varepsilon^2} \ln \frac{1}{\varepsilon}}_{\text{random expl.}} + \underbrace{\varepsilon T}_{\text{approx. error}} + \underbrace{\sqrt{T/\varepsilon}}_{\text{bandit regret}} \text{ for } \varepsilon = T^{-1/3}$$

- 1. ε -grid of prices over [0, 1]
- Post random prices to estimate P(S ≤ U ≤ p) and P(p ≤ U ≤ B) for each p in the ε-grid
- 3. Bandits: built a uniform grid and play a bandit algorithm on the points of the grid replacing the blue terms with their *approximations*.

$$R_T \leq \underbrace{\frac{1}{\varepsilon^2} \ln \frac{1}{\varepsilon}}_{\text{random expl.}} + \underbrace{\varepsilon T}_{\text{approx. error}} + \underbrace{\sqrt{T/\varepsilon}}_{\text{bandit regret}} \text{ for } \varepsilon = T^{-1/3}$$

- 1. ε -grid of prices over [0, 1]
- Post random prices to estimate P(S ≤ U ≤ p) and P(p ≤ U ≤ B) for each p in the ε-grid
- 3. Bandits: built a uniform grid and play a bandit algorithm on the points of the grid replacing the blue terms with their *approximations*.

$$R_T \leq \underbrace{\frac{1}{\varepsilon^2} \ln \frac{1}{\varepsilon}}_{\text{random expl.}} + \underbrace{\varepsilon T}_{\text{approx. error}} + \underbrace{\sqrt{T/\varepsilon}}_{\text{bandit regret}} \text{ for } \varepsilon = T^{-1/3}$$

- 1. ε -grid of prices over [0, 1]
- Post random prices to estimate P(S ≤ U ≤ p) and P(p ≤ U ≤ B) for each p in the ε-grid
- 3. Bandits: built a uniform grid and play a bandit algorithm on the points of the grid replacing the blue terms with their *approximations*.

- 1. ε -grid of prices over [0, 1]
- Post random prices to estimate P(S ≤ U ≤ p) and P(p ≤ U ≤ B) for each p in the ε-grid
- 3. Bandits: built a uniform grid and play a bandit algorithm on the points of the grid replacing the blue terms with their *approximations*.

$$R_{T} \leq \underbrace{\frac{1}{\varepsilon^{2}} \ln \frac{1}{\varepsilon}}_{\text{random expl.}} + \underbrace{\varepsilon T}_{\text{approx. error}} + \underbrace{\sqrt{T/\varepsilon}}_{\text{bandit regret}} = \mathcal{O}(T^{2/3} \ln T) \text{ for } \varepsilon = T^{-1/3}$$

	Stochastic			Adversarial	
	iid	+indep.	+bounded	+indep. & bounded	adv
Full	$\mathcal{O}(\sqrt{T})$	\sqrt{T}	\sqrt{T}	$\Omega(\sqrt{T})$	$\Omega(T)$
Two-bits	Т	$\Omega(T)$	<u>Ω(</u> <i>T</i>)	$\Theta(T^{2/3})$	Т

Stochastic model

- Posted price mechanisms require buyer/seller independence and smooth distributions.
- Two-bit feedback is required.

Weaker adversarial models

Smooth Adversary

Definition (Haghtalab, Roughgarden, 2021)

Let X be a domain supporting a uniform distribution ν . A measure μ on X is said to be σ -smooth if for all measurable subsets $A \subseteq X$, we have $\mu(A) \leq \frac{\nu(A)}{\sigma}$.

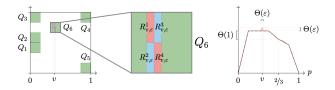
Weak Budget Balance Mechanisms (two prices) are strictly superior to Strong Budget Balance Mechanisms (one price) in the Smooth Adversarial setting

	Full Feedback	Two-bit Feedback	One-bit Feedback
Single Price	$\tilde{O}(\sqrt{T})$	$\Omega(T)$	$\Omega(T)$
Two Prices	$\Omega(\sqrt{T})$	$\Omega(T^{3/4})$	$\tilde{O}(T^{3/4})$

[Cesa-Bianchi, Cesari, Colomboni, Fusco, Leonardi, COLT 2023]

A family of σ -smooth adversaries:

- The valuations (*S*_t, *B*_t) are drawn i.i.d. according to a fixed distribution, obliviously of the actions of the learner.
- We build this family of distributions by suitable perturbations over a base distribution, whose support is given by the union of the six squares Q_1, \ldots, Q_6 .



The $\Omega(T^{3/4})$ Lower Bound

- We consider a perturbation such that the sequence of seller/buyer evaluations (S, B), (S_1, B_1) , (S_2, B_2) , ... is i.i.d. and it is σ -smooth, for all $\sigma \leq 1/9$.
- Finding the best of *K* arms requires to pull each arm $\Omega(\frac{1}{2})$ time with no guarantee of any reward. Alternatively, the algorithm can exploit a random arm at each step by incurring a regret.
- The lower bound is $\Omega\left(\min\left(\frac{\kappa}{\epsilon^2}, \epsilon T\right)\right)$ to obtaining with $K = T^{1/4}$ and $\epsilon = T^{-1/4}$ minimax regret $\Omega(T^{3/4})$

Conclusions:

- Limited information, even one single sample, can be sufficient to provide near optimal approximation mechanisms.
- Efficient learning of mechanisms through repeated interaction with the agents is possible in some settings.

Open problems:

- learning in strategic interaction between agents with carry over between rounds.
- Budget balance along the whole time horizon.
- Fair division of the gain from trade between buyers and sellers across time.

Thanks!