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Outcome inequality in matching
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Causes of outcome inequality in the literature

Taste-based discrimination [Becker, 1957]: intentional discrimination from the
decision-marker (i.e., colleges’ evaluations of students)

Statistical discrimination [Phelps, 1972, Arrow, 1973]: unintentional discrimination due to
imperfect information of the decision-maker on candidates’ qualities

Implicit bias [Kleinberg and Raghavan, 2018]
Differential variance [Garg et al., 2021, Emelianov et al., 2022]

Is there another source of outcome inequality in matching problems?
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Motivating example

High School 1 High School 2

Math grades distribution

Physics grades distribution

Math grades distribution

Physics grades distribution
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Motivating example

College A: selects based on math grades College B: selects based on physics grades

Math grades distribution (HS1)

Math grades distribution (HS2)

Physics grades distribution (HS1)

Physics grades distribution (HS2)
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Motivating Example
Intuitively, students from High Schools 1 and 2 should have similar admission rates, right?
Well...

70% of students from
High School 1 get a seat

55% of students from
High School 2 get a seat
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Differential correlation as a source of outcome inequality in matching

We study matching problems (i.e., multiple decision-makers) with multiple groups.

Differential correlation: Different ranking correlation between different groups.
How does differential correlation affect outcome inequality and efficiency in matching?
Key finding: differential correlation across groups leads to outcome inequalities even when
the rankings by each college are ‘fair’

⇒ Identifies a new source of outcome inequalities that is specific to matching markets and
should be included in assessments of, for example, school and university admissions
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The model: basic setup

We consider a continuum of students S .

S is divided into 2 groups G1 and G2.
[Note: extends to k groups.]

We consider two colleges, A and B .
Capacities αA and αB ∈ [0, 1]; αA + αB < 1.

Student preference : Some prefer A, some
prefer B

College ranking by giving grades.
Student s gets grades W s

A and W s
B .
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Grades distribution: what we want to model

Consider the bivariate (joint) distribution of the vector of grades (W s
A,W

s
B)

Example:

Differential correlation: the correlation depends on the group
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Grades distribution: what we want to model

Consider the bivariate (joint) distribution of the vector of grades (W s
A,W

s
B)

Example:

Group “low correlation” Group “High correlation”

Differential correlation: the correlation depends on the group
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Copulas

Multivariate distribution = marginals (independent) + coupling function (the copula)

Definition (Copula H)
A copula is a multivariate CDF (cumulative distribution function) on the unit cube with
uniform marginals. (E.g., in 2 dimensions: H : [0, 1]2 → [0, 1].)

Theorem (Sklar, 1959)
Let F be a bivariate CDF with marginals FA and FB . There exists a copula H s.t.

F (xA, xB) = H(FA(xA),FB(xB)), for all (xA, xB) ∈ [−∞,+∞]2.

(The converse is also true: given a copula H and univariate CDFs FA and FB , H(FA(xA),FB(xB)) is the
CDF of a bivariate random variable with marginals FA and FB .)

Note: If XA is a random variable with (univariate) CDF FA, then FA(XA) is uniform on [0, 1].
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Leveraging coherence to measure correlation

“A connection between two things in which one thing changes as the other does”1

Formalizations include cardinal versus ordinal notions (e.g., quantiles)
Coherence gives a functional-form free one-parameter proxy for correlation

Definition (Coherence)
The family (Hθ)θ∈Θ, Θ ⊂ R, is coherent iif Hθ(xA, xB) is increasing in θ for all xA, xB .

Lemma 1
Le (XA,XB) be a random vector with CDF Fθ = Hθ(FA,FB). Assume that (Hθ)θ∈Θ is coherent
(and that the marginals FA,FB are independent of θ). Then:

Pθ(XA < xA,XB < xB) and Pθ(XA < xA,XB > xB) increasing in θ

Pθ(XA < xA,XB ≥ xB) and Pθ(XA ≥ xA,XB < xB) decreasing in θ

1Oxford Advanced Learner’s Dictionary
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Connection to common measures of correlation

Let (X ,Y ) be a couple of random variables with marginals FX and FY and copula Hθ.
1 Pearson’s correlation coefficient: Assume that (X ,Y ) have finite standard deviation σX , σY . Then

rX ,Y = Cov(X ,Y )
σX ·σY

2 Spearman’s rank correlation coefficient: Let rankX = FX (X ) and rankY = FY (Y ) be the rank of X and Y
inside a sample. Then ρX ,Y = rrankX ,rankY

3 Kendall tau coefficient Let (X1,Y1) and (X2,Y2) be two independent pairs of random variables with the
same distribution as (X ,Y ). Then τX ,Y = P [(X1 > X2 ∩ Y1 > Y2) ∪ (X1 < X2 ∩ Y1 < Y2)]

− P [(X1 > X2 ∩ Y1 < Y2) ∪ (X1 < X2 ∩ Y1 > Y2)]

Lemma ([Scarsini, 1984])
If Hθ is coherent, then Spearman’s and Kendall’s correlation coefficients ρ and τ are strictly
increasing functions of θ.
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Important features

Recall:
Each student receives a vector of grades (WA,WB) at colleges A and B

Students belong to group G1 or G2

Denote:
Each group Gi has a correlation level θi

Important property:
We can change the correlation of a group without changing the marginals (technical tool:
copulas, not detailed here)
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Examples of distributions satisfying our assumptions

Bivariate Gaussian
▶ Here θ can be taken as the covariance (or correlation) parameter ρ

θ = −0.5 θ = 0 θ = 0.8 θ = 1

Castera, Loiseau, Pradelski Ranking Correlation in Matching Markets CIRM, Marseille, December 2023 14 / 26



Solution concept: stable matching

Definition (Stable Matching)
For each student s, for each college C such that s prefers C to the college they are matched
with, all students matched to C were ranked better than s at C .

Algorithm (Continuous Deferred Acceptance):
Initialize: All students apply to their favorite college, they are temporarily accepted. If the mass of students applying to
college C is greater than its capacity αC , then C only keeps the αC best
While A positive mass of students are unmatched and have not yet been rejected from every college do

Each student who has been rejected at the previous step proposes to her preferred college among those which have
not rejected them yet

Each college C keeps the best αC mass of students among those it had temporarily accepted and those who just
applied, and rejects the others

Theorem ([Abdulkadiroğlu et al., 2015])
The Continuous Deferred Acceptance Algorithm converges to a stable matching (possibly in
infinitely many steps).
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Cutoffs

A stable matching can be represented by a pair of cutoffs on the grade to get in each college.

Cutoffs

A matching can be represented by a pair of cutoffs on the grade to get in each college.

Figure: Dashed: matched to A, Dotted: matched to B , white: unmatched

Castera, Loiseau, Pradelski Ranking Correlation in Matching Markets Columbia, December 2023 14 / 22

Matched to A

Matched to B

Matched to A

Matched to B

Figure: Dashed: matched to A, Dotted: matched to B, white: unmatched
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The supply/demand framework for matching markets

Let PA,PB ∈ R be cutoffs, i.e., the grade of the ‘worst’ admitted student in resp. A and B .

Consider the demand at each college for these cutoffs:

DA(PA,PB) = #Students who prefer A and with WA ≥ PA

+#Students who prefer B and with WA ≥ PA, WB < PB

DA(PA,PB) = #Students who prefer B and with WB ≥ PB

+#Students who prefer A and with WB ≥ PB , WA < PA

We say that the cutoffs PA and PB are market clearing if

DA(PA,PB) = αA and DB(PA,PB) = αB

Theorem ([Azevedo and Leshno, 2016])
There is a unique stable matching, and it is given by the unique pair of market clearing cutoffs.

Hard to compute (in closed form), but we can still state qualitative properties
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Is one group advantaged compared to the other? – 1st choice

Proposition 1
If the marginals are the same for both groups at some college, the probability for a student to
get it as their first choice is independent of the group they belong to.

(If F 1
C = F 2

C for some college C , then V G1,C
1 = V G2,C

1 .)

Consequence: If two groups have different proportions of students getting their first choice, it is
only due to their marginals, not their correlation levels.
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Is one group advantaged compared to the other? – unassigned

Proposition 2
If the marginals are the same for both groups at some college, the group with the highest
correlation has the highest rate of unassigned students.

Consequence: Even when marginals are the same, i.e., each college ranks both groups
identically, one group has more unassigned students than the other
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Does capacity matter?

Proposition 3
If capacity is not constrained, i.e., αA + αB ≥ 1, then differential correlation has no impact on
the stable matching.

Intuition (for same marginals):
By Proposition 1, first-choice admittance is the same for both groups
But here there is enough capacity for every student to be admitted at (at least) their
second choice

From now on, we assume αA + αB < 1.
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What happens when correlation levels change? – Efficiency

Theorem 1 (Efficiency increases in all correlation levels)
The total amount of students getting their first choice increases in all groups’ correlation levels.

(In more detail: for any G ∈ {G1,G2} and C ∈ {A,B}, ∂V
G,C
1

∂θG
> 0.)

Intuition: increasing correlation decreases cutoffs
Formal proof: implicit function theorem on solution of market-clearing equations

correlation−−−−−−→
increase
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What differs between the groups? – Inequality

Proposition 4
The probability of a student remaining unmatched is decreasing in the other group’s correlation
level and increasing in her own. (For G ∈ {G1,G2},

∂VG
∅

∂θG
> 0 and

∂VG
∅

∂θḠ
< 0.)

Consequence: Increasing the correlation of the group with the lowest chance of staying
unmatched (the “advantaged group”) decreases inequality.

If the groups have the same marginals
▶ We recover Proposition 2.

Castera, Loiseau, Pradelski Ranking Correlation in Matching Markets CIRM, Marseille, December 2023 22 / 26



Does efficiency predict inequality?

Proposition 5
For any reachable efficiency, there exists a continuum of correlation pairs achieving it, each
extremity being optimal for one group and pessimal for the other.

If marginals are identical across groups, any given efficiency level is reachable with zero
inequality.

Any efficiency level can hide inequality
Thus, efficiency loss alone does not capture the impact of differential correlation
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Does efficiency predict inequality?

0.0 0.2 0.4 0.6 0.8 1.0 0.0
0.2
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0.1
0.2
0.3
0.4
0.5

Figure: Achievable efficiency levels for all values of (θ1, θ2)
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Link to the tie-breaking literature

Tie-breaking in school choice [Ashlagi et al., 2019, Ashlagi and Nikzad, 2020, Arnosti, 2022]:
One demographic group, one “priority classes”
Single tie-breaking vs multiple tie-breaking ⇒ single tie-breaking rule is more efficient

With our framework, we consider multiple priority classes:
We recover and partially extend some of these results

▶ Construct a bivariate distribution consistent with the priority classes, but with full support
▶ Such that single tie-breaking corresponds to θ = 1 and multiple tie-breaking to θ = 0

− : limited to two colleges
+ : arbitrary number of priority classes
+ : arbitrary correlation level (not limited to 0 or 1)

▶ corresponds to an intermediate tie-breaker, e.g., colleges use “unimportant” criteria to break
ties (e.g., proximity) and only then revert to fully random tie-breaking
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Conclusion
We identify a new source of outcome inequality in matching: differential correlation

▶ Fairness in rankings does not guarantee fairness in matching

We provide a novel framework to study correlation in matching problems (via coherence)
▶ Differential correlation creates distinct effects on inequality and efficiency

⋆ No effect on good students, intermediate students are better off in the low correlation group.
⋆ Increasing both group’s correlation levels as high as possible while keeping them equal provides

efficiency and fairness simultaneously.
▶ Allows to extend existing results on tie-breaking

Some open questions
▶ More complex models (marginals that change with the correlation, e.g. latent quality +

noise)
▶ Mechanism design (share estimates, fairness constraints)

Thank you!
Full paper: https://hal.archives-ouvertes.fr/hal-03672270/
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Example: different criteria
Two colleges, A and B , with different criteria. Suppose college A is interested in the level of
applicants in maths, and college B in physics. Applicants come from two high schools:

High school 1: Physics is taught in a very theoretical way
→ grades in maths and physics are highly correlated.

High school 2: Physics is taught through experiments
→ grades in maths and physics are more independent.

Figure: Example of distributions. Left: correlation 0.8, right: correlation 0.3
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Example: Latent quality + noise with standardization

Colleges A and B have noisy estimates of applicants’ qualities. Each applicant s has a latent
quality W s ∼ N (0, η2); and her grade at each college is:

Ŵ s
A = W s + εsA, Ŵ s

B = W s + εsB

Two groups of applicants: local and foreign. Evaluation of local applicants is more precise
than for foreign applicants. For a local applicant s, εs ∼ N (0, σ2

loc) and for a foreign applicant
εs ∼ N (0, σ2

for ), with σloc < σfor .
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Example: Latent quality + noise with standardization
For fairness purposes, colleges decide to standardize the grade distributions: grades of local
students are fitted into N (0, 1), and so are grades of foreign students:

for any local student s, W̃ s
A = Ŵ s

A/
√
η2 + σ2

loc , W̃
s
B = Ŵ s

B/
√
η2 + σ2

loc

for any foreign student s, W̃ s
A = Ŵ s

A/
√

η2 + σ2
for , W̃

s
B = Ŵ s

B/
√
η2 + σ2

for
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