
Regret Matching+:

Instability, average- and last-iterate convergence in games

Julien Grand-Clément, Assistant Professor, ISOM Department, HEC Paris

Joint with Yang Cai1, Gabriele Farina2,Christian Kroer3, Chung-Wei Lee4,

Haipeng Luo4, Weiqiang Zheng1

1 Yale, 2 MIT, 3 Columbia, 4 USC

TL;DR

What is this talk about?

• Regret minimization: prevalent for solving games

• Regret Matching+ (RM+): regret minimizer used in all poker AI

breakthroughs, widely outperform other methods in practice...

• ... despite “weak” theoretical guarantees:

• RM+:O(1/
√
T) convergence to Nash equilibrium

• State-of-the-art: O(1/T) convergence to NE

What is missing in the literature?

1. Gap between empirical vs. theoretical performances of RM+

2. Can RM+-based algorithms achieve O(1/T) average convergence?

1

TL;DR

What is this talk about?

• Regret minimization: prevalent for solving games

• Regret Matching+ (RM+): regret minimizer used in all poker AI

breakthroughs, widely outperform other methods in practice...

• ... despite “weak” theoretical guarantees:

• RM+:O(1/
√
T) convergence to Nash equilibrium

• State-of-the-art: O(1/T) convergence to NE

What is missing in the literature?

1. Gap between empirical vs. theoretical performances of RM+

2. Can RM+-based algorithms achieve O(1/T) average convergence?

1

TL;DR

Our contributions:

1. We show a surprising “failure mode” of RM+, due to its instability.

2. We provide two fixes: restarting and smoothing.

⇒ New algorithms for game solving:

·O(1/T) average convergence

·O(1/
√
T) best-iterate convergence, last-iterate convergence

Why is this interesting?

1. Reconcile RM+-based methods with state-of-the-art th. guarantees

2. Several questions remain open: advantages of alternation, linear

averaging, the case of extensive-form games, etc.

2

TL;DR

Our contributions:

1. We show a surprising “failure mode” of RM+, due to its instability.

2. We provide two fixes: restarting and smoothing.

⇒ New algorithms for game solving:

·O(1/T) average convergence

·O(1/
√
T) best-iterate convergence, last-iterate convergence

Why is this interesting?

1. Reconcile RM+-based methods with state-of-the-art th. guarantees

2. Several questions remain open: advantages of alternation, linear

averaging, the case of extensive-form games, etc.

2

TL;DR

Presentation based on:

• Regret Matching+: Instability and Fast Convergence in Games,

Farina, G.-C., Kroer, Lee and Luo, NeurIPS 2023.

• Last-iterate convergence of regret matching-based algorithms in

games, Cai, Farina, G.-C., Kroer, Lee, Luo, Zheng, under review.

3

Outline for today:

1. Game solving via regret minimization

2. Regret Matching+ (RM+) and instability

3. Improved average convergence after stabilizing RM+

4. Last-iterate convergence after stabilizing RM+

4

Regret minimization: for t = 1, ...,T ,

1. Choose a strategy xt ∈ ∆n based on past observations

2. Observe the loss vector `t ∈ Rn

3. Suffer an instantaneous loss 〈`t , xt〉 ∈ R

The regret RegT at period T is

RegT := max
a∈{1,...,n}

T∑
t=1

〈`t , xt〉 −
T∑
t=1

`ta.

A regret minimizer constructs a sequence of decisions x1, x2, ... in ∆n

such that for any sequence of losses `1, `2, ..., we have

lim
T→+∞

RegT

T
= 0.

Why do we care? Online resource allocation [BLM22], auctions [BG19],

game solving: poker [BBJT15], Go [SHM+16]...

5

Regret minimization: for t = 1, ...,T ,

1. Choose a strategy xt ∈ ∆n based on past observations

2. Observe the loss vector `t ∈ Rn

3. Suffer an instantaneous loss 〈`t , xt〉 ∈ R

The regret RegT at period T is

RegT := max
a∈{1,...,n}

T∑
t=1

〈`t , xt〉 −
T∑
t=1

`ta.

A regret minimizer constructs a sequence of decisions x1, x2, ... in ∆n

such that for any sequence of losses `1, `2, ..., we have

lim
T→+∞

RegT

T
= 0.

Why do we care? Online resource allocation [BLM22], auctions [BG19],

game solving: poker [BBJT15], Go [SHM+16]...

5

Regret minimization: for t = 1, ...,T ,

1. Choose a strategy xt ∈ ∆n based on past observations

2. Observe the loss vector `t ∈ Rn

3. Suffer an instantaneous loss 〈`t , xt〉 ∈ R

The regret RegT at period T is

RegT := max
a∈{1,...,n}

T∑
t=1

〈`t , xt〉 −
T∑
t=1

`ta.

A regret minimizer constructs a sequence of decisions x1, x2, ... in ∆n

such that for any sequence of losses `1, `2, ..., we have

lim
T→+∞

RegT

T
= 0.

Why do we care? Online resource allocation [BLM22], auctions [BG19],

game solving: poker [BBJT15], Go [SHM+16]...

5

Regret minimization: for t = 1, ...,T ,

1. Choose a strategy xt ∈ ∆n based on past observations

2. Observe the loss vector `t ∈ Rn

3. Suffer an instantaneous loss 〈`t , xt〉 ∈ R

The regret RegT at period T is

RegT := max
a∈{1,...,n}

T∑
t=1

〈`t , xt〉 −
T∑
t=1

`ta.

A regret minimizer constructs a sequence of decisions x1, x2, ... in ∆n

such that for any sequence of losses `1, `2, ..., we have

lim
T→+∞

RegT

T
= 0.

Why do we care?

Online resource allocation [BLM22], auctions [BG19],

game solving: poker [BBJT15], Go [SHM+16]...

5

Regret minimization: for t = 1, ...,T ,

1. Choose a strategy xt ∈ ∆n based on past observations

2. Observe the loss vector `t ∈ Rn

3. Suffer an instantaneous loss 〈`t , xt〉 ∈ R

The regret RegT at period T is

RegT := max
a∈{1,...,n}

T∑
t=1

〈`t , xt〉 −
T∑
t=1

`ta.

A regret minimizer constructs a sequence of decisions x1, x2, ... in ∆n

such that for any sequence of losses `1, `2, ..., we have

lim
T→+∞

RegT

T
= 0.

Why do we care? Online resource allocation [BLM22], auctions [BG19],

game solving: poker [BBJT15], Go [SHM+16]...

5

Regret minimization can be used to solve matrix games:

min
x∈∆n

max
y∈∆m

〈x ,Ay〉.

Duality gap of a pair (x̂ , ŷ):

DualityGap(x̂ , ŷ) = max
y∈∆m

〈x̂ ,Ay〉 − min
x∈∆n

〈x ,Aŷ〉.

DualityGap(x̂ , ŷ) ≤ ε⇒ (x̂ , ŷ) is ε-Nash equilibrium

Folk Theorem [FS99]

Assume that each player of a matrix game runs a regret minimizer with

loss `t equal to their own expected cost.

Then the average of the iterates is an approximate Nash equilibrium of

the game, with a duality gap equal to

RegT1 + RegT2
T

.

6

Regret minimization can be used to solve matrix games:

min
x∈∆n

max
y∈∆m

〈x ,Ay〉.

Duality gap of a pair (x̂ , ŷ):

DualityGap(x̂ , ŷ) = max
y∈∆m

〈x̂ ,Ay〉 − min
x∈∆n

〈x ,Aŷ〉.

DualityGap(x̂ , ŷ) ≤ ε⇒ (x̂ , ŷ) is ε-Nash equilibrium

Folk Theorem [FS99]

Assume that each player of a matrix game runs a regret minimizer with

loss `t equal to their own expected cost.

Then the average of the iterates is an approximate Nash equilibrium of

the game, with a duality gap equal to

RegT1 + RegT2
T

.

6

Rock Paper Scissors:

min
x∈∆3

max
y∈∆3

〈x ,Ay〉,A =

 0 −1 1

1 0 −1

−1 1 0



x0 = P(play rock), x1 = P(play paper), x3 = P(play scissors), etc.

Unique Nash Eq.: x? = y? =
(

1
3 ,

1
3 ,

1
3

)
.

Losses for x-player: Ay , loss for y -player: −A>x .

7

Rock Paper Scissors:

min
x∈∆3

max
y∈∆3

〈x ,Ay〉,A =

 0 −1 1

1 0 −1

−1 1 0


Run Regret Matching+ (TBD) to generate x1, ..., xT and y1, ..., yT .

Average iterates:

x̄T =
1

T

T∑
t=1

xt , ȳt =
1

T

T∑
t=1

yt

0.32 0.33 0.34
x[0]

0.33

0.34

0.35

x[
1]

Average strategy of the x-player

0.33 0.34 0.35
y[0]

0.32

0.33

y[
1]

Average strategy of the y-player

Figure 1: Running Regret Matching+ for 500 iterations.

8

Rock Paper Scissors:

min
x∈∆3

max
y∈∆3

〈x ,Ay〉,A =

 0 −1 1

1 0 −1

−1 1 0


Run Regret Matching+ (TBD) to generate x1, ..., xT and y1, ..., yT .

Average iterates:

x̄T =
1

T

T∑
t=1

xt , ȳt =
1

T

T∑
t=1

yt

0.32 0.33 0.34
x[0]

0.33

0.34

0.35

x[
1]

Average strategy of the x-player

0.33 0.34 0.35
y[0]

0.32

0.33
y[

1]

Average strategy of the y-player

Figure 1: Running Regret Matching+ for 500 iterations. 8

Folk Theorem [FS99]

Assume that each player of a matrix game runs a regret minimizer with

loss `t equal to their own expected cost.

Then the average of the iterates is an approximate Nash equilibrium of

the game, with a duality gap equal to

RegT1 + RegT2
T

.

1. If ∀ player i ,RegTi = O
(√

T
)

then convergence in O
(

1/
√
T
)

.

2. If RegT1 + RegT2 = Õ (1) then convergence in Õ (1/T).

This is the theoretical state-of-the-art [RS13, SALS15, DFG21]...

... but the empirical state-of-the-art (for poker AI) is a regret

minimizer with “only” O(1/
√
T) convergence guarantees.

9

Folk Theorem [FS99]

Assume that each player of a matrix game runs a regret minimizer with

loss `t equal to their own expected cost.

Then the average of the iterates is an approximate Nash equilibrium of

the game, with a duality gap equal to

RegT1 + RegT2
T

.

1. If ∀ player i ,RegTi = O
(√

T
)

then convergence in O
(

1/
√
T
)

.

2. If RegT1 + RegT2 = Õ (1) then convergence in Õ (1/T).

This is the theoretical state-of-the-art [RS13, SALS15, DFG21]...

... but the empirical state-of-the-art (for poker AI) is a regret

minimizer with “only” O(1/
√
T) convergence guarantees.

9

Folk Theorem [FS99]

Assume that each player of a matrix game runs a regret minimizer with

loss `t equal to their own expected cost.

Then the average of the iterates is an approximate Nash equilibrium of

the game, with a duality gap equal to

RegT1 + RegT2
T

.

1. If ∀ player i ,RegTi = O
(√

T
)

then convergence in O
(

1/
√
T
)

.

2. If RegT1 + RegT2 = Õ (1) then convergence in Õ (1/T).

This is the theoretical state-of-the-art [RS13, SALS15, DFG21]...

... but the empirical state-of-the-art (for poker AI) is a regret

minimizer with “only” O(1/
√
T) convergence guarantees.

9

Folk Theorem [FS99]

Assume that each player of a matrix game runs a regret minimizer with

loss `t equal to their own expected cost.

Then the average of the iterates is an approximate Nash equilibrium of

the game, with a duality gap equal to

RegT1 + RegT2
T

.

1. If ∀ player i ,RegTi = O
(√

T
)

then convergence in O
(

1/
√
T
)

.

2. If RegT1 + RegT2 = Õ (1) then convergence in Õ (1/T).

This is the theoretical state-of-the-art [RS13, SALS15, DFG21]...

... but the empirical state-of-the-art (for poker AI) is a regret

minimizer with “only” O(1/
√
T) convergence guarantees.

9

Regret Matching+ (RM+) [TBJB15]

Start at R1 = 0 ∈ Rn
+, then

xt = Rt/‖Rt‖1

Rt+1 = [Rt + 〈`t , xt〉1− `t]
+

ℝ2−
0

Rt

ℝ2+

Δ2

10

Regret Matching+ (RM+) [TBJB15]

Start at R1 = 0 ∈ Rn
+, then

xt = Rt/‖Rt‖1

Rt+1 = [Rt + 〈`t , xt〉1− `t]
+

ℝ2−
0

Rt

ℝ2+

Δ2

xt

11

Regret Matching+ (RM+) [TBJB15]

Start at R1 = 0 ∈ Rn
+, then

xt = Rt/‖Rt‖1

Rt+1 = [Rt + 〈`t , xt〉1− `t]
+

ℝ2−
0

Rt

ℝ2+

Δ2

xt [Rt + ⟨ℓt, xt⟩1 − ℓt]+

12

Regret Matching+ (RM+) [TBJB15]

Start at R1 = 0 ∈ Rn
+, then

xt = Rt/‖Rt‖1

Rt+1 = [Rt + 〈`t , xt〉1− `t]
+

ℝ2−
0

Rt

ℝ2+

Δ2

xt Rt+1

13

Regret Matching+ (RM+) [TBJB15]

Start at R1 = 0 ∈ Rn
+, then

xt = Rt/‖Rt‖1

Rt+1 = [Rt + 〈`t , xt〉1− `t]
+

ℝ2−
0

Rt

ℝ2+

Δ2

xt Rt+1

14

Why is this called Regret Matching+?

The update for Rt is

Rt+1 = [Rt + 〈`t , xt〉1− `t]
+.

Suppose we forget about the operator [·]+, then

RT+1 =
T∑
t=1

〈`t , xt〉1−
T∑
t=1

`t .

Recall the definition of the regret:

RegT := max
a∈{1,...,n}

T∑
t=1

〈`t , xt〉 −
T∑
t=1

`ta

= max
a∈{1,...,n}

RT+1,a

⇒ Rt is called the lifted regret and RegT ≤ ‖RT+1‖∞.

⇒ xt = Rt/‖Rt‖1: we play actions with large regrets

15

Why is this called Regret Matching+?

The update for Rt is

Rt+1 = [Rt + 〈`t , xt〉1− `t]
+.

Suppose we forget about the operator [·]+, then

RT+1 =
T∑
t=1

〈`t , xt〉1−
T∑
t=1

`t .

Recall the definition of the regret:

RegT := max
a∈{1,...,n}

T∑
t=1

〈`t , xt〉 −
T∑
t=1

`ta

= max
a∈{1,...,n}

RT+1,a

⇒ Rt is called the lifted regret and RegT ≤ ‖RT+1‖∞.

⇒ xt = Rt/‖Rt‖1: we play actions with large regrets

15

Why is this called Regret Matching+?

The update for Rt is

Rt+1 = [Rt + 〈`t , xt〉1− `t]
+.

Suppose we forget about the operator [·]+, then

RT+1 =
T∑
t=1

〈`t , xt〉1−
T∑
t=1

`t .

Recall the definition of the regret:

RegT := max
a∈{1,...,n}

T∑
t=1

〈`t , xt〉 −
T∑
t=1

`ta

= max
a∈{1,...,n}

RT+1,a

⇒ Rt is called the lifted regret and RegT ≤ ‖RT+1‖∞.

⇒ xt = Rt/‖Rt‖1: we play actions with large regrets

15

Why is this called Regret Matching+?

The update for Rt is

Rt+1 = [Rt + 〈`t , xt〉1− `t]
+.

Suppose we forget about the operator [·]+, then

RT+1 =
T∑
t=1

〈`t , xt〉1−
T∑
t=1

`t .

Recall the definition of the regret:

RegT := max
a∈{1,...,n}

T∑
t=1

〈`t , xt〉 −
T∑
t=1

`ta

= max
a∈{1,...,n}

RT+1,a

⇒ Rt is called the lifted regret and RegT ≤ ‖RT+1‖∞.

⇒ xt = Rt/‖Rt‖1: we play actions with large regrets

15

Why is this called Regret Matching+?

The update for Rt is

Rt+1 = [Rt + 〈`t , xt〉1− `t]
+.

Suppose we forget about the operator [·]+, then

RT+1 =
T∑
t=1

〈`t , xt〉1−
T∑
t=1

`t .

Recall the definition of the regret:

RegT := max
a∈{1,...,n}

T∑
t=1

〈`t , xt〉 −
T∑
t=1

`ta

= max
a∈{1,...,n}

RT+1,a

⇒ Rt is called the lifted regret and RegT ≤ ‖RT+1‖∞.

⇒ xt = Rt/‖Rt‖1: we play actions with large regrets

15

Regret Matching+ (RM+) [TBJB15]

Start at R1 = 0 ∈ Rn
+, then

xt = Rt/‖Rt‖1,

Rt+1 = [Rt + 〈`t , xt〉1− `t]
+.

Why do we like this algorithm?

1. RM+ is a regret minimizer: RegT = O
(√

T
)

.

2. Geometric intuition: RegT ≤ ‖RT+1‖∞.

3. Parameter-free: no step size to learn/choose

4. Strong empirical performances, ≈ 10x faster than O(1/T)

algos [BBJT15, MSB+17, BS18, BS19, FKS21]...

5. ... and RM+ is still not very well understood!

16

Regret Matching+ (RM+) [TBJB15]

Start at R1 = 0 ∈ Rn
+, then

xt = Rt/‖Rt‖1,

Rt+1 = [Rt + 〈`t , xt〉1− `t]
+.

Why do we like this algorithm?

1. RM+ is a regret minimizer: RegT = O
(√

T
)

.

2. Geometric intuition: RegT ≤ ‖RT+1‖∞.

3. Parameter-free: no step size to learn/choose

4. Strong empirical performances, ≈ 10x faster than O(1/T)

algos [BBJT15, MSB+17, BS18, BS19, FKS21]...

5. ... and RM+ is still not very well understood!

16

Regret Matching+ (RM+) [TBJB15]

Start at R1 = 0 ∈ Rn
+, then

xt = Rt/‖Rt‖1,

Rt+1 = [Rt + 〈`t , xt〉1− `t]
+.

Why do we like this algorithm?

1. RM+ is a regret minimizer: RegT = O
(√

T
)

.

2. Geometric intuition: RegT ≤ ‖RT+1‖∞.

3. Parameter-free: no step size to learn/choose

4. Strong empirical performances, ≈ 10x faster than O(1/T)

algos [BBJT15, MSB+17, BS18, BS19, FKS21]...

5. ... and RM+ is still not very well understood!

16

Regret Matching+ (RM+) [TBJB15]

Start at R1 = 0 ∈ Rn
+, then

xt = Rt/‖Rt‖1,

Rt+1 = [Rt + 〈`t , xt〉1− `t]
+.

Why do we like this algorithm?

1. RM+ is a regret minimizer: RegT = O
(√

T
)

.

2. Geometric intuition: RegT ≤ ‖RT+1‖∞.

3. Parameter-free: no step size to learn/choose

4. Strong empirical performances, ≈ 10x faster than O(1/T)

algos [BBJT15, MSB+17, BS18, BS19, FKS21]...

5. ... and RM+ is still not very well understood!

16

Regret Matching+ (RM+) [TBJB15]

Start at R1 = 0 ∈ Rn
+, then

xt = Rt/‖Rt‖1,

Rt+1 = [Rt + 〈`t , xt〉1− `t]
+.

Why do we like this algorithm?

1. RM+ is a regret minimizer: RegT = O
(√

T
)

.

2. Geometric intuition: RegT ≤ ‖RT+1‖∞.

3. Parameter-free: no step size to learn/choose

4. Strong empirical performances, ≈ 10x faster than O(1/T)

algos [BBJT15, MSB+17, BS18, BS19, FKS21]...

5. ... and RM+ is still not very well understood!

16

Predictive Regret Matching+ [FKS21]

Main idea: use a prediction of `t when computing xt .

Build R̂t by predicting `t

xt = R̂t/‖R̂t‖1,

Rt+1 = [Rt + 〈`t , xt〉1− `t]
+.

17

Predictive Regret Matching+ [FKS21]

Main idea: use a prediction of `t when computing xt .

R̂t = [Rt + 〈`t−1, xt−1〉1− `t−1]+

xt = R̂t/‖R̂t‖1,

Rt+1 = [Rt + 〈`t , xt〉1− `t]
+.

18

Predictive Regret Matching+ [FKS21]

Main idea: use a prediction of `t when computing xt .

Build R̂t by predicting `t

xt = R̂t/‖R̂t‖1,

Rt+1 = [Rt + 〈`t , xt〉1− `t]
+.

19

Predictive Regret Matching+ [FKS21]

Main idea: use a prediction of `t when computing xt .

Build R̂t by predicting `t

xt = R̂t/‖R̂t‖1,

Rt+1 = [Rt + 〈`t , xt〉1− `t]
+.

ℝ2−
0

Rt
ℝ2+

Δ2

20

Predictive Regret Matching+ [FKS21]

Main idea: use a prediction of `t when computing xt .

Build R̂t by predicting `t

xt = R̂t/‖R̂t‖1,

Rt+1 = [Rt + 〈`t , xt〉1− `t]
+.

ℝ2−
0

Rt
ℝ2+

Δ2
R̂t

21

Predictive Regret Matching+ [FKS21]

Main idea: use a prediction of `t when computing xt .

Build R̂t by predicting `t

xt = R̂t/‖R̂t‖1,

Rt+1 = [Rt + 〈`t , xt〉1− `t]
+.

ℝ2−
0

Rt
ℝ2+

Δ2
R̂t

xt

22

Predictive Regret Matching+ [FKS21]

Main idea: use a prediction of `t when computing xt .

Build R̂t by predicting `t

xt = R̂t/‖R̂t‖1,

Rt+1 = [Rt + 〈`t , xt〉1− `t]
+.

ℝ2−
0

Rt
ℝ2+

Δ2

xt

23

Predictive Regret Matching+ [FKS21]

Main idea: use a prediction of `t when computing xt .

Build R̂t by predicting `t

xt = R̂t/‖R̂t‖1,

Rt+1 = [Rt + 〈`t , xt〉1− `t]
+.

24

Predictive Regret Matching+ [FKS21]

Main idea: use a prediction of `t when computing xt .

Build R̂t by predicting `t

xt = R̂t/‖R̂t‖1,

Rt+1 = [Rt + 〈`t , xt〉1− `t]
+.

25

Predictive Regret Matching+ [FKS21]

Main idea: use a prediction of `t when computing xt .

Build R̂t by predicting `t

xt = R̂t/‖R̂t‖1,

Rt+1 = [Rt + 〈`t , xt〉1− `t]
+.

26

Predictive Regret Matching+ [FKS21]

Main idea: use a prediction of `t when computing xt .

Build R̂t by predicting `t as `t−1

xt = R̂t/‖R̂t‖1,

Rt+1 = [Rt + 〈`t , xt〉1− `t]
+.

1. Predictive RM+ is a regret minimizer: RegT = O
(√

T
)

.

2. Parameter-free: no step size to learn/choose

3. Strong empirical performances, vastly outperforms O(1/T)

algos [BBJT15, MSB+17, BS18, BS19, FKS21].

4. But not known to ensure O(1/T) convergence, despite optimism!

27

Predictive Regret Matching+ [FKS21]

Main idea: use a prediction of `t when computing xt .

Build R̂t by predicting `t as `t−1

xt = R̂t/‖R̂t‖1,

Rt+1 = [Rt + 〈`t , xt〉1− `t]
+.

1. Predictive RM+ is a regret minimizer: RegT = O
(√

T
)

.

2. Parameter-free: no step size to learn/choose

3. Strong empirical performances, vastly outperforms O(1/T)

algos [BBJT15, MSB+17, BS18, BS19, FKS21].

4. But not known to ensure O(1/T) convergence, despite optimism!

27

Predictive Regret Matching+ [FKS21]

Main idea: use a prediction of `t when computing xt .

Build R̂t by predicting `t as `t−1

xt = R̂t/‖R̂t‖1,

Rt+1 = [Rt + 〈`t , xt〉1− `t]
+.

1. Predictive RM+ is a regret minimizer: RegT = O
(√

T
)

.

2. Parameter-free: no step size to learn/choose

3. Strong empirical performances, vastly outperforms O(1/T)

algos [BBJT15, MSB+17, BS18, BS19, FKS21].

4. But not known to ensure O(1/T) convergence, despite optimism!

27

Predictive Regret Matching+ [FKS21]

Main idea: use a prediction of `t when computing xt .

Build R̂t by predicting `t as `t−1

xt = R̂t/‖R̂t‖1,

Rt+1 = [Rt + 〈`t , xt〉1− `t]
+.

1. Predictive RM+ is a regret minimizer: RegT = O
(√

T
)

.

2. Parameter-free: no step size to learn/choose

3. Strong empirical performances, vastly outperforms O(1/T)

algos [BBJT15, MSB+17, BS18, BS19, FKS21].

4. But not known to ensure O(1/T) convergence, despite optimism!

27

Instability in (predictive) RM+

Recall that xt = Rt/‖Rt‖1.

Instability: ‖xt − xt+1‖2 may be large... despite small ‖Rt − Rt+1‖2.

ℝ2−
0

Rt

ℝ2+

Δ2

28

Instability in (predictive) RM+

Recall that xt = Rt/‖Rt‖1.

Instability: ‖xt − xt+1‖2 may be large... despite small ‖Rt − Rt+1‖2.

ℝ2−
0

Rt

ℝ2+

Δ2

xt

29

Instability in (predictive) RM+

Recall that xt = Rt/‖Rt‖1.

Instability: ‖xt − xt+1‖2 may be large... despite small ‖Rt − Rt+1‖2.

ℝ2−
0

Rt

ℝ2+

Δ2

xt

Rt+1

30

Instability in (predictive) RM+

Recall that xt = Rt/‖Rt‖1.

Instability: ‖xt − xt+1‖2 may be large... despite small ‖Rt − Rt+1‖2.

ℝ2−
0

Rt

ℝ2+

Δ2

xt

Rt+1

xt+1

31

Instability in (predictive) RM+

ℝ2−
0

Rt

ℝ2+

Δ2

xt

Rt+1

xt+1

Instability happens because ‖Rt‖1 is small.

Proposition

Let R1,R2 ∈ Rn
+ and x1 = R1/‖R1‖1, x2 = R2/‖R2‖1. Then

‖x1 − x2‖2 ≤
√
n

max{‖R1‖1, ‖R2‖1}
· ‖R1 − R2‖2 (1)

32

Instability in (predictive) RM+

ℝ2−
0

Rt

ℝ2+

Δ2

xt

Rt+1

xt+1

Instability happens because ‖Rt‖1 is small.

Proposition

Let R1,R2 ∈ Rn
+ and x1 = R1/‖R1‖1, x2 = R2/‖R2‖1. Then

‖x1 − x2‖2 ≤
√
n

max{‖R1‖1, ‖R2‖1}
· ‖R1 − R2‖2 (1)

32

Instability in (predictive) RM+

ℝ2−
0

Rt

ℝ2+

Δ2

xt

Rt+1

xt+1

• Instability makes it hard to minimize regret for the other players...

• But recall that small ‖RT‖∞ is good news for the player:

RegT ≤ ‖RT+1‖∞.

33

Example on a pathological example

Solving a small matrix game: minx∈∆3 maxy∈∆3〈x ,Ay〉.
Running (vanilla) Predictive RM+:

101 102 103 104 105 106 107

Number of iterations

0

2

4

R
eg

re
t

Regret (x-player)

101 102 103 104 105 106 107

Number of iterations

101

102

R
eg

re
t

Regret (y-player)

34

Example on a pathological example

Solving a small matrix game: minx∈∆3 maxy∈∆3〈x ,Ay〉.
Running (vanilla) Predictive RM+:

0 10 20 30 40

Last 40 iterations (out ot 107)

0.0

0.1

0.2

N
or

m

||x t − x t+1||2

0 10 20 30 40

Last 40 iterations (out ot 107)

10−3

2× 10−3

3× 10−3

N
or

m

||y t − y t+1||2

35

Example on a pathological example

Solving a small matrix game: minx∈∆3 maxy∈∆3〈x ,Ay〉.
Running (vanilla) Predictive RM+:

0.00 0.05 0.10 0.15
x[0]

0.00

0.05

0.10

0.15
x[

1]

Last strategy of the x-player

After 107 iterations, xt cycles between 5 strategies.

Recall that the loss for the y-player is −A>xt !

36

Example on a pathological example

Solving a small matrix game: minx∈∆3 maxy∈∆3〈x ,Ay〉.
Running (vanilla) Predictive RM+:

101 102 103 104 105 106 107

Number of iterations

10−1

10−2

10−3

10−4

D
u

al
it

y
ga

p
PRM+

linear fit

Slope of the linear fit: −0.496⇒ duality gap decreases as O(1/
√
T).

37

Example on a pathological example

Diagnostic:

1. Instability of one player harms the convergence to an equilibrium.

2. Instability happens because ‖Rt‖1 is small.

Question:

How to ensure that Rt is not too close to the origin 0?

38

Toward stable Predictive RM+: first idea

Restarting: run Predictive RM+, and at the end of every iteration:

If Rt+1 ≤ R01 then Rt+1 = R01.

ℝ2−
0

ℝ2+

Δ2

R0

R0 R01

39

Toward stable Predictive RM+: first idea

Restarting: run Predictive RM+, and at the end of every iteration:

If Rt+1 ≤ R01 then Rt+1 = R01.

This can be done in linear time.

Theorem

Assume that each player runs Predictive RM+ with restarting with

R0 = XXX .

Then max
{
RegT1 ,Reg

T
2

}
= O(T 1/4).

⇒ Convergence to a Nash Equilibrium at a rate of O
(
1/T 3/4

)
.

40

Toward stable RM+: second idea

Smoothing: run Predictive RM+, and at the end of every iteration:

If 〈Rt+1, 1〉 ≤ R0 then replace Rt+1 by its projection on R0∆n.

This ensures Rt ∈ {R ∈ Rn | R ≥ 0, 〈R, 1〉 ≥ R0}.

ℝ2−
0

ℝ2+

Δ2

R0

R0

41

Toward stable RM+: second idea

Smoothing: run Predictive RM+, and at the end of every iteration:

If 〈Rt+1, 1〉 ≤ R0 then replace Rt+1 by its projection on R0∆n.

This ensures Rt ∈ {R ∈ Rn | R ≥ 0, 〈R, 1〉 ≥ R0}.

ℝ2−
0

ℝ2+

Δ2

R0

R0

Rt+1

42

Toward stable RM+: second idea

Smoothing: run Predictive RM+, and at the end of every iteration:

If 〈Rt+1, 1〉 ≤ R0 then replace Rt+1 by its projection on R0∆n.

This ensures Rt ∈ {R ∈ Rn | R ≥ 0, 〈R, 1〉 ≥ R0}.

ℝ2−
0

ℝ2+

Δ2

R0

R0

Rt+1

43

Toward stable RM+: second idea

Smoothing: run Predictive RM+, and at the end of every iteration:

If 〈Rt+1, 1〉 ≤ R0 then replace Rt+1 by its projection on R0∆n.

This ensures Rt ∈ {R ∈ Rn | R ≥ 0, 〈R, 1〉 ≥ R0}.

ℝ2−
0

ℝ2+

Δ2

R0

R0

Rt+1

44

Toward stable RM+: second idea

Smoothing: run Predictive RM+, and at the end of every iteration:

If 〈Rt+1, 1〉 ≤ R0 then replace Rt+1 by its projection on R0∆n.

This ensures Rt ∈ {R ∈ Rn | R ≥ 0, 〈R, 1〉 ≥ R0}.

This can be done in O(n log(n)).

R 7→ R/‖R‖1 is smooth on {R ∈ Rn | R ≥ 0, 〈R, 1〉 ≥ R0}:

‖ R1

‖R1‖1
− R2

‖R2‖1
‖2 ≤

√
n

R0
· ‖R1 − R2‖2 (2)

45

Toward stable RM+: second idea

Smoothing: run Predictive RM+, and at the end of every iteration:

If 〈Rt+1, 1〉 ≤ R0 then replace Rt+1 by its projection on R0∆n.

Theorem

Assume that each player runs Predictive RM+ with Smoothing with

R0 = XXX . Then:

• max
{
RegT1 ,Reg

T
2

}
= O

(
T 1/4

)
.

• RegT1 + RegT2 = O(1).

⇒ Convergence to a Nash Equilibrium at a rate of O (1/T).

46

Example on a pathological example (continued)

Solving a small matrix game: minx∈∆3 maxy∈∆3〈x ,Ay〉.
Running Predictive RM+ with restarting:

101 102 103 104 105 106 107

Number of iterations

1

2

3

R
eg

re
t

Regret (x-player)

101 102 103 104 105 106 107

Number of iterations

−1.0

−0.5

0.0

0.5

1.0

R
eg

re
t

Regret (y-player)

47

Example on a pathological example (continued)

Solving a small matrix game: minx∈∆3 maxy∈∆3〈x ,Ay〉.
Running Predictive RM+ with Smoothing:

101 102 103 104 105 106 107

Number of iterations

1.4

1.6

1.8

2.0

R
eg

re
t

Regret (x-player)

101 102 103 104 105 106 107

Number of iterations

−0.5

0.0

0.5

R
eg

re
t

Regret (y-player)

48

Solving a small matrix game:

min
x∈∆3

max
y∈∆3

〈x ,Ay〉.

Comparing the average convergence to a Nash Equilibrium:

101 102 103 104 105 106 107

Number of iterations

10−11

10−8

10−5

10−2

D
u

al
it

y
ga

p
RM+

PRM+

PRM+ (restarting)

PRM+ (smoothing)

49

Last-iterate convergence

All the guarantees presented so far are for the average iterates:

x̄T =
1

T

T∑
t=1

xt , ȳt =
1

T

T∑
t=1

yt

How about convergence in xT , yT , i.e., last-iterate convergence?

Why do we care?

• Quite simpler than average iterates

• Averaging may be cumbersome/expensive computationally

• No last-iterate convergence ⇒ cycling/diverging behaviors

50

Last-iterate convergence

All the guarantees presented so far are for the average iterates:

x̄T =
1

T

T∑
t=1

xt , ȳt =
1

T

T∑
t=1

yt

How about convergence in xT , yT , i.e., last-iterate convergence?

Why do we care?

• Quite simpler than average iterates

• Averaging may be cumbersome/expensive computationally

• No last-iterate convergence ⇒ cycling/diverging behaviors

50

Last-iterate convergence

Convergence on average vs. last-iterate convergence:

Figure 4: Running Regret Matching+ for 105 iterations for

Rock-Paper-Scissors.

51

Our contributions 1/3

⇒ RM+ and Predictive RM+ may diverge on a simple 3× 3 matrix game.

⇒ Poor performance of the last iterates of RM+/ PRM+:

Figure 5: Last iterate performance of RM+, PRM+ and Smooth PRM+.

52

Our contributions 1/3

We could only prove convergence of RM+ under very strong assumptions.

Theorem

Assume that the matrix game has a strict Nash Eq. (x?, y?):

• x? is the unique best-response to y?

• y? is the unique best-response to x?

Then RM+ converges: the sequence (xt , yt)t∈N has a limit.

Note: strict N.E. implies N.E. is unique and (x?, y?) are deterministic.

53

Our contributions 2/3

Let Z? ⊂ ∆n ×∆m be the set of Nash equilibria.

Theorem

For Smooth Predictive RM+, we show

1. Last-iterate convergence: the sequence (xt , yt)t∈N has a limit.

2. Best-iterate convergence:

For some α > 0 and starting at (x0, y0),

min
t∈{1,...,T}

DualityGap (xt , yt) =
α · dist ((x0, y0),Z?)√

T

Metric subregularity [WLZL20] ∃ c > 0 such that, for any t ∈ N,

c · dist ((xt , yt),Z?) ≤ DualityGap(xt , yt).

54

Our contributions 2/3

Let Z? ⊂ ∆n ×∆m be the set of Nash equilibria.

Theorem

For Smooth Predictive RM+, we show

1. Last-iterate convergence: the sequence (xt , yt)t∈N has a limit.

2. Best-iterate convergence:

For some α > 0 and starting at (x0, y0),

min
t∈{1,...,T}

DualityGap (xt , yt) =
α · dist ((x0, y0),Z?)√

T

Metric subregularity [WLZL20] ∃ c > 0 such that, for any t ∈ N,

c · dist ((xt , yt),Z?) ≤ DualityGap(xt , yt).

54

From best-iterate to linear last-iterate convergence

There exists a time t̃ ∈ {1, ...,T} such that

dist ((xt̃ , yt̃),Z?) ≤ α

c
√
T
· dist ((x0, y0),Z?) .

T such that α
c
√
T

= 1
2 :

⇒ in a constant number of steps, we halve the distance to Z?:

dist ((xt̃ , yt̃),Z?) ≤ 1

2
dist ((x0, y0),Z?) .

⇒ Why not reinitializing the algorithm at time t̃: (x0, y0)← (xt̃ , yt̃)?

Problem: of course we can’t identify the time t̃...

Solution: bound the distance to Z? by distances between R̂t ,Rt+1,Rt .

55

From best-iterate to linear last-iterate convergence

There exists a time t̃ ∈ {1, ...,T} such that

dist ((xt̃ , yt̃),Z?) ≤ α

c
√
T
· dist ((x0, y0),Z?) .

T such that α
c
√
T

= 1
2 :

⇒ in a constant number of steps, we halve the distance to Z?:

dist ((xt̃ , yt̃),Z?) ≤ 1

2
dist ((x0, y0),Z?) .

⇒ Why not reinitializing the algorithm at time t̃: (x0, y0)← (xt̃ , yt̃)?

Problem: of course we can’t identify the time t̃...

Solution: bound the distance to Z? by distances between R̂t ,Rt+1,Rt .

55

From best-iterate to linear last-iterate convergence

There exists a time t̃ ∈ {1, ...,T} such that

dist ((xt̃ , yt̃),Z?) ≤ α

c
√
T
· dist ((x0, y0),Z?) .

T such that α
c
√
T

= 1
2 :

⇒ in a constant number of steps, we halve the distance to Z?:

dist ((xt̃ , yt̃),Z?) ≤ 1

2
dist ((x0, y0),Z?) .

⇒ Why not reinitializing the algorithm at time t̃: (x0, y0)← (xt̃ , yt̃)?

Problem: of course we can’t identify the time t̃...

Solution: bound the distance to Z? by distances between R̂t ,Rt+1,Rt .

55

From best-iterate to linear last-iterate convergence

There exists a time t̃ ∈ {1, ...,T} such that

dist ((xt̃ , yt̃),Z?) ≤ α

c
√
T
· dist ((x0, y0),Z?) .

T such that α
c
√
T

= 1
2 :

⇒ in a constant number of steps, we halve the distance to Z?:

dist ((xt̃ , yt̃),Z?) ≤ 1

2
dist ((x0, y0),Z?) .

⇒ Why not reinitializing the algorithm at time t̃: (x0, y0)← (xt̃ , yt̃)?

Problem: of course we can’t identify the time t̃...

Solution: bound the distance to Z? by distances between R̂t ,Rt+1,Rt .

55

From best-iterate to linear last-iterate convergence

There exists a time t̃ ∈ {1, ...,T} such that

dist ((xt̃ , yt̃),Z?) ≤ α

c
√
T
· dist ((x0, y0),Z?) .

T such that α
c
√
T

= 1
2 :

⇒ in a constant number of steps, we halve the distance to Z?:

dist ((xt̃ , yt̃),Z?) ≤ 1

2
dist ((x0, y0),Z?) .

⇒ Why not reinitializing the algorithm at time t̃: (x0, y0)← (xt̃ , yt̃)?

Problem: of course we can’t identify the time t̃...

Solution: bound the distance to Z? by distances between R̂t ,Rt+1,Rt .

55

Our contributions 3/3

Theorem

Consider running Smooth Predictive RM+, with the following trick:

At iteration t,

“Reinitialize the algorithm if the current duality gap has been halved

since last reinitialization”

Then we have linear last-iterate convergence:

DualityGap (xt , yt) = O
(
βt
)

for some β ∈ (0, 1)

56

Conclusion

• Better understanding of Regret Matching+ and predictive variants

• New algorithms with strong theoretical guarantees

• Limitations:

1. We loose the step-size free property (choice of R0)

2. Convergence rates don’t apply for extensive-form games

(CFR)/multiplayer normal-form games

3. Other unexplained aspects of RM+: alternation, linear averaging, etc.

• More in the papers + code available online

Thank you!

57

Conclusion

• Better understanding of Regret Matching+ and predictive variants

• New algorithms with strong theoretical guarantees

• Limitations:

1. We loose the step-size free property (choice of R0)

2. Convergence rates don’t apply for extensive-form games

(CFR)/multiplayer normal-form games

3. Other unexplained aspects of RM+: alternation, linear averaging, etc.

• More in the papers + code available online

Thank you!

57

Conclusion

• Better understanding of Regret Matching+ and predictive variants

• New algorithms with strong theoretical guarantees

• Limitations:

1. We loose the step-size free property (choice of R0)

2. Convergence rates don’t apply for extensive-form games

(CFR)/multiplayer normal-form games

3. Other unexplained aspects of RM+: alternation, linear averaging, etc.

• More in the papers + code available online

Thank you!

57

References i

Michael Bowling, Neil Burch, Michael Johanson, and Oskari

Tammelin.

Heads-up limit hold’em poker is solved.

Science, 347(6218):145–149, 2015.

Santiago R Balseiro and Yonatan Gur.

Learning in repeated auctions with budgets: Regret

minimization and equilibrium.

Management Science, 65(9):3952–3968, 2019.

Santiago R Balseiro, Haihao Lu, and Vahab Mirrokni.

The best of many worlds: Dual mirror descent for online

allocation problems.

Operations Research, 2022.

58

References ii

Noam Brown and Tuomas Sandholm.

Superhuman AI for heads-up no-limit poker: Libratus beats

top professionals.

Science, 359(6374):418–424, 2018.

Noam Brown and Tuomas Sandholm.

Superhuman AI for multiplayer poker.

Science, 365(6456):885–890, 2019.

Yang Cai, Argyris Oikonomou, and Weiqiang Zheng.

Finite-time last-iterate convergence for learning in multi-player

games.

Advances in Neural Information Processing Systems,

35:33904–33919, 2022.

59

References iii

Constantinos Daskalakis, Maxwell Fishelson, and Noah Golowich.

Near-optimal no-regret learning in general games.

Advances in Neural Information Processing Systems,

34:27604–27616, 2021.

Gabriele Farina, Christian Kroer, and Tuomas Sandholm.

Faster game solving via predictive Blackwell approachability:

Connecting regret matching and mirror descent.

In Proceedings of the AAAI Conference on Artificial Intelligence.

AAAI, 2021.

Yoav Freund and Robert E Schapire.

Adaptive game playing using multiplicative weights.

Games and Economic Behavior, 29(1-2):79–103, 1999.

60

References iv

Matej Moravč́ık, Martin Schmid, Neil Burch, Viliam Lisỳ, Dustin

Morrill, Nolan Bard, Trevor Davis, Kevin Waugh, Michael Johanson,

and Michael Bowling.

Deepstack: Expert-level artificial intelligence in heads-up

no-limit poker.

Science, 356(6337):508–513, 2017.

Alexander Rakhlin and Karthik Sridharan.

Online learning with predictable sequences.

In Conference on Learning Theory, pages 993–1019. PMLR, 2013.

Vasilis Syrgkanis, Alekh Agarwal, Haipeng Luo, and Robert E

Schapire.

Fast convergence of regularized learning in games.

28, 2015.

61

References v

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent

Sifre, George Van Den Driessche, Julian Schrittwieser, Ioannis

Antonoglou, Veda Panneershelvam, Marc Lanctot, et al.

Mastering the game of go with deep neural networks and tree

search.

nature, 529(7587):484–489, 2016.

Oskari Tammelin, Neil Burch, Michael Johanson, and Michael

Bowling.

Solving heads-up limit Texas hold’em.

In Twenty-Fourth International Joint Conference on Artificial

Intelligence, 2015.

62

References vi

Chen-Yu Wei, Chung-Wei Lee, Mengxiao Zhang, and Haipeng Luo.

Linear last-iterate convergence in constrained saddle-point

optimization.

In International Conference on Learning Representations, 2020.

63

Our contributions 3/3

Theorem

Consider running Smooth Predictive RM+, with the following trick:

At iteration t,

if ‖R̂t+1 − Rt‖2 + ‖R̂t − Rt‖2 ≤ 2−k then Rt+1 ← xt+1, k ← k + 1

and similarly for the y -player.

Then we have linear last-iterate convergence:

DualityGap (xt , yt) = O
(
βt
)

for some β ∈ (0, 1)

64

Monotone operator 1/2

Zero-sum game G : minx∈∆d1
maxy∈∆m〈x ,Ay〉.

Gradient operator FG (z) :=

(
Ay
−A>x

)
for z = (x , y) ∈ ∆n ×∆m.

This is a monotone operator:

〈FG (z)− FG (z ′), z − z ′〉 ≥ 0,∀ z , z ′ ∈ ∆n ×∆m.

OGD has last-iterate convergence for monotone operators [COZ22].

65

Monotone operator 2/2

Smooth PRM+ ⇐⇒ running OGD with operator F defined as

F (z) :=

 A z2

‖z2‖1
− z>

1

‖z1‖1
A z2

‖z2‖1
· 1n

−A> z1

‖z1‖1
+

z>
2

‖z2‖1
A> z1

‖z1‖1
· 1m


for all z = (z1, z2) ∈ Rn

+ × Rm
+.

A simpler form:

F (z) :=

(
Ay − x>Ay · 1n

−A>x + y>A>x · 1m

)

for x = z1

‖z1‖1
, y = z2

‖z2‖1
for z = (z1, z2) ∈ Rn

+ × Rm
+.

The operator F is not monotone.

66

Monotone operator 2/2

Smooth PRM+ ⇐⇒ running OGD with operator F defined as

F (z) :=

 A z2

‖z2‖1
− z>

1

‖z1‖1
A z2

‖z2‖1
· 1n

−A> z1

‖z1‖1
+

z>
2

‖z2‖1
A> z1

‖z1‖1
· 1m


for all z = (z1, z2) ∈ Rn

+ × Rm
+.

A simpler form:

F (z) :=

(
Ay − x>Ay · 1n

−A>x + y>A>x · 1m

)

for x = z1

‖z1‖1
, y = z2

‖z2‖1
for z = (z1, z2) ∈ Rn

+ × Rm
+.

The operator F is not monotone.

66

