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Data-Set Valuation

Data-set valuation
Quantify the contribution of players when

sharing their data-sets towards solving
some machine learning task

Figure: Data-set valuation problem

Applications
- Mechanism design: First step towards incentivizing data sharing

- Federated learning: Optimally/fairly agents’ revenue

Approach
- Cooperative game theory

- Shapley value
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Literature

- Data-set valuation problem
Agarwal et al. 2019, Sim et al. 2020, Tay et al. 2021

- Shapley value has found its place in machine learning e.g. in
- data valuation: Jia et al. 2019, Ghorbani et al. 2020, Kwon et al. 2021, Kwon

and Zou 2022, Schoch et al. 2022
- variable selection: Cohen et al. 2005
- feature importance: Lundberg et al. 2020, Lundberg and Lee 2017, Covert et

al. 2020
- model interpretation: Chen et al. 2019

- Shapley value approximations
Castro et al. 2009, Ghorbani and Zou 2019, Mitchell et al. 2022
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Regression model

Model
- Set of agents I = {1, ..., I}

- Player i has a data-set Di ⊆ X × Y from some distribution Fi

- Denote ni = |Di| and N =
∑

i∈I ni

Regression

Yℓ = f(Xℓ) + εℓ,

εℓ is white noise and f is unknown

Goal
- To estimate f∗(x) = E[Y | X = x]

4



Binning method - Regressogram

Let B ∈ N be fixed. Di =
⋃

b∈[B]
Db

i , with Db
i ∩ Db′

i = ∅ for any two bins b and b′

X

Y

f
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Binning method - Regressogram

Risk −→ Ex

[
(f̂(x) − f∗(x))2]

= Ex

[
(f̂(x) − f̄(x))2]

+ Ex

[
(f̄(x) − f∗(x))2]

f̄ =
∑

b∈[B]

f̄b(x), f̄b(x) = Ex[f(x) | x ∈ b]

X

Y

f

︸ ︷︷ ︸
B

f̄
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Estimation & Approximation error

- With this in mind,

E
[
(f̂(x) − f∗(x))2]

= E
[
(f̂(x) − f̄(x))2]︸ ︷︷ ︸

Estimation error

+E
[
(f̄(x) − f∗(x))2]︸ ︷︷ ︸
Approximation error

- Estimation error ↗ B and ↘ N
- Approximation error ↘ B

}
−→ Trade-off in B

- Approximation error does not depend on (Di)i∈I but only on B

Data-set valuation
Quantify the contribution of players when

sharing their data-sets towards solving some
ML task decreasing the estimation error
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Model

- Set of players I = {1, ..., I}

- Value function v : 2I → R, S ⊆ I,

v(S) = −Ex

[
(f̂S(x) − f̄(x))2]

= −
∑

b∈[B]

Eb
x

[
(f̂S,b(x) − f̄b(x))2]

=:
∑

b∈[B]

vb(S)

- We measure the agents’ contribution in each bin

- For a fixed bin b ∈ [B] we suppose an homogeneous distribution,

vb(S) = wb(nb
S), where nb

S =
∑
i∈S

nb
i

- In linear regression (X = Rd, σε = E[ε2
ℓ ]),

wb(nb
S) = −dσ2

ε

nS − (d+ 1)
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Shapley value

- Classical solution concept in cooperative game theory

- Average marginal contribution of player i to all subcoalitions S ⊆ I \ {i}

- Given v : 2I → R, the Shapley value of player i is

φi(v) = 1
I

∑
S⊆I\{i}

1(
I−1
|S|

)[
v(S ∪ {i}) − v(S)

]

=
∑

b∈[B]

1
I

∑
S⊆I\{i}

1(
I−1
|S|

)[
vb(S ∪ {i}) − vb(S)

]
=

∑
b∈[B]

1
I

∑
S⊆I\{i}

1(
I−1
|S|

)[
wb(nb

S + nb
i ) − wb(nb

S)
]

=:
∑

b∈[B]

φb
i (wb)

- We compute each local Shapley value φb
i (wb) (intractable)
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Local Shapley value

- Take B = 1. The (local) Shapley value can be rewritten as,

φi(w) = EK∼U({0,1,...,I−1})
[
E

S∼U
(

2I\{i}
K

)[w(nS + ni) − w(nS)]
]

- What is the distribution of (nS)S⊆I\{i}?
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Figure: (left) I = 10, (middle) I = 50, (right) I = 500. 105 samples for each random
variable and a number of data points per player drawn from U([100]). n̄SK

stands for
nSK

normalised.
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Discrete uniform Shapley

Theorem Let nSK :=
∑

j∈SK
nj , where SK ∼ U

(
2I\{i}

K

)
and

K ∼ U({0, ..., I − 1}). Then,

nSK∑
j∈I\{i} nj

I→∞−−−→ U([0, 1])

Definition Discrete uniform Shapley

ψi := 1
I

I−1∑
k=0

[w(kµ−i + ni) − w(kµ−i)], µ−i := 1
I − 1

∑
j∈I\{i}

nj

Theorem Whenever w ∈ C2 is increasing and |w′′(x)|x2 ≤ w∞,

|φi − ψi| ≤ w∞

2Iµ−i

(
9(1 + ln(I))σ2

−i + 2R2
−iτ−i

)
R−i = max

j∈I\{i}
|nj − µ−i|, τ−i = max

j∈I\{i}
nj/ min

j∈I\{i}
nj

- Linear regression satisfies assumptions
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DU-Shapley vs Monte Carlo based methods

- DU-Shapley ψi needs I function valuations

- Monte Carlo φ̂i, to achieve P(|φi(w) − φ̂i(w)| ≤ ε) ≥ 1 − δ, needs

Tperm(ε, δ) = 2r2
vI

ε2 log
(

2I
δ

)
, rv := max

S1,S2⊆I
{v(S1) − v(S2)}

- Fixing Tperm = I,

Figure: For each value of I, we drew 100 times the data points of each player from
U([nmax]), with (left) nmax = 102, (center) nmax = 103, and (right) nmax = 104.
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DU-Shapley vs Monte Carlo based methods (2)

X

Y

Linear regression −→ wb(nb
S) = dσ2

ε

d+ 1 − nb
S

wr(nr
S) = dσ2

ε

d+ 1 − nr
S
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DU-Shapley vs Monte Carlo based methods (3)
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Figure: DU-Shapley vs MC-based approximations on synthetic datasets. I = 10, I = 15,
and I = 20. nb

i , nr
i ∼ U({20, . . . , 103}).
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Conclusions

Conclusions
- We study data-set valuation problem

- Mixing ML and GT we model this problem as the sum of cooperative games

- We have an efficient Shapley value approximation

- We have theoretical guarantees for our method

- Our method outperforms state of the art Monte Carlo approximation schemes

Future work
- Study the heterogeneity per bin

- Design mechanism to incentivise data-sharing

16



Thanks
www.gaimss24.org


	Data-Set Valuation
	Regression model and the Binning method
	Cooperative game theory model
	Shapley Value
	Discrete Uniform Shapley
	Numerical results
	Conclusions

