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TL;DR

What is this talk about?

• Regret minimization: prevalent for solving games

• Regret Matching+ (RM+): regret minimizer used in all poker AI

breakthroughs, widely outperform other methods in practice...

• ... despite “weak” theoretical guarantees:

• RM+:O(1/
√
T ) convergence to Nash equilibrium

• State-of-the-art: O(1/T ) convergence to NE

What is missing in the literature?

1. Gap between empirical vs. theoretical performances of RM+

2. Can RM+-based algorithms achieve O(1/T ) average convergence?
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TL;DR

Our contributions:

1. We show a surprising “failure mode” of RM+, due to its instability.

2. We provide two fixes: restarting and smoothing.

⇒ New algorithms for game solving:

·O(1/T ) average convergence

·O(1/
√
T ) best-iterate convergence, last-iterate convergence

Why is this interesting?

1. Reconcile RM+-based methods with state-of-the-art th. guarantees

2. Several questions remain open: advantages of alternation, linear

averaging, the case of extensive-form games, etc.
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TL;DR

Presentation based on:

• Regret Matching+: Instability and Fast Convergence in Games,

Farina, G.-C., Kroer, Lee and Luo, NeurIPS 2023.

• Last-iterate convergence of regret matching-based algorithms in

games, Cai, Farina, G.-C., Kroer, Lee, Luo, Zheng, under review.
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Outline for today:

1. Game solving via regret minimization

2. Regret Matching+ (RM+) and instability

3. Improved average convergence after stabilizing RM+

4. Last-iterate convergence after stabilizing RM+
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Regret minimization: for t = 1, ...,T ,

1. Choose a strategy xt ∈ ∆n based on past observations

2. Observe the loss vector `t ∈ Rn

3. Suffer an instantaneous loss 〈`t , xt〉 ∈ R

The regret RegT at period T is

RegT := max
a∈{1,...,n}

T∑
t=1

〈`t , xt〉 −
T∑
t=1

`ta.

A regret minimizer constructs a sequence of decisions x1, x2, ... in ∆n

such that for any sequence of losses `1, `2, ..., we have

lim
T→+∞

RegT

T
= 0.

Why do we care? Online resource allocation [BLM22], auctions [BG19],

game solving: poker [BBJT15], Go [SHM+16]...

5



Regret minimization: for t = 1, ...,T ,

1. Choose a strategy xt ∈ ∆n based on past observations

2. Observe the loss vector `t ∈ Rn

3. Suffer an instantaneous loss 〈`t , xt〉 ∈ R

The regret RegT at period T is

RegT := max
a∈{1,...,n}

T∑
t=1

〈`t , xt〉 −
T∑
t=1

`ta.

A regret minimizer constructs a sequence of decisions x1, x2, ... in ∆n

such that for any sequence of losses `1, `2, ..., we have

lim
T→+∞

RegT

T
= 0.

Why do we care? Online resource allocation [BLM22], auctions [BG19],

game solving: poker [BBJT15], Go [SHM+16]...

5



Regret minimization: for t = 1, ...,T ,

1. Choose a strategy xt ∈ ∆n based on past observations

2. Observe the loss vector `t ∈ Rn

3. Suffer an instantaneous loss 〈`t , xt〉 ∈ R

The regret RegT at period T is

RegT := max
a∈{1,...,n}

T∑
t=1

〈`t , xt〉 −
T∑
t=1

`ta.

A regret minimizer constructs a sequence of decisions x1, x2, ... in ∆n

such that for any sequence of losses `1, `2, ..., we have

lim
T→+∞

RegT

T
= 0.

Why do we care? Online resource allocation [BLM22], auctions [BG19],

game solving: poker [BBJT15], Go [SHM+16]...

5



Regret minimization: for t = 1, ...,T ,

1. Choose a strategy xt ∈ ∆n based on past observations

2. Observe the loss vector `t ∈ Rn

3. Suffer an instantaneous loss 〈`t , xt〉 ∈ R

The regret RegT at period T is

RegT := max
a∈{1,...,n}

T∑
t=1

〈`t , xt〉 −
T∑
t=1

`ta.

A regret minimizer constructs a sequence of decisions x1, x2, ... in ∆n

such that for any sequence of losses `1, `2, ..., we have

lim
T→+∞

RegT

T
= 0.

Why do we care?

Online resource allocation [BLM22], auctions [BG19],

game solving: poker [BBJT15], Go [SHM+16]...

5



Regret minimization: for t = 1, ...,T ,

1. Choose a strategy xt ∈ ∆n based on past observations

2. Observe the loss vector `t ∈ Rn

3. Suffer an instantaneous loss 〈`t , xt〉 ∈ R

The regret RegT at period T is

RegT := max
a∈{1,...,n}

T∑
t=1

〈`t , xt〉 −
T∑
t=1

`ta.

A regret minimizer constructs a sequence of decisions x1, x2, ... in ∆n

such that for any sequence of losses `1, `2, ..., we have

lim
T→+∞

RegT

T
= 0.

Why do we care? Online resource allocation [BLM22], auctions [BG19],

game solving: poker [BBJT15], Go [SHM+16]...

5



Regret minimization can be used to solve matrix games:

min
x∈∆n

max
y∈∆m

〈x ,Ay〉.

Duality gap of a pair (x̂ , ŷ):

DualityGap(x̂ , ŷ) = max
y∈∆m

〈x̂ ,Ay〉 − min
x∈∆n

〈x ,Aŷ〉.

DualityGap(x̂ , ŷ) ≤ ε⇒ (x̂ , ŷ) is ε-Nash equilibrium

Folk Theorem [FS99]

Assume that each player of a matrix game runs a regret minimizer with

loss `t equal to their own expected cost.

Then the average of the iterates is an approximate Nash equilibrium of

the game, with a duality gap equal to

RegT1 + RegT2
T

.
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Rock Paper Scissors:

min
x∈∆3

max
y∈∆3

〈x ,Ay〉,A =

 0 −1 1

1 0 −1

−1 1 0



x0 = P(play rock), x1 = P(play paper), x3 = P(play scissors), etc.

Unique Nash Eq.: x? = y? =
(

1
3 ,

1
3 ,

1
3

)
.

Losses for x-player: Ay , loss for y -player: −A>x .
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Rock Paper Scissors:

min
x∈∆3

max
y∈∆3

〈x ,Ay〉,A =

 0 −1 1

1 0 −1

−1 1 0


Run Regret Matching+ (TBD) to generate x1, ..., xT and y1, ..., yT .

Average iterates:

x̄T =
1

T

T∑
t=1

xt , ȳt =
1

T

T∑
t=1

yt

0.32 0.33 0.34
x[0]

0.33

0.34

0.35

x[
1]

Average strategy of the x-player

0.33 0.34 0.35
y[0]

0.32

0.33

y[
1]

Average strategy of the y-player

Figure 1: Running Regret Matching+ for 500 iterations.
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Folk Theorem [FS99]

Assume that each player of a matrix game runs a regret minimizer with

loss `t equal to their own expected cost.

Then the average of the iterates is an approximate Nash equilibrium of

the game, with a duality gap equal to

RegT1 + RegT2
T

.

1. If ∀ player i ,RegTi = O
(√

T
)

then convergence in O
(

1/
√
T
)

.

2. If RegT1 + RegT2 = Õ (1) then convergence in Õ (1/T ).

This is the theoretical state-of-the-art [RS13, SALS15, DFG21]...

... but the empirical state-of-the-art (for poker AI) is a regret

minimizer with “only” O(1/
√
T ) convergence guarantees.
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This is the theoretical state-of-the-art [RS13, SALS15, DFG21]...

... but the empirical state-of-the-art (for poker AI) is a regret

minimizer with “only” O(1/
√
T ) convergence guarantees.

9



Folk Theorem [FS99]

Assume that each player of a matrix game runs a regret minimizer with

loss `t equal to their own expected cost.

Then the average of the iterates is an approximate Nash equilibrium of

the game, with a duality gap equal to

RegT1 + RegT2
T

.

1. If ∀ player i ,RegTi = O
(√

T
)

then convergence in O
(

1/
√
T
)

.
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Regret Matching+ (RM+) [TBJB15]

Start at R1 = 0 ∈ Rn
+, then

xt = Rt/‖Rt‖1

Rt+1 = [Rt + 〈`t , xt〉1− `t ]
+

ℝ2−
0

Rt

ℝ2+

Δ2
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Why is this called Regret Matching+?

The update for Rt is

Rt+1 = [Rt + 〈`t , xt〉1− `t ]
+.

Suppose we forget about the operator [·]+, then

RT+1 =
T∑
t=1

〈`t , xt〉1−
T∑
t=1

`t .

Recall the definition of the regret:

RegT := max
a∈{1,...,n}

T∑
t=1

〈`t , xt〉 −
T∑
t=1

`ta

= max
a∈{1,...,n}

RT+1,a

⇒ Rt is called the lifted regret and RegT ≤ ‖RT+1‖∞.

⇒ xt = Rt/‖Rt‖1: we play actions with large regrets
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Regret Matching+ (RM+) [TBJB15]

Start at R1 = 0 ∈ Rn
+, then

xt = Rt/‖Rt‖1,

Rt+1 = [Rt + 〈`t , xt〉1− `t ]
+.

Why do we like this algorithm?

1. RM+ is a regret minimizer: RegT = O
(√

T
)

.

2. Geometric intuition: RegT ≤ ‖RT+1‖∞.

3. Parameter-free: no step size to learn/choose

4. Strong empirical performances, ≈ 10x faster than O(1/T )

algos [BBJT15, MSB+17, BS18, BS19, FKS21]...

5. ... and RM+ is still not very well understood!
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Predictive Regret Matching+ [FKS21]

Main idea: use a prediction of `t when computing xt .

Build R̂t by predicting `t

xt = R̂t/‖R̂t‖1,

Rt+1 = [Rt + 〈`t , xt〉1− `t ]
+.
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Predictive Regret Matching+ [FKS21]

Main idea: use a prediction of `t when computing xt .

R̂t = [Rt + 〈`t−1, xt−1〉1− `t−1]+

xt = R̂t/‖R̂t‖1,

Rt+1 = [Rt + 〈`t , xt〉1− `t ]
+.
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Predictive Regret Matching+ [FKS21]

Main idea: use a prediction of `t when computing xt .

Build R̂t by predicting `t as `t−1

xt = R̂t/‖R̂t‖1,

Rt+1 = [Rt + 〈`t , xt〉1− `t ]
+.

1. Predictive RM+ is a regret minimizer: RegT = O
(√

T
)

.

2. Parameter-free: no step size to learn/choose

3. Strong empirical performances, vastly outperforms O(1/T )

algos [BBJT15, MSB+17, BS18, BS19, FKS21].

4. But not known to ensure O(1/T ) convergence, despite optimism!
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Instability in (predictive) RM+

Recall that xt = Rt/‖Rt‖1.

Instability: ‖xt − xt+1‖2 may be large... despite small ‖Rt − Rt+1‖2.

ℝ2−
0

Rt

ℝ2+

Δ2
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Instability in (predictive) RM+

ℝ2−
0

Rt

ℝ2+

Δ2

xt

Rt+1

xt+1

Instability happens because ‖Rt‖1 is small.

Proposition

Let R1,R2 ∈ Rn
+ and x1 = R1/‖R1‖1, x2 = R2/‖R2‖1. Then

‖x1 − x2‖2 ≤
√
n

max{‖R1‖1, ‖R2‖1}
· ‖R1 − R2‖2 (1)
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Instability in (predictive) RM+

ℝ2−
0

Rt

ℝ2+

Δ2

xt

Rt+1

xt+1

• Instability makes it hard to minimize regret for the other players...

• But recall that small ‖RT‖∞ is good news for the player:

RegT ≤ ‖RT+1‖∞.

33



Example on a pathological example

Solving a small matrix game: minx∈∆3 maxy∈∆3〈x ,Ay〉.
Running (vanilla) Predictive RM+:

101 102 103 104 105 106 107

Number of iterations

0

2

4

R
eg

re
t

Regret (x-player)

101 102 103 104 105 106 107

Number of iterations

101

102

R
eg

re
t

Regret (y-player)
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Example on a pathological example

Solving a small matrix game: minx∈∆3 maxy∈∆3〈x ,Ay〉.
Running (vanilla) Predictive RM+:

0 10 20 30 40

Last 40 iterations (out ot 107)

0.0

0.1

0.2

N
or

m

||x t − x t+1||2

0 10 20 30 40

Last 40 iterations (out ot 107)

10−3

2× 10−3

3× 10−3

N
or

m

||y t − y t+1||2
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Example on a pathological example

Solving a small matrix game: minx∈∆3 maxy∈∆3〈x ,Ay〉.
Running (vanilla) Predictive RM+:

0.00 0.05 0.10 0.15
x[0]

0.00

0.05

0.10

0.15
x[

1]

Last strategy of the x-player

After 107 iterations, xt cycles between 5 strategies.

Recall that the loss for the y-player is −A>xt !
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Example on a pathological example

Solving a small matrix game: minx∈∆3 maxy∈∆3〈x ,Ay〉.
Running (vanilla) Predictive RM+:

101 102 103 104 105 106 107

Number of iterations

10−1

10−2

10−3

10−4

D
u

al
it

y
ga

p
PRM+

linear fit

Slope of the linear fit: −0.496⇒ duality gap decreases as O(1/
√
T ).
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Example on a pathological example

Diagnostic:

1. Instability of one player harms the convergence to an equilibrium.

2. Instability happens because ‖Rt‖1 is small.

Question:

How to ensure that Rt is not too close to the origin 0?
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Toward stable Predictive RM+: first idea

Restarting: run Predictive RM+, and at the end of every iteration:

If Rt+1 ≤ R01 then Rt+1 = R01.

ℝ2−
0

ℝ2+

Δ2

R0

R0 R01
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Toward stable Predictive RM+: first idea

Restarting: run Predictive RM+, and at the end of every iteration:

If Rt+1 ≤ R01 then Rt+1 = R01.

This can be done in linear time.

Theorem

Assume that each player runs Predictive RM+ with restarting with

R0 = XXX .

Then max
{
RegT1 ,Reg

T
2

}
= O(T 1/4).

⇒ Convergence to a Nash Equilibrium at a rate of O
(
1/T 3/4

)
.
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Toward stable RM+: second idea

Smoothing: run Predictive RM+, and at the end of every iteration:

If 〈Rt+1, 1〉 ≤ R0 then replace Rt+1 by its projection on R0∆n.

This ensures Rt ∈ {R ∈ Rn | R ≥ 0, 〈R, 1〉 ≥ R0}.

ℝ2−
0

ℝ2+

Δ2

R0

R0
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Toward stable RM+: second idea
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Toward stable RM+: second idea

Smoothing: run Predictive RM+, and at the end of every iteration:

If 〈Rt+1, 1〉 ≤ R0 then replace Rt+1 by its projection on R0∆n.

This ensures Rt ∈ {R ∈ Rn | R ≥ 0, 〈R, 1〉 ≥ R0}.

This can be done in O(n log(n)).

R 7→ R/‖R‖1 is smooth on {R ∈ Rn | R ≥ 0, 〈R, 1〉 ≥ R0}:

‖ R1

‖R1‖1
− R2

‖R2‖1
‖2 ≤

√
n

R0
· ‖R1 − R2‖2 (2)
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Toward stable RM+: second idea

Smoothing: run Predictive RM+, and at the end of every iteration:

If 〈Rt+1, 1〉 ≤ R0 then replace Rt+1 by its projection on R0∆n.

Theorem

Assume that each player runs Predictive RM+ with Smoothing with

R0 = XXX . Then:

• max
{
RegT1 ,Reg

T
2

}
= O

(
T 1/4

)
.

• RegT1 + RegT2 = O(1).

⇒ Convergence to a Nash Equilibrium at a rate of O (1/T ).
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Example on a pathological example (continued)

Solving a small matrix game: minx∈∆3 maxy∈∆3〈x ,Ay〉.
Running Predictive RM+ with restarting:

101 102 103 104 105 106 107

Number of iterations

1

2

3

R
eg

re
t

Regret (x-player)

101 102 103 104 105 106 107

Number of iterations

−1.0

−0.5

0.0

0.5

1.0

R
eg

re
t

Regret (y-player)
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Example on a pathological example (continued)

Solving a small matrix game: minx∈∆3 maxy∈∆3〈x ,Ay〉.
Running Predictive RM+ with Smoothing:

101 102 103 104 105 106 107

Number of iterations

1.4

1.6

1.8

2.0

R
eg

re
t

Regret (x-player)

101 102 103 104 105 106 107

Number of iterations

−0.5

0.0

0.5

R
eg

re
t

Regret (y-player)
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Solving a small matrix game:

min
x∈∆3

max
y∈∆3

〈x ,Ay〉.

Comparing the average convergence to a Nash Equilibrium:

101 102 103 104 105 106 107

Number of iterations

10−11

10−8

10−5

10−2

D
u

al
it

y
ga

p
RM+

PRM+

PRM+ (restarting)

PRM+ (smoothing)
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Last-iterate convergence

All the guarantees presented so far are for the average iterates:

x̄T =
1

T

T∑
t=1

xt , ȳt =
1

T

T∑
t=1

yt

How about convergence in xT , yT , i.e., last-iterate convergence?

Why do we care?

• Quite simpler than average iterates

• Averaging may be cumbersome/expensive computationally

• No last-iterate convergence ⇒ cycling/diverging behaviors
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Last-iterate convergence

Convergence on average vs. last-iterate convergence:

Figure 4: Running Regret Matching+ for 105 iterations for

Rock-Paper-Scissors.
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Our contributions 1/3

⇒ RM+ and Predictive RM+ may diverge on a simple 3× 3 matrix game.

⇒ Poor performance of the last iterates of RM+/ PRM+:

Figure 5: Last iterate performance of RM+, PRM+ and Smooth PRM+.
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Our contributions 1/3

We could only prove convergence of RM+ under very strong assumptions.

Theorem

Assume that the matrix game has a strict Nash Eq. (x?, y?):

• x? is the unique best-response to y?

• y? is the unique best-response to x?

Then RM+ converges: the sequence (xt , yt)t∈N has a limit.

Note: strict N.E. implies N.E. is unique and (x?, y?) are deterministic.
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Our contributions 2/3

Let Z? ⊂ ∆n ×∆m be the set of Nash equilibria.

Theorem

For Smooth Predictive RM+, we show

1. Last-iterate convergence: the sequence (xt , yt)t∈N has a limit.

2. Best-iterate convergence:

For some α > 0 and starting at (x0, y0),

min
t∈{1,...,T}

DualityGap (xt , yt) =
α · dist ((x0, y0),Z?)√

T

Metric subregularity [WLZL20] ∃ c > 0 such that, for any t ∈ N,

c · dist ((xt , yt),Z?) ≤ DualityGap(xt , yt).
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From best-iterate to linear last-iterate convergence

There exists a time t̃ ∈ {1, ...,T} such that

dist ((xt̃ , yt̃),Z?) ≤ α

c
√
T
· dist ((x0, y0),Z?) .

T such that α
c
√
T

= 1
2 :

⇒ in a constant number of steps, we halve the distance to Z?:

dist ((xt̃ , yt̃),Z?) ≤ 1

2
dist ((x0, y0),Z?) .

⇒ Why not reinitializing the algorithm at time t̃: (x0, y0)← (xt̃ , yt̃)?

Problem: of course we can’t identify the time t̃...

Solution: bound the distance to Z? by distances between R̂t ,Rt+1,Rt .
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Our contributions 3/3

Theorem

Consider running Smooth Predictive RM+, with the following trick:

At iteration t,

“Reinitialize the algorithm if the current duality gap has been halved

since last reinitialization”

Then we have linear last-iterate convergence:

DualityGap (xt , yt) = O
(
βt
)

for some β ∈ (0, 1)
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Conclusion

• Better understanding of Regret Matching+ and predictive variants

• New algorithms with strong theoretical guarantees

• Limitations:

1. We loose the step-size free property (choice of R0)

2. Convergence rates don’t apply for extensive-form games

(CFR)/multiplayer normal-form games

3. Other unexplained aspects of RM+: alternation, linear averaging, etc.

• More in the papers + code available online

Thank you!
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Our contributions 3/3

Theorem

Consider running Smooth Predictive RM+, with the following trick:

At iteration t,

if ‖R̂t+1 − Rt‖2 + ‖R̂t − Rt‖2 ≤ 2−k then Rt+1 ← xt+1, k ← k + 1

and similarly for the y -player.

Then we have linear last-iterate convergence:

DualityGap (xt , yt) = O
(
βt
)

for some β ∈ (0, 1)
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Monotone operator 1/2

Zero-sum game G : minx∈∆d1
maxy∈∆m〈x ,Ay〉.

Gradient operator FG (z) :=

(
Ay
−A>x

)
for z = (x , y) ∈ ∆n ×∆m.

This is a monotone operator:

〈FG (z)− FG (z ′), z − z ′〉 ≥ 0,∀ z , z ′ ∈ ∆n ×∆m.

OGD has last-iterate convergence for monotone operators [COZ22].
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Monotone operator 2/2

Smooth PRM+ ⇐⇒ running OGD with operator F defined as

F (z) :=

 A z2

‖z2‖1
− z>

1

‖z1‖1
A z2

‖z2‖1
· 1n

−A> z1

‖z1‖1
+

z>
2

‖z2‖1
A> z1

‖z1‖1
· 1m


for all z = (z1, z2) ∈ Rn

+ × Rm
+.

A simpler form:

F (z) :=

(
Ay − x>Ay · 1n

−A>x + y>A>x · 1m

)

for x = z1

‖z1‖1
, y = z2

‖z2‖1
for z = (z1, z2) ∈ Rn

+ × Rm
+.

The operator F is not monotone.
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